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Abstract 

Due to the megatrend globalization, special machinery is gaining significance for the capital goods sector. Characterized by the 
fulfillment of individual customer requirements, companies in special machinery have to deal with very specific and 
technologically complex tasks. Hence, managing information and knowledge becomes vital for a company’s competitive ability, 
notably when it comes to expert knowledge. The characteristics of special machines leads to iterative processes for problem 
solving and thereby, increase lead times significantly. The more technologically complex a machine is, the more scattered the 
expert knowledge, meaning that many different experts need to be consulted before solving a problem. Up to now, in scientific 
literature, there has been little discussion about the challenges of special machinery and practical solutions regarding an 
implementation of technical intelligence in a special machinery environment. Therefore, the goal of this paper is to give an 
example of how an expert system can be applied to special machinery surroundings and thus, increases productivity. A Bayesian 
network forms the basis of the system as it allows efficient inference algorithms and reasoning under uncertainty, despite its 
ability to describe complex dependencies. The expert systems capability has been proven in industrial laser manufacturing.  
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1. Introduction 
 
Due to the megatrend globalization, special machinery is 
gaining significance for the capital goods sector [1]. 
Characterized by the fulfillment of individual customer 
requirements, companies in special machinery have to deal 
with very specific and technologically complex tasks [2]. An 
examination of a special machinery manufacturer displayed 
how the complexity of special machines leads to iterative 
processes for diagnosing and problem solving and thereby, 
increases lead times significantly. Hence, an intelligent 
management of information and knowledge becomes vital for 
a company’s competitive ability, notably when it comes to 
expert knowledge.  
“Intelligence is the capacity to learn, the capacity to acquire, 

adapt, modify and extend knowledge in order to solve 
problems.” [3] Thus, when building intelligent entities, 
problems cannot only be solved by human experts but also by 
artificial intelligence. One very successful application of 
artificial intelligence technology are expert systems [4]. 
According to Maus and Keyes, “expert systems use artificial 
intelligence concepts to enable computers to function in 
decision-support roles as advisors, personifying human expert 
decision-making capabilities.” [5] Hence, expert systems 
cannot replace human specialists, but they can serve as highly 
efficient support-tools in the decision-making process. In 
general, expert systems can be used for analyzing, diagnosing, 
monitoring, forecasting, planning, and designing [6] and have 
been successfully implemented in various fields; 
predominantly in medical, manufacturing and business fields 
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as shown by Durkin [7]. Nonetheless, there has been little 
discussion in scientific literature about the challenges of 
special machinery and practical solutions regarding an 
implementation of an expert system dealing with uncertainty 
in a special machinery environment, even though there is a 
broad consensus on the potential benefits of expert systems 
[4,5,8,9][8,4,9,5]  
When it comes to the design of knowledge-based methods for 
reasoning and decision-making, uncertainty plays a significant 
role [8]. With regard to technical intelligence in 
manufacturing, Kobbacy and McNaught et al. accentuate that 
Bayesian Networks are most beneficial when dealing with 
uncertainty [9]. 
Therefore, the aim of this paper is to give an example of an 
interactive probabilistic expert system design using Bayesian 
Networks and its implementation in a special machinery 
environment, more precisely in commissioning. 
 
2. Commissioning in special machinery 
 
Special machinery can be described as a function of 
mechanical engineering with the purpose of producing 
specialized machines according to customer specifications 
[10]. The main criteria for a differentiation between 
mechanical engineering and special machinery is the degree 
of individuality and the batch sizes of the products [2,11]. A 
typical batch size of one machine and the high degree of 
individuality in special machinery leads to an Engineer-to-
Order manufacturing concept and mostly to a manual and 
individually modified production process [2,10]. Special 
machines are designed to fulfill very specific and 
technologically challenging tasks. Hence, manufacturers in 
special machinery need to act globally in order to be able to 
generate sufficient demand to be profitable. But by virtue of a 
global presence, these companies also face great challenges 
due to a higher cost pressure. Therefore, international 
companies need to generate competitive advantages through 
short time-to-market cycles. [2] In this respect, a high 
potential for rationalization can be exploited in the 
commissioning phase, since problems that have not been 
detected in earlier production stages concur during 
commissioning [12]. According to Weber, commissioning 
describes the transfer of a machine from idle state to a 
continuous operating state. Ideally, commissioning in special 
machinery results in a fast transfer into a stable continuous 
operating state, as special machines are usually linked to high 
investment costs [13]. Therefore, problems need to be 
detected and eliminated quickly [12]. Systematic knowledge 
acquisition and management in commissioning can increase 
efficiency and, thus, the competitiveness of future projects 
significantly [13,14]. In the form of so-called expert systems, 
knowledge management provides a powerful tool for 
diagnosing and decision making and, thus, can shorten 
commissioning and time-to-market cycles substantially.  
 
3. Expert systems 

3.1 Characteristics  

Puppe separates the architecture of expert systems (XPS) into 
two main modules: the knowledge base and the control 
system. The knowledge base consists of domain-specific, 

case-specific knowledge and (intermediate and final) results, 
whereas, the control system, also known as shell, contains an 
inference component that provides problem solving strategies 
as well as the user interface. [15] The main purpose of the 
user interface is to gather factual data. It can either interact 
with the user in a dialogue and, thereby, acquire knowledge or 
read in measured data. In addition the user interface should 
provide an explanation component since a transparent 
presentation of results and the underlying reasoning correlates 
strongly with the acceptance of an expert system [16]. A key 
factor for the effectiveness of an expert system is the quality 
of the knowledge base [17]. Expert systems can provide fast 
and reliable answers and based on the studies of Tversky, 
Kjræulff and Madsen conclude that the quality of decisions 
improves when human decisions are being supported by 
recommendations from an expert system [19,20,18]. 

3.2 Knowledge acquisition as bottleneck 

The acquisition of knowledge is often the bottleneck in the 
construction of expert systems [17,21–23]. The reasons for 
this are diverse but one of the main difficulties is to make the 
knowledge of a human expert explicit. For one, human 
experts use tacit or implicit knowledge and common sense as 
well as everyday knowledge to solve problems. Furthermore, 
expert knowledge is characterized by complex and large 
amounts of information and human experts occasionally give 
inaccurate or incomplete descriptions of problems and 
solutions. [8,17,24] 

3.3 Uncertainty in knowledge 

Decision environments and data sources are often afflicted 
with uncertainty and, therefore, most cause effects are 
uncertain [18,26,25]. Consequently the management of 
uncertainty is central for decision support systems. While 
rule-based systems have serious limitations when it comes to 
reasoning under uncertainty, inference nets and namely 
Bayesian networks “(…) enable to perform probabilistic 
calculus and statistical analyses in an efficient manner 
[18,27].“ 

4. Bayesian networks for diagnosis 

A Bayesian network (BN) is a directed acyclic graph (DAG) 
in which nodes represent events and directed links causal 
dependencies. When observing new evidences, the updated 
probability distribution can be calculated for the remaining 
variables. [28] Moreover, it is possible to combine hard 
statistical data with softer expert knowledge as well as 
handling incomplete data sets and, thus, provide a powerful 
tool for diagnostic expert systems [29,31,30].  

5. Literature review on BN and expert system 
applications in manufacturing 

An extensive literature review on Bayesian networks and 
expert systems that have been applied in manufacturing from 
2000 to 2016 has been conducted. Therefore, categories have 
been defined according to Stefik and Mertens characterization 
of expert tasks [32,6].  
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This categorization includes:  

- Analysis 
- Diagnosis 
- Monitoring 

 

 
- Prognosis 
- Planning 
- Design 
- Consulting 

Table 1 - Review on Bayesian Networks in Production from 2000 to 2016 

 

The review shows that, to date, few practical examples are 
being documented and published. The vast majority of 
published Bayesian network applications are being used for 
diagnosing, some for monitoring and prognosis but only a few 
for analysis and planning purposes, as Table 1 shows. None of 
the reviewed practical applications is being used for designing 
or consulting. Only Kobaccy et al. combine a BN with a user 
interface. Thereby, they create an expert system and use the 
BN for diagnosis and consulting. Table 2 gives an overview 
of XPS applications. Besides the categorization into expert 
tasks, a distinction between probabilistic and non-probabilistic 
inference methods was drawn. Unlike BN applications, most 
of the XPS applications concern analysis and consulting. 
However, a greater diversity amongst XPS in fulfilling expert 
tasks was found, but none concerning design. Regarding 
inference methods, 15 out of 17 of the examined XPS are 
non-probabilistic and only 2 of 17 probabilistic. Nevertheless, 
there is a great potential for probabilistic XPS, when 
combining inference nets with user interfaces. With this paper 
the authors narrow the research gap by describing the design 
of an interactive probabilistic expert system using Bayesian 

networks. 

6. Design of an interactive probabilistic expert system 

6.1 Knowledge acquisition 

The aim of the knowledge acquisition process is to gather all 
relevant information about a specific domain or topic where 
the XPS is intended to be applied. Considering the difficulties 
in converting expert knowledge into explicit, formalized and 
operational knowledge an eclectic approach is essential. 
Therefore, interviews or workshops with experts are good 
instruments to get an overview and find a common 
understanding of the subject and to structure the knowledge 
according to a taxonomic scheme. This structure can be 
further refined through iteration loops and observation, for 
example when the expert solves a representative problem. 
Additionally, a learning component can attenuate incomplete 
or inaccurate information and provide access to structural 
changes for the user.  

 

 

Author Interpretation Diagnosis Monitoring Prognosis Planning Design Consulting
Journal 

H Indexa

Ben Said et al. (2016)b x x x 21

Bouissou & Pourret (2003)b x 22

Correa et al. (2009) x 112

Dey & Stori (2005) x x 100

Garcia et al. (2008) x x 22

Hamamoto et al. (2016) x 21

Huang et al. (2008) x 54

Jones et al. (2010) x x 93

Kobbacy et al. (2011) x x 45

Li & Shi (2007)b x 70

Liu & Jin (2009) x x 2

Liu & Jin (2013) x 71

Mansour et al.  (2012) x 32

Masruroh & Poh (2007)b x 9

McNaught & Zagorecki (2009)b x 8

Mechraoui et al. (2008)b x 19

Mengshoel et al. (2008) x -

Penya et al. (2008) x 19

Pradhan et al. (2007)b x 8

Ramesh et al. (2003) x 100

Rodrigues et al. (2000) x x 177

Romessis & Mathioudakis (2006) x 61

Tobon-Meija et al. (2012) x x 100

Yang & Lee (2012) x x 61

3 16 5 6 3 0 1

aSCImago. (2007). SJR — SCImago Journal & Country Rank. Retrieved October 14, 2016, from http://www.scimagojr.com
bStudy

Expert Task
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Table 2 - Review on Expert Systems in Manufacturing from 2000 to 2016 

 

6.2 Architecture  

In order to make the collected and structured knowledge 
accessible and operational it will be modeled in the form of a 
Bayesian network. As a example a simple structure of this 
network is shown in Fig.1. The knowledge in general can be 
categorized as symptoms, causes and solutions which are 
modeled as individual nodes. The relationships between the 
variables can be defined through a probability distribution.  
 

 

Fig. 1 - Taxonomic scheme for BN modeling 

As shown in Fig. 1 and according to the categorization of the 
knowledge the net consists of three different types of nodes: 
the symptom nodes, the cause node and the solution nodes. 
The cause node is connected with all of the other nodes. This 
allows to define a prior probability. The relation between the 
cause node and either the symptom nodes or the solution 
nodes can be defined by expert consultations. Following, a 
case can be entered into the symptom nodes. Thus, the 
symptoms influence the distribution of the failure causes. 
Furthermore, the distribution of all failures influence the 
probability that a certain solution node contains the proper 

solution. To define the causual dependencies, prior 
probabilities need to be determined. According to Pearl, it is 
possible to obtain the relational probability distribution from 
the expert knowledge [33]. In order to derivate prior-
probabilities, past information can be used. This kind of 
information usually exists in every company for example as 
quality reports. The BN, thus, functions as a knowledge base, 
whereas, Bayesian inference rules become part of the control 
system. To achieve a user-friendly tool, certain steps in the 
programmed interface have to be complied with. For example 
a dynamically programmed user interface (GUI) permits an 
independent knowledge base, therefore, changes in the 
knowledge base of the Bayesian network do not require a 
change in the program code of the GUI. Via dynamic 
computer-initiated dialogues, new evidences can be entered 
into the BN. The dynamic dialogue states the most expedient 
questions first and skips redundant ones. Furthermore, the 
learning component trains the network by saving cases each 
time the XPS has been used. Therewith, prior probabilities are 
being updated.  
Additionally, a user feedback about the suggested solution 
will be demanded in order to increase the overall effectiveness. 
Concerning transparency, displaying a real-time probability 
distribution of the causes and a questionnaire log to ensure 
traceability are proposed. 
 
6.3 Validation  

The presented design of an interactive probabilistic expert 
system in this paper has been applied at a company that 
produces special machinery in the field of industrial high 
power lasers and shows promising first results.  
The application of the developed method has been conducted 
at a process for the testing of a vacuum chamber and the 
detection of leaks. Therefore, all possible symptoms of a leak 

Author Interpretation Diagnosis Monitoring Prognosis Planning Design Consulting Non-Probabilistic Probabilistic
Journal 

H Indexa

Ahmed Ali et al. (2015) x x x 96

Balachandra (2000) x x x 69

Batista et al. (2013) x x x 112

Chan (2005) x x x 112

do Rosário et al. (2015)b x x x 112

Ebersbach & Peng (2008) x x 112

Hussain et al. (2015) x x x 112

Li et al. (2000) x x x 181

Li et al. (2013) x x x 38

Liao et al. (2004) x x x 112

Liukkonen et al. (2011) x x 112

Mazurkiewicz (2015) x x x 19

Metaxiotis et al. (2002) x x 69

Möller (2005) x x x -

Nikolopoulos & Assimakopoulos (2003) x x 69

Rao et al. (2005) x x x 112

Urrea et al. (2015) x x x 112

8 5 4 2 3 0 8 15 2

aSCImago. (2007). SJR — SCImago Journal & Country Rank. Retrieved October 18, 2016, from http://www.scimagojr.com
bStudy

Inference methodExpert Task
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are entered as single nodes. Furthermore, all known causes for 
leaks are entered into the cause node and combined with the 
known failure distribution. In a workshop with process 
experts all known types of solutions are found and entered 
into the net. Finally, all causual dependencies are defined with 
process experts. 
The result of the validation is a Bayesian network which is 
capable of modeling failures in special machinery processes. 
Furthermore, a symptom can be related to a possible solution 
of a failure. 
 
7. Summary and outlook  

Manufacturers in special machinery are facing great 
challenges since globalization expedites stronger competition 
and, along with that, higher cost and time pressure. Therefore, 
special machinery manufacturers need to create competitive 
advantages through shorter time-to-market cycles by 
increasing efficiency. In this respect, commissioning provides 
a great lever since problems that have not been detected in 
earlier production stages concur during commissioning. By 
means of an expert system, productivity can be increased 
substantially. Therefore, this paper presents a concept of a 
probabilistic expert system using Bayesian networks in order 
to effectively support human decision making and to 
accelerate problem solving processes. Bayesian networks 
form the knowledge base so that reasoning under uncertainty 
is possible and effective. The concept has been validated at a 
high power industrial laser manufacturer and shows very 
promising first results. A long term validation will verify the 
expert systems effectiveness.  
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