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Abstract

In this paper we are concerned with the non-invasive embedding of enriched partition
of unity approximations in classical finite element simulations and the efficient solution
of the resulting linear systems. The employed embedding is based on the partition of
unity approach introduced in Schweitzer and Ziegenhagel (Embedding enriched
partition of unity approximations in finite element simulations. In: Griebel M, Schweitzer
MA, editors. Meshfree methods for partial differential equations VIII. Lecture notes in
science and engineering, Cham, Springer International Publishing; 195–204, 2017)
which is applicable to any finite element implementation and thus allows for a stable
enrichment of e.g. commercial finite element software to improve the quality of its
approximation properties in a non-invasive fashion. The major remaining challenge is
the efficient solution of the arising linear systems. To this end, we apply classical
subspace correction techniques to design non-invasive efficient multilevel solvers by
blending a non-invasive algebraic multigrid method (applied to the finite element
components) with a (geometric) multilevel solver (Griebel and Schweitzer in SIAM J Sci
Comput 24:377–409, 2002; Schweitzer in Numer Math 118:307–28, 2011) (applied to
the enriched embedded components). We present first numerical results in two and
three space dimensions which clearly show the (close to) optimal performance of the
proposed solver.

Keywords: Partition of unity method, Generalized finite element method, Multilevel
solver, Subspace correction, Domain decompositon

Mathematics Subject Classification: Primary 65N55, 65N30

Introduction
The direct generalization and extension of the classical finite element method (FEM) to
allow for the use of arbitrary non-polynomial basis functions as in partition of unity (PU)
based approaches like XFEM/GFEM [1–5] usually requires a fair amount of implemen-
tational work within the original finite element (FE) code. Thus, the timely evaluation of
novel generalizations of the FEM in large-scale industrial applications, which in general
rely on commercial software packages, is usually not feasible. This issue can, however,
be overcome with the help of the embedding approach presented in [6]. It allows for the
non-invasive stable embedding of an arbitrary approximation space VENR into a classical
FE space VHOST and thereby enables the easy evaluation of novel generalizations of the
FEM empolying arbitrary approximation functions in an industrial context. In [6] it was
demonstrated that the approach is free from artifacts and yields substantial improvements
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in terms of accuracy. Note that this approach is very different from classical global–local
techniques where you consider an independent auxilliary local problem. We, however,
blend two function spaces VHOST and VENR to discretize the global problem directly with
a single larger function space VBND which comprises VHOST and VENR, compare also
[7–9].
In this paper we are concerned with the construction of highly efficient solvers and

preconditioners for the linear system arising from the discretization of the global prob-
lem with this blended function space VBND. To this end, we are concerned with the
non-invasive construction of multilevel preconditioners based on subspace correction
methods [10] which are also referred to as Schwarz methods e.g. in the domain decom-
position context [11]. We construct the coarsening process for VBND with the help of
an available (geometric) multilevel structure of VENR and a multilevel decomposition of
VHOST obtained by an algebraic multigrid (AMG) method in a non-invasive fashion. The
remainder of this paper is structured as follows: we first quickly introduce the mathemat-
ical foundation of our embedding approach, the partition of unity method (PUM), in “A
partition of unity method for the embedding of arbitrary approximation spaces in finite
element spaces” and summarize the actual embedding procedure. In “Subspace correc-
tion methods” we introduce efficient subspace corrections preconditioners for the linear
system arising from the discretization of the global problemby our blended function space
VBND. The results of our numerical experiments with these preconditioners are presented
in “Numerical results” before we conclude with some remarks in “Concluding remarks”.

A partition of unity method for the embedding of arbitrary approximation
spaces in finite element spaces
The PUM was introduced in [1,12] as a generalization of the FEM and is based on [13].
The abstract ingredients which make up a PUM space

V PU :=
N∑

i=1
ϕiVi = span〈ϕiϑ

m
i 〉; (1)

are a partition of unity (PU) {ϕi : i = 1, . . . , N } and a collection of local approximation
spaces Vi := Vi(ωi) := span〈ϑm

i 〉dVim=1 defined on the patches ωi := supp(ϕi) for i =
1, . . . , N . Thus, the shape functions of a PUM space are simply defined as the products of
the PU functions ϕi and the local approximation functions ϑm

i . The PU functions provide
the locality and global regularity of the product functions ϕiϑm

i whereas the functions
ϑm
i equip V PU with its approximation power. Note that there are no constraints imposed

on the choice of the local spaces Vi, i.e. they are completely independent of each other.
Thus, this very local interpretation of the PUM approach allows to utilize local a priori
information about the sought solution by using so-called enrichment functions or physics-
based basis functions in general [5].Here,weusually employ local approximation spacesVi
of the formVi = Pi+Ei wherePi denotes a space of local polynomials and Ei accounts for
non-smooth local features such as kinks, discontinuities and singularities of the solution
on the patch ωi. In our setting, however, we will not follow this local approach but we
take a more global point of view which is in spirit closer to a domain decomposition line
of thought, see e.g. [11], and can be viewed as a generalization of [7–9], see [6] for details.
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Fig. 1 Sketch of smooth model problem in two dimensions depicting the employed partitioning of the
domain � into �HOST,FT (drak gray), �� = �HOST ∩ �ENR (light gray), and �ENR,FT (white). The boundary data
for this model problem is given by g = 0 on �D and h = (1, 1)T · n on �N where n denotes the outer normal

Let us consider a very simple cover of the domain � into just two overlapping patches
(or subdomains) �0 and �1 with respective PU functions �0 and �1, i.e. �0 + �1 ≡ 1 on
� ⊆ �0 ∪ �1. Then, let us choose the approximation space V0 on the patch �0 to be a
classical FE space defined on a respectivemesh�0,h which discretizes�0. According to the
general PUM approximation theory this choice of V0 imposes absolutely no constraints
on our choice of the approximation space V1 on the other subdomain �1. For instance,
we could choose another FE space on a non-matching mesh �1,H and blend these non-
matching spaces smoothly together via the PUM [7,8]. Another admissible choice for V1
is the use of a locally enriched PUM space [6]. Throughout this paper we focus on the
latter case where we blend an enriched approximation space with a classical FE space.
Thereby, we can equip any classical FE simulation with stable enrichment capabilities via
the PUM in a non-invasive fashion. To this end, let us introduce some more descriptive
notation to identify the various components employed in our overall scheme. We refer to
the two patches or subdomains by�HOST and�ENR, compare Fig. 1.Moreover, we denote
the respective function spaces defined on these subdomains by VHOST and VENR where
VHOST is a classical FE space and VENR is an enriched approximation space. Note that in
this simplistic two subdomain case we can rewrite the PU functions as �HOST := � and
�ENR := (1 − �) with some non-negative weight function � with supp(�) = �̄HOST.
With the help of this notation and (1) we define our blended global approximation space

VBND on the complete domain � by

VBND := �HOSTVHOST + �ENRVENR = �VHOST + (1 − �)VENR (2)

such that any element v ∈ VBND can be written as

vBND = �HOSTvHOST + �ENRvENR

with vHOST ∈ VHOST and vENR ∈ VENR. Note that the general convergence theory of
the PUM [1,12] allows to obtain some straightforward error bounds for this blending
approach. To this end, let us consider the following estimate from [14].

Theorem 1 Let � ⊂ R
D be a Lipschitz domain. Let {ϕi : i = 1, . . . , N } be an admissible

non-negative partition of unity defined on patches ωi := supp(ϕi).
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Let us further introduce the covering index λC� : � → N such that

λC� (x) := card({ωi ∈ C� : x ∈ ωi}) (3)

and let us assume that

λC� (x) ≤ 	 ∈ N for all x ∈ � (4)

with 	 independent of the number of patches N . Let a collection of local approximation
spaces Vi = span〈ϑm

i 〉 ⊂ H1(ωi) be given. Let f ∈ H1(�) be the function to be approxi-
mated. Assume that the local approximation spaces Vi have the following approximation
properties: On each patch�∩ωi, the function f can be approximated by a function vi ∈ Vi
such that

‖f − vi‖L2(�∩ωi) ≤ ε̂i, and ‖∇(f − vi)‖L2(�∩ωi) ≤ ε̃i (5)

hold for all i = 1, . . . , N . Then the function

v :=
N∑

i=1
ϕivi ∈ V PU ⊂ H1(�)

satisfies the global estimates

‖f − v‖L2(�) ≤
( N∑

i=1
‖ϕi‖L∞(Rd )ε̂

2
i

)1/2

, (6)

‖∇(f − v)‖L2(�) ≤ √
2
( N∑

i=1
	

(‖∇ϕi‖L∞(Rd )ε̂i
)2 + ‖ϕi‖L∞(Rd )ε̃

2
i

)1/2

. (7)

In our setting we only have two approximation spaces VHOST and VENR and let us, for
the ease of notation, assume that both spaces (i = HOST,ENR) admit error bounds (5)
of the form

‖f − vi‖L2(�∩ωi) ≤ Chp+1
HOST, and ‖∇(f − vi)‖L2(�∩ωi) ≤ ChpHOST. (8)

Then it is sufficient to ensure that the estimates

‖∇�‖L∞(Rd ) ≤ C∇
hHOST

, ‖�‖L∞(Rd ) ≤ C∞

are satisfied by our PU function� to attain optimal convergencewith the blended function
space. Thus, our blending by the PUM provides optimal convergence even for very small
overlap regions �HOST ∩ �ENR.
The Galerkin discretization of a partial differential equation (PDE) using this blended

function space VBND yields the linear system

KBNDũBND = f̂BND, (9)

where f̂BND denotes the load vector and ũBND the respective coefficient vector of the
solution. If we assume that the PU function � satisfies the so-called flat-top property

�|�HOST,FT = �HOST|�HOST,FT ≡ 1
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for some subset �HOST,FT ⊂ �HOST = �HOST,FT ∪ �� with �� := �HOST \ �HOST,FT.
Obviously, the other PU function (1 − �) = �ENR then satisfies

(1 − �)|�ENR,FT = �ENR|�ENR,FT ≡ 1

for some �ENR,FT ⊂ �ENR = �ENR,FT ∪ �� with �HOST,FT ∩ �ENR,FT = ∅ and �HOST ∩
�ENR = ��. With the help of the flat-top property of the PU we can thus introduce the
splitting

VBND := VHOST,FT + �HOSTV⊥
HOST,FT + �ENRV⊥

ENR,FT + VENR,FT (10)

of our global blended function spaceVBND into four components where any v ∈ VHOST,FT
satisfies supp(v) ⊂ �̄HOST,FT and V⊥

HOST,FT denotes the complement of VHOST,FT in
VHOST. The respective block-partitioning of the global stiffness matrix then reads as

KBND =

⎛

⎜⎜⎜⎝

KHF,HF KHF,HF⊥ 0 0
KHF⊥ ,HF KHF⊥ ,HF⊥ KHF⊥ ,EF⊥ 0

0 KEF⊥ ,HF⊥ KEF⊥ ,EF⊥ KEF⊥ ,EF
0 0 KEF,EF⊥ KEF,EF

⎞

⎟⎟⎟⎠ . (11)

The load vector f̂BND and coefficient vector ũBND in this block-form are given by

f̂BND =

⎛

⎜⎜⎜⎝

f̂HF
f̂HF⊥

f̂EF⊥

f̂EF

⎞

⎟⎟⎟⎠ and ũBND =

⎛

⎜⎜⎜⎝

ũHF
ũHF⊥

ũEF⊥

ũEF

⎞

⎟⎟⎟⎠ .

Note that the sub-matrix KHF,HF is the classical FE stiffness matrix on the sub-domain
�HOST,FT and thus can be provided by any FE package whereas all other sub-matrices
in (11) need to be computed by the embedding code. Hence, our approach is completely
non-invasive to a (commercial) FE package with respect to the disjoint partitioning of
the domain � into �HOST,FT ⊂ �, which is discretized by the (commerical) FE package,
and � \ �HOST,FT, compare Fig. 1. However, we actually employ a FE discretization on
�HOST = �HOST,FT∪�� which is obtained bymerging the FE discretization on�HOST,FT
provided by the HOST code and the discretization on �� provided by our embedding
code, see [6] for details. Obviously, the overall computational effort associated with the
assembly of the linear system (9) thus scales with the size of the overlap region and thus
a small overlap region is preferable from this point of view.
Considering the disjoint partitioning of the domain � into �HOST,FT, �� and �ENR,FT

we can introduce the block-partitioning

KBND =
⎛

⎜⎝
KHF,HF KHF,� 0
K�,HF K�,� K�,EF
0 KEF,� KEF,EF

⎞

⎟⎠ , (12)

where

K�,� :=
(
KHF⊥ ,HF⊥ KHF⊥ ,EF⊥

KEF⊥ ,HF⊥ KEF⊥ ,EF⊥

)
,

which may serve as a natural starting point for the development of classical (single level)
domain decomposition solvers and preconditioners. We, however, are interested in the
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construction of multigrid-like solvers for (9) via the blending of respective multilevel
sequences ofVHOST andVENR and thus employ the evenmore compact block-partitioning

KBND =
(
KH,H KH,E
KE,H KE,E

)
, f̂BND =

(
f̂H
f̂E

)
, ũBND =

(
ũH
ũE

)
, (13)

where

KH,H :=
(

KHF,HF KHF,HF⊥

KHF⊥ ,HF KHF⊥ ,HF⊥

)
.

Note, however, that this disjoint partitioning of the matrix corresponds to an overlapping
partitioning of the domain � into �HOST = �HOST,FT ∪ �� and �ENR = �ENR,FT ∪ ��.
To introduce our proposed multilevel solver for (9) based on the partitioning (13) let
us shortly review the general components of such solvers in the context of subspace
correction methods.

Subspace correctionmethods
The computational effort associatedwith the solution of linear systems like (9) account for
a very large part (often even the largest) of the overall computational cost in any implicit
or stationary simulation. Thus, the development of efficient linear solvers is of great
practical relevance and is still an active research field today. Even though classical general
purpose numerical linear algebra techniques such as (sparse) matrix factorizations, see
e.g. [15], are widely used in practice, it is well-known that their computational complexity
is not optimal and that specialized iterative linear solvers are needed to tackle large scale
problems with millions of unknowns efficiently.
A very sophisticated class of iterative methods which not only show an optimal scaling

in the storage demand but also in the operation count are so-called multilevel iterative
solvers or (geometric) multigrid methods which are particular instances of subspace cor-
rection methods [10]. Note, however, that these multilevel and multigrid solvers are not
general algebraic methods but involve a substantial amount of information about the dis-
cretization and possibly the PDE. Thus, the introduction of such a (geometric) multilevel
solver in a commercial software package is very much invasive and typically infeasible.
However, there exist extensions of (geometric) multigrid methods, so-called algebraic
multigrid methods (AMG) [16–19], which can be used as a non-invasive plugin solver
also in commercial software [20,21]. Such AMG solvers are successfully utilized in many
different application fields yet they are essentially designed for classical mesh-based piece-
wise linear discretizations and thus are in general not directly applicable to discretizations
with arbitrary approximation functions, i.e. VBND and VENR. Therefore, no optimal linear
solver for (9) is readily available and we need to take the specific construction of our
blended approximation space VBND into account when designing a respective iterative
linear solver. To this end, we employ classical subspace correction techniques which can
utilize splittings such as (2) and (10).
There are two main variants of subspace correction approaches: the parallel subspace

correction (PSC) scheme (or additive Schwarz method) and the successive subspace cor-
rection (SSC) scheme (or multiplicative Schwarz method). Assuming a splitting
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V =
J∑

i=0
Vi (14)

of a global function space V , the PSC iteration reads

ũ ← ũ +
J∑

i=0
Bi(f̂ − Kũ) (15)

with

Bi := PiK−1
i PT

i , the prolongation Pi : Vi → V, (16)

and Ki denoting the stiffness matrix with respect to subspace Vi. The SSC scheme is
defined by

For i = 0, . . . , J : ũ ← ũ + Bi(f̂ − Kũ) (17)

and thus involves a successive update of the residual f̂ −Kũ after each subspace correction.
Note that the use of the exact inverse K−1

i in (16) is not necessary. In fact, the use of
approximate subspace solvers is usually advisable and muchmore common, i.e. we define

Bi := PiWiPT
i with Wi ≈ K−1

i . (18)

The main ingredients which control the performance of the iterations (15) and (17)
are the specific choices of the subspace splitting (14), the prolongations (16) and the
approximate subspace solvers Wi in (18) where it is important to note that we do not
assume that (14) allows for a unique decomposition v = ∑J

i=0 vi of a function v ∈ V .
In fact, the redundancy in the splitting (14) has a substantial impact on the convergence
properties of (15) and (17).
In classical multigrid terminology the approximate subspace solvers Wi in (18) are

referred to as smoothers and the subspacesVi correspond to the employed approximation
spaces defined on different refinement levels of the underlying mesh, i.e. VJ = V denotes
the finest discretization space andVi with i < J are referred to as coarse spaces. The role of
the smoothersWi is to reduce high frequency error components whereas the corrections
Bi(f̂ − Kũ) obtained on the coarser levels should reduce low frequency errors so that all
error frequencies are efficiently reduced in each iteration.
In the following we first focus on the construction of the coarse spaces Vi with i < J

for our finest discretization space VJ = V = VBND and the definition of the respective
prolongations Pi : Vi → V = VJ = VBND. To this end, let us review an essential property
that the prolongations Pi and coarse spaces Vi should satisfy. Since the role of the coarse
spacesVi is the resolution of low frequency errors they should at least contain the constant
functions, i.e. 1 ∈ Vi, and the prolongations should be exact for the constant functions.
Thus, we need to specify a coarsening process for the blended space VBND = VJ such
that the resulting coarse space VJ−1 contains constants and a respective prolongation
PJ−1 : VJ−1 → VJ = VBND which preserves constants. To this end, let us consider the
representation of the constant functions in VJ = VBND

1BND = �HOST · 1HOST + �ENR · 1ENR,
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where 1HOST ∈ VHOST and 1ENR ∈ VENR denote the constant function on the overlapping
sub-domains �HOST and �ENR respectively. Therefore, we can localize the coarsening
process for the space VBND to the two spaces VHOST and VENR and then define the
prolongation as

PJ−1 :=
(
PHOST,J−1 0

0 PENR,J−1

)

provided that the two prolongations PHOST,J−1 : VHOST,J−1 → VHOST and PENR,J−1 :
VENR,J−1 → VENR preserve constants in VHOST and VENR respectively. Hence, let us now
focus on the definition of a non-invasive coarsening process for VHOST which comprises
the FE space VHOST,FT (handled by the HOST code) and the FE space V⊥

HOST,FT via AMG
techniques.
In general, AMG constructs a suitable coarse space VJ−1 ⊂ VJ and a respective prolon-

gation PJ−1 : VJ−1 → VJ that preserves constants from the stiffness matrix KJ obtained
by the Galerkin discretization of the PDE using the space VJ . In our setting, however, the
block KH,H of the stiffness matrix (13) does not correspond to the Galerkin discretization
by VHOST but by the space �HOSTVHOST (which does not contain the constant function).
Thus, only the block KHF,HF of the matrix

KH,H :=
(

KHF,HF KHF,HF⊥

KHF⊥ ,HF KHF⊥ ,HF⊥

)

is given by a classical FE discretization and all other blocks are computed using basis
functions that are products �HOSTφk of our PU function �HOST and classical FE basis
functions φk . Applying AMG directly to KH,H therefore does not provide a suitable pro-
longation that preserves constants in VHOST, compare Fig. 2. To overcome this issue in a
way that is non-invasive also to AMG we simply set up an auxiliary matrix

K̄H,H :=
(

KHF,HF K̄HF,HF⊥

K̄HF⊥ ,HF K̄HF⊥ ,HF⊥

)

where we exchange the matrix blocks that involve �HOST in KH,H by their unweighted
counterparts, i.e. which are computed using the classical FE basis functions φk instead of
the products �HOSTφk . The matrix block KHF,HF is unchanged so that the non-invasive
character of our approach to the HOST code is fully maintained and no additional assem-
bly on the sub-domain �HOST,FT that is handled by the HOST code is necessary. Since
K̄H,H now satisfies all assumptions of AMG, we obtain a suitable coarse space VHOST,J−1
and associated prolongation P̄HOST,J−1 from the application of AMG to K̄H,H, compare
Fig. 2. In fact, AMG automatically computes a sequence of coarse spaces VHOST,i and
associated prolongations P̄i

HOST,i−1 : VHOST,i−1 → VHOST,i.
For the embedded space VENR, which in our case is itself a PUM space, we construct

a sequence of suitable prolongations P̄i
ENR,i−1 : VENR,i−1 → VENR,i directly by so-called

global-to-local L2-projections [22,23] based on a geometric coarsening process. Thus, we
can now define a sequence of prolongations

Pi
i−1 :=

(
P̄i
HOST,i−1 0

0 P̄i
ENR,i−1

)

and respective coarser versions KBND,i of our overall stiffness matrix KBND = KBND,J by
the so-called Galerkin operators

KBND,i−1 := (Pi
i−1)

TKBND,iPi
i−1.
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Fig. 2 Contour plots of the prolongation errors (left) attained for the constant function when using the
weighted space �HOSTVHOST in the AMG construction of the prolongation PJHOST,J−1 for a small (top) and a
large overlap region (bottom). Surface plots of the prolongation error of the smooth function
sin(3πx) cos(3πy) using PJHOST,J−1 (center) and P̄JHOST,J−1 (right)

Note, however, that this overall coarsening process in fact coarsens the two componentes
VHOST and VENR independently and thus may not be optimal on the overlap region
�� = �HOST ∩ �ENR where the two spaces interact substantially. Therefore, the overall
performance of the proposed scheme will be affected somewhat by the absolute size of
the overlap region ��. Unlike in classical domain decomposition methods where larger
overlap yields a convergence improvement, we, however, anticipate that an increasing
overlap will rather worsen the convergence behavior since our independent coarsening
process then ignores stronger interactions between the spaces.
As a final component we need to specify the approximate subspace solvers or smoothers

on the resulting coarse spaces VBND,i to instantiate the iterations (15) and (17). In the fol-
lowing we focus on iterations of the form (17), in particular we employ the classical multi-
grid iterationMν1 ,ν2

γ given in Algorithm 3.1 and consider different numbers of smoothing
steps ν = ν1 = ν2 as well as the V -cycle (γ = 1) and theW -cycle (γ = 2).

As smoothers Sprel and Spostl in Algorithm 3.1 we simply use Gauß–Seidel iterations,
whichprovide acceptable error reductionbut their smoothing effect seems tobe somewhat
less pronounced in �� for larger overlap regions ��, see Fig. 3.
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Fig. 3 Surface plots of iterates of a Gauß–Seidel smoother for iteration 1, 3, 5 (left to right) using a random
initial guess on a blended discretization using a small (top) and a large overlap region (bottom)

Numerical results
In this section we present some results of our numerical experiments using the embedded
enrichedPUMwithin a classical FE simulation as discussed above.To this end,we consider
a set of isotropic model problems focussing on the optimality of the proposed solver only.
A detailed study of the solvers robustness with respect to varying material coefficients is
the subject of future research. In particular, we are concerned with the approximation of
the Poisson problem

−�u = f in � ⊂ R
d,

u = g on �D ⊂ ∂�,
∂u
∂n

= h on �N = ∂�\�D,
(19)

in two space dimensions on a square domain, see Fig. 1, where we embed a smooth
enrichment space VENR to identify the best performance of our proposed solver. Then,
we consider a non-convex domain, see Fig. 4, where we embed an enrichment spaceVENR
that contains singular functions to efficiently resolve the corner singularity. Finally, we
consider a linearly elastic bar in three space dimensions, see Fig. 5, i.e.

−divσ(�u) = 0 in � ⊂ R
d,

�u = �g on �D ⊂ ∂�,
σ(�u) · �n = 0 on �C ,
σ(�u) · �n = �h on �N = ∂�\�D,

(20)

with the stress tensor σ(�u) := Cε(�u) = 2με(�u) + λ trace(ε(�u))I and the infinitesimal
strain tensor ε(u) := 1

2 (∇�u + (∇�u)T ), to study the performance of our proposed solver
for systems of equations in higher dimensions. Moreover, the selected model problems
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ΓN

ΓN

ΓD

ΓD

Fig. 4 Sketch of a non-convex domain � in two dimensions depicting the employed partitioning into
�HOST,FT (drak gray), �� = �HOST ∩ �ENR (light gray), and �ENR,FT (white). The boundary data for this model

problem is given by g = 0 on �D and h = ∇
(
(x2 + xy + y2 + 1)(r

2
3 sin( 2θ−π

3 ))
)

· n on �N where n denotes

the outer normal

ΩENR,FTΩHOST,FT ΩΦ
ΓL ΓR

ΓC

Fig. 5 Sketch of a pre-cracked bar in three dimensions depicting the partitioning of the domain � into
�HOST,FT (drak gray), �� = �HOST ∩ �ENR (light gray), and �ENR,FT (white). The boundary data for this model
problem is given by �D = �L ∪ �R , g = (0, 0, 0)T on �L , g = (0.02, 0, 0)T on �R and h = (0, 0, 0)T on
�N = ∂� \ �D

employ different embedding configurations with respect to the intersection of �ENR with
the boundaries �D and �N of the global simulation domain �, compare Figs. 1, 4 and 5.
In all our experiments we consider discretizations which satisfy our assumption (8) by

choosing the support sizes of basis functions in VHOST and VENR of comparable size, see
Fig. 6, and use (bi/tri-)linear finite elements in VHOST and linear polynomials with addi-
tional enrichments inVENR.We employ the proposedmultilevel iteration as a stand-alone
solver as well as a preconditioner for the conjugate gradient method (CG) and measure
the number of iterations required to reduce the initial residual by ten orders ofmagnitude.
From an optimality point of view, we are mostly interested in obtaining iteration numbers
n that are independent of the number of employed levels k . From the measured iteration
numbers given in Table 1, we see that the V -cycle stand-alone solver with only a single
pre- and post-smoothing step already provides acceptable iteration numbers nV(1,1) < 45
which, however, are not completely independent of the number of employed levels k . Yet,
increasing the number of smoothing steps to ν = 3 or changing to the more expensive
W -cycle yields constant iteration numbers nV(3,3) and nW(1,1) independent of k , see also
Fig. 7. In fact, further experiments with the proposed multilevel iteration showed that it is
already sufficient to increase the number of smoothing steps on coarser levels only. Thus,
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Fig. 6 Sketch of the blended function discretization space depicting the supports of a basis function
φHOST ∈ VHOST (light gray) and φENR ∈ VENR (dark gray). The support sizes are of comparable size throughout
the paper; i.e. diam(supp(φHOST) ∼ diam(supp(φENR)

Table 1 Measured iteration numbers n for the stand-alone solver and nCG for the
preconditioned CGmethod attained for themodel problem (19) on the configuration
depicted in Fig. 1 using a single element overlap

k Dof nV(1,1) nV(3,3) nW(1,1) nCGV(1,1) nCGV(3,3) nCGW(1,1)
3 1479 23 9 23 12 7 12

4 5386 22 11 22 12 8 12

5 20,249 19 12 19 12 9 11

6 79,681 22 15 18 12 10 11

7 315,046 26 16 17 14 11 11

8 1,245,303 38 22 18 17 12 11

9 4,958,241 43 22 18 18 12 11

indicating that the quality of the corrections from coarser levels obtained in a V (1, 1)-
cycle is somewhat deminished for larger k . Nevertheless, the use of the V (1, 1)-cycle as a
preconditioner in CG yields fairly stable iteration numbers nCGV(1,1) < 20 and provides
the fastest time-to-solution for the considered numbers of levels k . Note that the results
summarized in Table 1 were obtained with a small overlap region �� of a single element
on the finest level; i.e. the overlap region is in fact shrinking as we refine the discretiza-
tion. As mentioned above, we anticipate that for a larger overlap region �� with fixed
volume for all levels k , i.e. an increasing number of elements in the overlap as we refine,
the convergence behavior of the proposed solver will deteriorate somewhat. In fact, the
results given in Table 2 show that the number of iterations increases not only but also
grows with larger number of levels k even when we use the rather expensiveW (1, 1)-cycle
as a preconditioner in CG. Thus, the results confirm our expectation that it is advisable to
choose an overlap region �� whose diameter is proportational to the meshwidth on the
finest level employed (unlike in classical domain decomposition approaches) since such a
choice yields the least amount of work in the assembly of the blended linear system KBND
and it gives the best solver performance.
Now that we have in principle identified the best attainable convergence behavior of

the proposedmethod for a smooth problem employing a smooth enrichment spaceVENR,
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Fig. 7 Convergence histories for the V (1, 1)-cyle as a stand-alone solver (left) and theW (1, 1)-cycle as a
preconditioner in CG (right)

Table 2 Measured iteration numbers nCG for the preconditioned CGmethod attained for
themodel problem (19) on the configuration depicted in Fig. 1 using a fixed volume
overlap

k Dof nCGV(1,1) nCGV(3,3) nCGW(1,1)
3 1475 30 20 30

4 5710 37 25 32

5 21,965 53 36 39

6 88,022 56 60 54

7 350,511 133 96 75

8 1,392,765 233 168 116

let us consider a more relevant case where VENR contains problem-dependent singular
functions. To this end, we consider (19) on a non-convex domain, see Fig. 4. Here, the
discretization space VENR on the region �ENR is defined as

VENR =
N∑

i=1
ϕi

(
P1 + span〈r 2

3 sin
(2θ − π

3
)〉

)
(21)

where (r, θ ) denote polar coordinates with respect to the re-entrant corner of�. Thus, we
employ enrichment by a singular function everywhere in �ENR, see [24] for details on the
construction of a stable basis for VENR. Moreover, we use so-called block-Gauß–Seidel
relaxation inVENR where we collect all degrees of freedom defined on the same patch into
a single block, see [22,23] for details. The attained number of iterations are given in Table
3. The overall number of iterations is somewhat larger than in the previous case, however,
the number of iterations are essentially independent of the number of levels. It is also
noteworthy to point out, that in this model configuration the V (3, 3)-cycle substantially
outperforms the W (1, 1)-cycle which shows the improved smoothing property of the
patch-based block-Gauß–Seidel relaxation in VENR. Nevertheless, the fastest time-to-
solution for the considered discretizations with more than 13 million degrees of freedom
is still obtained by CG preconditioned by V (1, 1)-cycle which of course also benefits from
the improved smoothing property.
Finally,we consider the systemofpartial differential equations (20) in three spacedimen-

sions. Here, we employ a so-called point-based AMG approach [21] for the coarsening in
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Table 3 Measured iteration numbers nCG for the preconditioned CGmethod attained for
themodel problem (19) on the configuration depicted in Fig. 4 using a single element
overlap

k Dof nCGV(1,1) nCGV(3,3) nCGW(1,1)
3 3,843 18 10 18

4 14,063 18 10 18

5 54,408 19 11 18

6 214,527 20 11 19

7 847,974 20 12 19

8 3,372,646 21 14 19

9 13,380,007 22 16 13

Table 4 Measured iteration numbers nCG for the preconditioned CGmethod attained for
themodel problem (20) on the configuration depicted in Fig. 5 using a single element
overlap

k Dof nCGV(1,1) nCGV(3,3) nCGW(1,1)
3 15,666 17 11 17

4 106,482 19 14 18

5 774,738 22 17 17

6 5,883,282 24 20 16

�HOST and utilize one more layer of bock-partitioning which collects all three displace-
ment components in the Gauß–Seidel smoother, i.e. we now use a (3×3)-block relaxation
inVHOST combinedwith the block-relaxation inVENR described above.We discretize (20)
with trilinear elements in VHOST and use singular and discontinuous enrichments for the
treatment of the crack in VENR (besides linear polynomials). The performance of our
proposed solver is summarized in Table 4. Again, we find essentially constant iteration
numbers for CG preconditioned by W (1, 1)-cycle and slightly increasing iteration num-
bers when using aV -cycle preconditioner. Yet, the fastest time-to-solution is still attained
when using the V (1, 1)-cycle as preconditioner.
In summary, the presented results clearly show that the proposed solver yields close to

optimal convergence in two and three dimensions when using a small overlap. Using a
small overlap is moreover beneficial to the total computational cost in the assembly of the
blended linear system and still yields optimal approximation errors.

Concluding remarks
In this paper we proposed a constructive non-invasive approach to the design of efficient
multilevel solvers for embedded enriched approximations. The non-invasive embedding
scheme is based on a partition of unity approach and can essentially blend arbitrary (over-
lapping) approximation spaces, yet we consider the special case of embedding an enriched
partition of unity space into a classical finite element space. The proposed solver utilizes
non-invasive algebraic multigrid technology [16–20] for the automatic construction of a
sequence of coarser sub-spaces of the employed finite element space and a sequence of
enriched partiton of unity spaces obtained via a geometric coarsening scheme [22]. The
presented results clearly indicate that the proposed method can attain (close to) optimal
convergence behavior when a small overlap or blending region is employed. A detailed
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study on the optimal selection of parameters and robustness properties of the proposed
scheme is the subject of ongoing and future research.
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