

Masterarbeit

Entwicklung, Validierung und Anwendung einer Methode zur Untersuchung von Kunststoffemissionen auf landwirtschaftlichen Nutzflächen

Zur Erlangung des Grades

Master of Science

Im Studiengang

Analytische Chemie und Qualitätssicherung

Der Hochschule Bonn-Rhein-Sieg

Vorgelegt von

Hannah Brenner

Matrikelnummer: 9035160

Duisburg, 2020

Vorgelegt am 12.11.2020

Beginn am 01.09.2020

Genehmigt:

Herr Dr. Johannes Steinhaus

Name Erstprüfer(in)

Frau Dr.-Ing. Ilka Gehrke

Name Zweitprüfer(in)

Herr Dipl.-Ing. (FH) Ralf Bertling

Name Externe(r) Betreuer(in)

Vorsitzende(r) des Prüfungsausschusses

<u>Erklärung:</u>

Ich bin damit einverstanden, dass meine Abschlussarbeit als Belegexemplar von der Hochschule Bonn-Rhein-Sieg einbehalten wird.

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig und ohne unzulässige fremde Hilfe angefertigt habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich gemacht.

Danksagung

Diese Masterarbeit wurde am Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik (UMSICHT) in Oberhausen absolviert. Mein Dank gilt meinem Betreuer, Herrn Dipl.-Ing. Ralf Bertling, der mich während der gesamten Arbeit – von der Vorbereitung bis hin zur finalen Durchsicht – unterstützt hat. Ebenso bedanke ich mich bei Frau Dr.-Ing. Ilka Gehrke und der gesamten Abteilung "Umwelt und Ressourcennutzung" für die freundliche Aufnahme, fröhliche Unterstützung und stete Hilfsbereitschaft.

Ich bedanke mich zudem bei meinem Professor, Herrn Prof. Dr. Johannes Steinhaus, für die Inspiration während des Studiums und die kompetenten Ratschläge während meiner Masterarbeit.

Des Weiteren gilt mein Dank Herrn Björn Fischer und Herrn Lukas Pschyklenk für die Hilfsbereitschaft und die Durchführung der Raman-Analytik, die meine Masterarbeit vervollständigt hat.

Mein besonderer Dank gilt schließlich meiner Familie für ihren vollkommenen Rückhalt und ihr Verständnis während meines gesamten Studiums. Sie haben nicht nur geduldig Korrektur gelesen, sondern mich während der ganzen Zeit moralisch unterstützt. Zuletzt möchte ich mich auch bei meinen WG-Mitgliedern bedanken, die mir besonders in der finalen Phase den Rücken gestärkt haben.

Kurzfassung

Im Rahmen dieser Forschungsarbeit wurde eine praxisorientierte Methode entwickelt, die es ermöglicht, Bodenproben nach ihrer Entnahme auf dem Feld aufzubereiten und hinsichtlich ihres Mikroplastikgehaltes analysieren zu können.

Die Extraktionsmethode wurde bereits für zwei Polymere, PA 12 und PE (Mulchfolienpartikel), mit Wiederfindungsraten von je 100 % für Partikel größer als 0,5 mm validiert. Für Partikel größer als 63 µm liegt die Wiederfindungsrate für PE-Mulchfolienpartikel bei 97 % beziehungsweise für PA-Partikel bei 86 %. Weiterhin wurden verschiedene spektroskopische Detektionsmethoden untersucht und hinsichtlich ihrer Potentiale und Grenzen miteinander verglichen. Dabei wurde festgestellt, dass die Digitalmikroskopie zwar sehr gut geeignet ist, die Farbe, Größe, Form und Anzahl der Partikel zu bestimmen, jedoch stark von der subjektiven Einschätzung abhängig ist. Sie sollte daher in jedem Fall mit einer weiteren Detektionsmethode kombiniert werden. In dieser Arbeit wurde hierzu die ATR-FTIR-Spektroskopie verwendet. Diese ermöglicht zusätzlich die Bestimmung des Polymertyps einzelner Partikel mit einer unteren Nachweisgrenze von 500 µm.

Die Methode konnte auf insgesamt fünf landwirtschaftlich genutzten Flächen angewendet werden, wovon zwei konventionell und drei ökologisch bewirtschaftet werden. Um einen ersten Eindruck über die aktuelle Mikroplastik-Belastung von Agrarböden zu erhalten, wurden die mit Hilfe der in dieser Forschungsarbeit entwickelten Methode erhaltenen Ergebnisse extrapoliert und als Emissionskoeffizienten in verschiedenen Einheiten angegeben. Dies hat den Vorteil, eine möglichst breitgefächerte Vergleichbarkeit der Ergebnisse mit anderen Studien zu ermöglichen. Die Hochrechnung der Ergebnisse ergibt eine dreifach höhere Belastung der konventionell bewirtschafteten gegenüber den ökologischen Agrarflächen (0,76 t/km² bzw. 0,26 t/km²). Bezieht man das Verhältnis von konventionellen zu ökologischen Flächen in Deutschland mit in die Berechnungen ein, lässt dies vermuten, dass mittlerweile rund 130.000 Tonnen Mikroplastik (0,5-5 mm) aus PE-Mulchfolie auf den konventionell genutzten Agrarflächen in Deutschland angekommen sind. Die ökologisch bewirtschafteten Nutzflächen in Deutschland könnten demnach mit rund 3.500 Tonnen belastet sein.

Diese besorgniserregenden Daten zeigen, dass ein dringender Handlungsbedarf besteht, die Belastung unserer wertvollen Umwelt, insbesondere der landwirtschaftlich genutzten Böden, welche unsere Lebensgrundlage bilden, zu verringern.

Abstract

Within the scope of this thesis, a practice-oriented method was developed in order to process soil samples taken from agricultural areas and analyse them with regard to their microplastic content.

The extraction method has already been validated for two polymers, PA 12 and PE (mulch film particles), with recovery rates of 100 % each for particles larger than 0.5 mm. For particles larger than 63 μ m, the recovery rate reaches up to 97 % for PE mulch film particles and 86 % for PA particles, respectively. Furthermore, different spectroscopic detection methods were investigated and compared with each other regarding their potentials and limits. Although the results showed that digital microscopy is very well suited to determine the colour, size, shape and number of particles, it also tends to depend on subjective evaluation. Therefore, it should always be combined with another detection method, i.e. ATR-FTIR spectroscopy as it was used in this case. This additionally allows the determination of the polymer type of individual particles with a lower detection limit of 500 μ m.

The method described in this thesis has been applied to a total of five agricultural areas, two of which are cultivated conventionally and three ecologically. In order to give a first impression of the current contamination levels with microplastics in agricultural soils, the results have been extrapolated. The resulting emission coefficients were given in different units in order to provide the widest possible comparability with other studies. The extrapolated results of conventionally cultivated areas contain a threefold higher load of microplastics (0.76 t/km²) compared to ecological agricultural areas (0.26 t/km²). The ratio of conventional to ecological areas in Germany taken into account, it can be assumed that about 130,000 tons of microplastics (5-0.5 mm) caused by the use of PE mulch film have settled on conventionally used agricultural areas in Germany. Thus, Germany's ecologically cultivated agricultural areas might be contaminated with about 3,500 tons of microplastics.

These alarming data show that there is an urgent need for action to reduce the burden on our valuable environment, especially the agricultural soils that form the basis of our lifes.

Inhaltsverzeichnis

A	okürzun	ngsverzeichnis	X			
A	bbildun	gsverzeichnis	XII			
Ta	abellen	verzeichnis	XV			
1	Einleitung1					
2 Grundlagen						
	2.1 Kunststoffe in der Umwelt					
	2.2	2 Mikro- und Makroplastik				
	2.3	2.3 Kunststoffe im Boden				
	2.4	Kunststoffe auf landwirtschaftlichen Nutzflächen	13			
	2.4.2	1 Mulchfolien auf landwirtschaftlichen Nutzflächen	15			
	2.5	Analytische Methoden zur Bestimmung von Kunststoffen (Aktueller Stand der Technik)) 19			
	2.5.2	1 Probenahme	20			
	2.5.2	2 Aufbereitung (Extraktion)	21			
	2.5.3	3 Detektion	24			
3 Ia	Entv ndwirts	wicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in schaftlichen Nutzflächen	27			
	3.1	Material und Methodik	27			
	3.1.2	1 Probenahme	27			
	3.1.2	2 Aufbereitung (Extraktion)	30			
	3.1.2	2.1. Probenvorbereitung	30			
	3.1.2	2.2. Versuche zur Entwicklung der Extraktionsmethode	33			
	3.1.3	3 Detektionsmethoden	41			
	3.1.3	3.1. Digitalmikroskopie	41			
	3.1.3	3.2. ATR-FTIR-Spektroskopie	43			
	3.1.3	3.3. Fluoreszenzmikroskopie	43			
	3.1.3	3.4. Raman-Mikroskopie	48			
	3.1.3	3.5. Vergleich der untersuchten Detektionsmethoden	52			
	3.1.4	4 Zusammenfassung der finalen Methode	55			
	3.1.5	5 Maßnahmen zur Vermeidung von Kontaminierungen	56			
	3.2	Untersuchung von fünf ausgesuchten Feldflächen	58			
	3.2.2	1 Beschreibung der Feldflächen und der Feldhistorie	58			
	3.2.2	2 Ergebnisse	61			
	3.2.3	3 Hochrechnung von Emissionskoeffizienten für die erhaltenen Ergebnisse	67			
	3.2.4	4 Einschätzung der Kunststoffbelastung von landwirtschaftlichen Nutzflächen	69			

	3.2.	5 Empfehlungen zur Reduzierung der Kunststoffbelastung von landwirtschaftl	ichen		
	Nut	zflächen	72		
4	Bew	Bewertung und Diskussion der Methode73			
5	Lite	Literatur			
6	Anh	1hang			
	6.1	Probenahme-Protokolle der Testfelder A bis E	80		
	6.2	IR-Spektren der Referenzpolymere	90		
	6.3	Raman-Spektren der Referenzpolymere	96		
	6.4	Aufnahmen der Versuchsreihe in Chloroform mittels Fluoreszenzmikroskopie			
	6.5	Partikelgrößenverteilung	100		

Abkürzungsverzeichnis

Abkürzung	Bedeutung			
μ FTIR	FTIR-Mikroskopie			
μ Raman	Raman-Mikroskopie			
AbfKlärV	Klärschlammverordnung			
ATR	Attenuated Total Reflection (Abgeschwächte Totalreflexion)			
BioAbfV	Bioabfallverordnung			
BUND	Bund für Umwelt und Naturschutz Deutschland e.V.			
CaCl ₂	Calciumchlorid			
Chem.	Chemisch			
DüMV	Düngemittelverordnung			
ECHA	European Chemicals Agency			
EFRE	Europäischer Fonds für regionale Entwicklung			
ERDE	Erntekunststoffe Recycling Deutschland			
EU-ÖkoV	EU-Ökoverordnung			
FTIR	Fourier-Transform-Infrarot-Spektroskopie			
GKL	Gesellschaft für Kunststoffe im Landbau e.V.			
GVO	Gentechnisch veränderter Organismus			
ICP-MS	inductively coupled plasma mass spectrometry			
IR	Infrarot			
KBr	Kaliumbromid			
LDPE	Low density polyethylene			
L-MPP	Large Microplastic Particle			
LNF	Landwirtschatfliche Nutzfläche			
Mio.	Millionen			
MP	Mikroplastik			
MSFD	Marine Strategy Framework Directive			
MuFo	Mulchfolie			
NABU	Naturschutzbund Deutschland e.V.			
NaCl	Natriumchlorid			
Nal	Natriumiodid			

NIR	Nahinfrarot-Spektroskopie
NOAA	National Oceanic and Atmospheric Administration
NWG	Nachweisgrenze
OF	Oberfläche
P/P	Partikelanzahl pro Probe
PA	Polyamin
PBAT	Polybutylenadipat-terephthalat
PBS	Polybutylensuccinat
PE	Polyethylen
PET	Polyethylenterephthalat
PLA	Polylactide, auch Polymilchsäuren
PMMA	Polymethylmethacrylat
РР	Polypropylen
PS	Polystyrol
PU	Polyurethan
PVC	Polyvinylchlorid
Py-GC-MS	Pyrolyse-Gaschromatographie-Massenspektrometrie
Ref	Referenz
S-MPP	Small Microplastic Particle
Spektr.	Spektroskopisch
STP	Natriumpolywolframat
TED-GC-MS	thermal extraction-desorption gas chromatography mass spectrometry
TF	Teilfläche
Therm.	Thermoanalystisch
ТМ	Trockenmasse
TRWP	Tire and Road Wear Particle
TSG ML	Technical Subgroup on Marine Litter
UBA	Umweltbundesamt
UV	Ultraviolett
VE-Wasser	Vollentsalztes Wasser
WFR	Wiederfindungsrate
ZnCl ₂	Zinkchlorid

Abbildungsverzeichnis

Abbildung 1:Durchschnittliche Nutzungsdauer von Kunststoffprodukten aus den unterschiedlichen
Industriezweigen, in Jahren angegeben (Darstellung aus dem Plastikatlas ⁴)1
Abbildung 2: Kunststoffproduktion in Europa (blau schraffiert) sowie weltweit (grau) von 1950 bis
2018, angegeben in Millionen Tonnen (Daten von: Statista) 4
Abbildung 3: Kunststoffproduktion (blau schraffiert) und –abfallaufkommen (grau) in Europa von
2008 bis 2018, angegeben in Millionen Tonnen (Daten von: Statista); die Differenz zwischen
Produktion und Abfall beruht auf der Menge, die bspw. noch in Benutzung ist oder durch
unsachgemäße Entsorgung nicht als Abfall erfasst wurde5
Abbildung 4: Menge an erzeugtem Kunststoffabfall in Europa und dessen Verwertungswege,
angegeben in Millionen Tonnen (Daten von: Statista)5
Abbildung 5: Jährlich pro Person freigesetzte Mengen an Mikroplastik in Deutschland (in g/Person)
nach Freisetzungsquellen sortiert (eigene Darstellung, Daten aus Bertling et al. 18)
Abbildung 6: Einteilung der verschiedenen Kunststoffemissionen in primäres Mikroplastik Typ A und
B, sekundäres Mikroplastik sowie Makroplastik10
Abbildung 7: Analysenergebnisse zur Größenverteilung und zu Polymertypen von Kunststoffpartikeln
auf einer Ackerfläche ⁴
Abbildung 8: Mulchfolien (links: schwarz, rechts: schwarz-weiß mit weißer Seite obenauf liegend) auf
Salatfeldern
Abbildung 9: Typen von Agrarfolien kategorisiert nach erdöl- und/oder biobasiert sowie nach ihrer
Bioabbaubarkeit (PBAT: Polybutylenadipat-terephthalat, PBS: Polybutylensuccinat)
Abbildung 10: Pürckhauer, als Probenahmegerät für die Mikroplastikproben verwendet (mit roter
Markierung für die Einstichtiefe)
Abbildung 11: Schematische Darstellung der Methode "Kegeln und Viertel" zur Homogenisierung und
Verjüngung von Bodenproben
Abbildung 12: Probenplan am Bespiel von Feld A zur Probenvorbereitung der einzelnen Feldproben.
Abbildung 13: Schematische Darstellung des ersten Methodenentwurfs zur Mikroplastik-Extraktion
aus Bodenproben
Abbildung 14: Fotographische Dokumentation des Sedimentationsfortschrittes in Natriumiodid-
Lösung
Abbildung 15: Korngrößenverteilung des Referenzmikroplastiks Polyamid 12 (links: Foto der
erhaltenen Proben; rechts: Kreisdiagramm mit prozentualen Anteilen der einzelnen
Korngrößenfraktionen)

Abbildung 16: Filter der Schwimmphase des Dotierungsversuches mit PA 12 als Referenzpolymer und
Nal als Trennmedium (blaue Kreise markieren die fünf Partikel > 0,5 mm)
Abbildung 17: Zählflächen der Sediment-Filter der Versuchsreihe B (PA 12) der Trennmedien NaCl,
Nal und STP (von links nach rechts) mit rosafarbenen bzw. roten Punkten zur Markierung der
Polymerpartikel
Abbildung 18: Flotat-Filter der Versuchsreihe zur Effektivität des Oxidationsmittels (von links nach
rechts: RT für 20 h, RT für 3 d, 50-70 °C für 5 h)
Abbildung 19: Beispielaufnahmen mit dem Digitalmikroskop. a-e als potentielle Funde von
Mikroplastik in einer Bodenprobe (a und b: Fasern, c: Fragment, d und e: Microbeads); f-i als
Referenzbilder (f: PE-Mulchfolie, g: Hautschuppe, h: Baumwollfaser, i: Haar)
Abbildung 20: Strukturformel des Fluoreszenzfarbstoffes Nilrot
Abbildung 21: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen Referenz-Polymeren auf
Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung
Abbildung 22: Aufnahmen mittels Fluoreszenzmikroskop von Reifen- und Straßenabrieb sowie
Mulchfolie-Partikel auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung
Abbildung 23: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen organischen
Probenbestandteilen auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung 47
Abbildung 24: Aufnahmen mittels Fluoreszenzmikroskop eines Ausschnittes von einem Cellulose-
Filter mit Probe A.01, angefärbt mit einer methanolischen Nilrot-Lösung
Abbildung 25: Segmentierung der Filteroberfläche in 25 Segmente (15x15 mm) und Aufnahme des
für die Partikelgrößenbestimmung ausgewählten Segmentes 4 49
Abbildung 26: Raman-Spektrum und mikroskopische Aufnahme eines Kohlepartikels (rotes und
blaues Spektrum an zwei verschiedenen Stellen auf dem Partikel gemessen)
Abbildung 27: Raman-Spektrum und mikroskopische Aufnahme eines Lignin-haltigen Partikels 50
Abbildung 28: Raman-Spektrum eines mineralischen Partikels unbekannten Ursprungs
Abbildung 29: Raman-Spektrum eines Cellulose-Partikels
Abbildung 30: Raman-Spektrum eines Partikels aus Graphen52
Abbildung 31: Schematische Darstellung des Workflows der finalen Methode zur Bestimmung von
Makro- und Mikroplastik in Bodenproben landwirtschaftlicher Nutzflächen
Abbildung 32: Beispielhafte Aufnahme mit dem Digitalmikroskop von einer schwarzen, geraden und
zwei gelben, geraden Fasern (links und Mitte) und einer gelben Faser unter dem
Fluoreszenzmikroskop nach Anfärben mit Nilrot (rechts) auf dem Filter der Raumluft-
Kontaminationskontrollprobe

Abbildung 33: Makroplastik-Funde, links PE-Mulchfoliefragment von Feld A (5,6 x 4,2 cm); mittig	
Fragment eines Stütznetzes von Feld D (16,6 x 13,5 cm); rechts PE-Mulchfoliefragment in der	
Siebfraktion > 5 mm von Feld A (1,4 x 1,0 cm)6	51
Abbildung 34: IR-Spektren der drei Makroplastik-Funde (blau: Stütznetz von Feld D, rot: großes	
Mulchfolie-Fragment von Feld A, gelb: kleines Mulchfolie-Fragmente von Feld A) und der Referenz-	
Mulchfolie aus PE (von oben nach unten)6	52
Abbildung 35: Verteilung der in 1 g Bodenprobe der Felder A bis E mittels Digitalmikroskopie	
gefundenen potentiellen Mikroplastikpartikel, sortiert nach Fasern, Fragmenten, Kugeln und Folie. 6	53
Abbildung 36: Partikelgrößenverteilung der potentiellen Mikroplastik-Funde von Feld A pro g	
Bodenprobe	54
Abbildung 37: IR-Spektren der drei Mikroplastik-Funde (von oben nach unten - gelb: Folie von Feld C	` ''
blau: Folie von Feld B, rot: Folie von Feld B) und der Referenz-Mulchfolie aus PE (grün/oben) 6	55
Abbildung 40: IR-Spektren der Referenzpolymere PE-Mulchfolie (grün/oben) und LDPE (blau/unten).	
9	90
Abbildung 41: IR-Spektrum von Referenzpolymer PP9	90
Abbildung 42: IR-Spektrum von Referenzpolymer PET (CumaPet)9)1
Abbildung 43: IR-Spektren der Referenzpolymere PS (orange/oben) und EPS (Styropor; grün/unten).	
9)1
Abbildung 44: IR-Spektrum von Referenzpolymer PVC Hart (64 scans)	92
Abbildung 45: IR-Spektren der Referenzpolymere PA 12 (grün/oben) und PA 66 (pink/unten)9	92
Abbildung 46: IR-Spektren der Referenzmaterialien TWP (oben/pink) und TRWP (braun/unten) 9	93
Abbildung 47: IR-Spektrum von Referenzpolymer PLA9	93
Abbildung 48: IR-Spektrum von organischen Probenbestandteilen von Feld A.	94
Abbildung 48: IR-Spektrum der Hintergrundmessung9	94
Abbildung 49: Raman-Spektrum von Referenzpolymer PE-Mulchfolie.	96
Abbildung 50: Raman-Spektrum von Referenzpolymer LDPE9	96
Abbildung 51: Raman-Spektrum von Referenzpolymer PP9	96
Abbildung 52: Raman-Spektrum von Referenzpolymer kristallines PET9) 7
Abbildung 53: Raman-Spektrum von Referenzpolymer PS9) 7
Abbildung 54: Raman-Spektrum von Referenzpolymer Styropor9) 7
Abbildung 55: Raman-Spektrum von Referenzpolymer Reifen	98
Abbildung 56: Raman-Spektrum von Referenzpolymer TRWP9	98
Abbildung 57: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen Referenz-Polymeren,	
Reifenpartikeln sowie Partikeln aus schwarzer PE-Mulchfolie und organischen Probenbestandteilen	
auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung	99

Tabellenverzeichnis

Tabelle 1: Chronologische Entwicklung der Begriffsdefinition "Mikroplastik" anhand ausgewählter
Autoren bzw. Institutionen mit Anmerkungen9
Tabelle 2: Quellen und Eintragswege von Kunststoffen und Mikroplastik in terrestrische Ökosysteme
611
Tabelle 3: Eintragsquellen und entsprechende Mengen an auf Agrarflächen in Deutschland
emittierten Kunststoffen, angegeben in Tonnen pro Jahr. 32,33
Tabelle 4: Rechtliche Grundlagen zur Aufbringung von Klärschlamm, Kompost und Gärresten auf
ökologisch und konventionell bewirtschafteten Flächen14
Tabelle 5: Vor- und Nachteile von konventionell-erdölbasierten sowie biologisch abbaubaren
Mulchfolien
Tabelle 6: Typen von Mulchfolien kategorisiert nach ihrer Farbe, ihren Strahlungseigenschaften und
ihrem entsprechenden Einfluss auf die Bodentemperatur (tagsüber)
Tabelle 7: Richtwerte für die Laborprobe bezüglich der verschiedenen Korngrößenfraktionen und
deren erforderlicher Mengen bzw. Volumina an Feinboden (nach Braun et al. ³⁶)
Tabelle 8: Dichte verschiedener Polymere und Trennmedien sowie deren Vor- und Nachteile ^{6,11,41} . 22
Tabelle 9: Polymerstabilität gegenüber verschiedenen Chemikalien zur Entfernung der organischen
Bodenmatrix (nach Primpke et al., 2017) ¹ 23
Tabelle 10: Größenklassifizierung gefundener Polymerpartikel nach Braun et al. ³⁶
Tabelle 11: Technische Parameter und Grenzen der einzelnen Detektionsverfahren nach Braun et al.
³⁶ (P/P = Partikelanzahl pro Probe, NWG = Nachweisgrenze, für die Abkürzungen der Verfahren, siehe
Abkürzungsverzeichnis)
Tabelle 12: Ergebnisparameter der einzelnen Detektionsmethoden nach Braun et al. ³⁶ (für die
Abkürzungen der Verfahren, siehe Abkürzungsverzeichnis; OF = Oberfläche)
Tabelle 13: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Probenahme.
Tabelle 14: Materialien und Utensilien mit entsprechendem Verwendungszweck für die
Probenvorbereitung
Tabelle 15: Durch Wägung ermitteltes Feucht- und Trockengewicht sowie entsprechender
Wassergehalt für die Feldproben A bis E
Tabelle 16: Ergebnisse der Trockensiebung der Feldproben mit den Siebschnitten 5 mm und 2 mm. 31
Tabelle 17: Materialien und Utensilien mit entsprechendem Verwendungszweck für die
Probenextraktion
Tabelle 18: Herstellerangaben sowie Details zur Mikroplastikherstellung für die Referenzpolymere. 35

Tabelle 19: Ergebnisse der Auszählung des im Sediment zurückgebliebenen Mikroplastiks der zwei
Dotierungsreihen A und B mit den Referenzpolymeren PE-Mulchfolie und PA 12 in den Trennmedien
NaCl, Nal und STP
Tabelle 20: Ergebnisse der gravimetrischen Bestimmung der Masse der Probenblindwerte sowie der
Dotierungsversuche mit PE-Mulchfolie und PA 12 und der daraus resultierenden Wiederfindungsrate
(WFR)
Tabelle 21: Ergebnisse der mikroskopischen Untersuchungen der drei Filter des
Verdünnungsversuches
Tabelle 22: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels Digitalmikroskopie
Tabelle 23: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion
mittels ATR-FTIR-Spektroskopie
Tabelle 24: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels Fluoreszenzmikroskopie
Tabelle 25: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion
Tabelle 26: Partikelgrößenverteilung von Segment 4 mittels Raman-Mikroskop und digitaler
Bildbearbeitung
Tabelle 27: Gegenüberstellung der Potentiale und Grenzen der verschiedenen getesteten
Detektionsmethoden
Tabelle 28: Ergebnisse der Versuchsreihe der Negativkontrollproben. 57
Tabelle 29: Feldparameter zu den einzelnen Testfeldern A bis E. 59
Tabelle 30: Feldparameter über potentielle Mikroplastik-Quellen für die einzelnen Testfelder A bis E.
Tabelle 31: Signale der dem PE zuzuordnenden Spektren der Makroplastik-Funde und des
Vergleichsspektrums der PE-Mulchfolie61
Tabelle 32: Gemittelte Werte von mittels Digitalmikroskopie gefundenem potentiellen Mikroplastik
inkl. Standardabweichung pro g Bodenprobe für die Feld A bis E63
Tabelle 33: Partikelgrößenverteilung der mittels Digitalmikroskopie gefundenen Mikroplastikpartikel
pro g Bodenprobe von Feld A64
Tabelle 34: Signale der dem PE zuzuordnenden Spektren der Mikroplastik-Funde und des
Vergleichsspektrums der PE-Mulchfolie 66
Tabelle 35: Parameter für die und Ergebnisse aus den Hochrechnungen der erhaltenen Mikroplastik-
Funde bezogen auf die Partikelmasse 68

Tabelle 36: Ergebnisse aus den Hochrechnungen der erhaltenen Mikroplastik-Funde bezogen auf die
Partikelanzahl
Tabelle 37: Vergleich der Emissionskoeffizienten verschiedener extrapolativer Studien mit den in
dieser Arbeit erhaltenen Ergebnissen
Tabelle 38: Vergleich der Emissionskoeffizienten verschiedener experimenteller Studien mit den in
dieser Arbeit erhaltenen Ergebnissen70
Tabelle 39: Vergleich der Ergebnisse dieser Studie mit anderen Umweltkompartimenten
Tabelle 40: Wellenzahlen in cm ⁻¹ der Signale der gemessenen IR-Spektren der Referenzmaterialien
(Teil 1)
Tabelle 41: Wellenzahlen in cm ⁻¹ der Signale der gemessenen IR-Spektren der Referenzmaterialien
(Teil 2)
Tabelle 42: Ergebnisse zur Partikelgrößenverteilung für die Felder A bis E (in je 3x1 g Bodenprobe),
sortiert nach den Kategorien Faser, Fragment, Kugel und Folie (gemäß der Größenklassifizierung nach
Braun et al. ³⁶)

1 Einleitung

Kunststoffe begleiten mittlerweile fast jeden Schritt des alltäglichen Lebens, werden sie doch in den verschiedensten Anwendungsgebieten eingesetzt wie in der Automobilindustrie, dem Baugewerbe und zu einem erheblichen Anteil als Verpackungsmaterial ¹. Zu den vielen Vorteilen, die die Entwicklung seit den 1950er Jahren zum Massenprodukt Plastik vorangetrieben haben, zählen neben der kostengünstigen Herstellung auch das leichte Gewicht sowie die Strapazierfähigkeit und lange Haltbarkeit von Kunststoffen ². Doch gerade diese Langlebigkeit, die sogenannte Persistenz der Kunststoffe, die Hunderte von Jahren betragen kann ², stellt heute ein enormes Problem für die Umwelt dar ³.

Hinzu kommt, dass in unserer modernen Gesellschaft der Werkstoff Kunststoff immer seltener wertgeschätzt wird. Aufgrund der Massenproduktion haben Kunststoffe buchstäblich an Wert verloren und werden mittlerweile so kostengünstig hergestellt, dass sich eine regelrechte Wegwerfmentalität entwickelt hat ⁴. Die natürlichen doch endlichen Ressourcen, aus denen Kunststoffprodukte hergestellt werden, rücken in den Hintergrund und schneller Konsum sowie verschwenderischer Umgang herrschen vor. Global betrachtet werden Kunststoffprodukte nach ihrer überwiegend kurzen Nutzungsdauer entsorgt ⁴, was bedeutet, dass sie entweder dem Recycling oder der thermischen Verwertung zugeführt werden. Im ungünstigen Fall werden Kunststoffe deponiert oder enden durch unsachgemäße Entsorgung, dem sogenannten Littering, in der Umwelt ¹. Hier können sie durch Umwelteinflüsse wie UV-Strahlung, Mikroorganismen, Oxidation sowie mechanischen Abrieb verwittern und in kleinere Fragmente zerfallen, das sogenannte Mikroplastik ^{5–7,1.8}.

Abbildung 1:Durchschnittliche Nutzungsdauer von Kunststoffprodukten aus den unterschiedlichen Industriezweigen, in Jahren angegeben (Darstellung aus dem Plastikatlas ⁴).

Neben der offensichtlicheren Verschmutzung der Umwelt mit Kunststoffabfällen in Form von größeren Kunststoffteilen, dem Makroplastik, wurden kleinere Plastikpartikel (Mikroplastik) als erstes im Meer und anschließend in Süßwasser gefunden und thematisiert ^{9,10}. Dies hatte eine Vielzahl an wissenschaftlichen Untersuchungen aquatischer Ökosysteme auf Mikroplastik zur Folge. Über die Kunststoff-Belastung von terrestrischen Ökosystemen dagegen gibt es bislang noch vergleichsweise wenig Daten. Diese werden sogar oftmals lediglich als Mikroplastik-Quelle für den Eintrag in die aquatischen Ökosysteme betrachtet. Da allerdings die meisten Kunststoffprodukte auf dem Land produziert, verwendet und entsorgt werden, existieren mittlerweile Schätzungen, dass die Mikroplastik-Belastung im Boden 4- bis 23-mal höher sein soll als jene im Meer. In diesem Zusammenhang beschrieben Horton et al. 2017 terrestrische Ökosysteme als Langzeit-Senke ("long term sinks"), in der sich Kunststoffabfälle und Mikroplastik langfristig anreichern ⁹.

Als Haupteintragsquellen von Mikroplastik in Böden werden Littering, Wetterereignisse und Reifenabrieb genannt, aber auch die Aufbringung von Sekundärrohstoffdüngern wie Klärschlamm, Gärreste und Komposte, die Bewässerung mit Abwasser sowie die Verwendung von Mulchfolien spielen insbesondere auf landwirtschaftlich genutzten Böden eine entscheidende Rolle^{9,11}. Mit der Einführung von Mulchfolien und den damit verbundenen ökonomischen Vorteilen (wie z.B. höhere Ernteerträge, Ernteverfrühung und geringerer Wasserverbrauch) ¹² wurde die kommerzielle Landwirtschaft revolutioniert ¹³. Ihr Einsatz zählt heute zum globalen Standard mit einer jährlichen Wachstumsrate von 5 bis 10 % ¹¹. Da der Hauptteil an eingesetzten Mulchfolien bislang statt aus biologisch abbaubaren Materialien aus erdölbasiertem Polyethylen besteht, trägt ihr Einsatz durch Fragmentierung ebenfalls zu den Kunststoffemissionen in terrestrischen Ökosystemen bei ¹¹. Die 2017 veröffentlichten Neuerungen der Klärschlammverordnung (AbfKlärV)¹⁴ und die damit verbundene Düngemittelverordnung (DüMV)¹⁵ berücksichtigen den potentiellen Eintrag von Kunststoffen durch das Aufbringen von Düngemittel wie Klärschlamm oder Kompost zum einen indirekt durch die Begrenzung des maximalen Anteils an enthaltenen Fremdstoffen (> 1 mm), zu denen auch Mikroplastik zählt. Der Anteil plastisch nicht verformbarer Kunststoffe darf dabei nicht mehr als 0,4 % betragen, während maximal 0,1 % sonstige, nicht abgebaute Kunststoffe enthalten sein dürfen. Zum anderen wird hier das Maximum der innerhalb von drei Jahren aufgebrachten Trockenmasse an Klärschlamm reguliert (5 t/ha).

2

Um die Einhaltung solcher Grenzwerte kontrollieren zu können, bedarf es zuverlässiger und einheitlicher Probenahme-, Mess- und Analyseverfahren.

Für die Analytik von Mikroplastik im Boden liegen jedoch bislang noch keine standardisierten Methoden vor, die schnell und zuverlässig Informationen über Partikelgröße, Partikelgrößenverteilung und Polymerart liefern ^{7,11}. Die in der aktuellen Literatur angegebenen Methoden differieren hinsichtlich der Berücksichtigung von Umweltfaktoren, beziehen sich auf unterschiedliche Kontaminationskontrollen, die durchgeführt wurden, und beinhalten zudem Ergebnisse mit verschiedenen Einheiten, sodass die generierten Daten und verwendeten Methoden kaum vergleichbar sind ¹¹. Bis heute fehlen genaue Daten sowohl über die Eintragspfade und Mengen von Polymeren in Böden als auch über die potentiellen Folgen auf Bodenorganismen.

Im Rahmen des von der EU innerhalb des EFRE-Programms (Europäischer Fonds für regionale Entwicklung) geförderten Verbundprojektes "iMulch" wird daher am Beispiel von Mulchfolien untersucht, welche Einflüsse Polymere (Mikro- und Makroplastik) auf ein terrestrisches Ökosystem wie auch Drainagegewässer am Beispiel von Mulchfolien haben. iMulch soll Erkenntnisse über Emissionstreiber und -quellen, über Transportpfade und Verteilung von Polymeren auf Landwirtschaftsflächen liefern und eine Abschätzung ermöglichen, wie hoch die Belastung von landwirtschaftlich genutzten Böden mit Kunststoffen bereits ist.

Die im Zuge dieses Projekts durchgeführte Forschungsarbeit beschäftigt sich mit der Entwicklung und Validierung einer praxisorientierten Methode zur Probenahme auf dem Feld, zur Probenaufbereitung und Analytik von Bodenproben zur Bestimmung von sichtbaren Kunststoffabfällen (Makroplastik) sowie Mikroplastik. Die Methode soll Ergebnisse zu Menge, Partikelgröße sowie Typus der Kunststoffe liefern. Sie wird anschließend auf verschiedenen landwirtschaftlich genutzten Flächen: a) konventionell und b) ökologisch bestellt, angewandt, um einen Vergleich aufstellen und eine Aussage darüber treffen zu können, inwiefern PE-Mulchfolien zu Kunststoffemissionen in der Landwirtschaft beitragen. Ziel der Thesis ist die Einschätzung der Belastung der Feldflächen durch Kunststoffemissionen und der anschließende Vergleich mit anderen Habitaten, um eine schnellstmögliche Reduzierung des Mikroplastikeintrags in terrestrische Ökosysteme zu erreichen.

2 Grundlagen

Im Folgenden werden Grundlagen zu Kunststoffemissionen in die Umwelt, in terrestrische Systeme (hier als Boden im mitteleuropäischen Raum) beschrieben und im Speziellen auf landwirtschaftlichen Nutzflächen dargestellt. Dabei wird insbesondere auf die verschiedenen Quellen und Eintragspfade für Kunststoffe sowie auf Kunststoffmengen und -typen eingegangen.

2.1 Kunststoffe in der Umwelt

Seit dem Start der Massenproduktion von Polymeren in den 1950er Jahren bis ins Jahr 2015 wurden weltweit ca. 8,3 Milliarden Tonnen Kunststoff hergestellt und 6,3 Milliarden Tonnen Plastikmüll erzeugt. Während im Jahr 1950 noch "nur" ca. zwei Millionen Tonnen Plastik produziert wurden, betrug die weltweite Plastik-Produktion 2015 bereits rund 322 Millionen Tonnen, was einer jährlichen Wachstumsrate von ca. 8,4 % entspricht^{5,16,7}. Abbildung 2 zeigt einen Vergleich der weltweiten mit der europäischen Kunststoffproduktion von 1950 bis 2018.

Während die weltweite Plastikproduktion seit der Finanzkrise 2008 wieder steigt, ist die Menge an hergestelltem Kunststoff in Europa über die letzten zehn Jahre relativ konstant geblieben. Ähnlich verhält es sich mit der aufkommenden Menge an Kunststoffabfall in Europa, bei der im letzten Jahrzehnt zwar keine großen Sprünge mehr zu verzeichnen sind, jedoch weiterhin ein stetiger Anstieg (vgl. Abbildung 3).

Kunststoffproduktion und -abfallaufkommen in Europa

Abbildung 3: Kunststoffproduktion (blau schraffiert) und –abfallaufkommen (grau) in Europa von 2008 bis 2018, angegeben in Millionen Tonnen (Daten von: Statista); die Differenz zwischen Produktion und Abfall beruht auf der Menge, die bspw. noch in Benutzung ist oder durch unsachgemäße Entsorgung nicht als Abfall erfasst wurde.

Von der weltweit bis 2015 kumulierten Menge an Plastikabfall wurden dabei 12 % energetisch verwertet, 9 % dem Recycling zugeführt und insgesamt 79 % deponiert oder in die Umwelt gelittert ⁵. Auch in Europa wird noch ein großer Anteil des aufkommenden Kunststoffmülls deponiert. Im Jahr 2008 waren es nach Barnes et al. noch knapp 50 % der Abfälle, was ca. 9,6 Millionen Tonnen pro Jahr entspricht ². Bereits zehn Jahre später konnte der Anteil an Kunststoffmüll, der auf Deponien landete, halbiert werden und entsprach so 2018 ca. 25 %. Ausnahmen hiervon bilden unter anderen die Länder Deutschland, Schweiz und Österreich, in denen ein Deponieverbot für thermisch unbehandelte Abfälle gilt ⁶.

Abbildung 4: Menge an erzeugtem Kunststoffabfall in Europa und dessen Verwertungswege, angegeben in Millionen Tonnen (Daten von: Statista). Abbildung 4 zeigt die Gesamtmenge an erzeugtem Kunststoffabfall in Europa zwischen 2006 und 2018 und stellt dabei anteilig dessen Entsorgungs- bzw. Verwertungswege mit dem Fokus auf das Jahr 2018 dar. Während 25 % des im Jahr 2018 angefallenen Kunststoffabfalls deponiert wurden, wurden 75 % rückgewonnen. Diese 75 % teilen sich dabei in die energetische sowie die stoffliche Verwertung auf, die 43% bzw. 32 % der Gesamtmenge ausmachten. Der recycelte Anteil entspricht damit rund einem Drittel des europäischen Kunststoffabfalls.

Barnes et al. stellten 2009 die These auf, dass die Gesamtheit an bislang produziertem Kunststoffabfall, sofern dieser nicht verbrannt wurde, noch immer – ob als Ganzes oder bereits zu Mikroplastik fragmentiert – in der Umwelt verweilt ². Bei anhaltenden Trends werden laut Geyer et al. bis 2050 rund 12 Milliarden Tonnen Kunststoffmüll auf Deponien oder direkt in der Umwelt angekommen sein ³.

Bei Abfall-Sammel-Aktionen durch Freiwillige, die sich in den letzten Jahren etabliert haben, wurden und werden regelmäßig erschreckende Mengen an sichtbarem Kunststoffabfall (Makroplastik) aus der Umwelt geborgen. Eine Aktion des NABU Regionalverbandes Mittleres Mecklenburg (Naturschutzbund Deutschland e.V.) mit 74 freiwilligen Helferinnen und Helfern ergab an nur einem Tag (07. März 2020) im Landschaftsschutzgebiet "Peezer Bach" stolze 250 kg Abfall – davon waren 97 % aus Kunststoff. Auf einem Uferabschnitt von 100 m Länge wurden beispielsweise insgesamt 123 Wattestäbchen zusammengetragen ¹⁷. Eine 2018 publizierte Studie vom Fraunhofer Institut UMSICHT zeigte auf, dass den sichtbaren Kunststoffemissionen, dem Makroplastik, in Deutschland eine rund dreifach so große Menge an nicht-sichtbaren Kunststoffemissionen, das sogenannte "Mikroplastik", gegenübersteht ¹⁸. Bertling et al. identifizierten 2018 zehn Haupteintragsquellen von Mikroplastik in die Umwelt, darunter Reifenabrieb, Pellet-Verluste sowie Textilfasern aus Wäsche (vgl. Abbildung 5). Der Eintrag von Rohpellets in die Umwelt konnte u.a. in der Veröffentlichung von R. C. Thompson bestätigt werden, wo in Proben Kunststoff-Fragmente mit einem Gewichtsanteil von über 10 % gefunden wurden, darunter auch Rohpellets². Der Littering-Anteil soll nach ersten Schätzungen beispielsweise in Österreich rund 0,5 % der Gesamtmenge an Kunststoffabfällen betragen ⁶, in Deutschland mit 116.000 Tonnen pro Jahr ca. 1,9 % der rund sechs Millionen Tonnen jährlich anfallenden Kunststoffabfälle.

6

Mikroplastik-Quellen in Deutschland

Abbildung 5: Jährlich pro Person freigesetzte Mengen an Mikroplastik in Deutschland (in g/Person) nach Freisetzungsquellen sortiert (eigene Darstellung, Daten aus Bertling et al. ¹⁸).

Wie man heute weiß, gibt es unterschiedliche Quellen für Mikroplastik, und dessen Eintrag in die Umweltkompartimente Wasser, Boden und Luft geschieht auf unterschiedliche Weise (Abbildung 5). Durch Wind, Niederschläge und Strömungen in Fließgewässern können Mikroplastikpartikel und -fasern über weite Distanzen transportiert werden und gelangen so noch in die entlegensten Ecken der Welt. Mittlerweile konnte Mikroplastik nicht nur in allen Weltmeeren nachgewiesen werden, sondern auch in diversen Oberflächengewässern, Küstengebieten, Tiefseesedimenten und sogar im Polareis ¹⁹.

Als Makroplastik gelangt Kunststoffabfall meist durch wilde Mülldeponien, Verwehungen und Littering in die Umwelt, während es als Mikroplastik in Form von Produktzusätzen (Kosmetik), Partikeln (Reifenabrieb) und Fasern (synthetische Textilien) häufig über den Abwasserpfad und den Wasserkreislauf in die Umwelt eingetragen wird ¹⁸. Durch Wetterereignisse wie Starkregen kann Mikroplastik vom Boden ins Wasser gespült werden und somit von einem Umweltkompartiment in ein anderes gelangen ⁸. Auch der umgekehrte Weg, vom Wasser in den Boden, ist möglich: Mikroplastik aus dem Abwasser akkumuliert in Kläranlagen überwiegend im Klärschlamm, sodass nur ein geringer Teil in Kläranlagen-Abläufen gefunden wurde und über Flüsse ins Meer gelangt. In Europa wird aktuell noch rund ein Drittel des anfallenden Klärschlamms als Dünger verwendet und auf landwirtschaftliche Nutzflächen aufgebracht, wodurch das im Klärschlamm enthaltene Mikroplastik in den Boden übergeht ^{1,6}. In einigen Studien werden synthetische Fasern sogar mittlerweile als Langzeitindikatoren zum Nachweis der Verwendung von Klärschlamm auf Böden eingesetzt ⁶.

2.2 Mikro- und Makroplastik

Obwohl das Thema "Mikro- und Makroplastik" schon seit geraumer Zeit diskutiert wird, gibt es in der Wissenschaft bislang noch keine standardisierte, allgemeingültige Definition für diese beiden Begrifflichkeiten ⁷. Der Begriff "Mikroplastik" wurde im wissenschaftlichen Kontext erstmals 2004 von Thompson et al. verwendet, der in Strand-, Mündungsund Wattsedimenten rund um das englische Plymouth Polymerpartikel und -fasern, teilweise mikroskopisch klein, entdeckte und mittels FT-IR (Fourier-Transform-Infrarot-Spektroskopie) nachwies ²⁰. Durch Arthur et al. wurde die "Kategorie Mikroplastik" fünf Jahre später auf Kunststoffe mit einem Durchmesser von bis zu 5 mm erweitert ²¹, während Barnes et al. im selben Jahr eine weitergehende Unterteilung in Makro-, Meso- und Mikroplastik vornahmen (> 20 mm, 5-20 mm, < 5 mm)². Anzumerken ist, dass es für Mikroplastik mit 5 mm zwar eine Obergrenze aber keine Untergrenze gibt; Mikroplastik kann somit "unendlich klein" sein. Die Obergrenze von 5 mm umfasst dabei sowohl granulatartige Kunststoffrohprodukte ("Resin Pellets") als auch Kunststofffragmente, Textilfasern, Reifenabrieb und Kunststoffzusätze in Kosmetika ("Microbeads")²². Im Gegensatz zur 5 mm-Definition begrenzten Browne et al. die maximale Dimension von Mikroplastik auf 1 mm und somit auf den Mikrometerbereich ²³. Um die bis zu diesem Zeitpunkt in der wissenschaftlichen Literatur zu findenden diversen Definitionen von Mikroplastik zu vereinheitlichen, schlug die Europäische Kommission 2013 durch die Technical Subgroup on Marine Litter (TSG ML) der Marine Strategy Framework Directive (MSFD) eine präzisierte Definition zur europaweiten Standardisierung vor. Demnach seien Partikel, die größer als 25 mm sind, als Makroplastik zu bezeichnen, Fragmente zwischen 25 mm und 5 mm als Mesoplastik und Partikel kleiner als 5 mm als Mikroplastik. Zur weiteren Präzisierung wurden die Begriffe "Large Microplastic Particle" (L-MPP: 1 bis 5 mm) sowie "Small Microplastic Particle" (S-MPP: < 1 mm) eingeführt ²⁴. Das Umweltbundesamt (UBA) bezieht sich in seiner Begriffserklärung auf die Definition der TSG ML, während die NOAA (National Oceanic and Atmospheric Administration) wie auch die ECHA (European Chemicals

8

Agency) und der BUND (Bund für Umwelt und Naturschutz Deutschland e.V.) sich lediglich auf die dimensionale Obergrenze von 5 mm beziehen ^{8,25,26}. Das Fraunhofer Institut UM-SICHT dagegen hat 2018 eine Definition von Mikroplastik ohne eine Obergrenze von 5 mm veröffentlicht ¹⁸. Als Mikroplastik werden hier Partikel und Fasern, als Makroplastik größere Objekte aus Kunststoff bezeichnet. Von der 5 mm-Grenze wurde dabei abgesehen, da diese als "willkürlich gesetzt" angesehen wurde. Tabelle 1 fasst die in diesem Abschnitt aufgeführten Definitionen des Begriffs Mikroplastik chronologisch zusammen.

Tabelle 1: Chronologische Entwicklung der Begriffsdefinition "Mikroplastik" anhand ausgewählter Autoren bzw. Institutionen mit Anmerkungen.

Institution/	Jahr	Definition	Anmerkungen
Autor			
Thompson et	2004	~ 20 µm	Einführung des Be-
al.	2004	¹⁴ ¹⁴ 20 μm	griffs Mikroplastik
Arthur et al.	2009	< 5 mm	Begriffserweiterung
Browne et al.	2011	< 1 mm	Mikrometerbereich
	2013	> 25 mm Makroplastik	Vorschlag der EU-
		5 - 25 mm Mesoplastik	Kommission zur eu-
		1 - 5 mm Large Microplastic Particle (L-MPP)	ropaweiten Standar-
		< 1 mm Small Microplastic Particle (S-MPP)	disierung
	2015	1 mm - 5 mm großes Mikroplastik	Bezug auf TSG ML
OBA	2015	1 μm - 1 mm kleines Mikroplastik	2013
NOAA, ECHA,	۰ ۸	Plastikteile (typischerweise) kleiner als 5 mm	
BUND	0. A.		
Fraunhofer	2018	Mikroplastik: Partikel und Fasern	Keine 5 mm Begren-
UMSICHT	2010	Makroplastik: größere Objekte aus Kunststoff	zung

Relativ einheitlich wird in der Literatur die Unterscheidung zwischen primärem und sekundärem Mikroplastik beschrieben. Primäres Mikroplastik entsteht bereits bei der Herstellung und gelangt als solches direkt in die Umwelt. Das Fraunhofer Institut UMSICHT unterteilt primäres Mikroplastik dabei weiterhin in zwei Typen: Typ A und Typ B. Während primäres Mikroplastik von Typ A bereits bei der Herstellung entsteht (z.B. Reibkörper in Kosmetika oder Granulate für die weitere industrielle Verarbeitung), wird solches von Typ B erst bei der Nutzung gebildet (z.B. Reifenabrieb, Fasern beim Waschen)⁵. Sekundäres Mikroplastik dagegen ist nicht zweckgebunden und entsteht erst durch Fragmentierung von Makroplastik – i.d.R. Abfällen – durch Verwitterung (z.B. UV-Einstrahlung, Mikroorganismen, Oxidation, mechanischer Abrieb) in der Umwelt ^{5,7,6,1,8}. Das folgende Schaubild stellt die verschiedenen Kategorien von Mikro- und Makroplastik noch einmal zusammenfassend dar.

Abbildung 6: Einteilung der verschiedenen Kunststoffemissionen in primäres Mikroplastik Typ A und B, sekundäres Mikroplastik sowie Makroplastik.

2.3 Kunststoffe im Boden

Das Thema Kunststoffe bzw. Kunststoffemissionen in der Umwelt hat seit einigen Jahren nun die Aufmerksamkeit der breiten Öffentlichkeit erreicht. Es gibt bereits diverse Studien über Mikroplastik in aquatischen Ökosystemen, insbesondere in den Ozeanen, doch Daten zum Mikroplastik-Vorkommen in terrestrischen Ökosystemen stehen bislang nur wenige zur Verfügung ¹¹. Dabei gibt es bereits Schätzungen, dass die Kunststoffemissionen in Böden vier bis 23 mal höher sein sollen als jene im Meer ⁹. Die geringe Datenlage kann damit zusammenhängen, dass die Extraktion und Quantifizierung von Mikroplastikpartikeln aus der komplexen organisch-mineralischen Bodenmatrix deutlich komplizierter und aufwändiger ist als aus Wasser. Daher gibt es für die Bodenuntersuchung auf Kunststoffe bisher auch noch keine allgemeingültige Standard-Methode ²⁷.

Als terrestrische Ökosysteme werden alle Ökosysteme der festen Landoberfläche bezeichnet, bei denen der Boden im Fokus steht. So umfasst diese Bezeichnung Felder, Wiesen, Wälder und auch Ufer sowie Böschungen. Der Boden, auch als Bodendecke oder Pedosphäre bezeichnet stellt dabei die Schnittstelle zwischen Litho-, Hydro-, Bio- und Atmosphäre dar. Er besteht aus einer Mischung aus organischem Material, Mineralien, Ton und Flüssigkeiten und fungiert als Lebensraum für eine Vielzahl an Bodenorganismen ¹¹. Mikroplastikpartikel und -fasern wurden bereits in verschiedenen Bodentypen wie z. B. Boden aus Industriegebieten, Strandabschnitten sowie landwirtschaftlich genutztem Boden gefunden ²⁸. Im Südwesten Deutschlands wurden 2018 durch Piehl et al. beispielsweise 0,34 ± 0,36 Mikroplastikpartikel pro Kilogramm Trockenmasse (TM) von landwirtschaftlichen Nutzflächen nachgewiesen ²⁹. Zu den Haupteintragsquellen von Kunststoffemissionen in Böden werden oftmals die bewusste, unsachgemäße Abfallentsorgung (Littering), Wetterereignisse, Reifenabrieb, Düngemittel und Agrarfolien genannt ¹¹. Diese und weitere Quellen und Eintragspfade von Mikroplastik in terrestrische Ökosysteme werden in der folgenden Tabelle 2 zusammenfassend dargestellt.

Quelle/Ursache	Beispiele	Anmerkungen
Individuelle Einträge	Unbehandeltes Abwasser, Littering, synthetische Textilien (Nutzung, Waschen, Trocknen)	Kunststoff-Eintrag in landwirt- schaftliche Böden durch Lit- tering auf 80 ± 30 t/a in der Schweiz geschätzt ³⁰
Wetterereignisse	Niederschläge, Verwehungen durch Wind, Hochwasser, Sturm, Erosion, atmosphärische Deposition	Oftmals Verfrachtung und Ein- trag aus anderen Umweltkom- partimenten (Luft, Wasser)
Industrie und Infrastruktur	Reifenabrieb, Lacke und Farben, Produktions-/Transportverluste, Deponien, Entsorgungsbetriebe, Kläranlagen, Baustellen	Mikroplastik-Eintrag in Böden durch Reifenabrieb in Deutschland auf rund 4.400 t/a geschätzt *
Landwirtschaft	Agrarfolien (Mulch-, Silage-, Schrumpffolien), Düngung mit Klär- schlamm/Kompost/Gärresten oder Langzeitdüngern (Kunststoff-um- hüllte Depotdünger)	Mikroplastik-Gehalt in Klär- schlamm auf 1.000 bis 20.000 Partikel pro kg TM geschätzt ⁶

Tabelle 2: Quellen und Ei	ntragswege von	Kunststoffen und	Mikroplastik in	terrestrische Ökosystem	1e ⁶ .
---------------------------	----------------	------------------	-----------------	-------------------------	-------------------

* Eigene Berechnung aufgrund des Eintrags von 1.230 g/(cap*a) in Deutschland ¹⁸, rund 83 Mio. Einwohnern und der Transferrate von 4 % in den Boden ³¹.

Erst einmal auf der Bodenoberfläche angekommen, können die Kunststoffpartikel in den Boden eindringen und sich so innerhalb des Bodens verteilen. Dabei können verschiedene Bodeneigenschaften sowie Aktivitäten von Bodenorganismen und landwirtschaftliche Tätigkeiten den Transportweg beeinflussen. So sind Makroporen durch Bodenorganismen, sogenannte Bioporen, Pflügen und Risse im Boden v. a. verantwortlich für den vertikalen Transport (Abwärtsbewegung), während die Bodenorganismen selbst sowie Erntearbeiten meist zur horizontalen Verbreitung der Kunststoffe beitragen ¹⁰. Bodenorganismen wie Regenwürmer könnten laut M. C. Rillig außerdem zur Entstehung von sekundärem Mikroplastik beitragen, indem sie durch Ingestion Plastikpartikel in ihren Mägen in noch kleinere Fragmente zerreiben. Zudem könnten solche Arten, die zwar nahe der Oberfläche fressen, aber vertikale Grabgänge bohren (Tief- bzw. Vertikalbohrer), die Einarbeitung von oberflächlichen Mikroplastikpartikeln in tiefere Bodenschichten begünstigen ²⁷.

Kunststoffe und Mikroplastikpartikel in terrestrischen Ökosystemen, die auf der Bodenoberfläche liegen oder bereits in tiefere Schichten gelangt sind, können weiter fragmentieren und/oder durch verschiedene Mechanismen abgebaut werden. In Bezug auf den Aspekt "Verbleib von Mikroplastik in Böden" ist die folgende Differenzierung der möglichen Degradationswege von Kunststoffen essentiell ⁶:

- 1. Physikalisch-mechanischer Abbau: Alterung, Verwitterung und Fragmentierung durch Einflüsse wie Temperatur und Druck ohne stoffliche Veränderung
- 2. Chemischer Abbau: Zersetzung durch Einflüsse wie pH-Wert, Salinität und UV-Strahlung zu Kohlenstoffdioxid, Wasser und Nitraten
- 3. Biologischer Abbau: biotischer Abbau durch Organismen bzw. Mineralisierung
 - Aerober Abbau zu Kohlenstoffdioxid, Wasser und Mineralsalze durch z. B.
 Pilze
 - b. Anaerober Abbau zu Kohlenstoffdioxid, Wasser, Methan und Mineralien durch z. B. Bakterien

Da der Großteil der für die Herstellung von Kunststoffen eingesetzten Monomere (z. B. Ethylen oder Propylen) erdölbasiert ist, sind die meisten Kunststoffprodukte quasi nicht biologisch abbaubar. Aufgrund ihrer Persistenz kann der "echte" biologische Abbau von Kunststoffen mehrere Jahrhunderte beanspruchen. Folglich akkumulieren die Kunststoffe und fragmentieren zu Mikroplastik². Horton et al. schätzten 2017, dass Mikroplastikpartikel aufgrund der geringen Lichteinwirkung und der gegebenen Sauerstoffbedingungen im Boden mehr als 100 Jahre fortbestehen könnten⁹.

2.4 Kunststoffe auf landwirtschaftlichen Nutzflächen

Wie bereits in Kapitel 1 beschrieben, werden Kunststoffe in der heutigen Zeit ubiquitär eingesetzt, so auch in der Landwirtschaft. Neben Pflanztöpfen, Trays, Paletten und Anzuchtsystemen aus Kunststoffen werden diese auch bei Hydrokulturen, Gewächshäusern und -tunneln, Wasserspeichern, Drainage- sowie unter- und oberirdischen Bewässerungssystemen verwendet. Hinzu kommen polymerbasierte Verpackungen und Gebinde für chemische Agrarprodukte wie Dünger oder Pestizide. Immer bedeutender in der Landwirtschaft werden sog. Erntekunststoffe wie Vliese, Netze sowie Folien aus Kunststoff. All diese zuvor genannten Kunststoffprodukte sind potentielle Eintragsquellen für Kunststoffe bzw. Mikroplastik auf landwirtschaftlichen Nutzflächen – zusätzlich zu den in Kapitel 2.3 aufgeführten Quellen für Mikroplastik in Böden. Im Zuge dieser Arbeit wurden eigene Hochrechnungen angestellt ^{32,33}, um den Einfluss einiger wichtiger Quellen von Mikroplastikemissionen auf landwirtschaftlichen Nutzflächen abzuschätzen. In der folgenden Tabelle sind die Ergebnisse dargestellt, die auf der Grundlage verschiedener Quellen angestellt wurden.

Quelle	Menge
Littering und Wetterereignisse	52.039 t/a 35
Reifenabrieb inkl. Abrieb Bitumen in Asphalt	2.462 t/a ^{18,31}
Düngemittel	35.325 t/a ^{36,37}
Mulchfolien	1.708 t/a*

Tabelle 3: Eintragsquellen und entsprechende Mengen an auf Agrarflächen in Deutschland emittierten Kunststoffen, angegeben in Tonnen pro Jahr. ^{34,33}

* Gesamtmenge an verwendeten Mulchfolien – nicht gleichzusetzen mit Gesamtmenge an Kunststoffemissionen durch Mulchfolien.

In China konnten Zhang und Liu in einer 2018 veröffentlichten Studie Meso- und Mikroplastikpartikel in landwirtschaftlichen Böden nachweisen, bei denen sich Klärschlamm, Abwasser und Mulchfolien als Haupteintragsquellen herausstellten ³⁸. Das aus dem Abwasser stammende Mikroplastik reichert sich überwiegend im Klärschlamm der Kläranlagen an und wird durch die Verwendung als Düngemittel zurück auf die Felder geführt. In Europa wird aktuell noch rund ein Drittel des anfallenden Klärschlamms als Dünger verwendet und auf landwirtschaftliche Nutzflächen aufgebracht ^{1,6}. Durch die regelmäßige Aufbringung von Sekundärrohstoffdüngern wie Klärschlamm kann es so zur allmählichen Akkumulation von Kunststoffen in Böden landwirtschaftlicher Nutzflächen kommen, da ihre Persistenz wesentlich höher ist als die der beabsichtigten Nährstoffe ¹⁶. Tabelle 4 fasst die aktuelle rechtliche Lage bezüglich der Aufbringung von Reststoffen wie Klärschlamm, Komposten und Gärresten auf konventionell und ökologisch bewirtschafteten Nutzflächen zusammen.

	Ökolandbau	Konventionelle Landwirt- schaft
Klärschlamm	Der Einsatz von Klärschlamm sowie Klär- schlamm-Recyclingprodukten ist im Ökolandbau derzeit nicht zugelassen.	<i>Noch</i> unter Auflagen (DüMV, BioAbfV, Abf- KlärV) erlaubt.
Kompost	Kompost aus Grünschnitt ist ohne Einschrän- kungen erlaubt. Kompost aus Bioabfällen nur teilweise. (Demeter - nein, Bioland, Naturland - ja). Es gelten die Vorgaben der EU-ÖkoV.	Unter Auflagen (DüMV, Bi- oAbfV, AbfKlärV) erlaubt.
Gärreste (Bio- gasgülle)	Biogasgüllen, die vollständig aus Substraten (Pflanzen, Mist, Gülle) aus Öko-Betrieben vergo- ren werden, können im pflanzenbaulich sinnvol- len Rahmen im Öko-Betrieb verwendet werden. Dabei ist zu unterscheiden, ob die Güllen, rein aus pflanzlichen Rohstoffen, aus tierischen Ex- krementen (ind. Tierhaltung nicht erlaubt) oder aus pflanzlichen und tierischen Haushaltsabfäl- len stammen. GVO-Freiheit ist Voraussetzung.	Unter Auflagen (DüMV, Bi- oAbfV, AbfKlärV) erlaubt.

Tabelle 4: Rechtliche Grundlagen zur Aufbringung von Klärschlamm, Kompost und Gärresten auf ökologisch und konventionell bewirtschafteten Flächen.

Eine vielversprechende Alternative für Kunststoffprodukte stellen die immer häufiger verwendeten Biokunststoffe dar, die aufgrund entsprechender Zertifikate als "kompostierbar" betitelt werden. Nach der Europäischen Norm EN 13432³⁹ müssen 90 % des Biokunststoffes nach einem dreimonatigen industriellen Kompostierprozess abgebaut sein, während bis zu 10 % Rückstände größer als 2 mm rechtlich erlaubt. Dies bedeutet, dass bis zu 10 % Rückstände größer als 2 mm in der Umwelt verbleiben und zu Mikroplastik zerfallen können. Hieraus ergibt sich, dass auch die als "kompostierbar" bezeichneten Biokunststoffe durch die Aufbringung von Kompost zur Anreicherung von Mikroplastik in Böden von Agrarflächen beitragen könnten, sofern die restlichen Mikroplastikpartikel von den Mikroorganismen im Ackerboden nicht noch abgebaut werden⁶. Neben der Düngung mit Klärschlamm wurden in der Publikation von Zhang und Liu auch Mulchfolien als Haupteintragsquelle identifiziert ³⁸. Dies lässt auch eine Studie der Heinrich-Böll-Stiftung von 2019 über Kunststoff-Typen auf Agrarflächen vermuten (siehe Abbildung 6).

Abbildung 7: Analysenergebnisse zur Größenverteilung und zu Polymertypen von Kunststoffpartikeln auf einer Ackerfläche ⁴.

Hier wurden 140 der 206 pro Hektar gefundenen Kunststoffpartikel dem Polymer Polyethylen (PE) zugeschrieben (vgl. Abbildung 6), was rund zwei Drittel der detektierten Kunststofffragmente entspricht. Da Mulchfolien zumeist aus eben diesem Polymer, vor allem LDPE (*low density polyethylene*), hergestellt werden, deutet dies darauf hin, dass die Mikroplastikbelastung in Agrarböden zu einem erheblichen Anteil von Mulchfolien stammen könnte.

2.4.1 Mulchfolien auf landwirtschaftlichen Nutzflächen

Durch den wachsenden Bedarf an Lebensmitteln aufgrund der stetig wachsenden Weltbevölkerungszahl stützt sich die moderne Landwirtschaft auf den Gebrauch von polymerbasierten Produkten wie Kunststofffolien, im Fachjargon häufig *Agrarfolien* oder weniger spezifisch als *Erntekunststoffe* bezeichnet. Diese werden im Gartenbau und der Landwirtschaft zum Mulchen, zur Abdeckung, als Gewächshausmaterial ("Tunnel"), für Beschilderungen und zur Silage eingesetzt ⁴⁰. Als Mulchfolien werden flächige, transparente oder farbige Kunststofffolien bezeichnet (vgl. Abbildung 8), mit denen der Ackerboden abgedeckt wird. Zur Befestigung werden sie an den Rändern in den Boden eingearbeitet.

Abbildung 8: Mulchfolien (links: schwarz, rechts: schwarz-weiß mit weißer Seite obenauf liegend) auf Salatfeldern.^{41,42}

Mulchfolien werden vor allem aufgrund der vier folgenden Funktionen eingesetzt:

- a) **Mulchen**: Regulierung der Bodenfeuchtigkeit und Temperatur, Schutz vor Erosion, Unkrautwachstum und der Verschmutzung der Pflanzen
- b) Verfrühen: Temperaturerhöhung durch Einsatz von schwarzen oder durchsichtigen Mulchfolien, sogenannten Thermofolien (vgl. Tabelle 6), um das Wachstum der Pflanzen bzw. die Saatgutkeimung zu beschleunigen
- c) Verspäten: Temperaturerniedrigung durch Einsatz reflektierender, weißer Mulchfolien (vgl. Tabelle 6), um das Pflanzenwachstum bzw. die Saatgutkeimung zu bremsen
- d) Schützen: Schädlingsabwehr

Eine Erhebung der Gesellschaft für Kunststoffe im Landbau e.V. (GKL) ergab, dass die Fläche, auf der in Deutschland im Jahr 2008 Mulchfolien eingesetzt wurden, 3.935 ha betrug ⁴³. Zehn Jahre später waren es bereits 6.633 ha, die mit Mulchfolien bedeckt waren, was einem Anstieg um fast 70 Prozent entspricht. Der Großteil dieser Folien besteht dabei aus LDPE, einem Polyethylen mit niedriger Dichte, mehrheitlich erdölbasiert. Es gibt aber auch biobasierte und/oder bioabbaubare Folien aus Maisstärke, Milchsäure (Polylactide, PLA) und Cellulose (aus Holz), wie Abbildung 9 verdeutlicht.

Abbildung 9: Typen von Agrarfolien kategorisiert nach erdöl- und/oder biobasiert sowie nach ihrer Bioabbaubarkeit (PBAT: Polybutylenadipat-terephthalat, PBS: Polybutylensuccinat).

PLA-basierte Mulchfolien sind oft sehr langlebig, was sowohl positive als auch negative Auswirkungen auf ihre Verwendbarkeit hat: So ist die Stabilität der Folien für die Landwirte von Vorteil, was den finanziellen praktisch-technischen Aspekt betrifft – doch zersetzen sie sich aufgrund ihrer hohen Biopersistenz auch vergleichsweise langsam nach Verwendung und Einarbeitung in den Ackerboden. Mulchfolien aus Cellulose sowie Bio-PE sind bislang in der Regel noch zu kostenintensiv in der Herstellung. Bisher gibt es noch keine Mulchfolien, die ausschließlich aus nachwachsenden Rohstoffen hergestellt werden, da ihre physikalischen Eigenschaften (wie die Reißfestigkeit) noch nicht ausreichend für den praktischen Einsatz sind. Durch die Zugabe erdölbasierter Komponenten werden Eigenschaften wie Reißfestigkeit und Elastizität verbessert und es entstehen Stoffmischungen aus nachwachsenden und fossilen Rohstoffen, sogenannte "Blends" ⁴³. Der erdölbasierte Anteil beträgt dabei in der Regel über 50 %.

Der Einsatz von Mulchfolien bringt viele ökonomische Vorteile wie höhere Erträge und frühere Ernte mit sich, die Mulchfolien heute zur gängigen Praxis haben werden lassen. Die folgende Tabelle fasst die Vor- und Nachteile von Mulchfolien zusammen und unterscheidet hierbei zwischen konventionellen und bioabbaubaren Folien:

Тур		Vorteile	Nachteile
Konventionell	Ökologisch	Geringere Bodenerosion oder -ver- dichtung, verringerte Nährstoff-Aus- waschung bzw. bessere -Verfügbar- keit	Recycling/Wiederverwendung erschwert durch Verschmut- zung und Verwitterung, Frei- setzung von Schadstoffen wie Phthalaten
	Arbeitswirt- schaftlich	Erhöhte Ernteerträge und -qualität, frühere Ernte, effizienter Wasserver- brauch, geringerer Pestizid- und Her- bizideinsatz, Unkrautunterdrückung	Arbeitsintensive Bergung
	Finanziell	Geringe Anschaffungskosten	Entsorgungskosten,
Biologisch abbaubar	Ökologisch	Geringere Bodenerosion oder -ver- dichtung, verringerte Nährstoff-Aus- waschung bzw. bessere -Verfügbar- keit, Ressourcenschonung, kein Ab- fall durch Einarbeitung	Gefahr der Adsorption chemi- scher Verbindungen wie Pesti- zide durch hydrophobe Eigen- schaften
	Arbeitswirt- schaftlich	Erhöhte Ernteerträge und -qualität, frühere Ernte, effizienter Wasserver- brauch, geringerer Pestizid- und Her- bizideinsatz, Unkrautunterdrückung, Kein Arbeitsaufwand für die Ber- gung, zeitnahe Wiederbelegung der Kulturflächen	_
	Finanziell	Keine Kosten für die Entsorgung	Höhere Anschaffungskosten

Tabelle 5: Vor- und Nachteile von konventionell-erdölbasierten sowie biologisch abbaubaren Mulchfolien.

Je nach gewünschtem Effekt, Wärmeabstrahlung (Reflexion) oder Wärmeaufnahme (Absorption), werden verschiedene Mulchfolien eingesetzt, die sich in ihrer Farbe und dementsprechend in ihren thermischen Eigenschaften unterscheiden. Dadurch beeinflussen sie das Mikroklima um die Pflanzen herum und im Boden auf unterschiedliche Weise (vgl. Tabelle 6)¹³.
Farbe	Strahlungseigenschaften	Temperatureinfluss
	Strahlungsundurchlässig, absorbieren die meisten	
	Wellenlängen (sichtbar, IR) der einfallenden Sonnen-	+ 2,8 °C in 5 cm Tiefe
Schwarz	strahlung und strahlen die absorbierte Energie in	und + 1,7 °C in 10 cm
	Form von thermischer Energie bzw. langwelliger IR-	Tiefe
	Strahlung wieder ab	
Durchcichtig/	Absorbieren wenig Sonnenstrahlung, lassen 85-95 %	+ 4,4-7,8 °C in 5 cm
farblos	der einfallenden Strahlung abhängig von ihrer Dicke	Tiefe und + 3,3-5,0 °C
	und Opazität hindurch (Treibhauseffekt)	in 10 cm Tiefe
Weiß, weiß-		1.1 °C in 2.5 cm
schwarz,	Reflektieren einen Großteil der einfallenden Sonnen-	-1,1 C III 2,5 CIII
silber-reflek-	ber-reflek- strahlung	
tierend		to chi nele

Tabelle 6: Typen von Mulchfolien kategorisiert nach ihrer Farbe, ihren Strahlungseigenschaften und ihrem entsprechenden Einfluss auf die Bodentemperatur (tagsüber).

Der Verbleib der Mulchfolien hängt von den Abbaueigenschaften des Materials ab, aus dem diese hergestellt wurden. Nach der Verwendung von nicht biologisch abbaubaren Folien werden diese idealerweise vom Ackerboden geborgen und entsprechend entsorgt. Mikroplastikfragmente, die beispielsweise durch Verwitterung während der Nutzung der Mulchfolien entstanden sind, können, wie in Kapitel 2.3 beschrieben, durch verschiedene Bodeneigenschaften, landwirtschaftliche Tätigkeiten und Mikroorganismen in tiefere Bodenschichten transportiert werden. Bioabbaubare Mulchfolien können dagegen in den Boden durch z.B. Pflügen eingearbeitet werden und sollen sich dann bis zur nächsten Saison abgebaut haben.

Die Kombination aus maschineller Bearbeitung, Kultivierung, Erntearbeiten und Mikroplastik-Eintragswegen stellen für den Boden von landwirtschaftlichen Nutzflächen eine potentielle Gefährdung dar und rücken ihn damit in den Fokus aktueller Studien ¹⁰.

2.5 Analytische Methoden zur Bestimmung von Kunststoffen (Aktueller Stand der Technik)

Im folgenden Kapitel werden die derzeit angewandten analytischen Methoden zur Bestimmung von Kunststoffen, insbesondere von Mikroplastik, in Böden dargestellt. Dabei wird der aktuelle Stand der Technik betrachtet und auf die einzelnen Teilschritte der Probenahme, der Aufbereitung bzw. Extraktion sowie der Detektion eingegangen.

2.5.1 Probenahme

Die richtige Ausführung der Probenahme ist für den Erfolg der weiteren Analyse der Proben und vor allem für die Aussagekraft der Analysenergebnisse von essentieller Bedeutung. Im Fokus sollte dabei immer die Repräsentativität der Probe stehen. Um diese gewährleisten zu können, sind einige Aspekte zu berücksichtigen:

a) Der Zeitpunkt der Probenahme:

Im Idealfall erfolgt die Probenahme immer zur gleichen Jahreszeit, vorzugsweise im Herbst oder Frühling. Zu beachten ist hier, dass die Proben nicht bei extrem nassem bzw. trockenem Boden und nicht unmittelbar nach erfolgter Düngung genommen werden sollten.

b) Die Anzahl der Probenahmestellen ³⁷:

Diese orientiert sich an der Größe der zu beprobenden Fläche. Bei Flächen größer als 10.000 m² (entspricht 1 ha) sollten diese in mindestens zehn Teilflächen eingeteilt werden. Pro Teilfläche sollten 15 bis 25 Einzelproben gezogen und zu einer Mischprobe zusammengefasst werden. Bei Testfeldern mit einer Fläche zwischen 500 und 10.000 m² sollten mindestens drei Teilflächen beprobt werden und bei kleineren Flächen wird davon abgesehen Teilflächen zu bilden.

c) Die Tiefe der Beprobung ³⁷:

Diese richtet sich nach der Nutzung des Bodens. Bei Böden des Ackerbaus und von Nutzgärten ist eine Beprobungstiefe von 0 bis 30 cm relevant, die in der Landwirtschaft dem typischen, sogenannten Bearbeitungshorizont entspricht. Ausnahme bilden hier beispielsweise Spargelfelder, bei denen eine Tiefe von bis zu 90 cm beprobt werden sollte.

d) Die Wahl des Probenahmegerätes bzw. der Probenahmetechnik ³⁷:

Diese orientiert sich neben der wirtschaftlichen Verhältnismäßigkeit des Verfahrens vor allem an der benötigten Probenmenge bzw. dem benötigten Volumen, der Größe der zu untersuchenden Kunststoffpartikel und den jeweiligen Bodeneigenschaften der Testfläche. Als Beispiele für manuelle Verfahren seien hier der Pürckhauer (siehe Abbildung 10), Handdrehbohrer und Stechzylinder genannt.

Abbildung 10: Pürckhauer, als Probenahmegerät für die Mikroplastikproben verwendet (mit roter Markierung für die Einstichtiefe).

2.5.2 Aufbereitung (Extraktion)

Nach der Probenahme erfolgt üblicherweise die Aufbereitung der Feldprobe zu einer Laborprobe anhand einer Grobsortierung und Trockensiebung mit Sieben verschiedener Maschenweiten ³⁷. Die folgende Tabelle gibt einige Richtwerte für die Laborprobe wieder, bezogen auf die einzelnen Korngrößenfraktionen von Bodenproben:

Tabelle 7: Richtwerte für die Laborprobe bezüglich der verschiedenen Korngrößenfraktionen und deren erforderlicher Mengen bzw. Volumina an Feinboden (nach Braun et al. ³⁷).

Korngrößenfraktion	Volumen	Masse
< 1 mm	0,5 L	250 g
< 2 mm	1,0 L	500 g
< 5 mm	2,5 L	1250 g

Anschließend können verschiedene Methoden und Techniken eingesetzt werden, um die zu untersuchenden Polymerpartikel aus der komplexen Bodenmatrix zu *extrahieren*. Zwei Aspekte stehen dabei im Fokus der *Extraktion*: Zum einen die Abtrennung der Kunststoffpartikel und -fasern von den Mineralbestandteilen des Bodens (der Anorganik) durch Dichteseparation und zum anderen die Entfernung der organischen Matrix mittels chemischer und/oder enzymatischer Verfahren.

a) Abtrennung der Anorganik:

Zur Entfernung von mineralischen Partikeln hoher Dichte wie Sande und Tone werden die Bodenproben in einem geeigneten Trennmedium definierter Dichte suspendiert ¹. Durch gravimetrische Trennung, auch Dichtetrennung oder -separation genannt, sammeln sich Partikel mit einer geringeren Dichte als die der Lösung auf deren Oberfläche, während schwerere Partikel absinken und so abgetrennt werden können. Als Trennmedium finden sich in der Literatur neben destilliertem bzw. Trinkwasser vor allem gesättigte Salzlösungen (z. B. NaCl, ZnCl₂, NaI, Natriumpolywolframat STP, CaCl₂, KBr), die auf eine Dichte von 1,2 bis 1,8 g/cm³ eingestellt werden und die meisten handelsüblichen Polymere abtrennen können ¹. Eine Übersicht der von Primpke et al. untersuchten Trennmedien ist in Tabelle 8 dargestellt ¹. Potentiell kritische Parameter bei der Verwendung gesättigter Salzlösungen sind die Viskosität und der pH-Wert der Lösung, sowie die statische Aufladung der Partikel ³⁷. Zudem weisen die meisten Gebrauchskunststoffe selten die gleiche Dichte auf wie ihr entsprechendes Rohpolymer. Dies kann einerseits an der Zugabe diverser Additive bei der Herstellung und Verarbeitung der Kunststoffe liegen und andererseits durch den Verbleib in der Umwelt hervorgerufen werden (Dichteerhöhung durch Biofilm-Anlagerung, Dichteerniedrigung durch Abbauprozesse) ⁶.

Trennmedium			Poly	mere	
Name	Dichte in g/cm³ *	Vorteile	Nachteile	Dichte ⁴⁵ in g/cm ³	Name
Wasser	1,0	Günstig, ungefährlich, einfache Handhabung	nur PP, PE und PU-Schaum	0,01-0,09 0,92-0,96 0,90-1,00	PU-Schaum PE PP
NaCl	1,2	Günstig, ungefährlich, einfache Handhabung	Nur PP, PE, PS und z. T. PA	1,03-1,05 1,00-1,20	PS PA
KBr	1,3	Günstig, relativ unge- fährlich	Kein PVC, PET	1,00-1,25	PU (unge- schäumt)
CaCl ₂	1,3	Günstig, relativ unge- fährlich	Kein PVC, PET, hohe Reaktivität (H ₂ O ₂)	1,16-1,20	РММА
Nal	1,5**	Auch PVC, PET, PMMA	Teuer, gewässer- gefährdend, hohe Reaktivität (H ₂ O ₂)	1,20-1,40 1,38-1,40	PVC PET
STP	1,4-2,5	Auch PVC, PET, PMMA	Sehr teuer, giftig		
ZnCl ₂	1,6-1,7	Günstig	giftig		

Tabelle 8: Dichte verschiedener Polymere und Trennmedien sowie deren Vor- und Nachteile 6,11,44.

*einer 30 %-igen Lösung bei 20 °C; **Wert für eine 40-50 %-ige Lösung

b) Abtrennung der Organik:

Um die Messergebnisse bezüglich des Partikelgewichts und der -anzahl nicht zu verfälschen und die instrumentelle Detektion des Polymertyps zu ermöglichen, wird die organische Matrix der Bodenproben durch chemische und/oder enzymatische Verfahren zersetzt ⁴⁶. Hierbei wird die spezielle Beständigkeit (Persistenz) der Kunststoffe gegenüber chemisch-physikalischem und biologischem Abbau (siehe Kapitel 1) im Vergleich zu den organischen Störstoffen ausgenutzt.

Durch den Einsatz verschiedener Enzyme können organische Bodenbestandteile wie Proteine, Cellulose, Lignin, Insektenpanzer und Fette gezielt zersetzt werden. Jedes Enzym benötigt dabei spezielle Bedingungen (pH-Wert, Temperatur, Reaktionszeit), die oftmals die Kombination mehrerer Enzyme verhindern ⁶. Zudem ist der Einsatz von Enzymen vergleichsweise kostenintensiv und erfordert häufig längere Einwirkungszeiten ³⁷. Dem gegenüber steht die sehr schonende Abtrennung der organischen Matrix von den davon in der Regel nicht angegriffenen Polymerpartikeln ³⁷.

Zu den chemischen Verfahren zählen der Einsatz verschiedener Säuren und Laugen, von Wasserstoffperoxid (H₂O₂) sowie die Verwendung der sogenannten Fentons Reagenz (schwefelsaure Mischung aus Eisen(II)-sulfat und Wasserstoffperoxid). All diese Chemikalien sind dabei deutlich aggressiver gegenüber der Stabilität der zu untersuchenden Kunststoffe ⁶ und bergen die Gefahr, diese ebenfalls anzugreifen und im schlimmsten Fall zu zersetzen (v. a. bei zusätzlichem Erhitzen) ⁴⁶. Primpke et al. haben in einer Studie von 2017 die Stabilität verschiedener Polymere gegenüber typischen Lösemitteln untersucht. Die Ergebnisse ihrer Untersuchungen sind in Tabelle 9 dargestellt:

	Polymerstabilität							
Chemikalie	PE	PP	PS	ΡΑ	PETG	PVC	РС	
Konz. HCl								
Konz. H ₂ SO ₄								
Konz. HNO₃								
NaOH 30 %								
KOH 30 %								
H ₂ O ₂ 30 %								
NaClO 12,5 % Cl								

Tabelle 9: Polymerstabilität gegenüber verschiedenen Chemikalien zur Entfernung der organischen Bodenmatrix (nach Primpke et al., 2017)¹.

Legende: **Constant** = sehr gut, **Constant** = gut, **Constant** = eingeschränkt, **Constant** = Zersetzung

Ergänzend hierzu haben Tagg et al. in ihre Studie festgestellt, dass die Polymere PE, PP, PVC und Nylon (PA) sich stabil gegenüber der Fentons Reagenz verhalten ⁴⁷.

2.5.3 Detektion

Nach erfolgreicher Aufbereitung der Proben und Extraktion der Polymerpartikel können je nach Fragestellung verschiedene Parameter bestimmt werden. So kann beispielsweise die Partikelanzahl durch spezielle Partikelzählverfahren (Licht- oder Laserstreuung) oder Auszählen unter dem Lichtmikroskop ermittelt werden und die Partikelmasse bzw. deren Menge durch gravimetrische Bestimmung (Wägung) erfasst werden. Oftmals wird eine Vorsortierung unter dem Licht- bzw. Elektronenmikroskop in Kunststoff oder Nicht-Kunststoff vorgenommen ⁶ und die potentiellen Polymere je nach Form, Farbe und Oberflächenbeschaffenheit in folgende Kategorien eingeteilt: Fragment, Faser, Folie, (PU-) Schaum, und Kugeln¹¹. Zudem können die so gefundenen Kunststoffpartikel bestimmten Größenklassen zugeschrieben werden, die in Tabelle 10 dargestellt sind. Die Bestimmung der Partikelgröße(n) kann am einfachsten durch mehrstufiges Sieben mit definierten Maschenweiten (Siebturm, Luftstrahlsieb) bzw. Filtrieren mit definierten Filterporengrößen durchgeführt werden. Möglich ist auch die Verwendung eines Kaskaden-Impaktors oder eines sog. "Mastersizers" sowie das Ausmessen unter dem Lichtmikroskop. Letzteres ist jedoch vergleichsweise arbeitsintensiv und auf eine gewisse Partikelanzahl und -größe beschränkt⁶.

Bezeichnung	Partikelgrößenklassen (in μm)	Masse eines individuellen Partikels (in mg) *		
Großes Mikroplastik	5.000 - 1.000	14,13		
Mikroplastik	1.000 - 500	0,221		
	500 - 100	0,014		
	100 - 50	2,2 · 10 ⁻⁴		
	50 - 10	1,4 · 10 ⁻⁵		
	10 - 5	2,2 · 10 ⁻⁷		
	5 - 1	1,4 · 10 ⁻⁸		

Tabelle 10: Größenklassifizierung gefundener Polymerpartikel nach Braun et al. ³⁷.

*Annahme: Dichte von 1 g/ml.

Bei der Verwendung von rein bildgebenden (mikroskopischen) Verfahren zur Identifizierung von Polymerpartikeln kann es jedoch schnell zu Fehlinterpretationen kommen, sodass diese mit anderen, im Folgenden dargestellten Verfahren kombiniert werden sollten ³⁷. Zur Verifizierung, ob es sich tatsächlich um Kunststoff handelt, und zur Bestimmung des Polymertyps stehen bislang verschiedene Detektionsmethoden zur Verfügung: a) spektroskopisch, b) thermoanalytisch und c) chemisch.

- a) Spektroskopische Verfahren (Spektr.): Erfassung von Merkmalen der spezifischen chemischen Struktur von Polymeren, Zuordnung mittels Referenzspektren, v. a. Infrarotund Raman-Spektroskopie.
- b) Thermoanalytische Verfahren (Therm.): Pyrolyse der Probe unter inerten Bedingungen, Detektion der spezifischen Zersetzungsprodukte der einzelnen Polymere.
- c) Chemische Verfahren (Chem.): Aufschluss der Probe, Detektion spezifischer Polymerfragmente oder Elemente.

Braun et al. haben 2018 eine Studie veröffentlicht, in der die verschiedenen Detektionsmethoden hinsichtlich ihrer Vorteile und Grenzen sowie die möglichen Ergebnisparameter verglichen wurden. Die Ergebnisse sind in Tabelle 11 und Tabelle 12 zusammenfassend dargestellt ³⁷.

Tabelle 11: Technische Parameter und Grenzen der einzelnen Detektionsverfahren nach Braun et al. ³⁷ (P/P = Partikelanzahl pro Probe, NWG = Nachweisgrenze, für die Abkürzungen der Verfahren, siehe Abkürzungsverzeichnis).

		m in	max. P/P	Messzeit*	Untere NWG	Probenvorberei- tung für Messung
	μ Raman	ng - µg	$10^3 - 10^5$	h - d	1 – 10 µm	auf Filter
÷	μ FTIR (trans)	ng - µg	$10^3 - 10^5$	d	20 µm	auf spez. Filter
pekt	μ ATR-FTIR	mg	1	min	25 – 50 μm	isolierte Partikel
S	ATR-FTIR/ -Raman	mg	1	min	500 µm	isolierte Partikel
	NIR	mg	n. A.	min	1%	auf Filter
Ë	Py-GC-MS	μg	n. A.	h	0,5 – 2,5 μg	isolierte Partikel
The	TED-GC-MS	mg	n. A.	h	0,5 – 2,5 μg	Filtrat / mit Filter
Chem.	ICP-MS	mg	n. A.	min	ppm	Filtrat

* inkl. Probenvorbereitung

		Polymer- typ	Additiv- sorte	OF (che- misch)	Alterungs- zustand	Anzahl, Größe, Form	Massen- bilanzen
	μ Raman	ja	Pigmente	ja	OF Oxidation	ја	nein
E	μ FTIR (trans)	ja	nein	nein	nein	ја	nein
bekt	μ ATR-FTIR	ja	nein	ja	OF Oxidation	ја	nein
Ş	ATR-FTIR	ja	nein	ja	OF Oxidation	ја	nein
	NIR	ja	nein	ja	nein	nein	nein
Ľ.	Py-GC-MS	ја	ја	nein	OF Oxidation	nein	nein
The	TED-GC-MS	ја	nein	nein	nein	nein	ја
Chem.	ICP-MS	nur Reifen- abrieb	nein	nein	nein	nein	ja

Tabelle 12: Ergebnisparameter der einzelnen Detektionsmethoden nach Braun et al. ³⁷ (für die Abkürzungen der Verfahren, siehe Abkürzungsverzeichnis; OF = Oberfläche).

Die für diese Forschungsarbeit zu untersuchenden Parameter (Polymertyp, Partikelanzahl, -menge und -größe) werden alle bis auf die Partikelmenge von den spektroskopischen Methoden abgedeckt. Die Masse der gefundenen Kunststoffpartikel kann jedoch relativ einfach, wie zuvor bereits erwähnt, gravimetrisch bestimmt werden. Für größere Partikel (> 500 µm) können diese einzeln mittels ATR-FTIR bestimmt werden, während kleinere Partikel mit Hilfe von µ ("Mikro") Raman- oder µ FTIR-Spektroskopie untersucht werden können. Die spektroskopischen Methoden bieten zudem durchweg den Vorteil, dass sie im Gegensatz zu den thermoanalytischen und chemischen Detektionsverfahren allesamt nicht invasiv sind und die Proben im Anschluss noch für weitere Untersuchungen zur Verfügung stehen.

Bei der Anwendung der spektroskopischen Methoden gilt es Störsubstanzen zu beachten, die vor der Messung so effektiv wie möglich entfernt werden sollten. Hinsichtlich der Analyse von Polymerpartikeln mittels Raman-Spektroskopie sei hier die Auto-Fluoreszenz der organischen Matrix zu nennen, die die Signale der Analyten überlagern kann. Diese kann zwar durch den Einsatz energiearmer Laser reduziert werden, jedoch wird dadurch auch die Signalstärke der Polymere minimiert ⁴⁴. Im Gegensatz dazu ist es bei der FTIR-Spektroskopie essentiell, die Proben wasserfrei zu halten, um Überlagerungen der gefragten Signale zu vermeiden ⁴⁴. Die zumeist verwendeten Aluminiumoxidfilter sind dabei zu vernachlässigen, da diese nur in einem sehr kleinen Wellenlängen-Bereich absorbieren und die Messung dementsprechend wenig stören ⁶.

3.1 Material und Methodik

In dem folgenden Kapitel wird die Vorgehensweise bei der Entwicklung der analytischen Methode beschrieben und erläutert. Dabei wird sowohl auf die Probenahme auf den Testfeldern als auch auf die Aufbereitung der Proben und die Detektionsmethoden eingegangen.

3.1.1 Probenahme

Bei der am 19. Juni 2020 erfolgten Probenahme wurden fünf unterschiedliche Testfelder beprobt (Feld A bis Feld E). Die für die Probenahme verwendeten Materialien und Utensilien sind in Tabelle 13 einzusehen und die im Vorfeld erstellten und während der Probenahme ausgefüllten Probenahme-Formblätter im Anhang (siehe Kapitel 6.1) zu finden. Beispielhaft ist auf den folgenden beiden Seiten (S. 28 f.) das Probenahme-Protokoll von Feld A dargestellt.

Material	Verwendungszweck
Pürckhauer	Probenahmegerät zur Probenahme der Bodenproben
1 L-Braunglasfla-	Probenahmegefäß für die Bodenproben (Mikroplastik), Transport
schen	und Lagerung
Aluminiumfolio	Abdeckung der Braunglasflaschen statt des Kunststoffdeckels,
Aluminumone	Kontaminationsschutz
Probenahme-	Prohenahmehehältnis für Makronlastik-Prohen
Tüten	

Tabelle 13: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Probenahme.

Die Mikroplastik-Bodenproben wurden mit Hilfe eines Pürckhauers entnommen und unmittelbar in Braunglasflaschen gefüllt, die mit Aluminiumfolie für den Transport und die Lagerung im Kühlraum abgedeckt wurden. Vor der jeweiligen Beprobung wurde die Größe des Testfeldes abgeschätzt und ein Probenahmemuster festgelegt, nach dem anschließend die Proben gezogen wurden. Als Vergleichsmuster wurden zusätzlich Makroplastikproben, falls vorhanden, von Hand aufgelesen. Die Probenahme erfolgte nach den in Kapitel 2.5.1 erläuterten Kriterien mit Ausnahme der Beprobungstiefe. Diese wich von den für den Ackerbau und Nutzgärten üblichen 30 cm auf Empfehlung der Landwirte um 10 cm ab und betrug somit 20 cm (Bearbeitungshorizont).

Ort, Datum, Uhrzeit	Feld A, 19.06.2020, 11:00 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 4,7
	Temperatur: 19 °C
	Windrichtung: NW
	Relative Feuchte: 64 %

Formblatt: Bodenprobenahme Mikroplastik

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 2.000 m²
Standortbeschreibung	🛛 konventionell 🛛 ökologisch
aktuelle Kultur:	Grasland
Fruchtfolge/Feldhistorie:	Konventionelle Grünfläche ca. 1965 bis 1975 Apfelanbau, ca. 1975 bis 1995 intensiver Freilandgemüseanbau, ca. 1995 bis 2008 Apfelanbau, ab 2008, Erdbeeren im Wechsel mit Gründün- gung und Ackerbau.
Düngung (Menge, Inter-	🗆 Klärschlamm 🗆 Kompost 🗆 Gärreste 🗆 Kunstdünger
valle):	Grünkomposte und Klärschlamm wurden in den vergangen 30 Jahren nicht eingesetzt.
Verwendung von Agrarfo- lien (Art, Menge, Inter- valle, Entsorgung):	⊠ Ja: Mulchfolien (PE) □ Nein
Lageskizze (Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Folientunnel Feld B Geteerter Weg

2. Probenahme Mikroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🛛 Ja 🗆 Nein						
Probenahmegerät	Pürckhauer	Pürckhauer					
Kunststoffrei	🛛 Ja 🗆 Nei	in. sondern:					
Probenahmegefäße	1L-Braunglasflasc	chen, mit Alui	minium	folie at	ogede	eckt	
Anachi dan Tailfiishan							
Anzani der Telifiachen	3 (1F 1 DIS 1F 3)						
Probenanzahl je Teilflä-	5 – 8						
(15-25 Einzelproben)							
Beprobungstiefe	0 – 20 cm						
Probenahmemenge	644 g						
(Feuchtgewicht)		_					
Probenahmeart	🗆 Einzelproben	🛛 Mischı	oroben				
Probenahmemuster		₩					
(Skizze)				8		🗱 Probenahmestelle	
	TF 3		≋				
		*					
					\$		
		*					
	TF 2		\$				
				≋			
		*					
			≋	≋	≋		
	TF 1		≋	≋	⇔		
				*	≋		

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	⊠ Nein
tung		
Probenahmegerät	händisch	
Kunststoffrei	🖂 Ja	□ Nein, sondern:
Probenahmegefäße	Probenał	nmebeutel (aus Kunststoff)

3.1.2 Aufbereitung (Extraktion)

3.1.2.1. Probenvorbereitung

Die für die Probenvorbereitung verwendeten Materialien und Utensilien sind in der nach-

stehenden Tabelle aufgelistet.

Material	Herstellerangaben	Verwendungszweck
Dräzicionowoogo	PS 4500/C/2 (Genauigkeit: 0,1 g)	gravimetrische Bestimmung der Pro-
Prazisionswaage	von Radwag	benmasse
Trockonschrank		Trocknung der feldfrischen Bodenpro-
TTOCKETISCITIATIK	VOIT BINDER	ben
Matallwanna		Probenbehältnis für die Trocknung im
Wetanwanne		Trockenschrank
Sich E mm	Prüfsieb von Haver & BOECKER	Siebschnitt zur Differenzierung zwi-
Sieb 5 mm	nach Din 4188	schen Makro- und Mikroplastik
Sich 2 mm	Analysensieb von RETSCH nach	Siebschnitt für den Erhalt der Feinbo-
Sieb z min	DIN 4188 oder DIN-ISO 3310/1	denfraktion
Dipaotto		Aussortierung organischer Probenbe-
Pinzette		standteile
Teilungskreuz		Kegeln und Vierteln
Handschaufel		Kegeln und Vierteln
Braunglasflasshon		Probengefäß für die Lagerung der ver-
Diaungiasnaschen		jüngten Bodenproben (Mikroplastik)
Aluminiumfolio		Abdeckung der Braunglasflaschen,
Aluminumone		Kontaminationsschutz
Magnetrührer	RH basic 2 von IKA	Aufschlämmung
Magnetrührstab		Aufschlämmung
Becherglas		Probengefäß für die Aufschlämmung
Sich EOO um	Analysensieb von RETSCH nach	Teil der Siebkaskade für die Nasssie-
Sieb 500 µm	DIN 4188 oder DIN-ISO 3310/1	bung nach Aufschlämmung
Sich 100 um	Analysensieb von RETSCH nach	Teil der Siebkaskade für die Nasssie-
Sieb 100 µm	DIN 4188 oder DIN-ISO 3310/1	bung nach Aufschlämmung
Sich 62 um	Analysensieb von RETSCH nach	Teil der Siebkaskade für die Nasssie-
Sied 63 µm	DIN 4188 oder DIN-ISO 3310/1	bung nach Aufschlämmung

Tabelle 14: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Probenvorbereitung.

Im Anschluss an die erfolgte Probenahme wurden die Feldproben für die darauffolgende Extraktion vorbereitet. Hierzu wurden die Mischproben (MP) der einzelnen Teilflächen (TF) je Testfeld, falls vorhanden, vereint und gewogen, um das Feuchtgewicht der Feldproben zu bestimmen (vgl. Tabelle 15). Nach der Trocknung im Trockenschrank bei 80 °C für mindestens 12 Stunden bis zur Gewichtskonstanz und erneuter Wägung konnte so der Wassergehalt sowie die Trockenmasse (TM) der Bodenproben berechnet werden.

	Feld A	Feld B	Feld C	Feld D	Feld E
Feuchtgewicht in g	644	623	773	511	267
Trockenmasse in g	590	534	672	436	233
Wassergehalt in %	9	17	15	17	15

Tabelle 15: Durch Wägung ermitteltes Feucht- und Trockengewicht sowie entsprechender Wassergehalt für die Feldproben A bis E.

Wie in Kapitel 2.5.2 beschrieben, erfolgte die Aufbereitung der Feldprobe zu einer Laborprobe anhand einer Grobsortierung und Trockensiebung mit Sieben verschiedener Maschenweiten. Dabei wurde als erstes ein Sieb mit einer Maschenweite von 5 mm eingesetzt, um potentielle Makroplastikpartikel von der für die weiteren analytischen Untersuchungen relevanten Mikroplastikfraktion zu trennen. Im Anschluss wurde ein Sieb mit einer Maschenweite von 2 mm verwendet, um die für Bodenuntersuchungen übliche Feinbodenfraktion (< 2 mm) zu erhalten. Zudem wurden größere organische Bestandteile mit einer Pinzette aussortiert. Die Ergebnisse der Wägung der erhaltenen Siebschnitte sind in der folgenden Tabelle zusammengefasst:

Tabelle 16: Ergebnisse de	r Trockensiebung de	r Feldproben mit d	den Siebschnitten 5	mm und 2 mm
---------------------------	---------------------	--------------------	---------------------	-------------

m in g	Feld A	Feld B	Feld C	Feld D	Feld E	Anmerkung
> 5 mm	1,0	0,6	8,1	50,4	10,2	Makroplastik
< 5 mm	589,3	533,2	663,6	389,0	222,7	Mikroplastik
> 2 mm	5,1	1,0	5,8	125,8	54,5	Mikroplastik
< 2 mm	584,2	531,9	656,4	267,6	167,7	Mikroplastik

Wie in Tabelle 7 zuvor angegeben, erfüllen die Proben der Felder A bis C den Richtwert von mindestens 500 g der Feinbodenfraktion (< 2 mm) für eine Laborprobe. Die Probenmasse der Felder D und E fällt jeweils geringer aus.

Im nächsten Schritt wurden die Proben der Feinbodenfraktionen der einzelnen Felder durch die Methode "Kegeln und Vierteln"⁴⁸ homogenisiert und zugleich aliquotiert. Dies geschieht, indem die Probe zu einem Kegel aufgetürmt und anschließend mit Hilfe eines Teilungskreuzes in vier Viertel aufgeteilt wird. Je zwei gegenüberliegende Viertel werden vereint und zu einem neuen Kegel geformt. So reduziert sich die Probenmenge immer weiter. Dieser Vorgang, die sogenannte Verjüngung, kann beliebig oft wiederholt werden – entweder bis die gewünschte Anzahl an Teilproben oder bis die gewünschte Teilprobenmenge in Masse erreicht ist (vgl. Abbildung 11). In diesem Fall wurde auf eine Masse von je 100 g

verjüngt, sodass für die Testfelder A und B fünf, für Feld C sechs, für Feld D vier und für

Feld E zwei Teilproben und je eine Restprobe erhalten wurden.

Abbildung 11: Schematische Darstellung der Methode "Kegeln und Viertel" zur Homogenisierung und Verjüngung von Bodenproben.

Die zuvor beschriebene Probenvorbereitung bis zur Verjüngung in die Teilproben ist zusammenfassend in folgendem Probenplan abgebildet. Die Teilprobe Feld A.01 ist farblich hervorgehoben, da diese zur weiteren Methodenentwicklung verwendet wurde.

Abbildung 12: Probenplan am Bespiel von Feld A zur Probenvorbereitung der einzelnen Feldproben.

Um zu überprüfen, ob die Proben nach der Trockensiebung für die weitere Extraktion bereits ausreichend fein gekörnt sind, wurde eine Probe der Feinbodenfraktion (< 2 mm) in VE-Wasser auf einem Magnetrührer für drei Stunden aufgeschlämmt und im Anschluss über eine Siebkaskade (500 μ m – 100 μ m – 63 μ m) gegeben. Dieser Versuch ergab, dass die Aufschlämmung sehr gut für das Aufbrechen des leicht gekörnten Feinbodens geeignet ist, sodass dies in der folgenden Methodenentwicklung berücksichtigt wurde.

3.1.2.2. Versuche zur Entwicklung der Extraktionsmethode

Die für die Probenaufbereitung (Extraktion) verwendeten Materialien und Utensilien sind in der folgenden Tabelle einzusehen.

Material	Herstellerangaben	Verwendungszweck
Präzisionswaage	PS 4500/C/2 (Genauigkeit: 0,1 g) von Radwag	gravimetrische Bestimmung der Pro- benmasse
Analysenwaage	Entris von SARTORIUS	
Aluminiumfolie		Abdeckung der Braunglasflaschen, Kontaminationsschutz
Magnetrührer	RH basic 2 von IKA	Aufschlämmung
Magnetrührstab		Aufschlämmung
Becherglas		Probengefäß für die Aufschlämmung
Glastrichter		Überführungshilfe von Becherglas in Scheidetrichter
100 ml-Scheide- trichter		Gefäß zur Dichtetrennung
Büchnertrichter mit Dichtungsringen und Saugflasche		Vakuumfiltration
Vakuumpumpe	Chemie-Pumpstand PC 3004 VA- RIO SELECT von VAKUUBRAND	Vakuumfiltration
Filterpapier	Qualitativ Filterpapier 415 von VWR (Partikelretention 12- 15 µm)	Probenträger für MP-Partikel
Pasteurpipette		Benetzung des Probenfilters mit H ₂ O ₂
Petrischale		Probenbehältnis für Filterpapier
Vibrationssiebma- schine	AS 200 control von RETSCH	Klassierung des Referenz-MPs
Siebe: 1000 µm,		
500 μm, 300 μm,	Analysensieb von RETSCH nach	Teil der Siebkaskade für die Trocken-
100 μm, 63 μm,	DIN 4188 oder DIN-ISO 3310/1	siebung des Referenz-MPs
45 μm, 20 μm		
Chemiekalien:		
Natriumchlorid	Marken Jodsalz von Bad Reichen- Haller	Dichtetrennung
Natriumiodid	ACS, Reag. Ph Eur for analysis; Lot: B1459223 731 von Merck	Dichtetrennung
Natrium-Polywolf- ramat	ρ = 2,00 g/cm ³ ± 0,02; Lot: 0819 von TC-TUNGSTEN COMPOUNDS	Dichtetrennung
Wasserstoffperoxid 30 %	Lot: K52196687 005 von Merck	Oxidation

Tabelle 17: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Probenextraktion.

Für die Mikroplastik-Extraktion aus der Feinbodenfraktion von Bodenproben mit anschließender Detektion wurde der folgende Methodenentwurf entwickelt, der in Abbildung 13 schematisch dargestellt ist:

Abbildung 13: Schematische Darstellung des ersten Methodenentwurfs zur Mikroplastik-Extraktion aus Bodenproben.

Der erste Versuchsdurchgang (V01) mit dieser Methode sollte die Praktikabilität der Methode testen und einen ersten Eindruck über die Effektivität der Extraktion geben. Hierfür wurde ca. 1 g der Feinbodenfraktion der Probe A.01 eingewogen und in ca. 25 ml einer gesättigten Natriumiodid-Lösung (mit einer Dichte von ca. ρ =1,5 g/cm³) für eine Dauer von drei Stunden auf einem Magnetrührer (Stufe 2) aufgeschlämmt. Anschließend wurde die Suspension mit weiteren 25 ml Natriumiodid-Lösung in einen Scheidetrichter überführt. Nach zwanzig Stunden war die Sedimentation ausreichend (vgl. Abbildung 14) und eine deutliche Phasentrennung in Sediment und Flotat erkennbar.

Abbildung 14: Fotographische Dokumentation des Sedimentationsfortschrittes in Natriumiodid-Lösung.

Als nächster Schritt wurde erst das Sediment, dann das Flotat über einen Büchnertrichter mit Saugflasche und je einem Filterpapier vakuumfiltriert. Der Filter der Schwimmphase wurde des Weiteren mit ca. 5 ml Wasserstoffperoxid-Lösung (30 %) benetzt. Nach 18 h Reaktionszeit wurde erneut vakuumfiltriert und das Ergebnis unter dem Digitalmikroskop (siehe Kapitel 3.1.3.1) betrachtet.

$$4\Gamma + H_2O + O_2 \xrightarrow{hv} 2I_2 + 4OH^2$$
 Gleichung I

Dabei fiel auf, dass die Verfärbung des Filterpapiers, die durch die Reduktion der Natriumiodid-Lösung unter Licht- und Lufteinwirkung zu elementarem Iod hervorgerufen worden war (vgl. Reaktionsgleichung I), deutlich durch den Oxidationsschritt mittels Wasserstoffperoxid abgeschwächt worden war. Dies verbesserte die Sicht unter dem Mikroskop deutlich.

a) Versuche zur Wahl des Trennmediums:

Als nächstes wurde untersucht, welches Trennmedium für die Abtrennung der anorganischen Probenbestandteile von verschiedenen Polymerpartikeln mittels Dichteseparation am besten geeignet ist. Dafür wurden zwei Versuchsreihen mit Referenz-Mikroplastikpartikeln als Dotierungsversuche durchgeführt. Bei Versuchsreihe A wurde Mikroplastik aus PE-Mulchfolie, bei Versuchsreihe B Mikroplastik aus Polyamid (PA) eingesetzt. Kenndaten zu den beiden polymeren Materialien, die von Fraunhofer UMSICHT zur Verfügung gestellt wurden, sind in Tabelle 18 zusammengefasst.

	PE-Mulchfolie	РА
Bezeichnung	Mulchfolie 10x1,2 m schwarz	VESTAMID [®] LX9057 orange
		E20081
Hersteller/Marke	FLORASELF	VESTAMID
Farbe	schwarz	orange
Polymertyp	Polyethylen	Polyamid 12
Dichte	k. A. *	1,08 g/cm ³
Verarbeitung zu Mikroplastik	Ultrazentrifugalmühle	Krygenmühle:
	(unter wiederholter Stick-	Gotic: 6750 1/min
	stoff-Kühlung)	T(out): -20°C

Tabelle 18: Herstellerangaben sowie Details zur Mikroplastikherstellung für die Referenzpolymere.

*üblicherweise ca. 0,93 g/cm³

Die beiden Referenz-Mikroplastikproben wurden mit Hilfe einer Vibrationssiebmaschine für die weitere Verwendung klassiert. Die Siebkaskade bestand dabei aus Sieben der folgenden Maschenweiten: 1 mm/ 0,5 mm/ 0,3 mm/ 0,1 mm/ 63 μ m/ 45 μ m/ 20 μ m. Die Ergebnisse der Korngrößenverteilung sind in der nachstehenden Abbildung beispielhaft für die Polyamid-Referenzprobe dargestellt.

Abbildung 15: Korngrößenverteilung des Referenzmikroplastiks Polyamid 12 (links: Foto der erhaltenen Proben; rechts: Kreisdiagramm mit prozentualen Anteilen der einzelnen Korngrößenfraktionen).

Mit Hilfe der Versuchsreihen A und B wurde die Trennschärfe von drei verschiedenen Salzlösungen – Natriumchlorid (NaCl), Natriumiodid (NaI) und Natrium-Polywolframat (STP) – mittels Dotierung der Bodenproben geprüft. Dazu wurden jeder Bodenprobe (m = 1 g) fünf Partikel des Referenz-Polymers der Korngrößenfraktion > 0,5 mm und 10 mg der Fraktion > 63 µm beigefügt. Mit diesem Ansatz wurde die Methode wie in Abbildung 13 dargestellt durchgeführt. Die Trennschärfe der verschiedenen Trennmedien wurde auf verschiedenen Wegen bestimmt: Die **Wiederfindungsrate der fünf Partikel der Korngrößenfraktion > 0,5 mm** wurde durch Auszählen auf dem Filter der Schwimmphase bestimmt und betrug für alle Dotierungsversuche **100 %**. Beispielhaft zeigt Abbildung 16 das Ergebnis für die Dotierung mit PA 12 in Natriumiodid.

Abbildung 16: Filter der Schwimmphase des Dotierungsversuches mit PA 12 als Referenzpolymer und Nal als Trennmedium (blaue Kreise markieren die fünf Partikel > 0,5 mm).

Für die Auswertung der Fraktion > 63 μ m wurde zuerst auf jedem Filter der Sinkphase eine Zählfläche bestimmt und ausgezählt, wie viele Partikel des Referenz-Mikroplastiks hier sichtbar sind. In Abbildung 17 ist dies beispielhaft für die Versuchsreihe B dargestellt.

Abbildung 17: Zählflächen der Sediment-Filter der Versuchsreihe B (PA 12) der Trennmedien NaCl, Nal und STP (von links nach rechts) mit rosafarbenen bzw. roten Punkten zur Markierung der Polymerpartikel.

Tabelle 19 fasst die Ergebnisse der Auszählung der beiden Dotierungsreihen A und B zusammen.

Tabelle 19: Ergebnisse der Auszählung des im Sediment zurückgebliebenen Mikroplastiks der zwei Dotierungsreihen A und B mit den Referenzpolymeren PE-Mulchfolie und PA 12 in den Trennmedien NaCl, NaI und STP.

Referenz-Polymer	NaCl	Nal	STP
PE-Mulchfolie	42 Partikel	3 Partikel	2 Partikel
PA 12	112 Partikel	6 Partikel	2 Partikel

Die Auszählung ergab, dass die Trennleistung in Natriumiodid und Natrium-Polywolframat deutlich schärfer ausfiel als in Natriumchlorid (vgl. Tabelle 19). Die Trennschärfe von Nal und STP lag weiterhin mit einer Differenz von einem PE-Mulchfolienpartikel bzw. vier PA-Partikeln in der gleichen Größenordnung. Unter Berücksichtigung der Kosten für die beiden Salze (rund 220 \notin /kg für Nal ⁴⁹ und 610 \notin /kg für STP ⁵⁰) wurde sich für Natriumiodid als Trennmedium entschieden. Um auch hier die Wiederfindungsrate zu ermitteln, wurde diese auf dem Filter der Schwimmphase gravimetrisch unter Zuhilfenahme von Probenblindwerten bestimmt (siehe Tabelle 20). Der Probenblindwert stellt hier den Messwert bzw. das Messsignal einer Blindprobe dar, die sowohl alle Reagenzien (hier: NaI-Lösung und H₂O₂) als auch die Probenmatrix (hier: Boden) ohne den Analyten (hier: Referenzpolymere) enthält. Dieser wurde in Dreifachbestimmung inklusive Mittelwertbildung und der Berechnung der Standardabweichung ermittelt.

	Probenblindwert			PE	PA 12	
	1	2	3			
m (Boden) in g	1,0	1,0	1,0	1,0	1,0	m (Boden) in g
Leergewicht in g*	15,158	15,040	14,966	15,134	15,167	Leergewicht in g*
Vollgewicht in g*	15,187	15,068	14,999	15,173	15,205	Vollgewicht in g*
m (Flotat) in g	0,028	0,028	0,033	0,039	0,038	m (Flotat) in g
Mittelwert in g		0,030		0,010	0,009	m (Ref-MP) in g
Standardabwei-		+ 0 003		0.010	0.010	m (Ref-MP, ein-
chung in g		± 0,005		0,010	0,010	gesetzt) in g
				97%	86%	WFR

Tabelle 20: Ergebnisse der gravimetrischen Bestimmung der Masse der Probenblindwerte sowie der Dotierungsversuche mit PE-Mulchfolie und PA 12 und der daraus resultierenden Wiederfindungsrate (WFR).

*bezieht sich auf das Gesamtgewicht von Probenfilter und Petrischale.

Mit Hilfe des so erhaltenen Mittelwertes für den Probenblindwert aus Tabelle 20 konnte anschließend die jeweilige Wiederfindungsrate der Versuchsreihen A und B wie folgt berechnet werden: Die jeweilige Masse der Schwimmphase [m (Flotat)] wurde durch Wägung der Filter vor (Leergewicht) und nach der Versuchsdurchführung (Vollgewicht) und anschließender Differenzbildung aus Voll- und Leergewicht bestimmt. Um die Masse des jeweiligen Referenz-Mikroplastiks [m (Ref-MP)] auf dem Filter der Schwimmphase zu erhalten, wurde der zuvor berechnete Probenblindwert vom Gesamtgewicht des Flotats subtrahiert. Unter Berücksichtigung der eingesetzten Masse an Referenz-Mikroplastik [m (Ref-MP, eingesetzt)] konnte so die Wiederfindungsrate (WFR) bestimmt werden. Für die Mulchfolienpartikel aus Polyethylen betrug die Wiederfindungsrate in Natriumiodid 97 %, während sich für die Partikel aus Polyamid eine Rate von 86 % ergab. Die deutlich geringere Wiederfindungsrate von PA 12 ist durch die eingeschränkte Beständigkeit dieses Polymers gegenüber dem Oxidationsmittel Wasserstoffperoxid zu erklären (vgl. Tabelle 9).

b) Versuche zum Einsatz des Oxidationsmittels Wasserstoffperoxid:

Um zu untersuchen, unter welchen Bedingungen die Oxidation der organischen Probenbestandteile durch Wasserstoffperoxid am effektivsten ist, wurde eine weitere Versuchsreihe in Natriumiodid durchgeführt, bei der die Zeit und Temperatur als Parameter variiert wurden. Für den ersten Versuch wurde eine Einwirkungszeit von einem Tag bei Raumtemperatur, für den zweiten Versuch drei Tage ebenfalls bei Raumtemperatur und für den dritten Versuch fünf Stunden bei 50-70 °C gewählt. Die Ergebnisse sind in der folgenden Abbildung veranschaulicht:

Abbildung 18: Flotat-Filter der Versuchsreihe zur Effektivität des Oxidationsmittels (von links nach rechts: RT für 20 h, RT für 3 d, 50-70 °C für 5 h).

Wie aus Abbildung 18 ersichtlich, ist für die Oxidation der organischen Bestandteile der Bodenproben die Zufuhr von Hitze erforderlich. Bei Raumtemperatur ist nach ca. einem Tag keine augenscheinlich erkennbare Abnahme der organischen Partikel festzustellen. Nach drei Tagen Einwirkungszeit verändert sich die Farbe der Partikel von dunkelbraun zu hellbraun bis gelblich, doch erst durch Erhitzen der Probe kommt die Oxidationsreaktion in Gang und die Anzahl der organischen Bestandteile wird deutlich erkennbar reduziert.

c) Versuche zur Methodenverkürzung:

Um die die Möglichkeit zu überprüfen, die Arbeitsschritte 4 bis 6 (vgl. Abbildung 13) zusammenzufassen, wurden zwei weitere Versuche durchgeführt. Zunächst sollte überprüft werden, inwiefern sich die erwartete katalytische Wirkung von Natriumiodid auf die Disproportionierungsreaktion von Wasserstoffperoxid auswirkt. Dazu wurde die Schwimmphase nach der Vakuumfiltration des Sedimentes in einen Erlenmeyerkolben überführt. Anschließend wurde vorsichtig Wasserstoffperoxid zugegeben, was eine stark exotherme Reaktion hervorrief, die in der folgenden Reaktionsgleichung beschrieben ist:

$2 H_2O_2$	→ Nal	2 H ₂ O + O ₂	Gleichung II
$H_2O_2 + I^2$	\longrightarrow	$H_2O + IO^-$	Gleichung III.a
$H_2O_2 + IO^-$	\longrightarrow	H ₂ O + O ₂ + Γ	Gleichung III.b

Natriumiodid fungiert hier als Katalysator in der Disproportionierungsreaktion von Wasserstoffperoxid zu Wasser und elementarem Sauerstoff. Dies führt dazu, dass bei einer zu hohen Konzentration an Natriumiodid das zugeführte Wasserstoffperoxid durch die Katalyse stark verbraucht und nicht mehr für die gewünschte Oxidation der organischen Probenbestandteile zur Verfügung steht.

Um diesen negativen Effekt zu umgehen und die stark exotherme Reaktion von Natriumiodid und Wasserstoffperoxid zu verhindern bzw. abzuschwächen, wurde im nächsten Versuch auf einen Verdünnungsschritt zurückgegriffen. Bei der Verdünnung der Salzlösung, die mit einer Herabsenkung ihrer Dichte einhergeht, sollte überprüft werden, ob dies zum Verlust von Mikroplastikpartikeln durch erneute Sedimentation führt. Dazu wurden nach der Vakuumfiltration des Sediments ca. 25 ml VE-Wasser, d. h. mehr als das doppelte Volumen der verbleibenden Schwimmphase, in den Scheidetrichter zugegeben. Nach erneuter dreistündiger Sedimentation wurde erst das Sediment des Verdünnungsschrittes vakuumfiltriert und im Anschluss die Schwimmphase. Die drei Filter (Sediment, Sinkphase des Verdünnungsschrittes und Flotat) wurden unter dem Digitalmikroskop betrachtet und potentielle Mikroplastikpartikel in die Kategorien *Faser, PE-Kugel (Microbead), Fragment* und *Folie* eingeteilt. Die Ergebnisse der mikroskopischen Untersuchungen sind in der folgenden Tabelle zusammengefasst.

Filterprobe	Fasern	PE-Kugeln	Fragmente	Folien
Sediment	2	0	0	0
Verdünnung	3	4	4	0
Flotat	12	5	11	0

Tabelle 21: Ergebnisse der mikroskopischen Untersuchungen der drei Filter des Verdünnungsversuches.

Aufgrund der Tatsache, dass auf dem Filter des Verdünnungsschrittes potentielle Mikroplastikpartikel und -fasern unter dem Digitalmikroskop beobachtet wurden, wird die vorher erwartete Dichtereduktion der Salzlösung und der damit verbundene Mikroplastikverlust als bestätigt angesehen. Dies führte zur Verwerfung der Idee, die Schritte 4 bis 6 des Methodenentwurfes zusammenfassen zu können, und es wurde zum ursprünglichen Methodenentwurf (siehe Abbildung 13) zurückgekehrt.

3.1.3 Detektionsmethoden

Als letzter Teil der Methodenentwicklung wurden verschiedene Geräte und Verfahren zur Detektion der zuvor aus einer Bodenprobe extrahierten Mikroplastikpartikel untersucht. Neben der am Institut zur Verfügung stehenden Kombination aus Digitalmikroskopie und ATR-FTIR-Spektroskopie wurde sich zusätzlich mit der Fluoreszenz- sowie der Raman-Mikroskopie beschäftigt.

3.1.3.1. Digitalmikroskopie

Die Materialien und Utensilien, die für die Detektion mittels Digitalmikroskopie verwendet wurden, sind in der nachstehenden Tabelle aufgelistet.

Tabelle 22: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels Digitalmikroskopie.

Material	Herstellerangaben	Verwendungszweck
Digitalmikroskop	VHX-6000 von Keyence	Detektion von Größe, Form, Farbe und Partikelanzahl
Probenfilter		

Mit Hilfe der Digitalmikroskopie wurden die Ergebnisse der Extraktionsmethode während ihrer Entwicklungsphase, wie zuvor beschrieben, untersucht und bewertet. Neben der morphologischen Kategorisierung in *Faser, Fragment, Microbead* und *Folie*, konnten hier Parameter wie die Partikel- und Fasergröße, die Farbe und Form sowie deren Anzahl optisch bestimmt werden. Ein paar ausgewählte Beispielaufnahmen sind in Abbildung 19dargestellt.

Abbildung 19: Beispielaufnahmen mit dem Digitalmikroskop. a-e als potentielle Funde von Mikroplastik in einer Bodenprobe (a und b: Fasern, c: Fragment, d und e: Microbeads); f-i als Referenzbilder (f: PE-Mulchfolie, g: Hautschuppe, h: Baumwollfaser, i: Haar).

3.1.3.2. ATR-FTIR-Spektroskopie

In Tabelle 23 sind die für die Detektion mittels ATR-FTIR-Spektroskopie verwendeten Materialien zusammengefasst.

Tabelle 23: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels ATR-FTIR-Spektroskopie.

Material	Herstellerangaben	Verwendungszweck
ATR-FTIR-Spektro- skop	Vertex 70 von Bruker	Detektion des Polymertyps
Pinzette		Partikel- und Faser-Picking
Probenfilter		

In Ergänzung zur Digitalmikroskopie wurde das ATR-FTIR-Spektrometer (mit Golden Gate-Diamant-ATR-Einheit, Auflösung: 4 cm⁻¹, 16 Scans pro Probe) zur Bestimmung des Polymertyps von mit Hilfe des Mikroskops gefundenen potentiellen Mikroplastikpartikeln und -fasern eingesetzt. Mittels einer Pinzette können hier Partikel und Fasern auf dem Probenfilter ausgewählt und auf der ATR-Einheit des IR-Spektroskops platziert werden. Die Nachweisgrenze aus der Literatur von > 500 µm (vgl. Tabelle 11)³⁷ konnte in den durchgeführten Versuchen bestätigt werden. Partikel, die kleiner waren, konnten nicht mehr mit der Pinzette gepickt, auf die ATR-Einheit übertragen und somit nicht als Polymer verifiziert werden.

Für die Identifizierung potentieller Polymerpartikel und -fasern wurden Spektren von verschiedenen Referenzpolymere aufgenommen, um diese mit den später aufgenommenen Spektren der Proben zu vergleichen. Die Spektren der Referenzpolymere sind in Anhang 6.2 einzusehen. Nach Aufnahme der Spektren wurde mit Hilfe der Software OPUS 7.8 eine Basislinienkorrektur vorgenommen (Straight Lines, Additional concave rubberband correction with 6 iterations).

3.1.3.3. Fluoreszenzmikroskopie

Die für die Detektion mittels Fluoreszenzmikroskopie verwendeten Materialien und Chemikalien sind in der folgenden Tabelle einzusehen.

Tabelle 24: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels Fluoreszenzmikroskopie.

Material	Herstellerangaben	Verwendungszweck
Fluoreszenzmikro- skop	OLYMPUS BH2-RFCA (mit Netzteil BH2-RFL-T3, Objektiv und Filter- block BP490 und BP545)	Detektion von Kunststoffen
Pasteurpipette		Verdünnungsreihe der Nilrot-Lösung, Benetzung der Probenfilter
Messkolben 250 mL und 50 mL		Verdünnungsreihe der Nilrot-Lösung
Probenfilter		
Chemikalien:		
Nilrot	reinst, Charge: 270293182 von Carl Rотн	Fluoreszenzmarker
Methanol	≥ 99 %, zur Synthese, Charge: 073196323 von CARL ROTH	Lösungsmittel
Chloroform	≥ 99 %, zur Synthese, Charge: 080293233 von Carl Roth	Lösungsmittel

Laut der 2017 veröffentlichten Studie von Ernie-Cassola et al. ist es möglich, mit Hilfe des aus der Zellbiologie bekannten Fluoreszenzfarbstoffes Nilrot (siehe Abbildung 20) Mikroplastikpartikel in Umweltproben zu detektieren und zu quantifizieren ⁵¹. In ihrer Studie verwendeten Ernie-Cassola et al. Sedimentproben eines Sandstrandes in England. Im Rahmen dieser Forschungsarbeit sollte überprüft werden, ob sich ihre Methode auch auf Bodenproben und die darin potentiell enthaltenen Kunststoffspuren anwenden lässt.

Abbildung 20: Strukturformel des Fluoreszenzfarbstoffes Nilrot.

Dafür wurde in Anlehnung an das von Erni-Cassola et al. veröffentlichte Methodenprotokoll zunächst eine methanolische Lösung des Farbstoffes Nilrot mit einer Konzentration von 1 µg/ml hergestellt. Mit dieser Lösung wurden Partikel und Fasern der bereits zuvor für die IR-Spektroskopie verwendeten Referenzpolymere benetzt. Nach einer zehnminütigen Einwirkungszeit im Dunkeln wurden die Filter, die als Träger für Kunststoffpartikel und -fasern dienten, unter dem Fluoreszenzmikroskop betrachtet. Die Ergebnisse sind in der folgenden Abbildung zusammengefasst:

	Hellfeld	Fluoreszenz BP 490	Fluoreszenz BP 545
LDPE			
Nylon			
PA 12			
РР			
PS			
Styropor			

Abbildung 21: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen Referenz-Polymeren auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung.

Wie aus Abbildung 21 ersichtlich, konnte mit dem Filterblock BP 490 bei allen untersuchten Referenzpolymeren eine unterschiedlich stark ausgeprägte Fluoreszenz beobachtet werden, mit dem Filterblock BP 545 lediglich bei dem Referenzpolymer PA 12, das zuvor bereits für die Dotierungsversuche eingesetzt wurde. Diese Tendenzen stimmen mit den Erkenntnissen von Erni-Cassola et al. überein.

Zusätzlich zu den Referenzpolymeren wurde die Methode mit Partikeln aus Autoreifen, als Modellsubstanz für Reifenabrieb TWP (*Tire Wear Particles*), bzw. Partikeln aus Reifenund Straßenabrieb TRWP (*Tire and Road Wear Particles*) sowie schwarzer PE-Mulchfolie getestet, deren Nachweis für diese Forschungsarbeit von Bedeutung wäre. Die Betrachtung mit dem Fluoreszenzmikroskop ergab weder für die Partikel aus Reifen- bzw. Reifen-/Straßenabrieb noch für jene aus PE-Mulchfolie eine erkennbare Fluoreszenz. Diese Ergebnisse können somit als falsch negativ bezeichnet werden und sind in Abbildung 22 zusammenfassend dargestellt.

Abbildung 22: Aufnahmen mittels Fluoreszenzmikroskop von Reifen- und Straßenabrieb sowie Mulchfolie-Partikel auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung.

Um sicherzustellen, dass die Methode keine falsch positiven Ergebnisse durch fluoreszierende organische Partikel liefert, die zuvor nicht vollständig mit Hilfe des Oxidationsmittels zersetzt wurden, wurden auch diese mit dem Farbstoff behandelt und unter dem Fluoreszenzmikroskop betrachtet. Wie in Abbildung 23 zu sehen, fluoreszierte keiner der untersuchten pflanzlichen Probenbestandteile, was sich mit den Ergebnissen von Erni-Cassola et al. deckt.

Abbildung 23: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen organischen Probenbestandteilen auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung.

Aufgrund der Lösungsmittelabhängigkeit der Emissionsintensität von Nilrot, die bei polaren Lösungsmitteln tendenziell abnimmt, wurde dieselbe Versuchsreihe in Chloroform erneut getestet. Dies führte jedoch zu vergleichbaren Ergebnissen, was die Intensität der Fluoreszenz der einzelnen Partikel aus Kunststoff oder pflanzlichen Probenbestandteilen betrifft. Hinzu kommt die vergleichsweise geringere Stabilität einzelner Polymersorten ge-

genüber Chloroform als Lösungsmittel: Die Partikel aus Polystyrol bzw. expandiertem Polystyrol lösten sich in Chloroform, während sie in Methanol stabil waren. Die Ergebnisse der zweiten Versuchsreihe in Chloroform sind in Anhang 6.4 einzusehen.

Im Anschluss an die beiden Versuchsreihen in Methanol und Chloroform wurde ein Probenfilter mit Realprobe (Feld A.01) mit der methanolischen Nilrot-Lösung behandelt und unter dem Fluoreszenzmikroskop betrachtet. Eine Aufnahme eines Ausschnittes des Filters ist beispielhaft in Abbildung 24 dargestellt.

Abbildung 24: Aufnahmen mittels Fluoreszenzmikroskop eines Ausschnittes von einem Cellulose-Filter mit Probe A.01, angefärbt mit einer methanolischen Nilrot-Lösung.

Die obigen Aufnahmen zeigen einen hellen, kugelförmigen Partikel, der in grün unter dem Fluoreszenzmikroskop mit dem Filterblock BP 490 fluoresziert, mit dem Filterblock 545 dagegen keine Fluoreszenz zeigt. Die anderen dunkleren Partikel, die in dem Ausschnitt zu sehen sind, wurden nicht durch den Fluoreszenzfarbstoff Nilrot markiert.

3.1.3.4. Raman-Mikroskopie

Als eine weitere Detektionsmethode wurde die Raman-Mikroskopie zur Analyse von Bodenproben auf Mikroplastik untersucht. Die Messungen wurden extern zum einen von Björn Fischer (FISCHER GmbH), Partner im Projekt iMulch, und zum anderen von Lukas Pschyklenk (Wissenschaftlicher Mitarbeiter am Institut für Detektionstechnologien, IDT) durchgeführt. Die für die Detektion mittels Raman-Mikroskopie verwendeten Materialien sind in der folgenden Tabelle einzusehen.

Tabelle 25: Materialien und Utensilien mit entsprechendem Verwendungszweck für die Detektion mittels Raman-Mikroskopie.

Material	Herstellerangaben	Verwendungszweck
FISCHER GmbH:		
Raman-Mikroskop	alpha300 R von WITEC	Detektion des Polymertyps
Probenfilter		
IDT:		
Raman-Mikroskop	SENTERRA II von Bruker	Detektion des Polymertyps
Probenfilter		
Referenzpolymere		

Im Folgenden sind die Ergebnisse der Messungen durch Björn Fischer zusammengefasst: Es wurde eine Bodenprobe von Feld A.01 untersucht, indem zunächst eine Segmentierung der Filteroberfläche in 25 Sektoren a 15x15 mm durchgeführt wurde (vgl. Abbildung 25). Anschließend wurde Segment 4 zufällig ausgewählt und eine Partikelgrößenverteilung mittels digitaler Bildbearbeitung bestimmt. Die Ergebnisse sind in der folgenden Tabelle und Abbildung dargestellt:

Abbildung 25: Segmentierung der Filteroberfläche in 25 Segmente (15x15 mm) und Aufnahme des für die Partikelgrößenbestimmung ausgewählten Segmentes 4.

Tabelle 26: Partikelgroßenvertellung von Segment 4 mittels Raman-Wikroskop und al	gitaler Bilabearbeitund	1.

Durchmesser	15-25	25-50	50-75	75-100	100-150	150-200
in µm						
Anzahl	48	30	2	0	1	2
Durchmesser	200-400	400-600	600-1000	1000-1500	1500-2000	Summe
Durchmesser in μm	200-400	400-600	600-1000	1000-1500	1500-2000	Summe

Im Anschluss daran wurden die hier beobachteten Partikel mittels Raman-Mikroskopie auf ihre Identität hin untersucht. Messungen ergaben, dass es sich bei 45 der insgesamt 87 gefunden Partikeln um kohlenstoffhaltige Partikel handelt (vgl. Abbildung 26).

Abbildung 26: Raman-Spektrum und mikroskopische Aufnahme eines Kohlepartikels (rotes und blaues Spektrum an zwei verschiedenen Stellen auf dem Partikel gemessen).

Weiterhin konnten 34 Lignin-haltige Partikel als Pflanzenreste identifiziert werden (siehe Abbildung 27), während zwei Partikel unbekannten mineralischen Ursprungs sind (Abbildung 28).

Abbildung 27: Raman-Spektrum und mikroskopische Aufnahme eines Lignin-haltigen Partikels.

Abbildung 28: Raman-Spektrum eines mineralischen Partikels unbekannten Ursprungs.

Neben vier Cellulose-Partikeln (vgl. Abbildung 29), die vermutlich vom Filtermaterial stammen, wurden zudem zwei Partikel aus Graphen identifiziert (siehe Abbildung 30). Dementsprechend konnte keiner der in Segment 4 gefundenen 87 Partikel einem Kunststofftyp zugeordnet werden.

Abbildung 29: Raman-Spektrum eines Cellulose-Partikels.

3 Entwicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in landwirtschaftlichen Nutzflächen

Abbildung 30: Raman-Spektrum eines Partikels aus Graphen.

In Kooperation mit dem Institut für Detektionstechnologien (IDT) und der Hochschule Bonn-Rhein-Sieg wurden von Lukas Pschyklenk Raman-Messungen an den bereits zuvor eingesetzten und mit dem ATR-FTIR-Spektrometer analysierten Referenzpolymeren als Ergänzung zu den Probenmessungen von Björn Fischer durchgeführt. Die Raman-Spektren sind in Anhang 6.3 einzusehen. Die Messungen wurden mit einem 532 nm-Laser und einer 50-fachen Vergrößerung aufgenommen. Die Integrationszeit betrug dabei zehn Sekunden bei fünf Koadditionen.

3.1.3.5. Vergleich der untersuchten Detektionsmethoden

Die im Rahmen dieser Forschungsarbeit untersuchten Detektionsmethoden werden nun im Folgenden bezüglich ihrer Vor- und Nachteile, ihrer Potentiale und Grenzen gegenübergestellt. Tabelle 27 stellt diese zusammenfassend dar.

Detektionsmethode	Potentiale	Grenzen		
Digitalmikroskopie	 Optische Einteilung in Kunst- stoff vs. Nicht-Kunststoff Morphologische Kategorisie- rung in Faser, Fragment, PE- Kugel ("Microbead"), Folie Größe, Farbe, Anzahl be- stimmbar NWG: 15-20 μm 	 vergleichsweise fehleran- fällig (subjektive Einschät- zung) Messzeit: min - h Keine Bestimmung der Masse, des Polymertyps 		
ATR-FTIR-Spektroskopie	 Polymertyp von Partikeln > 500 μm durch "Picking" be- stimmbar Messzeit: min 	 NWG: 500 μm Keine Bestimmung der Masse, Größe, Farbe Messung isolierter Partikel 		
Raman-Mikroskopie	 Morphologische Kategorisie- rung in Faser, Fragment, PE- Kugel ("Microbead"), Folie Größe, Farbe, Anzahl be- stimmbar Polymertyp (durch Abscan- nen auch von kleineren Par- tikeln) NWG: 15 μm 	 Messzeit: h - d Keine zerstörungsfreie Me- thode Keine Bestimmung der Masse 		
Fluoreszenzmikroskopie	 Vergleichsweise spezifische Unterscheidung zwischen Kunststoff und Organik Morphologische Kategorisie- rung in Faser, Fragment, PE- Kugel ("Microbead"), Folie Größe, Farbe, Anzahl be- stimmbar NWG: 15-20 μm 	 Für die vorliegende Partikelzahl bzw. Filtergröße vglw. impraktikabel, da nicht automatisiert Kein Anfärben von Partikeln aus PE-Mulchfolie und Reifenabrieb Keine Bestimmung des Polymertyps Messzeit: min - h 		

Tabelle 27: Gegenüberstellung der Potentiale und Grenzen der verschiedenen getesteten Detektionsmethoden.

Die untere Nachweisgrenze ergibt sich hier aus der Porengröße der Cellulose-Filter, die bei der Extraktion verwendet wurden. Bei der ATR-FTIR-Spektroskopie konnte die untere Nachweisgrenze von 500 µm, die Braun et al. in ihrer Studie 2018 veröffentlichten ³⁷, bestätigt werden. Dies ist ein stark limitierender Faktor für diese Detektionsmethode, wenn man die Partikelgrößenverteilung, die beispielhaft für Feld A mittels digitaler Bildbearbeitung bestimmt wurde, berücksichtigt. Aus Tabelle 26 geht hervor, dass 85 der 87

Partikel, sprich 98 % der untersuchten Partikel kleiner als 500 µm sind und dementsprechend nicht mit Hilfe der ATR-FTIR-Spektroskopie auf ihren Polymertyp hin untersucht werden können. Hinzu kommt, dass nur isolierte Partikel und nicht, wie bei den anderen untersuchten Methoden, ganze Filter oder Filterausschnitte analysiert werden können. Ein großer Vorteil ist dagegen die vergleichsweise kurze Messzeit der ATR-FTIR-Spektroskopie. In Kombination mit der Digitalmikroskopie können neben dem Polymertyp auch Parameter wie die Farbe, Form, Größe und Anzahl der Partikel bestimmt werden. Lediglich die Masse der Partikel kann mit dieser Methodenkombination nicht bestimmt werden.

Mit Hilfe der Raman-Mikroskopie sind die gleichen Parameter bestimmbar bzw. nicht bestimmbar wie mit der Kombination aus Digitalmikroskopie und ATR-FTIR-Spektroskopie. Der Vorteil ist in diesem Fall, dass die Bestimmung dieser Parameter in einem Schritt ohne das "Picking" der Partikel möglich ist und somit der Polymertyp auch von Partikeln kleiner als 500 µm identifizierbar ist. Die untere Nachweisgrenze kann dementsprechend auf 15 µm herabgesetzt werden. Ein großer Nachteil der Raman-Mikroskopie ist allerdings die relativ lange Messzeit und die Tatsache, dass diese Methode durch den Laser nicht zerstörungsfrei ist und die Partikel nach der Messung demzufolge meist nicht mehr für weitere Untersuchungen zur Verfügung stehen.

Was die Fluoreszenzmikroskopie betrifft, so sind auch hier die Farbe, Form, Größe und Anzahl der Partikel bestimmbar, während die Masse, wie schon bei den zuvor genannten Methoden, nicht ermittelt werden kann. Doch im Gegensatz zur ATR-FTIR-Spektroskopie und auch Raman-Mikroskopie ist es mit der Fluoreszenzmikroskopie bislang nicht möglich, den Polymertyp zu bestimmen. Stattdessen liefert diese Detektionsmethode eine vergleichsweise spezifische Unterscheidung zwischen organischen Probenbestandteilen und Kunststoffen. Bei dem am Institut zur Verfügung stehenden Gerät handelt es sich um ein älteres Modell, dass noch keine Funktion des automatisierten Abscannens der Filter oder Filterausschnitte bereitstellt, was die Anwendung vergleichsweise impraktikabel gestaltet und zu einer längeren Messzeit führt. Hinzu kommt, dass die Fluoreszenzmarkierung mit Nilrot bislang noch nicht für Partikel aus schwarzer PE-Mulchfolie oder Reifen- und Straßenabrieb erfolgreich war.
3.1.4 Zusammenfassung der finalen Methode

Die gesamte Methode, die im Rahmen dieser Forschungsarbeit entwickelt wurde, mit den einzelnen Schritten der Probenahme, Probenvorbereitung, Extraktion und Detektion ist in dem folgenden Fließschema zusammenfassend dargestellt.

Abbildung 31: Schematische Darstellung des Workflows der finalen Methode zur Bestimmung von Makro- und Mikroplastik in Bodenproben landwirtschaftlicher Nutzflächen.

Unter Berücksichtigung der vorangegangenen Argumentation und der am Institut zur Verfügung stehenden Messgeräte (Digitalmikroskop, ATR-FTIR-Spektrometer und Fluoreszenzmikroskop) wird für die Untersuchung der fünf beprobten landwirtschaftlichen Nutzflächen die Methodenkombination aus Digitalmikroskopie und ATR-FTIR-Spektroskopie zur Detektion eingesetzt.

3.1.5 Maßnahmen zur Vermeidung von Kontaminierungen

Aufgrund der ubiquitären Präsenz von Mikroplastik in unserer Umgebung ist es bei der qualitativen sowie quantitativen Analyse von Proben auf Kunststoffemissionen von essentieller Bedeutung, die Kontamination von außen so gering wie möglich zu halten bzw. diese zu kontrollieren. Nur so ist es möglich, valide Ergebnisse insbesondere in Bezug auf die Quantität von Mikroplastikemissionen zu erzielen. Zu den Kriterien, die hierbei zu beachten sind, zählen präventive Maßnahmen, die zur Vermeidung bzw. Verringerung von Kontaminationen getroffen werden können, aber auch *Kontrollproben* zur Überprüfung der getroffenen Maßnahmen. Die präventiven Maßnahmen können des Weiteren nach potentiellen Kontaminationsquellen eingeteilt werden: die Kontamination durch die *Ausführenden*, die *Arbeitsumgebung*, die verwendeten *Chemikalien*, *Lösungen und Materialien*. Die im Rahmen dieser Forschungsarbeit durchgeführten Maßnahmen zur Vermeidung von Kontaminationen mit Mikroplastik sind im Folgenden beschrieben:

- Kontamination durch die Ausführenden: Es wurde darauf geachtet, dass die ausführenden Personen ausschließlich Laborkittel und Kleidung aus reiner Baumwolle oder Leinen tragen. Zudem wurden entweder Nitrilhandschuhe verwendet oder die Hände vor Beginn der Arbeiten gründlich gewaschen.
- Kontamination durch die Arbeitsumgebung: Alle Proben wurden mit Urgläsern oder Aluminiumfolie abgedeckt, sobald sie nicht bearbeitet bzw. in Gebrauch waren, um den Eintrag von Kunststoffpartikeln und -fasern durch atmosphärische Deposition zu verhindern.
- Kontamination durch Chemikalien, Lösungen und Materialien: Wenn möglich wurde auf die Verwendung von Materialien aus Kunststoff verzichtet und diese durch Glas oder Metallutensilien ersetzt; falls dies nicht ohne weiteres möglich

war, wurde eine Kontrollprobe untersucht, bei der das Utensil mit VE-Wasser gespült wurde und dieses filtriert und unter dem Digitalmikroskop auf potentielle Mikroplastikemissionen untersucht wurde. Alle Glas- und Metallutensilien wurden vor Verwendung mit VE-Wasser gespült.

- Untersuchung von Kontaminationskontrollproben: Zur Überprüfung der oben aufgeführten präventiven Maßnahmen wurden verschiedene sogenannte Nullproben (auch Blindproben genannt) oder Negativkontrollen mit der entwickelten Extraktionsmethode durchgeführt: mit VE-Wasser, mit Natriumiodid-Lösung (Reagenzien-Blindwert) und mit der umgebenden Raumluft. Die Ergebnisse der mikroskopischen Untersuchungen der jeweiligen Filter sind in Tabelle 28 und Abbildung 32 zusammengefasst. Als Vergleichsproben wurden Haare und Hautschuppen unter dem Digitalmikroskop betrachtet (siehe Abbildung 19). Zusätzlich wurden die Filter mit dem Fluoreszenzfarbstoff Nilrot angefärbt und dem Fluoreszenzmikroskop betrachtet. Hier konnte eine fluoreszierende Aktivität bei den vornehmlich auf dem Filter der Umgebungsluft zu findenden gelben, geraden Fasern festgestellt werden, bei den restlichen Funden nicht. Bei der späteren Untersuchung der fünf Feldproben wurden die Ergebnisse der Blindwert-Reihe berücksichtigt und die Probenergebnisse durch Subtraktion normalisiert.
- Positivkontrollen: Dotierungsversuche mit Referenzpolymeren

Filterprobe	Fasern	PE-Kugeln	Fragmente	Folien	Sonstige
VE-Wasser	1x blau	0	0	0	0
	3x blau-schwarz				
Nal-Lösung	5x schwarz	0	0	0	0
	2x blau				
	1x gelb/gerade				
Raumluft	2x blau	0	0	0	2x
	3x blau-schwarz				Hautschuppe
	17x schwarz/gerade				
	12x gelb/gerade				

3 Entwicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in landwirtschaftlichen Nutzflächen

Abbildung 32: Beispielhafte Aufnahme mit dem Digitalmikroskop von einer schwarzen, geraden und zwei gelben, geraden Fasern (links und Mitte) und einer gelben Faser unter dem Fluoreszenzmikroskop nach Anfärben mit Nilrot (rechts) auf dem Filter der Raumluft-Kontaminationskontrollprobe.

3.2 Untersuchung von fünf ausgesuchten Feldflächen

3.2.1 Beschreibung der Feldflächen und der Feldhistorie

Im Rahmen dieser Forschungsarbeit wurden fünf verschiedene Feldflächen beprobt, um diese mit der zuvor entwickelten und in Kapitel 3.1.4 beschriebenen Analysenmethode auf potentielle Mikroplastikemissionen zu untersuchen. Es standen zwei konventionell bewirtschaftete Flächen (Feld A und Feld B) und drei ökologisch bewirtschaftete Felder (Felder C, D und E) zur Verfügung. Die beiden konventionellen Testfelder werden seit dem Jahr 2008 im Wechsel für den Anbau von Erdbeeren in regelmäßiger Rotation mit Gründüngung und Ackerbau verwendet. Feld A befand sich zum Zeitpunkt der Probenahme in der Phase der Gründüngung, während auf Feld B Erdbeeren angebaut wurden. Auf beiden Feldern wurden in der Vergangenheit und werden aktuell PE-Mulchfolien eingesetzt. Die dritte Testfläche, Feld C, dient derzeit als Trennstreifen zwischen einem Hanf- und einem Haferfeld und trägt aktuell keine Frucht. Feld C wurde zuvor, wie auch die Felder D und E, ökologisch bewirtschaftet. Die Felder D und E dienen dem ökologischen Apfelanbau, wobei ersteres an einem Wirtschaftsweg gelegen ist und letzteres sich in unmittelbarer Nähe einer Hauptstraße befindet. Weitere Details zu den einzelnen Testfeldern, wie Informationen zur Bodenart, dem Bodentyp und der Feldhistorie sind in Tabelle 29 zusammengefasst.

Tost	Funk		Bodon		Aktu-	
feld	tion	Bodenart	typ	Feldhistorie	elle	Umfeld
Feld A	Grün- fläche	schluffiger Lehm (uL)	Para- braun- erde	Konventionelle Grünflä- che ca. 1965 bis 1975 Ap- felanbau, ca. 1975 bis 1995 intensiver Freiland- gemüseanbau, ca. 1995 bis 2008 Apfelanbau, ab 2008 Erdbeeren im Wech- sel mit Gründüngung und Ackerbau.	Gras	Erdbeerfelder
Feld B	Anbau- fläche	schluffiger Lehm (uL)	Para- braun- erde	Konventioneller Erdbee- ranbau mit Mulchfolie, ca. 1965 bis 1975 Apfelan- bau, ca. 1975 bis 1995 in- tensiver Freilandgemüse- anbau, ca. 1995 bis 2008 Apfelanbau, ab 2008 Erd- beeren im Wechsel mit Gründüngung und Acker- bau.	Erd- bee- ren	Grünflächen, Erdbeerfelder
Feld C	Trenn- strei- fen	lehmiger Sand (IS)	Para- braun- erde	Ökologische Anbaufläche ca. 1965 bis 1995 Apfelan- bau, ab 1995 ackerbauli- che Nutzung.	keine	Hafer- und Hanffeld
Feld D	Anbau- fläche	Lehm	Braun- erde	Apfelanbau in der letzten Generation	Äpfel	Nähe Natur- hof, Wirt- schaftsweg
Feld E	Anbau- fläche	Lehm	Braun- erde	Apfelanbau in der letzten Generation	Äpfel	Nähe Haupt- straße (B56). Zwischen Schotterplatz, Pflaster und Grünflächen.

Tabelle 29: Feldparameter zu den einzelnen Testfeldern A bis E.

Was potentielle Quellen und Eintragspfade von Mikroplastik betrifft (vgl. Tabelle 30), sind zunächst die PE-Folien zu nennen, die auf den Feldern A und B zum Einsatz kommen und während der Probenahme auch als Folienreste deutlich erkennbar waren (siehe Abbildung 33). Auf den anderen drei Testflächen wurden diese jedoch nicht eingesetzt. Zudem wurden in den letzten Jahren auf keinem der insgesamt fünf Felder Grünkomposte oder 3 Entwicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in landwirtschaftlichen Nutzflächen

Klärschlamm zur Düngung aufgebracht. Zur Aufbringung von Gärresten liegen keine Informationen vor. Auf den Apfelfeldern D und E werden Gummibänder und Netze aus Kunststoff verwendet – Bruchstücke der Netze waren deutlich als solche zu erkennen (siehe Abbildung 33). Des Weiteren kommen hier auch rotierende Kunststoffbürsten zur Unkrautentfernung zum Einsatz. Aufgrund der direkten Nähe von Feld E zur Hauptstraße, könnte es zusätzlich zu erhöhten Mikroplastikemissionen durch Reifen- und Straßenabrieb gekommen sein.

Testfeld	Mulchfo- lien	Klär- schlamm*	Kompost	Gärreste	Sonstige Ernte- kunst- stoffe	Anmerkungen
Feld A	ja, aus- schließlich PE-Folien	Grünkompc	oste und			außer Betrieb, tlw. Folienreste aus Vor- jahren und verwehte Folienreste auf dem Feld
Feld B	ja, aus- schließlich PE-Folien	Klärschlamm wurden in den vergangen 30 Jahren nicht einge-				in Betrieb, tlw. Folien- reste aus Vorjahren
Feld C	nein	setzt.				gefräster Streifen zwi- schen Hafer- und Hanffeld; in den Vor- jahren kein Einsatz von Mulchfolien
Feld D	nein	nein	nein	n. b.	Netze, Gummi- bänder	Rotierende Kunst- stoffbürsten zur Un- krautentfernung
Feld E	nein	nein	nein	n. b.	Netze, Gummi- bänder	Rotierende Kunst- stoffbürsten zur Un- krautentfernung

Tabelle 30: Feldparameter über potentielle Mikroplastik-Quellen für die einzelnen Testfelder A bis E.

3.2.2 Ergebnisse

Im Folgenden werden die Ergebnisse, die durch Anwendung der zuvor entwickelten und beschriebenen Methode (3.1.4) erzielt wurden, beschrieben.

Auf zwei der fünf beprobten Felder (Feld A und D) wurden beispielhaft für die eingesetzten Hilfsmittel aus Kunststoff (Mulchfolie und Stütznetze) Makroplastik-Fragmente aufgelesen (siehe Abbildung 33), deren Maße genommen und der Polymertyp mit Hilfe des ATR-FTIR-Spektrometers (vgl. Abbildung 34) bestimmt.

Abbildung 33: Makroplastik-Funde, links PE-Mulchfoliefragment von Feld A (5,6 x 4,2 cm); mittig Fragment eines Stütznetzes von Feld D (16,6 x 13,5 cm); rechts PE-Mulchfoliefragment in der Siebfraktion > 5 mm von Feld A (1,4 x 1,0 cm).

Das bei der Probenvorbereitung der Feldprobe A in der Siebfraktion > 5 mm gefundene Makroplastik-Fragment der eingesetzten Mulchfolie wurde ebenfalls mittels IR-Spektroskopie untersucht und mit Hilfe des aufgenommenen Referenzspektrums als Polyethylen identifiziert (vgl. Abbildung 33 und Abbildung 34). Die Wellenzahlen (englisch: wavenumber) der dem Polyethylen zuzuordnenden Signale aus den jeweiligen Spektren sind in der folgenden Tabelle zusammenfassend dargestellt:

		Wellenzah	l in cm ⁻¹	
Stütznetz	2916,9	2850,1	1471,5	717,2
Mulchfolie (groß)	2918,9	2851,1	1470,8	716,5
PE-Mulchfolie (Referenz)	2916,5	2849,5	1471,9	717,8
Mulchfolie (klein)	2915.5	2849.4	1471.1	717.3

Tabelle 31: Signale der dem PE zuzuordnenden Spektren der Makroplastik-Funde und des Vergleichsspektrums der PE-Mulchfolie.

Die restlichen Signale, die im Spektrum des großen (rot) und kleinen Mulchfolie-Fragmentes (gelb) zu sehen sind, können von an der Folie haftenden Verunreinigungen stammen.

3 Entwicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in landwirtschaftlichen Nutzflächen

Absorbance Units

Abbildung 34: IR-Spektren der drei Makroplastik-Funde (blau: Stütznetz von Feld D, rot: großes Mulchfolie-Fragment von Feld A, gelb: kleines Mulchfolie-Fragmente von Feld A) und der Referenz-Mulchfolie aus PE (von oben nach unten).

Die mittels Digitalmikroskopie als potentielles Mikroplastik gefundenen Partikel sind detailliert in Tabelle 40 (Anhang 6.5) nach ihrer Kategorisierung aufgelistet. Die Ergebnisse sind zusammenfassend in Tabelle 32 und Abbildung 35 dargestellt und bereits hinsichtlich der durchgeführten Blindproben normalisiert worden.

Tabelle 32: Gemittelte Werte von mittels Digitalmikroskopie gefundenem potentiellen Mikroplastik inkl. Standardabweichung pro g Bodenprobe für die Feld A bis E.

Feld	Fasern	Fragmente	PE-Kugeln	Folie
Α	6,7 ± 1,7	2,7 ± 1,2	1,7 ± 1,7	0,3 ± 0,5
В	5,0 ± 1,4	2,3 ± 1,9	3,7 ± 3,8	1,3 ± 1,2
С	9,0 ± 2,2	0,3 ± 0,5	3,3 ± 2,6	0,3 ± 0,5
D	6,7 ± 1,2	1,0 ± 0,8	2,3 ± 0,9	0,3 ± 0,5
E	6,3 ± 3,4	0,7 ± 0,9	5,3 ± 2,1	0,7 ± 0,9

Potentielle Mikroplastik-Funde in 1 g Bodenprobe

Abbildung 35: Verteilung der in 1 g Bodenprobe der Felder A bis E mittels Digitalmikroskopie gefundenen potentiellen Mikroplastikpartikel, sortiert nach Fasern, Fragmenten, Kugeln und Folie.

Zusätzlich wurde die jeweilige Partikelgröße mit Hilfe der Software des Digitalmikroskops bestimmt und daraus die Partikelgrößenverteilung der potentiellen Mikroplastik-Funde ermittelt. Beispielhaft ist die Partikelgrößenverteilung für Feld A pro Gramm Bodenprobe in der folgenden Abbildung und der dazugehörigen Tabelle 33 dargestellt: 3 Entwicklung und Erprobung einer Methode zur Bestimmung von Kunststoffen auf und in landwirtschaftlichen Nutzflächen

Tabelle 33: Partikelgrößenverteilung der mittels Digitalmikroskopie gefundenen Mikroplastikpartikel pro g Bodenprobe von Feld A.

	Faser	Fragment	Kugel	Folie
> 5.000 μm	0,3	0,0	0,0	0,0
5.000-1.000 μm	3,3	0,0	0,0	0,0
1.000-500 μm	1,0	0,0	0,0	0,3
500-100 μm	2,0	0,0	0,7	0,0
100-50 μm	0,0	0,7	0,3	0,0
50-10 μm	0,0	2,0	0,7	0,0
10-5 μm	0,0	0,0	0,0	0,0
5-1 μm	0,0	0,0	0,0	0,0
Σ	6,7	2,7	1,7	0,3

Partikelgrößenverteilung der potentiellen Mikroplastik-Funde von Feld A

Abbildung 36: Partikelgrößenverteilung der potentiellen Mikroplastik-Funde von Feld A pro g Bodenprobe.

Die hier beispielhaft für Feld A dargestellte Partikelgrößenverteilung zeigt, dass lediglich 44 %, sprich weniger als die Hälfte der potentiellen Mikroplastik-Partikel, die untere Nachweisgrenze der ATR-FTIR-Spektroskopie von 500 µm überschreiten. Davon sind insgesamt 93 % der Kategorie *Faser* zugeordnet. Die angegebene Größe der Fasern bezieht sich auf deren Länge, während ihr Durchmesser durchschnittlich 15 µm beträgt, was das Greifen mit der Pinzette stark erschwerte. Die wenigsten *Fragmente* überschritten die Nachweissgrenze, im Falle von Feld A war keines groß genug. Auch die gefundenen *Kugeln* (potentielle *Microbeads*) lagen unterhalb der Nachweisgrenze von 500 µm und konnten somit nicht mittels ATR-FTIR-Spektroskopie verifiziert werden. Dagegen konnten einige wenige potentielle *Folien*-Fragmente mit Hilfe des ATR-FTIR-Spektrometers untersucht und dem Polymer Polyethylen mit Hilfe des Vergleichsspektrums der Referenz-Mulchfolie zugeordnet werden. Die Ergebnisse sind in Abbildung 37 und der zugehörigen Tabelle 34 dargestellt.

Abbildung 37: IR-Spektren der drei Mikroplastik-Funde (von oben nach unten - gelb: Folie von Feld C, blau: Folie von Feld B, rot: Folie von Feld B) und der Referenz-Mulchfolie aus PE (grün/oben).

Tabelle 34: Signale der dem PE zuzuordnend	en Spektren der Mikropla	stik-Funde und des Vergle	eichsspektrums der PE-
Mulchfolie.			

		Well	enzahl in cm	-1	
PE-Mulchfolie (Referenz)	2916,5	2849,5	1471,9	717,8	-
Folie (Feld C)	2920,7	2851,4	1469,0	720,1	630,8
Folie (Feld B)	2921,9	2852,0	1472,2	720,3	630,6
Folie (Feld B)	2923,2	2853,9	1471,6	714,6	630,6

Das Signal bei der Wellenzahl 631 cm⁻¹, das bei allen drei Spektren der Mikroplastik-Funde auftritt, stammt vom Hintergrund (vgl. Abbildung 48) und ist somit vernachlässigbar.

Die Intensität der Signale hängt bei der IR-Spektroskopie von der Konzentration bzw. von der Schichtdicke, die der Lichtstrahl passiert, ab und wird durch das Lambert-Beer'sche Gesetz beschrieben:

$$E = \varepsilon \cdot c \cdot d$$
 Gleichung IV

Dabei steht E für die Extinktion oder Abschwächung des Lichtstrahls (auch Absorbanz genannt), ε für den molaren dekadischen Absorptionskoeffizienten (stoffspezifische Größe), c für die Konzentration der Probe und d für die Schichtdicke bzw. die Weglänge des Lichtstrahls durch die Probe. Dementsprechend nimmt die Intensität der Signale eines IR-Spektrums ab, je geringer die Konzentration der Probe bzw. je kürzer die Weglänge durch die Probe ist. Die vergleichsweise geringe Signalintensität bei den Messungen der Mikroplastikpartikeln könnte daher durch die Tatsache zu erklären sein, dass die gemessenen Partikel sehr klein waren und nur einen Bruchteil der Oberfläche des ATR-Kristalls bedeckten.

3.2.3 Hochrechnung von Emissionskoeffizienten für die erhaltenen Ergebnisse

Von den insgesamt drei als Polyethylen identifizierten Mikroplastikpartikeln wurden zwei Partikel auf konventionell bewirtschafteten Nutzflächen gefunden und ein Partikel auf ökologischen Nutzflächen. Um diese Ergebnisse nun als Emissionskoeffizienten (Gewicht pro Fläche, z. B. g/ha) für die gesamte landwirtschaftlich genutzte Fläche in Deutschland angeben zu können, wurden die folgenden Annahmen und Berechnungen angestellt:

Mit dem durchschnittlichen Gewicht von 0,221 mg pro Partikel der Größenklasse 1.000-500 μm (vgl. Tabelle 10), der die gefundenen Partikel zuzuordnen sind, lässt sich die Partikelanzahl in die Partikelmasse näherungsweise umrechnen.

Durch Multiplikation der Anzahl der entnommenen Proben pro Feld mit der Kreisfläche des Pürckhauers als Probenahmegerät (A = $r^2 \cdot \pi = 0,75 \text{ cm}^2 \cdot \pi = 1,8 \text{ cm}^2$) kann die insgesamt pro Testfeld beprobte Fläche berechnet werden. Summiert man anschließend die Partikelgewichte sowie die beprobten Flächen jeweils für die konventionell (Felder A und B) und die ökologisch bewirtschafteten Testfelder (Felder C bis E) auf und bildet den Quotienten daraus, erhält man das Ergebnis als ersten Emissionskoeffizienten in der Einheit g/m².

Um die so erhaltenen Koeffizienten auf ganz Deutschland hochzurechnen, benötigt man die gesamte landwirtschaftlich genutzte Fläche in Deutschland (181.652 km²) ³² sowie die Anteile, die konventionell und ökologisch bewirtschaftet werden. Laut UBA wurden im Jahr 2018 insgesamt 7,3 % der gesamten landwirtschaftlich genutzten Fläche (LNF) in Deutschland ökologisch bewirtschaftet ⁵². Dies entspricht einer Fläche von 13.261 km². Der Rest entfällt dementsprechend auf die konventionelle Landwirtschaft und beträgt somit 168.291 km². Durch Multiplikation der so ermittelten Flächenwerte mit den jeweiligen Emissionskoeffizienten kann so näherungsweise die Belastung der landwirtschaftlich genutzten Böden durch Mikroplastik aus PE-Mulchfolie bestimmt werden. Die Hochrechnungen der im Rahmen dieser Forschungsarbeit generierten Ergebnisse ergeben eine dreifach höhere Belastung der konventionell bewirtschafteten Flächen (0,76 t/km²) gegenüber den ökologischen Agrarflächen (0,26 t/km²). Bezieht man das Verhältnis von konventionellen zu ökologischen Flächen in Deutschland mit in die Berechnungen ein, lässt dies vermuten, dass mittlerweile rund 130.000 Tonnen Mikroplastik (5-0,5 mm) aus PE-

Mulchfolie (MuFo) auf den konventionell genutzten Agrarflächen in Deutschland angekommen sein könnten. Die ökologisch bewirtschafteten Nutzflächen in Deutschland wären demnach mit rund 3.500 Tonnen belastet. Die Ergebnisse der Hochrechnungen sind in der folgenden Tabelle zusammengefasst:

Tabelle 35: Parameter für die und Ergebnisse aus den Hochrechnungen der erhaltenen Mikroplastik-Funde bezogen auf die Partikelmasse.

	Feld	Partikel	Masse	Probe- nahme-	beprobte Fläche	Emiss	ionskoeff	izient	MuFo-MP auf LNF in D
		Anzahl	mg	stellen	m²	mg/m²	g/ha	t/km²	t
llən	А	0	0,000	18	0,0032				
ventic	В	2	0,442	15	0,0027				
konv	Σ	2	0,442	33	0,0059	76	7,6·10 ²	0,76	13·10 ⁴
	С	1	0,221	15	0,0027				
gisch	D	0	0,000	22	0,0039				
ökolo	Е	0	0,000	11	0,0019				
	Σ	2	0,221	48	0,0085	26	2,6·10 ²	0,26	0,35·10 ⁴

Sieht man von der Umrechnung in die Partikelmasse ab, können die Ergebnisse auch als Emissionskoeffizienten in der Form Anzahl pro Fläche angeben werden. Ebenso kann eine Angabe in der Form Anzahl pro kg Trockenmasse (TM) erfolgen, indem die Masse der verwendeten Bodenproben miteinbezogen wird. Die entsprechenden Emissionskoeffizienten sind in der folgenden Tabelle 36 einzusehen.

Tabelle 36: Ergebnisse aus den Hochrechnungen der erhaltenen Mikroplastik-Funde bezogen auf die Partikelanzahl.

	Partikelanzahl				
		*	pro kg TM	pro ha	
konventionell	Feld A	0			
	Feld B	2			
	Σ	2	333	3,4·10 ⁶	
Ökologisch	Feld C	1			
	Feld D	0			
	Feld E	0			
	Σ	1	111	1,2·10 ⁶	
Σ		3	200	2,1·10 ⁶	

* In je 3 g Bodenprobe

3.2.4 Einschätzung der Kunststoffbelastung von landwirtschaftlichen Nutzflächen

3.2.4.1 Vergleich der Ergebnisse mit anderen Studien

Bislang ist die Datenlage zu Eintragsraten und entsprechenden Emissionskoeffizienten für die Verwendung von Mulchfolien auf landwirtschaftlichen Nutzflächen noch relativ gering. Kalberer et al. führten 2019 eine Stoffstromanalyse zu Kunststoffen in der Schweizer Landwirtschaft durch und schätzen die jährlich ausgebrachte Kunststoffmenge auf insgesamt 16.000 Tonnen, wovon ca. 160 Tonnen im Boden verbleiben sollen. Dies entspricht einer Emissionsrate von rund einem Prozent. Die in ihrer Studie angegebenen Werte für die Eintragsraten basieren auf produktspezifischen und lokalen Expertenmeinungen. Kalberer et al. unterscheiden zwischen Mulchfolien aus Polyethylen und Bio-Mulchfolien und geben für beide Varianten eine Eintragsrate von 0,1 bis 1 % an. Da der Einsatz von PE-Mulchfolien allerdings fast dreimal so hoch wie der von Bio-Mulchfolien ist, fällt dementsprechend der geschätzte jährliche Emissionskoeffizient der PE-Mulchfolien deutlich höher aus als der der Bio-Variante (2.000 ± 2.000 g/(ha·a) bzw. 800 ± 700 g/(ha·a)).³⁰

Eine Erhebung der GKL von 2018 ergab für den Einsatz von Agrarfolien im Obst- und Gemüsebau in Deutschland eine Fläche von ca. 16.000 ha bzw. 40.000 ha, was rund 28 % der gesamten für den Obst- und Gemüsebau verwendeten Fläche entspricht. Laut dieser Studie emittieren Mulchfolien 0,5 bis 1,2 Tonnen Mikroplastik jährlich in den Boden, was einem Emissionskoeffizienten von 40 bis 17 g/ha/a entspricht. Laut Blanke werden aufgrund der fehlenden Datenlage "willkürlich" Eintragsraten zwischen 1-5 % geschätzt. ⁵³

Kunststoff-	verwendete	Eintragsrate in	erwarteter ab-	Emissionskoeffi-
produkt	wenge in t/a	%	soluter Eintrag	zient in g/(na·a)
Schweiz	Kalberer et al. (202	19)		
PE-Mulchfolien	300 ± 100	0,1-1 %	0,3–3 t/a	2000 ± 2000
Biomulchfolien	80 ± 30	0,1-1 %	0,08–0,8 t/a	800 ± 700
Deutschland	GKL (Blanke, 2020)		
(Mulch-)Folien	30.000 ha (0,2 % der LNF)	-	0,5-1,2 t/a	40-17
Deutschland	Ergebnisse dieser	Forschungsarbeit		
PE-Mulchfolie			133.500 t *	konventionell: 760 g/ha * ökologisch: 260 g/ha *

Tabelle 37: Vergleich der Emissionskoeffizienten verschiedener extrapolativer Studien mit den in dieser Arbeit erhaltenen Ergebnissen.

* keine jährlichen Raten, sondern hochgerechnete derzeitige Mengen

Die Ergebnisse und Hochrechnungen dieser Forschungsarbeit beruhen im Gegensatz zu den oben aufgeführten Studien von Kalberer et al. und der GKL nicht auf Erhebungen der eingesetzten Mengen an Mulchfolien, sondern stützen sich auf die experimentell ermittelten Daten über die gefundenen Mikroplastikmengen. Daher ist hier keine Angabe der Emissionskoeffizienten pro Jahr möglich, was die Vergleichbarkeit der Ergebnisse stark erschwert. Tabelle 38 stellt die Ergebnisse dreier experimenteller Studien denen dieser Forschungsarbeit gegenüber:

Tabelle 38: Vergleich der Emissionskoeffizienten verschiedener experimenteller Studien mit den in dieser Arbeit erhaltenen Ergebnissen.

Studie	Partikelanzahl/kg TM	Anmerkungen
Piehl et al. (2018, Deutschland) ²⁹	0,34±0,36	Partikelgröße von 5-1 mm un- tersucht; ATR-FTIR
Zhang und Liu (2018, China) ³⁸	18.760 (gesamt), davon ca. 750 Folien	Partikelgröße von 10-0,05mm untersucht (92 % Fasern, 4% Folien); Sezier-Mikroskop
Corradini et al. (2020, Chile) ⁵⁴	540±320	Partikel 2-0,04 mm unter- sucht; µFTIR
Ergebnisse dieser Arbeit	200±400	Partikel 5-0,5 mm untersucht; ATR-FTIR

Betrachtet man die Ergebnisse von Piehl et al., die weniger als einen Partikel pro Kilogramm Trockengewicht gefunden haben, ist zu beachten, dass die hier untersuchten Partikel eine Größe von 5 bis 1 mm hatten. Die mittels ATR-FTIR-Spektroskopie verifizierten Mikroplastik-Funde dieser Forschungsarbeit waren allesamt kleiner als 1 mm. Diesen Größenbereich deckt die Studie von Piehl et al. nicht ab. Würde man die Ergebnisse dieser Arbeit für den von Piehl et al. untersuchten Bereich angeben, lägen diese in einer vergleichbaren Größenordnung (0 Partikel/kg TM, für 5-1 mm).

Die Ergebnisse einer Untersuchung von Agrarflächen in Chile von Corradini et al. liegen in einem ähnlichen Bereich wie die hier bestimmten Ergebnisse, sind jedoch aufgrund der deutlich niedrigeren unteren Nachweisgrenze der Detektionsmethode etwas höher.

Zhang und Liu haben in ihrer Studie im Gegensatz zu den anderen hier betrachteten Studien auch Makroplastikpartikel in ihre Untersuchungen und Ergebnisse integriert (Partikelgröße von 10 bis 0,05 mm), geben aber zusätzlich an, dass 95 % ihrer Funde kleiner als 1 mm waren. Wie bei Corradini et al. (0,04 mm) liegt auch hier (0,05 mm) die untere Nachweisgrenze deutlich unterhalb der dieser Forschungsarbeit (0,5 mm), was eine Begründung für die höheren Ergebnisse sein kann. Von großer Bedeutung für die Interpretation der Ergebnisse ist die verwendete Detektionsmethode: Zhang und Liu stützen die Ergebnisse ihrer Studie auf eine rein mikroskopische Detektion der Partikel, ohne diese mit Hilfe einer spektroskopischen Nachweismethode zu verifizieren.

3.2.4.2 Vergleich der Ergebnisse zu Mikroplastik in und auf landwirtschaftlichen Nutzflächen mit anderen Umweltkompartimenten

In der folgenden Tabelle werden die Ergebnisse dieser Forschungsarbeit zur Mikroplastikbelastung von landwirtschaftlichen Böden mit der Belastung anderer Umweltkompartimente verglichen. Dabei wird sowohl auf Mikroplastik in Binnengewässern als auch in den Meeren eingegangen.

Studie	Umweltkomparti- ment	Ergebnis	Anmerkungen
Ergebnisse dieser Ar- beit	Boden (LNF)	210 Mio. P/km ² bzw. 46 kg/km ²	Partikelgröße von 5- 0,5 mm untersucht; ATR-FTIR
Mani et al. (2015, Deutschland) ⁵⁵	Binnengewässer (Oberflächenwasser)	Rheinmessstelle Rees 3,9 Mio P/km ²	Partikelgröße von 5- 0,3 mm untersucht; Stereomikroskop (0,45 % ATR-FTIR)
Faure et al. (2012, Genfer See) ⁵⁶	Binnengewässer (Oberflächenwasser)	48.146 P/km ²	Partikelgröße von 5- 0,3 mm untersucht; Stereomikroskop
Van der Wal (2015, Europäische Flüsse) ⁵⁷	Binnengewässer	Po: 6 Mio P/km ² Danube und Rhein: > 3 Mio P/km ²	Partikelgröße von 5- 0,3 mm untersucht; NIR (Stichprobe ATR- FTIR)
UBA (2019) 58	Meeresboden in der Nordsee	6,35±11,5 kg/km ²	
	Spülsaum in der Ost- see	47 Teile/100 m Strandabschnitt, da- von 69 % aus Kunst- stoff	

Tabelle 39: Vergleich der Ergebnisse dieser Studie mit anderen Umweltkompartimenten.

Die Ergebnisse der in Tabelle 39 aufgeführten Studien bestätigen die These von Horton et al. (vgl. Kapitel 2.3), dass die Kunststoffbelastung von Böden 4-23 mal höher sei als jene im Meer. ⁹ Diese besorgniserregenden Daten zeigen, dass es dringenden Handlungsbedarf gibt, um die Belastung unserer wertvollen Umwelt zu verringern, insbesondere der landwirtschaftlich genutzten Böden, die unsere Lebensgrundlage bilden.

3.2.5 Empfehlungen zur Reduzierung der Kunststoffbelastung von landwirtschaftlichen Nutzflächen

Das folgende Kapitel beschäftigt sich mit einigen möglichen Lösungsansätzen und zukunftsorientierten Ideen, um die Belastung von landwirtschaftlichen Nutzflächen zu verringern.

Zu Beginn ist die Bewusstseinsbildung der Landwirte bezüglich der Bergung und Entsorgung von PE-Mulchfolien und ihrer Mehrfachverwendung von allergrößter Wichtigkeit. Zusätzlich sollte über die Vorteile von Mulchfolien aus alternativen Materialien (bioabbaubar) informiert werden. Durch die Reduzierung oder gar Vermeidung der Düngung mit Klärschlamm kann ein erheblicher Anteil des Mikroplastikeintrages auf Agrarflächen eingespart werden. Stattdessen könnte vermehrt mit Grünschnitt gedüngt werden.

Auf der anderen Seite sind neben dem Appell an die direkten Anwender von Kunststoffprodukten in der Landwirtschaft politische und regulatorische Maßnahmen unabdingbar. So könnte die Einführung gesetzlich verpflichtender Waschmaschinenfilter und das endgültige und ausnahmslose Verbot von Microbeads in Kosmetika bereits zur Reduzierung von Mikroplastik im Klärschlamm beitragen, bevor dieser auf die Felder aufgebracht wird. Ebenso könnte die Förderung von Projekten und Initiativen wie ERDE (Erntekunststoffe Recycling Deutschland) und Böckenhoff Folien GmbH, ein Unternehmen, das sich auf die Reinigung von Kunststofffolien wie Mulchfolien spezialisiert hat, einen positiven Beitrag leisten. Eine weitere Möglichkeit wäre die Einführung von Pfand- und Rücknahmesystemen zur Förderung von Abfallvermeidung und einem geringeren Littering-Anteil.

Weiterhin bietet die Entwicklung neuer Materialien ein großes Potential zur Reduzierung der Mikroplastikemissionen. Bislang gibt es beispielsweise noch keine Mulchfolien, die zu 100 % aus nachwachsenden Rohstoffen hergestellt werden. Sie bestehen aus einer Mischung aus erdöl- und bio-basierten Materialien (Blends). Doch was wäre, wenn es in naher Zukunft bio-basierte, biologisch-abbaubare Agrarfolien gäbe?

72

Um den Eintrag von Mikroplastik in den Boden durch Littering zu minimieren, bedarf es einer aktiven Öffentlichkeitsarbeit. Das Thema Mikroplastik in der Umwelt ist zwar mittlerweile schon deutlich präsenter in der wissenschaftlichen Literatur und in den Medien als noch vor einigen Jahren, dennoch fehlt es weiterhin an überzeugenden Informationskampagnen und der Bereitstellung von kreativen Bildungswegen zur Förderung eines bewussten und vor allem wertschätzenden Umgangs mit Kunststoffprodukten und Kunststoffabfällen. Dieses Problem sieht auch Dr. Michael Blanke von der Universität Bonn (IN-RES-Gartenbauwissenschaft), der eine Verhaltensänderung seitens der Verbraucher, "die ihren Biomüll in Plastiktüten sammeln und dann diesen und ebenso Blumen mit (Plastik-) Blumentopf in der braunen Tonne entsorgen", für essentiell hält. ⁵³

4 Bewertung und Diskussion der Methode

Im Rahmen dieser Forschungsarbeit sollte eine praxisorientierte Methode entwickelt werden, um Bodenproben nach ihrer Entnahme auf dem Feld aufbereiten und hinsichtlich ihres Mikroplastikgehaltes analysieren zu können. Mit Hilfe der Methode sollten die Menge, die Partikelgröße und der Polymertyp bestimmt werden können.

Wie in Kapitel 3.1.4 (Zusammenfassung der finalen Methode) beschrieben, konnte erfolgreich eine Methodik zur Probenahme, Aufbereitung und Analyse von Bodenproben erarbeitet werden. Die Extraktionsmethode wurde bereits für zwei Polymere validiert, PA 12 und PE (Mulchfolienpartikel), mit Wiederfindungsraten von je 100 % für Partikel größer als 0,5 mm. Die Wiederfindungsrate für Partikel größer als 63 µm beträgt für die PE-Mulchfolienpartikel 97 % und jene für die PA-Partikel liegt bei 86 %. Um noch weitere Partikel mit dieser Methode sicher nachweisen zu können, sollten diese künftig ebenfalls in die Validierung miteinbezogen werden.

Wie bereits in Kapitel 3.1.3.5 erläutert, ist die Digitalmikroskopie als Detektionsmethode zwar sehr gut dafür geeignet, die Farbe, Größe, Form und Anzahl der Partikel zu bestimmen, aber auch stark von der subjektiven Einschätzung abhängig und sollte daher in jedem Fall mit einer weiteren Detektionsmethode kombiniert werden. Die in dieser Arbeit verwendete Kombination mit der ATR-FTIR-Spektroskopie ermöglicht die Bestimmung des Polymertyps einzelner Partikel. Allerdings bringt diese Detektionsmethode eine starke Limitierung der unteren Nachweisgrenze auf 500 µm mit sich. Als alternative oder ergänzende Methode wäre hier die Raman-Mikroskopie zu empfehlen, die die Nachweisgrenze auf 15 µm herabsetzt, sodass auch im feinpartikulären Bereich gemessen werden kann. Zusätzlich wurde die Fluoreszenzmikroskopie untersucht, die großes Potential als schnelle Nachweismethode von Kunststoff-Partikeln zeigt. Hier wären noch weitere Versuche mit dem Fluoreszenzfarbstoff Nilrot sinnvoll und notwendig, um etwa die Anfärbung von Mulchfolienpartikel aus Polyethylen und Partikel aus Reifenabrieb zu untersuchen. Beispielsweise könnte die Manipulation der Partikeloberfläche durch Behandlung mit bestimmten Chemikalien zur besseren Anlagerung des Farbstoffes führen. Auch andere Fluoreszenzfarbstoffe könnten für den Nachweis von Mikroplastikpartikeln in Betracht gezogen werden.

Bezüglich der Wahl des Probenahmegerätes (Pürckhauer) ist anzumerken, dass hier in Verbindung mit den spektroskopischen Detektionsmethoden keine exakte Angabe der Ergebnisse in der Form Masse pro Fläche oder Trockenmasse (g/ha bzw. g/kg TM) möglich ist. Das Gewicht der gefundenen Partikel kann zwar mit Hilfe von Näherungen wie der durchschnittlichen Partikelmasse der entsprechenden Partikelgrößenklassen abgeschätzt werden, ist aber dennoch kein exakter Messwert.

Weiterhin sollte die entwickelte Methode auf unterschiedlich bewirtschafteten, landwirtschaftlichen Nutzflächen (konventionell und ökologisch) angewandt werden, mit dem Ziel, das Ausmaß der Mikroplastik-Belastung von Böden durch PE-Mulchfolien abzuschätzen und diese mit anderen Umweltkompartimenten zu vergleichen, um eine schnellstmögliche Reduzierung des Mikroplastikeintrags in terrestrische Ökosysteme zu erreichen.

Die Methode konnte auf insgesamt fünf landwirtschaftlich genutzten Flächen angewendet werden, wovon zwei konventionell und drei ökologisch bewirtschaftet wurden. Um einen ersten Eindruck über die aktuelle Mikroplastik-Belastung von Agrarböden zu erhalten, wurden die mit Hilfe der hier entwickelten Methode erhaltenen Ergebnisse extrapoliert und als Emissionskoeffizienten in der Form Partikelanzahl pro Fläche oder Trockenmasse (Anzahl/ha bzw. Anzahl/kg TM) angegeben. Zusätzlich wurden die Ergebnisse mit der zuvor beschriebenen Näherungsmethode in der Form Masse pro Fläche oder Trockenmasse bestimmt, um eine möglichst breitgefächerte Vergleichbarkeit mit anderen Studien zu erreichen. Für eine statistisch verwertbare Hochrechnung der Ergebnisse ist der Umfang der hier untersuchten Stichprobe allerdings zu gering. Hierfür müsste die Anzahl der beprobten Felder sowie der Radius der Probenahme deutlich erhöht werden (quer durch Deutschland).

Problematisch für die Bewertung von Ergebnissen ist die aktuell nicht ausreichend harmonisierte Untersuchungsmethodik (bestehend aus Probenahme, Aufbereitung und Detektion) und der dadurch verursachte Mangel an einheitlichen Daten. Mit der in dieser Forschungsarbeit vorgeschlagenen Näherungsmethode über die Umrechnung mittels durchschnittlichem Partikelgewicht bestimmter Größenklassen können Daten miteinander verglichen werden. Hier besteht allerdings weiterhin Forschungsbedarf zur Harmonisierung der Methodik.

5 Literatur

(1) Primpke, S.; Imhof, H.; Piehl, S.; Lorenz, C.; Löder, M.; Laforsch, C.; Gerdts, G. Mikroplastik in der Umwelt, *Chem. Unserer Zeit.* **2017**, *51*, pp. 402–412.

(2) Barnes, D. K. A.; Galgani, F.; Thompson, R. C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments, *Philosophical transactions of the Royal Society of London. Series B, Biological sciences.* **2009**, *364*, pp. 1985–1998.

(3) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made, *Science advances.* **2017**, *3*, e1700782.

(4) Fuhr, L.; Buschmann, R.; Freund, J. *Plastikatlas. Daten und Fakten über eine Welt voller Kunststoff*, 4th ed., **2019**.

(5) Fischer, D.; Käppler, A.; Fischer, F.; Brandt, J.; Bittrich, L. Identifizierung von Mikroplastik in Umweltproben. Kombination von Partikelanalyse mit FTIR- und Raman- Mikroskopie, *GIT-Labor - Portal für Anwender in Wissenschaft und Industrie*.

(6) Liebmann, B. *Mikroplastik in der Umwelt. Vorkommen, Nachweis und Handlungsbedarf;* Umweltbundesamt: Wien, **2015**.

(7) Sexlinger, K.; Humer, M.; Scheffknecht, C. *Kunststoffe im Boden. Untersuchungen zu Kunststoffverunreinigungen in landwirtschaftlichen Böden Vorarlbergs;* Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg: Bregenz, Februar **2019**.

(8) Bund für Umwelt und Naturschutz Deutschland e.V. (BUND), Ed. *Mikroplastik – die unsicht- bare Gefahr*.

(9) Horton, A. A.; Walton, A.; Spurgeon, D. J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities, *The Science of the total environment.* **2017**, *586*, pp. 127–141.

(10) Rillig, M. C.; Ingraffia, R.; Souza Machado, A. A. de Microplastic Incorporation into Soil in Agroecosystems, *Frontiers in plant science*. **2017**, *8*, p. 1805.

(11) He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks, *TrAC Trends in Analytical Chemistry*. **2018**, *109*, pp. 163–172.

(12) Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G. E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, *The Science of the total environment*. **2016**, *550*, pp. 690–705.

(13) Lamont, W. J. (J.) Plastic Mulches for the Production of Vegatable Crops, *HortTechnology*. **1993**, pp. 35–39.

(14) Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost. (Klärschlammverordnung - AbfKlärV), 2017th ed.: Bonn, 27.09.2017.

(15) Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln. (Düngemittelverordnung - DüMV), 05.12.2012.

(16) Souza Machado, A. A. de; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems, *Global change biology*. **2018**, *24*, pp. 1405–1416.

(17) Emmerich, R. Coastal Cleanup Day am Peezer Bach, 2020. https://www.nabu-mittleresmecklenburg.de/projekte/natur-erlebnisraum-warnow-%C3%A4stuar/coastal-cleanup-days-ampeezer-bach/. Wednesday, August 26, 2020.

(18) Bertling, J.; Bertling, R.; Hamann, L. *Kunststoffe in der Umwelt: Mikro- und Makroplastik. Ur*sachen, Mengen, Umweltschicksale, Wirkungen, Lösungsansätze, Empfehlungen. Kurzfassung der Konsortialstudie; Fraunhofer UMSICHT: Oberhausen, Juni **2018**.

(19) Schymanski, D. Mikroplastik: die Geister, die wir riefen, *J Consum Prot Food Saf.* **2019**, *14*, pp. 1–3.

(20) Thompson, R. C.; Olsen, Y.; Mitchell, R. P.; Davis, A.; Rowland, S. J.; John, A. W. G.; McGonigle, D.; Russell, A. E. Lost at Sea: Where Is All the Plastic?, *Science*. **2004**, *304*.

(21) Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. **2009**.

(22) *Marine Litter. Technical Recommendations for the Implementation of MSFD Requirements;* Publications Office of the European Union: Luxembourg, **2011**.

(23) Browne, M. A.; Crump, P.; Niven, S. J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines woldwide: sources and sinks, *Environmental science & technology*. **2011**, *45*, pp. 9175–9179.

(24) *Guidance on Monitoring of Marine Litter in European Seas. A guidance document within the Common Implementation Strategy for the Marine Strategy Framework Directive;* Publications Office of the European Union: Luxembourg, **2013**.

(25) National Oceanic and Atmospheric Administration (NOAA) What are microplastics?,30.03.2020. https://oceanservice.noaa.gov/facts/microplastics.html. Wednesday, August 26,2020.

(26) European Chemicals Agency website Mikroplastik. https://echa.europa.eu/de/hot-topics/microplastics. Wednesday, August 26, 2020.

(27) Rillig, M. C. Microplastic in terrestrial ecosystems and the soil?, *Environmental science & technology*. **2012**, *46*, pp. 6453–6454.

(28) Chen, Y.; Liu, X.; Leng, Y.; Wang, J. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils, *Ecotoxicology and environmental safety*. **2020**, *187*, p. 109788.

(29) Piehl, S.; Leibner, A.; Löder, M. G. J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland, *Scientific reports*. **2018**, *8*, p. 17950.

(30) Kalberer, A.; Kawecki-Wenger, D.; Bucheli, T. D. Plastikströme in der Schweizer Landwirtschaft und ihr Risikopotenzial für Böden, *Agrarforschung Schweiz*. **2019**, pp. 416–423.

(31) Sieber, R.; Kawecki, D.; Nowack, B. Dynamic probabilistic material flow analysis of rubber release from tires into the environment, *Environmental pollution (Barking, Essex : 1987)*. **2020**, *258*, p. 113573.

(32) Umweltbundesamt (UBA), 27.11.2019. https://www.umweltbundesamt.de/daten/flaecheboden-land-oekosysteme/flaeche/struktur-der-flaechennutzung#die-wichtigsten-flachennutzungen. Thursday, August 20, 2020. (33) Statistisches Bundesamt (Destatis) Bevölkerungsstand, 2020. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html. Wednesday, August 26, 2020.

(34) Umweltbundesamt (UBA) Struktur der Flächennutzung, 10.01.2020. https://www.umweltbundesamt.de/daten/flaeche-boden-land-oekosysteme/flaeche/struktur-der-flaechennutzung#die-wichtigsten-flachennutzungen und https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/_inhalt.html. Wednesday, August 26, 2020.

(35) Belke, C.; Kuhlmann, J.; Schreckenberg, D. *Status Quo, Handlungspotentiale, Instrumente und Maßnahmen zur Reduzierung des Litterings:* Dessau-Roßlau, **2020**.

(36) Statista Verbrauch von Düngemitteln in der Landwirtschaft in Deutschland nach Nährstoffarten in den Jahren 1990 bis 2017. https://de.statista.com/statistik/daten/studie/161842/umfrage/verbrauch-ausgewaehlter-duenger-in-der-landwirtschaft-in-deutschland/. Wednesday, August 26, 2020.

(37) Braun, U.; Jekel, M.; Gerdts, G.; Ivleva, N.; Reiber, J. Diskussionspapier Mikroplastik-Analytik. Probenahme, Probenaufbereitung und Detektionsverfahren. **2018**.

(38) Zhang, G. S.; Liu, Y. F. The distribution of microplastics in soil aggregate fractions in south-western China, *The Science of the total environment.* **2018**, *642*, pp. 12–20.

(39) DIN EN 13432:2000-12, Verpackung_- Anforderungen an die Verwertung von Verpackungen durch Kompostierung und biologischen Abbau_- Prüfschema und Bewertungskriterien für die Einstufung von Verpackungen; Deutsche Fassung EN_13432:2000; Beuth Verlag GmbH: Berlin, **2000**.

(40) Brodhagen, M.; Goldberger, J. R.; Hayes, D. G.; Inglis, D. A.; Marsh, T. L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils, *Environmental Science & Policy*. **2017**, *69*, pp. 81–84.

(41) Hartmann Brockhaus Mulchfolie biologisch abbaubar weiß-schwarz. https://www.hartmann-brockhaus.de/detail/Mulchfolie-biologisch-abbaubar-weiss-schwarz. Sunday, November 8, 2020.

(42) Hartmann Brockhaus PE Mulchfolie 20 my. https://www.hartmann-brockhaus.de/detail/PE-Mulchfolie-20-my. Sunday, November 8, 2020.

(43) Heller, B.; Starke, V.; Straeter, C.; Kell, K.; Henning, V. *Biologisch abbaubare Werkstoffe und nachwachsende Rohstoffe. Informationen und Verwendungshinweise:* Hannover, Freising, **2008**.

(44) Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources, *The Science of the total environment*. **2018**, *612*, pp. 422–435.

(45) Abts, G., Ed. *Kunststoff-Wissen für Einsteiger*, 3rd ed.; Carl Hanser Fachbuchverlag: s.l., **2016**.

(46) Herbort, A. F.; Sturm, M. T.; Hiller, C.; Schuhen, K. Mikroplastik in der Gewässeranalytik. Ist eine komplizierte Einzelstoffdetektion notwendig?, *GIT-Labor - Portal für Anwender in Wissenschaft und Industrie*.

(47) Tagg, A. S.; Harrison, J. P.; Ju-Nam, Y.; Sapp, M.; Bradley, E. L.; Sinclair, C. J.; Ojeda, J. J. Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater, *Chemical communications (Cambridge, England).* **2016**, *53*, pp. 372–375.

(48) Barrenstein, A.; Bartels, U.; Böhlefeld, T.; Conrady-Pigorsch, R.; May, R.; Müller, I.; Raudschas, M.; Schäfer, K. *Vorbereitung von Feststoffproben für chemische Untersuchungen:* Essen, **2006**.

(49) Carl Roth GmbH + Co. KG Natriumjodid, 1 kg. https://www.carlroth.com/at/de/von-a-bisz/natriumjodid/p/8783.2. Sunday, November 8, 2020.

(50) Carl Roth GmbH + Co. KG Natriumpolywolframat Hydrat, 1 kg.

https://www.carlroth.com/at/de/dichtebestimmung/natriumpolywolframat-hydrat/p/8828.3. Sunday, November 8, 2020.

(51) Erni-Cassola, G.; Gibson, M. I.; Thompson, R. C.; Christie-Oleza, J. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 mm to 20 μm) in Environmental Samples, *Environmental science & technology*. **2017**, *51*, pp. 13641–13648.

(52) Umweltbundesamt (UBA) Ökologischer Landbau, 19.10.2020. https://www.umweltbundesamt.de/daten/land-forstwirtschaft/oekologischer-landbau. Sunday, November 8, 2020.

(53) Blanke, M. GKL Tagung zur Bestandesaufnahme von Mikro- und Makroplastik im Gartenbau, *Erwerbs-Obstbau.* **2020**.

(54) Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale, *The Science of the total environment*. **2020**, *752*, p. 141917.

(55) Heß, M.; Diehl, P.; Mayer, J.; Rahm, H.; Reifenhäuser, W.; Stark, J.; Schwaiger, J. *Mikroplastik in Binnengewässern Süd- und Westdeutschlands. Bundesländerübergreifende Untersuchungen in Baden-Württemberg, Bayern, Hessen, Nordrhein-Westfalen und Rheinland-Pfalz:* Karlsruhe, Augsburg, Wiesbaden, Recklinghausen, Mainz, **2018**.

(56) Faure, F.; Corbaz, M.; Baecher, H.; Alencastro, L. F. de Pollution dur to plastics and microplastics in Lake Geneca and in the Mediterranean Sea, *Archives des Sciences*. **2012**, pp. 157–164.

(57) van der Wal, M.; van der Meulen, Myra, Tweehuijsen, Gijsbert; Peterlin, M.; Palatinus, A.; Kovac Virsek, M.; Coscia, L.; Krzan, A. SFRA0025: Identification and Assessment of Riverine Input of (Marine) Litter. **2015**.

(58) Kunststoffe in der Umwelt; Umweltbundesamt (UBA): Dessau-Roßlau, 2019.

6 Anhang

6.1 Probenahme-Protokolle der Testfelder A bis E

Formblatt: Bodenprobenahme Mikroplastik – Feld A

Ort, Datum, Uhrzeit	Feld A, 19.06.2020, 11:00 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 4,7
	Temperatur: 19 °C
	Windrichtung: NW
	Relative Feuchte: 64 %

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 2.000 m²
Standortbeschreibung	🛛 konventionell 🗌 ökologisch
aktuelle Kultur:	Grasland
Fruchtfolge/Feldhistorie:	ca. 1965 bis 1975 Apfelanbau, ca. 1975 bis 1995 intensiver Frei- landgemüseanbau, ca. 1995 bis 2008 Apfelanbau, ab 2008, Erd- beeren im Wechsel mit Gründüngung und Ackerbau.
Düngung (Menge, Inter-	🗆 Klärschlamm 🗆 Kompost 🗆 Gärreste 🗆 Kunstdünger
valle):	Grünkomposte, Gärreste, Klärschlamm wurden in den vergangen 30 Jahren nicht eingesetzt.
Verwendung von Agrarfo-	
lien (Art, Menge, Inter- valle, Entsorgung):	🖾 Ja: Mulchfolien (PE) 🛛 Nein
Lageskizze	Feld R Feld A
(Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Folientunnel Geteerter Weg

2. Probenahme Mikroplastik:

Probenahme nach Boden- kundlicher Kartieranlei- tung	🛛 Ja 🗌 Nei	n				
Probenahmegerät	Pürckhauer					
Kunststoffrei	🖂 Ja 🗌 Nei	n, sondern:				
Probenahmegefäße	1L-Braunglasflasc	hen, mit Alu	minium	folie ab	gede	eckt
Anzahl der Teilflächen	3 (TF 1 bis TF 3)					
Probenanzahl je Teilflä- che	5 – 8					
(15-25 Einzelproben)	0 20 em					
Beprobungstiefe	0 – 20 cm					
Probenahmemenge	644 g					
(Feuchtgewicht)						
Probenahmeart	🗆 Einzelproben	🛛 Misch	proben			
Probenahmemuster		*				
(Skizzo)				8		🗱 Probenahmestelle
(381220)	те р		~			
	IFS		~			
		≍				
					\$	
					≋	
		**				
	TF 2		≋			
				\$		
		*				
			≋	≋	≋	
	TF 1		≋	≋	≋	
				\$	\$	

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	⊠ Nein
tung		
Probenahmegerät	händisch	
Kunststoffrei	🖂 Ja	□ Nein, sondern:
Probenahmegefäße	Probenał	nmebeutel (aus Kunststoff)

Ort, Datum, Uhrzeit	Feld B, 19.06.2020, 13:00 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 5,3
	Temperatur: 21 °C
	Windrichtung: NW
	Relative Feuchte: 64 %

Formblatt: Bodenprobenahme Mikroplastik – Feld B

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 500 m²
Standortbeschreibung	🛛 konventionell 🛛 ökologisch
aktuelle Kultur:	Erdbeeren
Fruchtfolge/Feldhistorie:	ca. 1965 bis 1975 Apfelanbau, ca. 1975 bis 1995 intensiver Frei- landgemüseanbau, ca. 1995 bis 2008 Apfelanbau, ab 2008 Erd- beeren im Wechsel mit Gründüngung und Ackerbau.
Düngung (Menge, Inter- valle):	□ Klärschlamm □ Kompost □ Gärreste □ Kunstdünger Grünkomposte, Gärreste, Klärschlamm wurden in den vergangen 30 Jahren nicht eingesetzt.
Verwendung von Agrarfo- lien (Art, Menge, Inter- valle, Entsorgung):	⊠ Ja: Mulchfolien (PE) □ Nein
Lageskizze	Feld B Feld A
(Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Folientunnel Geteerter Weg

Probenahme nach Boden-	
kundlicher Kartieranlei-	🖾 Ja 🗀 Nein
tung	
Probenahmegerät	Pürckhauer
Kunststoffrei	🖾 Ja 🗌 Nein, sondern:
Probenahmegefäße	1L-Braunglasflaschen, mit Aluminiumfolie abgedeckt
Anzahl der Teilflächen	2 (TF 1 bis TF 2)
Probenanzahl je Teilflä- che	7 – 8
(15-25 Einzelproben)	
Beprobungstiefe	0 – 20 cm
Probenahmemenge (Feuchtgewicht)	623 g
Probenahmeart	🗆 Einzelproben 🛛 Mischproben
Probenahmemuster	🗱 Probenahmestelle
(Skizze)	
	1 A 2 B 3 C 4 D 5 E 6 F 7 G 8
	TE 1 \cdot 1 – 8 und TE 2 \cdot A – G

2. Probenahme Mikroplastik:

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	□ Nein
tung		
Probenahmegerät		
Kunststoffrei	🗆 Ja	□ Nein, sondern:
Probenahmegefäße		

Ort, Datum, Uhrzeit	Feld C, 19.06.2020, 13:30 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 5,3
	Temperatur: 21 °C
	Windrichtung: NW
	Relative Feuchte: 64 %

Formblatt: Bodenprobenahme Mikroplastik – Feld C

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 180 m²
Standortbeschreibung	🗆 konventionell 🛛 🖄 ökologisch
aktuelle Kultur:	keine, Frässtreifen zwischen Hanf und Hafer
Fruchtfolge/Feldhistorie:	Ökologische Anbaufläche ca. 1965 bis 1995 Apfelanbau, ab 1995 ackerbauliche Nutzung.
Düngung (Menge, Inter- valle): Verwendung von Agrarfo- lien (Art, Menge, Inter- valle, Entsorgung):	 Klärschlamm Kompost Gärreste Kunstdünger Grünkomposte, Gärreste, Klärschlamm wurden in den vergangen Jahren nicht eingesetzt. Ja Nein
Lageskizze (Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Hafer Erde e Feld C Hanf

2.	Pro	bena	hme	Mikr	oplas	stik:
----	-----	------	-----	------	-------	-------

Probenahme nach Boden- kundlicher Kartieranlei- tung	🛛 Ja	🗆 Nei	n						
Probenahmegerät	Pürckhauer								
Kunststoffrei	🖂 Ja	🗆 Nei	n, sonde	rn:					
Probenahmegefäße	1L-Brau	nglasflasc	hen, mit	Alum	iniumfo	lie abge	deckt		
Anzahl der Teilflächen	keine								
Probenanzahl je Teilflä- che	15								
(15-25 Einzelproben)									
Beprobungstiefe	0 – 20 cr	n							
Probenahmemenge	723 g								
(Feuchtgewicht)	🗌 Einzo	Inrohen		ischnr	ohon				
Probenahmamustar		ihioneii		iscripi	oben				
(Skizze)							X Prober	hanmestelle	
		≋	*		*		₿	*	
	≋		≋	≋	≈	×	\$		
	8	≋				≋		⇔	⇔

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	
tung		
Probenahmegerät	händisch	
Kunststoffrei	🗆 Ja	\Box Nein, sondern:
Probenahmegefäße		

Ort, Datum, Uhrzeit	Feld D, 19.06.2020, 15:00 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 6,1
	Temperatur: 22 °C
	Windrichtung: WNW
	Relative Feuchte: 52 %

Formblatt: Bodenprobenahme Mikroplastik – Feld D

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 67.500 m ²
Standortbeschreibung	□ konventionell ⊠ ökologisch
aktuelle Kultur:	Äpfel
Fruchtfolge/Feldhistorie:	Apfelanbau in den letzten Generationen
Düngung (Menge, Inter- valle):	🗆 Klärschlamm 🗆 Kompost 🗆 Gärreste 🗆 Kunstdünger
Verwendung von Agrarfo- lien (Art, Menge, Inter- valle, Entsorgung):	🗆 Ja 🛛 Nein
Lageskizze	
(Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Feld D Geteerter Weg

2. Probenahme Mikroplastik:

🗆 Ja 🗆 Nein
Pürckhauer
⊠ Ja □ Nein, sondern:
1L-Braunglasflaschen, mit Aluminiumfolie abgedeckt
keine
22
0 – 20 cm
511 g
🗆 Einzelproben 🛛 Mischproben
randomisiert

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	□ Nein
tung		
Probenahmegerät	händisch	
Kunststoffrei	🛛 Ja	□ Nein, sondern:
Probenahmegefäße	Probenał	nmebeutel (Kunststoff)

Ort, Datum, Uhrzeit	Feld E, 19.06.2020, 15:00 Uhr
Mitarbeiter	Hannah Brenner, Ralf Bertling
Witterungsbedingungen	Wetter: sonnig bis leicht bewölkt, UV-Index 6,1
	Temperatur: 22 °C
	Windrichtung: WNW
	Relative Feuchte: 52 %

Formblatt: Bodenprobenahme Mikroplastik – Feld E

1. Standortdaten:

Betrieb: Name/Adresse	anonym
Größe des Testfeldes	ca. 55.000 m ²
Standortbeschreibung	🗆 konventionell 🛛 🖾 ökologisch
aktuelle Kultur:	Äpfel
Fruchtfolge/Feldhistorie:	Apfelanbau in den letzten Generationen
	🗆 Klärschlamm 🗆 Kompost 🗆 Gärreste 🗆 Kunstdünger
Düngung (Menge, Inter- valle): Verwendung von Agrarfo- lien (Art, Menge, Inter- valle, Entsorgung):	□ Ja 🛛 Nein
Lageskizze	
(Angrenzende Flächen/ Straßen, Ränder, evtl. Be- wässerungssysteme)	Hauptstraße
	Wiese/Felder

2. Probenahme Mikroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja 🗆 Nein
tung Probenahmegerät	Pürckhauer
ribbenannegerat	
Kunststoffrei	🛛 Ja 🗌 Nein, sondern:
Probenahmegefäße	1L-Braunglasflaschen, mit Aluminiumfolie abgedeckt
Anzahl der Teilflächen	keine
Probenanzahl je Teilflä- che	11
(15-25 Einzelproben)	
Beprobungstiefe	0 – 20 cm
Probenahmemenge	267 g
(Feuchtgewicht)	
Probenahmeart	🗆 Einzelproben 🛛 Mischproben
Probenahmemuster	randomisiert
(Skizze)	

3. Probenahme Makroplastik:

Probenahme nach Boden- kundlicher Kartieranlei-	🗆 Ja	□ Nein
tung		
Probenahmegerät	händisch	
Kunststoffrei	🗆 Ja	\Box Nein, sondern:
Probenahmegefäße		

6.2 IR-Spektren der Referenzpolymere

Abbildung 40: IR-Spektren der Referenzpolymere PE-Mulchfolie (grün/oben) und LDPE (blau/unten).

Abbildung 41: IR-Spektrum von Referenzpolymer PP.

Abbildung 42: IR-Spektrum von Referenzpolymer PET (CumaPet).

Abbildung 43: IR-Spektren der Referenzpolymere PS (orange/oben) und EPS (Styropor; grün/unten).

Abbildung 44: IR-Spektrum von Referenzpolymer PVC Hart (64 scans).

Abbildung 45: IR-Spektren der Referenzpolymere PA 12 (grün/oben) und PA 66 (pink/unten).

Abbildung 46: IR-Spektren der Referenzmaterialien TWP (oben/pink) und TRWP (braun/unten).

Abbildung 47: IR-Spektrum von Referenzpolymer PLA.

Abbildung 48: IR-Spektrum von organischen Probenbestandteilen von Feld A.

Abbildung 48: IR-Spektrum der Hintergrundmessung.

Organik	PE-MuFo	LDPE	PP	PET	PS	PVC	PA 12	PA 66
3365,3	2916,5	2915,5	2955,0	2968,6	3084,0	2921,2	3390,1	3295,7
1635,6	2849,5	2849,4	2915,6	2917,8	3061,3	2852,3	3300,5	2931,5
985,5	1471,9	1471,1	2876,2	2851,6	3026,8	1710,8	3231,0	2858,3
776,4	717,8	717,3	2839,4	1713,7	2922,2	1426,2	3080,2	1631,2
694,2			1456,0	1409,0	2851,5	1358,4	2919,8	1533,9
			1377,1	1340,1	1602,2	1330,4	2851,2	1473,0
			1161,5	1242,8	1493,3	1252,8	1781,3	1463,5
			998,2	1118,0	1452,3	1221,7	1740,1	1436,4
			973,8	1096,1	1373,7	965,0	1718,2	1416,5
			899,3	1044,7	1181,8	698 <i>,</i> 4	1637,1	1370,3
			841,7	1018,1	1155,4	633,8	1557,6	1273,5
			809,9	971,7	1069,8	611,6	1535,8	1198,8
				872,0	1028,9		1508,4	1179,7
				846,9	966,1		1489,6	1141,1
				721,7	906,6		1465,5	935,1
					841,6		1448,4	685,1
					753,6		1419,9	578,7
					695,2		1087	
							921,4	
							767,7	
							720,4	
							595,0	
							567,0	

Tabelle 40: Wellenzahlen in cm ⁻¹ der Signale der gemessenen IR-Spektren der Referenzmaterialien (Teil	1).
---	---	----

Tabelle 41: Wellenzahlen in cm⁻¹ der Signale der gemessenen IR-Spektren der Referenzmaterialien (Teil 2).

TRWP	Reifen	PLA	Hintergrund
3383,4	3675,7	2996,2	2973,8
2919,1	2957,2	2946,2	2926,8
2850,5	2916,6	1746,9	2360,2
1652,3	2848,7	1452,5	2341,8
1409,6	1595,6	1381,8	1090,4
1375,9	1472,1	1360,4	1048,5
987,0	1462,3	1181,1	779,2
960,4	1259,3	1128,1	630,5
870,1	1089,7	1080,9	
	1006,3	1043,6	
	795,4	868,8	
	667,1	755,3	

Abbildung 49: Raman-Spektrum von Referenzpolymer PE-Mulchfolie.

Abbildung 50: Raman-Spektrum von Referenzpolymer LDPE.

Abbildung 51: Raman-Spektrum von Referenzpolymer PP.

Abbildung 52: Raman-Spektrum von Referenzpolymer kristallines PET.

Abbildung 53: Raman-Spektrum von Referenzpolymer PS.

Abbildung 54: Raman-Spektrum von Referenzpolymer Styropor.

Abbildung 55: Raman-Spektrum von Referenzpolymer Reifen.

Abbildung 56: Raman-Spektrum von Referenzpolymer TRWP.

	Hellfeld	Fluoreszenz BP 490	Fluoreszenz BP 545
LDPE			
Nylon			
đđ			
PE-MuFo			
Reifen		t	R.
Organik			

6.4 Aufnahmen der Versuchsreihe in Chloroform mittels Fluoreszenzmikroskopie

Abbildung 57: Aufnahmen mittels Fluoreszenzmikroskop von verschiedenen Referenz-Polymeren, Reifenpartikeln sowie Partikeln aus schwarzer PE-Mulchfolie und organischen Probenbestandteilen auf Cellulose-Filtern, angefärbt mit einer methanolischen Nilrot-Lösung.

6.5 Partikelgrößenverteilung

	Größenklasse	Faser	Fragment	Kugel	Folie
Feld A	> 5.000 μm	1	0	0	0
	5.000-1.000 μm	10	0	0	0
	1.000-500 μm	3	0	0	1
	500-100 μm	6	0	2	0
	100-50 μm	0	2	1	0
	50-10 μm	0	6	2	0
	10-5 μm	0	0	0	0
	5-1 μm	0	0	0	0
	> 5.000 μm	0	0	0	0
	5.000-1.000 μm	3	1	0	0
	1.000-500 μm	5	0	0	2
Eold B	500-100 μm	7	0	2	2
	100-50 μm	0	0	4	0
	50-10 μm	0	6	7	0
	10-5 μm	0	0	0	0
	5-1 μm	0	0	0	0
	> 5.000 μm	0	0	0	0
	5.000-1.000 μm	13	0	0	0
	1.000-500 μm	10	0	0	0
Fold C	500-100 μm	4	0	8	0
reiu c	100-50 μm	0	0	4	0
	50-10 μm	0	1	2	0
	10-5 μm	0	0	0	0
	5-1 μm	0	0	0	0
	> 5.000 μm	0	0	0	0
	5.000-1.000 μm	9	0	0	0
	1.000-500 μm	10	0	0	0
Fold D	500-100 μm	1	0	5	1
	100-50 μm	0	2	4	0
	50-10 μm	0	1	1	0
	10-5 μm	0	0	0	0
	5-1 µm	0	0	0	0
	> 5.000 μm	0	0	0	0
	5.000-1.000 μm	9	0	0	0
	1.000-500 μm	5	0	0	0
	500-100 μm	4	0	10	3
Feld E	100-50 μm	0	1	12	0
	50-10 μm	0	1	1	0
	10-5 μm	0	0	0	0
	5-1 µm	0	0	0	0
	Σ	100	21	65	9

Tabelle 42: Ergebnisse zur Partikelgrößenverteilung für die Felder A bis E (in je 3x1 g Bodenprobe), sortiert nach den Kategorien Faser, Fragment, Kugel und Folie (gemäß der Größenklassifizierung nach Braun et al. ³⁷).