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ABSTRACT  

Thermo-optical simulation is an important extension of classical ray-tracing because many applications, especially in 
laser technology, have to deal with thermal effects. This paper discusses an approach for modeling thermally induced 
surface deformations of rotational symmetric optical systems: the discrete deformation data generated by Finite Element 
Analysis (FEA) are approximated using a global even polynomial which is then transferred to the ray-tracing. The 
implemented algorithm is validated by comparing approximated data to an analytic deformation function. Finally, the 
benefit of modeling the temperature dependent refractive index and the thermal deformation is demonstrated using the 
example of a plastic lens.  

Keywords: Thermal deformation, optical surface deformation, finite element analysis, ray-tracing, thermal lensing, 
opto-mechanical analysis  
 

1. INTRODUCTION  

Thermal lensing in optical systems for laser beam guiding and shaping can lead to a significant focal shift and a 
degradation of the focal intensity distribution. Especially when utilizing multi-kW lasers with high brilliance, thermal 
effects have to be taken into account to achieve a stable process. Moreover, the imaging quality of coaxial process 
monitoring might be diminished by thermally induced aberrations [1]. For plastic optics, thermal effects already occur at 
low power because compared to optical glasses, the absorption coefficient and thermal expansion are high.  

Absorption of laser energy by the bulk material and the coating leads to an inhomogeneous heating of the optical 
components and causes a locally varying refractive index. In addition, surface deformations and thickness variations due 
to thermal expansion influence the optical behavior. In order to compensate these thermo-optical effects, a precise 
modeling is required. Since commercially available ray-tracing software such as ZEMAX® [2] cannot handle 
inhomogeneous temperature variations, it is reasonable to combine the advantages of Finite Element Analysis (FEA) and 
ray-tracing.  

Different approaches for coupling FEA and ray-tracing have been realized over the last years [3–6]. At our Chair, an 
interface between FEA and ZEMAX® has been developed which enables a precise modeling of the temperature 
dependent refractive index profile, even at high field angles, and the optimization of thermally aberrated systems [7–9]. 
The discrete temperature data from FEA are approximated using an adaptive weighted least squares method.  

To take full advantage of this coupling, we extended it in order to model the thermally induced surface deformation and 
change in thickness of optical elements. In contrast to other approaches that utilize Zernike polynomials to model the 
surface deformation [4,10–12], we use a global even polynomial. It has been shown that for optical systems featuring 
rotational symmetry, the approximation of a global polynomial is fast and accurate. Section 2 discusses the pre-
processing of FEA data, the approximation, and the implementation into the optical ray-tracing. In section 3, the 
presented algorithm is verified and finally applied onto an example in section 4.  

2. MODELING OF THERMAL DEFORMATION 

Ray-tracing in Zemax® requires that each optical surface is defined as a sag. The sag is the distance of the optical 
surface from its vertex measured parallel to the optical axis. Furthermore, the surface sag has to be a continuously 
differentiable function since the surface normals are needed to compute the refraction. But the FEA usually provides 
only discrete deformation data for the nodes, either in Cartesian or cylindrical coordinates. Thus, three steps are 



 
 

 

 

necessary to transfer the thermal deformation to Zemax®. Firstly, in a pre-processing step, the deformation data from the 
FEA are mapped onto the optical axis to receive the effective axial deformation, in the following called deformation sag. 
Secondly, the discrete deformation data are approximated into a continuously differentiable function. Finally, this 
function is added as an additional sag to the original surface sag in Zemax® via a user defined surface. These steps are 
described in more detail in the following paragraphs (2.2–2.4).  

2.1 Example for axial and radial deformation 

Lenses do not only expand in axial direction when they heat up but also in radial direction. For curved surfaces, the 
contribution of radial deformation is normally not negligible. The thermal deformation of a common biconvex lens made 
of N-BK7 serves as an example. In the simulation, the curvature radii are assumed to be ±50 mm and the diameter 
25.4 mm. The beam features a top-hat shape and a diameter half as large as the lens diameter. Further parameters can be 
found in table 1. The temperature at the lens edge is fixed to 22°C. It is assumed that the lens is clamped at its edge so 
that it cannot expand in radial direction. The FEA in Ansys® [13] predicts a temperature increase up to 74°C at 500 W 
optical power which leads to a maximal axial deformation of 163 µm while the maximal radial deformation is 111 µm 
(cf. figure 1). The ratio of radial and axial deformation depends on the geometrical shape of the lens, the beam profile, 
the clamping, the cooling conditions, and other parameters. However, a precise optical modeling requires taking into 
account the radial deformation.  

Table 1. Material parameters for N-BK7 [14] and lens parameters used in the FEA.  

Parameters for N-BK7 Value Lens parameters Value 

Thermal conductivity [W/m·K] 1.114 Diameter [mm] 25.4 
Thermal expansion coefficient [1/K] 8.3·10−6 Curvature radii [mm] +50 / −50 
Absorption coefficient [%/cm] 0.12 Center thickness [mm] 5.0 
  Optical input power [W] 500 
  Edge temperature [°C] 22 

 

 

Figure 1. Comparison of the axial (a) and radial deformation (b) of a biconvex lens with 50 mm curvature radius. The 
maximal axial deformation is computed to 163 µm while the maximal radial deformation is 111 µm.  

 

2.2 Computing the deformation sag 

In order to compute the deformation sag, the shape of the original surface sag is needed. For spherical, conical, and 
aspherical surfaces, an analytical expression of the original sag is given by  
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The curvature of the lens c is the inverse radius R and the conical constant is k. The sum in equation (1) describes the 

even aspheric terms with the coefficients i . Due to thermal deformation, each FE node moves 22 yxr   in 

radial direction and z  in axial direction. The node depicted in figure 2 is displaced from  zr,P0   to 

 zzrr  ,P1 . Analogously, a virtual node can be introduced which is purely displaced parallel to the optical 

axis from  sagzzrr  ,P*

0  to 1P . The distance from *

0P  to 1P  equals the effective axial deformation, and 

therefore the deformation sag, and is calculated using the algorithm presented in [11]  

       ,~~ rzrzzzzrz sageff   (2) 

where rrr ~ . In equation (2), the terms in curly brackets are computed using the surface sag given in (1). The 

additional axial distance sagz  is indicated in figure 2. An advantage of this algorithm compared to others is that the 

absolute z-coordinates of the nodes are not used so that small inaccuracies of the FE node positions are less important 
[11].  
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Figure 2. The FE node is displaced from 
0

P  to 
1

P  due to thermal deformation. This corresponds to a pure axial deformation 

of a virtual node from 
*

0
P  to 

1
P .  

 

2.3 Approximation of the deformation sag 

Many optical systems for laser beam guiding and shaping such as beam expanders feature a rotational symmetric optical 
design. In case of a rotational symmetric beam profile, axial radiation will induce a rotational symmetric thermal load. 
Hence, the surface deformation will be rotational symmetric, too, and the approximation of a global even polynomial is 
sufficient to transform the discrete data into a continuously differentiable function. The even polynomial for the 
deformation sag is given by  
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The coefficients th

j  start at order zero, which describes the thickness variation of the optical element. The maximal 

polynomial degree p may vary between 2 and 16. In most cases, p = 8 yields an accurate approximation. For computing 
the coefficients in (3), a polynomial regression based on weighted least squares methods is used. An advantage of this 
algorithm is that scattered, i.e. non-equidistant, input data can be handled.  



 
 

 

 

2.4 User defined surface in Zemax® 

The approximated even polynomial in equation (3) is added as an additional sag to the standard sag utilizing a user 
defined surface in Zemax®. The new surface sag is given by  
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In addition, the gradient-index lens caused by an inhomogeneous temperature distribution in the bulk is modeled within 
the user defined surface. More details can be found in [7–9]. Via the coupled simulation, the change in optical behavior, 
especially the focal shift and higher order aberrations, can be analyzed.  

3. VERIFICATION OF APPROXIMATION 

In order to verify the correctness of the approximation and the user defined surface in Zemax®, a test case is developed. 
A plane plate featuring an aspheric deformation (only on the front surface) is assumed. The un-deformed plate is 5 mm 
thick, 20 mm in diameter and has a refractive index n = 1.5. The used even aspheric coefficients are listed in table 1 and 
correspond to a maximal deformation on the optical axis of 1 mm in negative direction and zero deformation at the lens 
edge. The original and the deformed surface sag are depicted in figure 3. Based on the analytical expression for the 
deformation given by equation (3), discrete data are generated with a different number of sampling points N = 20, 50, 
100, 200, 500, 1000. These discrete data, which are equally spaced in r, are then approximated using the algorithm 
presented in paragraph 2.3. The maximal polynomial degree p is varied from 4 to 16. The resulting back focal length f of 
the deformed plate is calculated via an optimization in Zemax® and compared to the expected back focal length 
ftheo = 143.169 mm which is obtained by adding the coefficients to an even asphere. The beam diameter is always 10 mm. 

Since real input data resulting from an FEA contain noise, the test case is extended to analyze the influence of noisy 

input data onto the approximation. A random noise signal  r  is added to the data and the approximation is repeated 

according to:  

         ., 00
*   rrzrrz effeff  (5) 

Two different noise levels ε0 = 1%, 2% are examined. In order to obtain a reliable statistics, for each level, 50 different 

sets of random noise  r  are added to the data. The average and the root mean squared error (RMSE) of the resulting 

back focal lengths are calculated for each noise level.  

 

Table 2. Aspheric coefficients used in the test case. The maximal deformation of 1 mm in negative direction occurs on the 
optical axis while the lens edge is not displaced.  

Coefficient Value 

0  −1.0 

2  6.0·10−3 

4  2.0·10−5 

6  1.0·10−7 

8  1.0·10−9 

1610    0.0 

 



 
 

 

 

 

Figure 3. Sketch of the test case. The deformed front surface (bottom) leads to a back focal length of 143.169 mm while the 
rays pass the un-deformed plate (top) without refraction.  

 

3.1 Influence of the polynomial degree and the sampling 

For a fixed number of sampling points N = 100, the influence of the maximal polynomial degree p is analyzed. Figure 
4(a) depicts the relative focal deviation Δf  between f and ftheo. For p = 4, the focal deviation is in the range of 4–6% since 

the model does not represent the data. In case of data without noise and p ≥ 8, the approximated coefficients th

j  almost 

equal those listed in table 2. The resulting absolute focal deviation is smaller than 4·10−8 mm, which corresponds to a 
relative deviation of less than 3·10−10. Such small errors are expectable because the input data are polynomial with 
degree 8 and thus can be exactly described by the model.  

In contrast, noisy input data lead to longer focal lengths compared to noise free data. This means the influence of the 
thermal deformation on the optical behavior is slightly underestimated. For p = 10, the smallest mean deviation can be 
observed: Δf = 0.58% for ε0 = 1% and Δf = 1.3% for ε0 = 2%. The smallest RMSE occurs for p = 4. Higher polynomial 
degrees may lead to oscillations of the approximated polynomial and induce higher fluctuations of the focal length.  

The number of sampling points N is varied at a fixed polynomial degree p = 8 (cf. figure 4(b)), which is the best 
compromise between a small focal deviation and a small RMSE. For data without noise, 20 sampling points already 
yield an accurate result. The relative focal deviation is less than 2·10−11. In case of noisy data and N = 20, the RMSE of 
the focal deviation is comparably large. The RMSE clearly decreases with increasing N. When taking the RMSE into 
account, Δf < 2% is observed for N ≥ 50 in case of ε0 = 1% and for N ≥ 500 in case of ε0 = 2%. This indicates that a 
higher sampling rate will reduce the focal deviation for noisy input data.  

 

Figure 4. Relative focal deviation plotted (a) versus the used polynomial degree and (b) versus the number of sampling 
points. In (a), the sampling is fixed to N = 100 and in (b), the polynomial degree is set to 8.  



 
 

 

 

3.2 Correlation of RMSE and focal deviation 

As the data in figure 5 show, the focal deviation correlates with the RMSE of the approximation (which has to be 
distinguished from the RMSE caused by 50 sets of random noise in paragraph 3.1). For this analysis, the polynomial 
degree is fixed to 8 and the maximal sampling N = 1000 is used. The RMSE of the approximation scales linearly with the 
noise level as it increases from 3.8 µm at ε0 = 1% to 7.8 µm at ε0 = 2%. For a certain noise level, the resulting relative 
focal deviation scatters clearly, but still a correlation to the RMSE is evident. Thus, the RMSE is a suitable indicator for 
the quality of the ray-tracing within Zemax®.  

 

Figure 5. Relative focal deviation plotted versus the RMSE of the approximation. The polynomial degree is fixed to 8 and 
the sampling points to 1000.  

In conclusion, the approximation of a global even polynomial is appropriate for modeling thermally induced surface 
deformations. Noisy input data lead to reliable results for the focal length because the relative focal deviation is smaller 
than 1.5% for random noise of 1%. Accordingly, the influence of noise is negligible compared to other disturbing factors 
such as uncertainties in absorption values, especially for the coating, and in setting up a realistic FEA including the 
clamping and cooling of optics.  

4. EXAMPLE PLASTIC LENS 

In order to demonstrate the benefit of modeling the temperature dependent refractive index and the thermal deformation, 
the thermo-optical behavior of an aspheric plastic lens is analyzed. Compared to optical glasses, plastic features an 
approximately 100 times larger thermal expansion and thermo-optic coefficient. Thus, thermal effects already occur at 
low power applications. The silicone elastomer Silopren LSR7070 [15] is chosen as lens material because it features 
high transparency, is heat-resistant up to 200°C, can be injection-molded and is therefore used in lighting applications 
[16]. The effective focal length (EFFL) of the asphere is 15.0 mm. The conical constant of the front surface has been 
optimized to obtain a diffraction limited focal spot. The beam is 4 mm in diameter and features a top-hat shape. Further 
parameters can be found in table 3. A cross section of the lens and a spot diagram, both for the “cold” system, are shown 
in figure 6.  

The thermo-mechanical analysis is performed with Ansys®. The simulation is limited to a quarter section of the lens in 
order to reduce the number of nodes. The mesh is tetrahedral and features approximately 40000 nodes. The temperature 
at the lens edge is fixed to 22°C. It is assumed that the lens is clamped at its edge so that it cannot expand in radial 
direction. The resulting temperature profile and surface deformation at 5 W optical power are presented in the following 
paragraphs. The wavelength used in the simulation is 589 nm because for other wavelengths, no data is available for the 
thermo-optic coefficient.  



 
 

 

 

Table 3. Material parameters for Silopren LSR7070 [15–17] and lens parameters.  

Parameters for LSR7070 Value Lens parameters Value 

Thermal conductivity [W/m·K] 0.19 Diameter [mm] 6.0 
Thermal expansion coefficient [1/K] 2.7·10−4 Curvature radii [mm] 5.5 / 40.0 
Thermo-optic coefficient* [1/K]  
@ 589 nm 

−3.0·10−4 
Conical constant −0.523 / 0.0 
Center thickness [mm] 4.0 

Refractive index @ 589 nm 1.4122 EFFL [mm] 15.0 
Absorption coefficient** [%/cm] 0.44 Optical input power [W] 5.0 
  Edge temperature [°C] 22 
* linearly interpolated between values for 25°C and 125°C given in [16] 
** calculated based on 53% transmission at 1 m thickness [17] and 2.9% Fresnel reflection per surface 

 

 

Figure 6. Cross section of the plastic asphere (a) and spot diagram in the focal plane at 589 nm wavelength (b). The circle 
indicates the Airy disk with 2.7µm radius. The spot size is diffraction limited.  

 

4.1 Modeling of the gradient index profile 

In a first step, only the temperature dependent refractive index is taken into account. The temperature profile resulting 
from the FEA is depicted in figure 7(a). The maximum temperature increase is 1.98°C and occurs on the optical axis. 
The resulting gradient index profile (GRIN) leads to a clear focus shift of +132 µm. Since the thermo-optic coefficient 
for LSR 7070 is negative, the focus is shifted to longer distances. The spot size in the original focal plane is no longer 
diffraction limited because the RMS spot increases to 12.3 µm (cf. figure 7(b) and table 4) while the Airy radius is 
2.7 µm. As depicted in figure 7(c), the spot size in the new focal plane is below the diffraction limit.  

 

Figure 7. Temperature profile in the bulk of the plastic asphere (a). The spot diagram in the original focal plane (b) and in 
the new focal plane, which is shifted about +132 µm (c).  



 
 

 

 

4.2 Modeling of the thermal deformation  

In a second step, only the thermally induced surface deformation is taken into account. The deformation of the bulk is 
shown in figure 8(a). The corresponding axial and radial deformation is depicted in figure 9 for the front and back 
surface. The maximal axial deformation takes place on the optical axis while the maximal radial deformation can be 
observed at approximately 2/3 of the lens diameter. On the front surface, the radial deformation has a maximum of 
0.80 µm and, due to the small curvature radius, clearly contributes to the deformation sag. At a radial positon equal to the 
beam diameter (r = 2.0 mm), the radial deformation constitutes 20% of the deformation sag. This amount is not 
negligible. In contrast, the maximal radial deformation of 0.41 µm on the back surface has nearly no influence on the 
deformation sag because the curvature radius is seven times larger. The maximal deformation sag coincides with the 
maximal axial deformation and is 2.2 µm on the front surface and 1.6 µm on the back surface. These values are 
approximately a factor of 5 smaller than the typical manufacturing tolerances for injection-molded lenses [18]. However, 
since the deformation is inhomogeneous over the aperture, it will influence the focal beam intensity distribution.  

 

Figure 8. Bulk deformation of the plastic asphere (a). The spot diagram in the original focal plane (b) and in the new focal 
plane, which is shifted about −59 µm (c).  

 

Figure 9. Comparison of axial and radial deformation with the deformation sag: (a) for the front surface and (b) for the back 
surface. The radial deformation clearly contributes to the deformation sag of the front surface.  



 
 

 

 

The deformation sag of the front surface is approximated with a polynomial of degree 10; a polynomial degree of 8 is 
used for the back surface. The RMSE of the approximation is 0.01 µm and 0.005 µm, respectively. In the optical 
analysis, the surface deformation leads to a focal shift of −59 µm. The spot size in the new focal plane is still diffraction 
limited (cf. figure 8(c) and table 4).  

4.3 Effect of self-compensation 

Finally, the GRIN profile and the surface deformation are both considered. The resulting spot diagrams in the original 
and the new focal plane are depicted in figure 10. Furthermore, table 4 shows the focal shift and the RMS spot sizes in 
the original and the new focal plane. The total focal shift is +73 µm, which equals the sum of the focal shift caused by 
the GRIN profile and thermal deformation. The RMS spot is 7.1 µm in the original and 1.2 µm in the new focal plane. 
Although the spot in the new focal plane is diffraction limited, aberrations can be observed as the transverse ray fan in 
figure 10(c) shows.  

The lens material LSR 7070 is partially self-compensating because the focal shift induced by the GRIN profile is 
reduced by the focal shift due to deformation. In case of a thermo-optical constant with different sign but same amount, 
the focal shift would have been −188 µm instead of +73 µm.  

Table 4. RMS spot size and focal shift for the different analyzed cases. The Airy radius is always 2.7 µm.  

 RMS spot size [µm] 
in original focal plane 

RMS spot size [µm] 
in new focal plane 

Focal shift 
[µm] 

“Cold” system 0.009 - - 
Only GRIN 13.2 1.0 +132 
Only deformation 6.2 0.22 −59 
GRIN & deformation 7.1 1.2 +73 

 

 

Figure 10. Spot diagram in the original focal plane (a) and in the new focal plane, which is shifted about +73 µm (b). 
Transverse ray fan in the new focal plane (c).  

5. CONCLUSION 

Coupled thermo-optical simulation plays an increasing role in optical design. On the one hand, higher available laser 
powers and the attempt for miniaturization cause a steadily increasing thermal load of optical elements. On the other 
hand, pricing pressure leads to the increased use of inexpensive plastic lenses, which are suitable for mass production but 
feature high thermal expansion. Thermo-optical effects influence optical properties and can significantly reduce the 
system’s beam quality.  

An approach for modeling thermally induced surface deformations by using a global even polynomial has been 
demonstrated. The discrete deformation data resulting from a FEA are approximated and transferred to optical ray-
tracing. Thereby, the radial surface deformation is taken into account. The implemented algorithm has been verified by 
an analytic test case. The existing coupling between FEA and ray-tracing, which enables the modeling of the temperature 
dependent refractive index profile, has been extended by the new surface deformation feature. A first application onto a 
plastic asphere has been performed and points out that for plastic lenses, the thermal deformation can contribute about 
30% to the total focal shift.  



 
 

 

 

Further work requires the extension of the approximation algorithm to non-rotational symmetric surface deformations in 
order to model more complex optical systems featuring, for example, non-axial radiation or asymmetric cooling 
conditions. Additionally, an experimental measurement of the focal shift of a lens, preferably made of plastic so that 
thermal deformation is significant, and its comparison to the simulation are desirable.  
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