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ABSTRACT
Modern cyber-physical systems (CPS) integrate more and more
powerful computing power to master novel applications and adapt
to changing situations. A striking example is the recent progression
in the automotive market towards autonomous driving. Powerful
artificial intelligent algorithms must be executed on high perfor-
mant parallelized platforms. However, this cannot be employed in a
safe way, as the platforms stemming from the consumer electronics
(CE) world still lack required dependability and safety mechanisms.
In this paper, we present a concept to integrate undependable self-
adaptive subsystems into safety-critical environments. For this, we
introduce self-adaptation envelopes which manage undependable
system parts and integrate within a dependable system. We evalu-
ate our approach by a comprehensive case study of autonomous
driving. Thereby, we show that the potential failures of the AU-
TOSAR Adaptive platform as exemplary undependable system can
be handled by our concept. In overall, we outline a way of integrat-
ing inherently undependable adaptive systems into safety-critical
CPS.
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1 INTRODUCTION
In the recent time, advances in artificial intelligence and parallel
computing enable novel solutions of CPS in various application ar-
eas [17] [12]. A striking example is autonomous driving which has
been promoted as next milestone of the automotive industry. These
systems are required to reliably function in varying scenarios and
react adequately to changes of the environment [18], thus providing
a prominent example for the increasing self-adaptation in CPS. For
achieving an adaptation and human-like behavior in challenging
situations, artificial intelligence and other complex techniques are
implemented in deeply embedded systems, which exhibit high de-
mands on performance. Since these systems have a strong impact
on the safety of the overall system, they must also incorporate
measures to meet the safety goals [15]. In today’s prototypes, e.g.,
automated driving vehicles, the focus is mostly on key features like
driving behavior and the capability to work in various scenarios. To

enable such systems for the end-user market, high-performant plat-
forms are required which are already available in the CE domain,
like graphics processing units (GPUs). However, they inherently
lack dependability capabilities for most safety-critical applications.
This prevents the realization of novel autonomous systems, which
could be achieved by exploiting such powerful self-adaptive CPS.
Even though similar advances can be seen in several domains (e.g.,
collaborative robotics), this work focuses on the application field
of autonomous vehicles.

In the following, we present our approach of Self-Adaptation
Envelopes (SA-Es), which pave a way towards integrating undepend-
able self-adaptive subsystems into safety-critical environments.
They decouple undependable from dependable system parts and
provide means to handle respective failures [22]. Through this, un-
reliable algorithms and platforms can be employed in safety-critical
systems. Specifically, we show how self-adaptation is used as a
safety mechanism to enable the integration of undependable sub-
systems. This points out how untrusted platforms (e.g. CE), can be
applied in dependable CPS. Moreover, we demonstrate the applica-
bility of this approach in an automotive case study and evaluate its
capabilities to handle failures.

The paper is structured as follows. In Section 2 we describe
related work to our approach, before we outline the challenge of
providing dependability in upcoming autonomous CPS in Section
3. Subsequently, in Section 4 we introduce our concept of SA-Es to
integrate undependable self-adaptive systems into safety-critical
environments. We apply and evaluate the approach in an extensive
automotive case study and discuss the results in Section 5, before
we conclude this work in Section 6.

2 RELATEDWORK
Main challenges have been identified by the researching commu-
nity for providing assurance in self-adaptive systems [6]. They
include perpetual assurances, composition and decomposition of
assurances, and control theory assurances to handle the uncertainty
[8] [25] that inherently arises with these systems. Moreover, us-
ing models at runtime [5] enables an assurance at runtime. Such
dynamic assurance approaches [4] allow to adjust and alter the
system during operation, while ensuring the intended function-
ality and system requirements. This includes shifting the task of
validation and verification to runtime [23], for instance by means
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of modular safety assurance [21]. Mechanisms as used by online
testing [11] allow for checking the proper functioning of a sys-
tem by shifting tasks to the runtime as well. In contrast, this work
concentrates on integrating an undependable self-adaptive system
into a safety-critical environment by decoupling it through a SA-E.
This is especially needed when the self-adaptive system itself does
not include any mechanisms to meet the safety requirements of
the system to be integrated in. An example is the integration of
legacy systems or platforms originating from non-safety-critical
domains. The main exemplary target area we investigate is within
the automotive domain. In this field, approaches have been devel-
oped in the recent years to enable adaptation of traditionally static
automotive systems [27] [19]. Moreover, increasing trust in auto-
motive platforms with respect to security and dependability has
been researched, e.g., by adding virtualization and isolation [13]. In
addition, our approach considers novel high-performant platforms
[3] which are designated for the use in connected and autonomous
driving [26].

3 DEPENDABILITY CHALLENGE OF
AUTONOMOUS CPS

For autonomous systems, resource-consuming and undependable
algorithms need to be implemented in CPS, e.g., artificial intelli-
gence in the form of deep learning [16]. However, respective CPS
are often applied in critical scenarios, in which safety concerns
must be addressed. Popular examples are industrial control sys-
tems, collaborative robots, or autonomous vehicles. In these appli-
cations complex algorithms are applied to analyze the environment
and plan future behavior. For higher level automation, the system
must be able to adapt to the environment and react on changes.
One drawback is that algorithms presently deemed suitable for
this are non-dependable [10] (e.g., neural-network black-boxes).
In addition, their timely execution requires high-performant hard-
ware platforms. However, appropriate and cost-efficient hardware
is only available without sufficiently implemented safety mecha-
nisms. Platforms with multi-core GPUs for instance are capable of
running deep learning algorithms very efficiently by exploiting par-
allelization. Despite this, there are generally no safety mechanisms
integrated, such as, independent watchdog timers or memory isola-
tion. Firstly, this is the case as they originate from the CE domain
and secondly, because of the immense calculation speed such mech-
anisms must keep up with. Since the designated application areas of
CPS are in critical environments, such undependable self-adaptive
systems cannot be used without extensive and costly modifications.

When incorporating more autonomy in CPS, also the dependabil-
ity requirements increase. In the case of autonomous driving (full
automation stage), the driver is taken out of the control loop and the
car must operate in all situations. Hence, the critical vehicle systems
must also work in case of failures, at least until a safe state is reached.
This is called fail-operational behavior. In order to achieve such a
degradation, adequate mechanisms have to be designed and imple-
mented [20]. The individual solutions are often specific through
application domain necessities. In low volume, high costs avionics,
triple redundancy with voting mechanisms is suitable, whereas
in mass products like cars a cost-efficient solution is required. In
particular for the latter, integrating less cost-intensive CE could

Figure 1: Single SA-E encapsulating anundependable subsys-
tem

be beneficial. To enable adaptation in these systems, additional
measures have to be taken for not endangering the dependability of
the overall system. In the case of autonomous movement, if object
detection algorithms are adapted to the surrounding, respective
deadlines for identifying objects could be missed, potentially lead-
ing to a collision. Thus, it must be ensured that adaptations of the
undependable system parts do not impact critical parts and keep
the system in defined boundaries. The undependable self-adaptive
system may be a black-box subsystem to the dependable system.
However, the black-box system may be monitored and adapted
from the outside, depending on its specificities.

4 SELF-ADAPTATION ENVELOPES
For including an undependable self-adaptive system (USAS) in a
safety-related system S we introduce a SA-E. Its main purpose is
to encapsulate the USAS and utilize self-adaptation mechanisms
to integrate USAS into S (cf. Figure 1). It therefore employs a
MAPE-K cycle [14] for self-managingUSAS and decoupling it from
its safety-critical environment. The dependable subsystem DS is
able to degrade to a safe-state, when the USAS cannot be relied
upon. The SA-E ensures the detection and adaptation of the USAS .
Therefore, the SA-E checks the input I toUSAS and suppresses the
forwarding if I is out of specification forUSAS (self-protection). The
output O ofUSAS is observed as well and cut off, if not valid (self-
checking). Examples to detect discrepancy of the input are value
boundary checks or cross-validation with single inputs i0, ..,p ∈ I
and with other input XI of SA-E. The specific mechanism needs to
be individually tailored toUSAS and S , just like the SA-E in general.
A function ϕ : I → {0, 1} determines if the input is not acceptable
by resulting in 0, or 1 if the input is within its specification. The self-
checking for instance can be realized by SA-E calculating coarse
approximations of the processing ofUSAS and comparing the value,
or by predefined bounds, or assertions for O . The self-checking
function ρ : O → {0, 1} indicates that the output is not okay with
a 0 and with a 1 that the output is regarded as being valid.

Furthermore, in caseUSAS is not a black-box but can instead be
monitored and affected by SA-E, additional self-adaptation capabili-
ties can be implemented. If other input can be collected fromUSAS ,
further diagnosis can be carried out by SA-E. This in turn could,
for example, initiate the suppression of the output of USAS . An
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Figure 2: Schematic of integrating an undependable self-adaptive system via a SA-E

example is the supervision of a reset trigger or flag for memory pro-
tection faults. An adaptation of USAS may include reconfiguration
or optimization ofUSAS . Examples are de-/activation of services
or parameterization of algorithms, depending on the integration
depth and options of adaptation provided for SA-E.

An overview of integrating a self-adaptive undependable sub-
system in a safety-critical system is depicted in Figure 2. By this
approach, the SA-E is for instance capable of handling the follow-
ing failures (cf. Table 1) and mitigating impact on the dependable
subsystem. Overall, the SA-E includes a control loop managing
self-adaptation of USAS and safety-related strategies to meet the
dependability requirements (cf. Figure 3).

Table 1: Exemplary failures handled by SA-E

Failure Type Example

Failing ofUSAS reset of USAS , detected by
monitoring O or XI and
omission of output

Corrupted input toUSAS sensor failure, detected
by min/max I comparison,
cross-validation

Corrupted output ofUSAS AI misinterpretation, de-
tected by boundary check of
O

Temporally wrong outputUSAS missed deadlines because
of scheduling problems, de-
tected by monitoring O and
expired timer

For the monitoring, SA-E observes the input I and output O of
USAS , additional extended input XI , and status values SV . Based
on this, the analysis stage is carried out with respect to specific
characteristics ofUSAS . For each characteristic, we introduce a sta-
tus value sv ∈ [0, 1]. It represents the confidence in the correctness
of the specific characteristic ofUSAS , where 1 indicates the highest
and 0 the lowest confidence. Each SA-E implementsUSAS-specific
analysis functions α0, ...,n : I × XI ×O × SV → [0, 1].

Bymonitoring and analyzing the input I toUSAS , extended input
XI , the output O from USAS , and status values SV (allowing for
cascading status values), each αx calculates the current status value

svx ,x ∈ {0, ...,n}. I is the same input as forUSAS andO its output.
In addition,XI may be additional input to calculate αx , e.g., coming
from S orUSAS . The latter depends on the available capabilities to
monitor additional aspects ofUSAS beneath its output. An example
is, if memory protection is implemented inUSAS and its triggering
can be monitored as extended input for analyzing the characteristic
memory corruption. The above introduced self-protection and self-
checking functions of SA-E can be seen as particular realizations
of α functions. ϕ calculates a status value which represents the
acceptance of USAS input and ρ a status value for the validity of
USAS output.

Status values which are relevant for the global system behavior
of S are distributed to the dependable subsystem DS , i.e., SV ′ =

{sv0, ..., svi } ⊆ GSV . Other elements in GSV are status values of
characteristics of the DS , which need to be globally considered for
the dependability of the overall system.

In the planning and execution phases the GSV is evaluated and
a respective pre-defined adaptation plan PAP is chosen. In contrast
toUSAS , the adaptation of SA-E is rather limited. As we are deal-
ing with a safety-critical system, the plans can be pre-calculated
and pre-validated in the design. By this, also the consistencies of
decentralized adaptations for maintaining the dependability can
be ensured. Based on the global system status represented by GSV
and according to the adaptation rules AR, a particular adaptation
plan p ∈ PAP is selected. The adaptation rules define which adap-
tation plan is selected for the present status values. If for example
a safety-relevant characteristic’s status value is below a defined
threshold, a respective adaptation rule will result in planning a
configuration change. For instance, if the analysis identifiesUSAS
output to be out of its specification, SA-E will suppress the output.
This is equal to USAS transitioning into a fail-silent state, i.e., in
case of a failure it will be shutdown. At the same time DS will
adapt to an emergency operation plan based on the same global
system status information. Thus, the GSV and adaptation rules AR,
together with the pre-calculated adaptation plans, represent the
basis of the knowledge part of the MAPE-K cycle with respect to
safety-relevant adaptations.

IfUSAS can be adapted by SA-E, these adaptations can be planned
more freely, as long as they do not conflict with the safety-critical
pre-defined plans. A straightforward example is that USAS should
not be activated, if it should be de-activated according to the pre-
designed plan. Of course USAS is inherently able to adapt itself,



SEAMS ’18, May 28–29, 2018, Gothenburg, Sweden G. Weiss et al.

Figure 3: Overview of MAPE-K cycle implemented by SA-E

without interference of the SA-E. Only the results of such adap-
tations of USAS can be observed and handled by SA-E, if safety-
critical properties represented by relative status values are violated.
Thus, the undependable system may incorporate self-adaptation
with a high degree of freedom, while the SA-E utilizes pre-planned
adaptation to meet dependability requirements of the system.

5 EVALUATION
For showing the applicability and evaluating our approach, we
apply it to a real-world case study of autonomous driving. In this
scenario, undependable Adaptive AUTOSAR platforms are used for
video processing, object recognition, and triggering of the vehicle’s
braking. A dependable system, consisting of multiple AUTOSAR
Classic platforms, implements the SA-E concept and the access
to sensors and actuators. We evaluate how exemplary failures of
the undependable self-adaptive system, which could in general be
derived from a comprehensive safety analysis, can be handled by
our approach.

5.1 Automatic Braking for Autonomous
Driving

In this real-world automotive use case, an excerpt of an autonomous
driving system is used. It shows the part of an autonomous driving
system in which braking is activated depending on detected objects
in the driving trajectory. Thereby, collisions should be avoided
when no evasive maneuver is possible.

In the automotive domain, AUTOSAR represents a worldwide
adopted standard for automotive software architectures and a cor-
responding operating system [7]. It defines a so called AUTOSAR
Classic platform for traditional automotive systems, from interior
control over driver assistance systems to powertrain systems with
driving control. In order to cope with the upcoming requirements
of autonomous driving, a novel platform is under development
which is capable to provide required high-performant computing.
This so-called AUTOSAR Adaptive platform [9] is mainly service-
oriented and able to dynamically adapt its services. Moreover, it
is designated to run non-dependable deep learning algorithms for
autonomous driving. For these reasons, the adaptive platform can
be seen as an undependable subsystem which is integrated into the

dependable system of classic platforms. The latter are already being
implemented for safety-critical tasks like driving control.

The overall system includes software components for the au-
tomated braking and respective hardware components. Figure 4
shows a schematic architecture of themain components, leaving out
specific implementation details for the sake of clarity. The general
application captures video from the camera system (Video Captur-
ing), processes the stream (Video Processing), and runs an object
detection (Object Detection). If a potential collision with an object is
anticipated (Enhanced Brake Assist), the braking is activated (Brake).

In addition, an emergency brake system is used as fallback solu-
tion. It is based on radar input (Radar) and is not able to differentiate
objects as precise as the camera-based system. Therefore, it is im-
plemented as safety-critical dependable system with deterministic
algorithms detecting objects in the driving direction. In case the
radar data is evaluated and a future collision is determined, an
emergency braking (Emergency Brake Assist) is issued. However,
in comparison to the enhanced braking system only simple situ-
ations can be analyzed. From a quality performance perspective,
the enhanced braking assistance is preferred. For this reason, if the
enhanced braking is reliably working it should be used. As its imple-
mentation is not dependable because of the employed technology,
the emergency braking should be activated, when the enhanced
braking is not working correctly.

The dependable system is implemented with AUTOSAR classic
platforms (ACS, ACR and ACB), which execute pre-planned schedul-
ing and meet functional safety requirements like Automotive Safety
Integrity Levels (ASILs)[1]. Since the enhanced braking utilizes
deep learning algorithms for object detection and video processing,
its software compontents must be run on high-performant plat-
forms. Thus, AUTOSAR adaptive platforms AA1 and AA2 (two for
legacy / implementation reasons) execute the respective software
components. They represent an undependable subsystem which
is in turn integrated within the dependable braking system. An
automotive-specific switched Ethernet network interconnects the
adaptive platforms and classic platform via the automotive service-
based protocol SOME/IP (Scalable service-Oriented MiddlewarE over
IP) [2]. The classic platforms communicate through a CAN (Con-
troller Area Network) bus. Abstracted data-flows between the soft-
ware components can be derived from the dashed directed lines in
Figure 2. The system is implemented on MBT-2210 MinnowBoards
running Embedded Linux with real-time patches and enhancements
for the AUTOSAR adaptive platform. As mentioned, Ethernet with
SOME/IP is used for interconnecting the adaptive platforms, and
CAN for networking the AUTOSAR classic platforms.

5.2 Applying the Self-Adaptation Envelope
In order to enable integrating the undependable adaptive platforms
with the dependable system of classic platforms, we apply our SA-E
approach. The main goal is to meet the dependability requirements
of the safety-critical braking, although we install undependable
adaptive platforms with software components. For a ready product,
a safety analysis would identify the failures which must be handled
by SA-E. As a comprehensive safety analysis is out of scope of this
work, we focus on the main failures which must be handled and
how the particular SA-E implements respective mechanisms.
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Figure 4: Automotive use case with AUTOSAR Adaptive platforms

Analogous to Table 1, the following failures are identified and
their handling is evaluated:

- F1: Failing of one of the adaptive platforms
- F2: Corrupted video input from camera to adaptive platforms
- F3: Corrupted output of the adaptive platforms
- F4: Too late signaling of braking by the adaptive platforms

First, we outline the application of the SA-E approach. The SA-
E is implemented by a dependable classic platform ACS which
forwards the camera input to the adaptive platform AA1 and the
braking signal to the classic platform ACB. An AUTOSAR software
component (SW-C) embodies the MAPE-K cycle of the SA-E (cf. Sec-
tion 4). In this case the adaptive platforms cannot be self-adapted
from the outside by the SA-E. The monitoring stage includes getting
the input I , i.e., the camera data, to the subsystem constituted by the
adaptive platforms. In addition, it utilizes extended input XI , which
is the radar data, and the output of the subsystem, i.e., the braking
signal of the enhanced brake assist of AA2. In the subsequent anal-
ysis stage, status values are calculated by analysis functions based
on the monitored data. For simplicity reasons and as it is sufficient
in this scenario, we utilize binary status values, which either equal
zero indicating invalidity, and 1 in the case of normal operation.
In detail, we use status values for the validity of the camera input
svCamera and the enhanced brake output svEnhBrake . The global
status value consists of the status of the adaptive platforms дsvAPs
and of the emergency brake executed on ACB дsvEmBA. In this
use case, these values are sufficient to determine the current global
system state for handling the dependability of the system.

An analysis function αCamera determines the validity of the
camera output and thus, svCamera . It also implements the self-
protection (ϕ), as far as needed for this system. That is, the validity
is checked but not intercepted for AA1. Instead, the status values of
svCamera and дsvAPs are set to zero, indicating that the undepend-
able subsystem is not operating within specification. This in turn
leads to invalidating the output of the enhanced braking and using
the emergency brake on ACB instead. In this example, αCamera
detects the amount of noise in the image of the camera. In order to
derive svEnhBrake and the validity of the output, the analysis func-
tion αEnhBrake compares the free space captured by the radar with
the result of the enhanced brake assist. By this cross-validation,
the self-checking is realized. If the results are not contradicting

and the timing requirement on computed input is met, svEnhBrake
is set to one, otherwise zero. In addition to cross-validating the
output, timing issues of the enhanced braking can be detected by
this, e.g., non-synchronized output or missed deadlines. The status
of дsvAPs is derived by svCamera AND svEnhBrake . If either the
input or the output of the undependable subsystem is invalid, the
status equals zero. Diagnosis mechanisms on platform ACB derive
дsvEmBA, representing the availability of the emergency braking.
Global status values are periodically exchanged between ACS and
ACB, after the analysis phase is completed. During the planning
phase, an adaptation plan is selected based on the present status
values. For this scenario, there are only two pre-defined adaptation
plans needed. One plan pf wd allows for forwarding the output of
the enhanced brake assist to the brake, the second planpinh inhibits
the transmission of this output. In case the input to or output of the
adaptive platforms is not valid, the omission of output is selected
by a corresponding adaptation rule rinh . It defines to utilize the
pre-defined plan pinh which inhibits the output, if дsvAPs = 0.
The execution phase carries out the selected plan, i.e., by simply
forwarding or not transmitting the enhanced brake assist’s signal
to ACB via CAN bus. By this, from the dependable system’s per-
spective, the adaptive platforms transit into a fail-silent mode. At
the same time, a safety mechanism keeps the classic platforms in
consistent and safe configurations according to the GSV values.
As this mechanism is of minor importance for the SA-E approach,
details can be derived from [24]. In this scenario, the indication
of invalid adaptive platforms in GSV (дsvAPs = 0), leads to the
case that the brake uses the input of the emergency brake assist
— while SA-E ensures the isolation of the undependable adaptive
platforms by suppressing their output. During normal operation,
the enhanced brake assist’s input originating from the adaptive
platforms is processed.

5.3 Handling Failures
In the following, we assess the handling of the identified potential
failures of the undependable subsystem. The capability for handling
other failures (e.g., undefined failures) strongly depends on their
effect on the monitored input, i.e., the video and radar input, and
the calculated output of AA2. For example, if the output is not
contradicting the radar input, it could not be detected.
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F1 Failing of one of the adaptive platforms: In case AA2 fails,
a timer in SA-E runs out detecting the missed deadline. This in
turn results in the global status value дsvAPs = 0, which leads to
suppressing the output of the adaptive platforms and utilization
of the emergency brake assist on the dependable classic platform
ACB as fallback. If AA1 fails, the fault will be detected as soon as
AA2 calculates invalid output, leading to svEnhBrake and дsvAPs
being set to zero and to the same previously described actions. For
this system, the indirect failure recognition and potentially delayed
reaction are deemed acceptable. However, if required, additional
monitoring by SA-E of AA1’s video capturing output through the
SOME/IP subscription mechanism could identify the failing of AA1
directly.

F2 Corrupted video input from camera to adaptive platforms: If the
camera input is corrupted, the analysis function αCamera detects
the invalid input. As described previously, this SA-E implementa-
tion does not fully implement self-protection, as it is not required.
Nevertheless, the status value svCamera for the input will be set
to zero. This forces дsvAPs to zero and having the output of the
adaptive platforms suppressed, while the fallback emergency brake
is used. The detection of corrupted camera input strongly depends
on the capabitlities of the analysis function, i.e., what kind of cor-
ruption it is capable to detect. Either way, the radar-based detection
is in this use case believed to be more reliable than vision-based
camera system, as it is used for cross-validation and as fallback.

F3 Corrupted output of the adaptive platforms: Only output of
the adaptive platforms to the dependable system parts is the en-
hanced braking data. This is cross-validated with radar information
by the analysis function αEnhBrake . In any case, the radar data is
more trusted and overrules the camera- and deep learning-based
detection of the enhanced brake assist. Thus, contradicting out-
put information leads to the status value svEnhBrake being zero
and thus, initiates above described isolation and fallback to the
dependable system.

F4: Too late signaling of braking by the adaptive platforms: If
processing of the adaptive platforms consumes too much time and
the data is transferred late, similar to failure F1 the timer of the
SA-E runs out. The specific acceptable time can be derived from
the period of the enhanced braking function. By this monitoring,
the missed deadline of the computations performed on the adaptive
platforms, that is for example video processing and object detection,
are detected. Same as before, in the case of F1, svEnhBrake and the
global status value дsvAPs are set to zero. Hereafter, the output of
AA2 to ACB is suppressed and the emergency brake is employed as
fallback.

By this automotive example we could validate the applicability of
our SA-E concepts. Moreover, we outlined how exemplary failures
of an undependable self-adaptive system can be managed to not
endanger the dependability of the safety-critical system.

5.4 Discussions
We have presented our initial concept of SA-E for integrating
self-adaptive subsystems, which are inherently undependable, into
safety-critical environments. However, towards realizing this in
real world scenarios, further exhaustive mechanisms have to be

elaborated, since this approach is based on several assumptions. De-
velopment costs of the SA-E should be below implementingUSAS
as dependable system. Currently, the self-adaptation is seen as iso-
lated process of the dependable system. It is included in a black-box
subsystem, leading to the issue that it can only be decoupled and
made fail-silent for the rest of the system. Hence, a USAS with
very low dependability would lead to a high number of fallback
situations. Nevertheless, it seems more favorable to also include
self-adaptation of the subsystem in the overall strategy to meet
the systems’ dependability. For example, in case of deep learning
algorithms for autonomous driving, fallbacks for single steps of
the process from object detection over interpretation and drive
planning could be implemented — instead of shutting down the
complete system. By this, also deficiencies in accuracy of sensor
data could be overcome. We applied our SA-E approach to a spe-
cific automotive use case. It still has to be evaluated if the general
concepts are also applicable to other areas in which undependable
self-adaptive platforms are integrated. Promising applications could
be collaborative robots or industrial control systems.

6 CONCLUSIONS
Upcoming CPS need to dependably operate in varying scenarios
and under changing conditions. This leads to the demand of incorpo-
rating self-adaptation, which in these cases often requires high-end
processing power and non-deterministic algorithms. Prominent
example are deep learning algorithms being executed on parallel
GPUs, which originate from the consumer electronics domain. As
promising as the application of such systems in prototypes are,
their lack of dependability is an impediment for realizing smart
CPS. Thus, we introduced an approach exploiting so-called self-
adaptation envelopes. They decouple undependable self-adaptive
systems of safety-critical system parts and manage failures, which
may have impact on the dependability of the overall system. In an
extensive automotive case study within the field of autonomous
driving we successfully showed the applicability of our approach
and how it is capable to handle identified failures. Thus, our ap-
proach provides a way towards integrating undependable subsys-
tems into safety-critical environments. In future work, we will
focus on extending the approach to handle not only black-box
subsystems but also consider the self-adaptation in maintaining
system-wide dependability. This includes taking into account only
partially trustable sensor information.
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