

Flexural Oscillators for the Vibration **Assisted Machining**

Prof. Dr.-Ing. C. Brecher

Dipl.-Ing. S. Hannig

UPT-Meeting, March 31th 2011, Aachen

© WZL/Fraunhofer IPT

Content

- Introduction
- Flexural Oscillators for Vibration Assisted Application
- **AiF-Project: Automated Design of Ultrasonic Oscillators**
- 4 Summary and Outlook

Introduction

Effects of Active Vibration Assistance in Machining Processes

Unregulated, resonance vibration

- - Frequencies > 20 kHz, Ultrasonic
 - Increase of material removal rate due to micro cracks in work piece surface of hard and brittle materials
 - Reduction of process forces and tool wear due to discontinuous contact in process zone
 - Reduction of thermal loads
 - Machining of steel with diamond tools due to reduction of diffusion

Position-controlled oscillation

- Defined infeed
- Frequencies f.e. 60 Hz -1,3 kHz (Hybrid-Slow-Fast-Tool)
- Defined free-form structures in optical surfaces due to controlled infeed
- Exact tool alignment and adjustment of surface unevennesses

WZL/Fraunhofer IPT

Seite 2

Introduction

Vibration Assisted Technologies: Ultrasonic **Application**

Unregulated, resonance vibration

Active USapplication with Longitudinalsystems

Introduction

Vibration Assisted Technologies: Ultrasonic Application

Content

- 1 Introduction
- 2 Flexural Oscillators for Vibration Assisted Application
- AiF-Project: Automated Design of Ultrasonic Oscillators
- 4 Summary and Outlook

Longitudinal Limitations and Flexural Oscillators for Vibration Assisted **Flexural Potentials Application**

- and application in transversal Few know-how about design
- V Development necessary

WZL/Fraunhofer IPT

Seite 6

Flexural Oscillators Ultrasonic Assisted for **Turning with Ultrasonic Oscillators: Vibration Assisted Application** ldea

Hydrostatic Slow-Tool-Axes (Stroke 25 Manufacturing of free-form optics controlled) with integrated Piezo-Fast-Tool (Stroke 30 µm, Bandwidth 1300 Hz position controlled) mm, Bandwidth 60 Hz position

Hybrid Slow-Fast-Tool for diamond

turning

Current restrictions of Slow-Tool

with microstructures

- Manufacture of freeform-surfaces in steel with diamond tools not possible
- limited (no steel, no ceramics) Range of materials to be machined is

Ultra-

Idea

slow-tool servo

system sonic-

High tool wear

mode

flexural

converter

sonotrode

Potential of integrated US-system

- Development of Slow-tool with ultrasonic-system adapter
- new ultra precise materials Generation of free-form-surfaces in

tool

Reduction of tool wear

direction oscillation ultrasonic

infeed of slow-tool machine Z-axis diamond tool;

Flexural Oscillators Ultrasonic Assisted **Turning with** for Vibration **Assisted Flexural Ultrasonic Oscillators Application**

- Why flexural ultrasonic oscillator?
- oscillator?

 Oscillation direction
- Accessibility
- Installation space

WZL/Fraunhofer IPT

Fraunhofer

Seite 8

Flexural Oscillators for Vibration Design Procedure in Principle **Assisted Application**

Flexural Oscillators for Vibration Assisted **Application**

Basic Modelling: Torsional and Flexural

Transversal standing wave in resonance

periodic stimulation

generation of basic-models

Determination of boundary conditions,

Torsional mode (rod)

Flexural mode (rod)

WZL/Fraunhofer IPT

Seite 10

Basic Modelling: Torsional Design versus Flexural Design Flexural Oscillators for Vibration Assisted **Application**

Torsional mode (rod)

Torsional wave is pure transversal wave (rods)

$$C_{T,Tors.} = \sqrt{\frac{\mathrm{E}}{2\rho_0(1+\mu)}}$$

$$\lambda_{T,Tors.} = \frac{c_{T,Tors.}}{f}$$

- E (Young's Modulus); ρ_0 (Density); μ (Poisson ratio) > Sound speed $c_{Tors.}$ is material constant > Wave length $\lambda_{T,Tors.}$ is depends on sound speed and frequency f

depends on frequency and diameter Flexural wave in rods: Sound speed

$$C_{T,Flex}(f;r) = \sqrt{\pi \cdot f \cdot r} \cdot \sqrt{\frac{E}{\rho_0}}$$

$$\mathcal{A}_{T,Flex.} = \frac{c_{T,Flex.}(f;r)}{f}$$

and diameter 2r Wave length $\lambda_{T,Tors}$ depends on frequency f

Wave lengths in flexural waves in rods do not equates to wave length of pure transversal wave

Quelle: R. Millner - Ultraschalltechnik, H. Kuttruff - Physik und Technik des Ultraschalls

Flexural Oscillators for Vibration **Assisted Application**

Basic Modelling: Flexural Design

Basic-modelling of rod in flexural mode

- Definition of operating frequency
- Definition of material
- Definition of node number (bearings)
- Definition of installation space
- **Determination of rod-radius and -length**
- Itemisation of sonotrode from basic rod

Determination of boundary conditions, generation of basic-models

Seite 12

Dimensioning of Sample Oscillators, Modal Analysis Flexural Oscillators for Vibration Assisted **Turning**

Flexural Oscillators for Vibration Assisted **Experimental Mode Validation of** Sample **Turning** Oscillators

Test bench for oscillation mode validation

- Ultrasonic-converter
- Eurosonic ESKP400/60
- **US-Generator ESGS 400/60**
- Frequency: 57-60 kHz
- 1,5 µm (50 -100 %) Oscillation amplitude: 0,5-
- ➤ For tests: 50%
- Laservibrometer
- Oscilloscope
- 3 sample sonotrode models
- Linear
- Linear_small
- Bezier

- sonotrode

generator

normal stimulation

987654321

points measuring

WZL/Fraunhofer IPT

Fraunhoter

Seite 14

Experimental Mode Flexural Oscillators for Vibration Assisted Turning Validation: Sample Model 1 Sono linear

Experimental Mode Flexural Oscillators for Vibration Validation: Sample Model 2 **Assisted Turning** Sono _linear_ small

Experimental Mode Flexural Oscillators for Validation: Vibration Sample Model 3 **Assisted Turning** Sono bezier

Optimisation of Oscillator-Geometry and Integration into Machine System **Flexural Oscillators for Vibration Assisted Turning**

Content

WZL/Fraunhofer IPT

Fraunhofer

THAACHEN

Seite 18

- Introduction
- Flexural Oscillators for Vibration Assisted Application
- w **AiF-Project: Automated Design of Ultrasonic Oscillators**
- 4 Summary and Outlook

Conventional Manufacturing Process for Ultrasonic Components AiF-Project: Automated Design of Ultrasonic Oscillators

WZL/Fraunhofer IPT

Seite 20

Finished oscillator

Project Idea AiF-Project: **Automated** Design o f **Ultrasonic** Oscillators

basic geometries conditions, Boundary requirements,

Automatic geometry variation, simulation and evaluation of:

- Oscillation forms of any kind
- oscillators Rotation- and nonrotation-symmetric
- components Oscillators consisting of several material
- Multiple component systems
- Final 3D-geometry

developer Intervention of

-US-turning

- -US-grinding

Automated design and selection of according to requirements; selective intervention of developer

developer Intervention of

State of AiF-Project: Automated Design of Ultrasonic Oscillators the Art and Research Objective

Project Procedure AiF-Project: Automated Design 9 **Ultrasonic** Oscillators

Fraunhofer

PT

THAACHEN

Project Procedure: Work Package 2 – Design Method AiF-Project: Automated Design of Ultrasonic Oscillators

Development and und enhancement of design method

Automatic geometry variation, simulation and evaluation of:

- Oscillation forms of any kind
- symmetric oscillators Rotation- and nonrotation-
- Oscillators consisting of several material components
- Multiple component systems
- Final 3D-geometry

Boundary conditions, requirements, basic geometries for several elements

Mathematical Programm

NNSYS Finite-Elemente-Analysis

Calculation of each geometric variant

requirements; couple selected Selection of variants concerning elements to total system variants

NNSYS Finite-Elemente-Analysis

Calculation of each total system variant

Mathematical Programm

Selection of total system variants concerning requirements

WZL/Fraunhofer IPT

Seite 24

Content

- Introduction
- Flexural Oscillators for Vibration Assisted Application
- **AiF-Project: Automated Design of Ultrasonic Oscillators**
- **Summary and Outlook**

Summary and Outlook

Summary

- Generation of sample models for flexural 60kHzresonance-oscillators
- models with FEM-modal analysis Simulative dimensioning and detailing of the sample
- Machining and measurement analysis of the sample models
- Validation of flexural mode, frequency and node levels
- FEM convenient tool to calculate flexural sonotrodes
- Optimisation of flexural oscillator for diamond turning

Outlook

- Optimisation of flexural oscillator for diamond turning
- Machining tests with flexural oscillator
- Start of AiF-Project

© WZL/Fraunhofer IPT

Seite 26