SYNTHESIS OF CATIONIC POLYELECTROLYTES BY DISPERSION POLYMERIZATION IN AQUEOUS ALUMINUM SALT SOLUTIONS

Antje Lieske; Fraunhofer Institute for Applied Polymer Research IAP; Potsdam-Golm

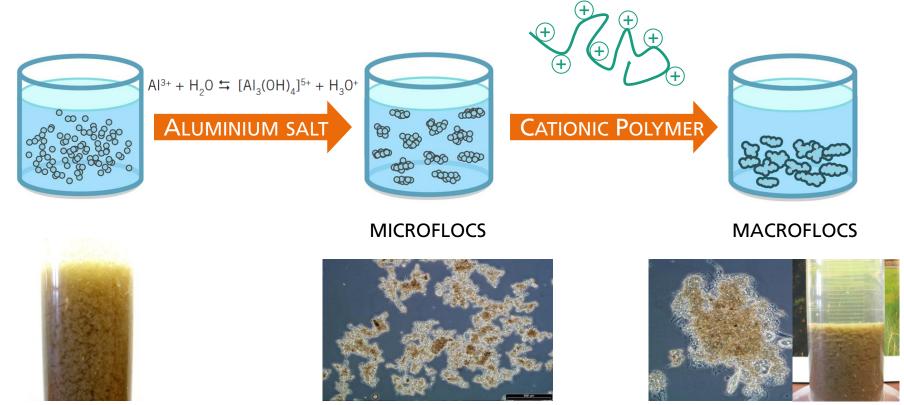
12th International Workshop on Polymer Reaction Engineering, Hamburg, 18 May 2016

SYNTHESIS OF CATIONIC POLYELECTROLYTES BY DISPERSION POLYMERIZATION IN AQUEOUS ALUMINUM SALT SOLUTIONS

The Story Behind

> PROCESS DEVELOPMENT AND RESULTS

> Application Tests


SUMMARY

FLOCCULATION AIDS

HIGH MOLECULAR WEIGHT CATIONIC POLYELECTROLYTES ARE USED IN WASTE WATER TREATMENT, SLUDGE DEWATERING AND PAPER MAKING

➢ HOW DOES IT WORK?

SYNTHESIS OF CATIONIC POLYMER

> MOSTLY COPOLYMERS OF ACRYLAMIDE AND CATIONIC ACRYLIC ESTERS

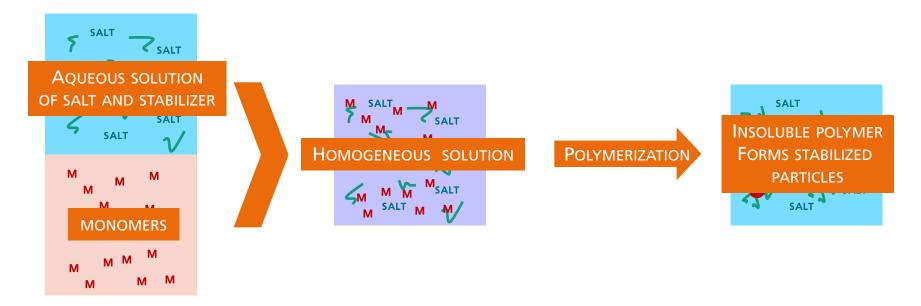
> POLYMERISATION IN SOLUTION (TECHNICALLY ON CONVEYOR BELTS)

EASY

- > MOLECULAR WEIGHT LIMITED
- ➢ HAS TO BE DRIED AND CUTTED

> INVERSE EMULSION POLYMERIZATION

- > HIGHEST MOLECULAR WEIGHT, GOOD CONTROL OF HEAT REMOVAL AND VISCOSITY
- > CONTAINS OIL AND SURFACTANTS, HAS TO BE INVERTED


> AQUEOUS DISPERSION POLYMERIZATION

> GOOD CONTROL OF HEAT REMOVAL AND VISCOSITY, READILY SOLUBLE

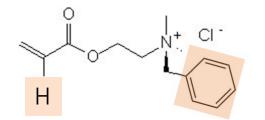
> CONTAINS SALTS (INORGANIC OR LOW MOLECULAR WEIGHT POLYELECTROLYTES)

AQUEOUS DISPERSION POLYMERIZATION

PROJECT IDEA DRIVEN BY SMALL COMPANY, PRODUCER OF ALUM AND PAC

> REPLACE THE SALT IN AQUEOUS DISPERSION POLYMERIZATION BY ALUM/PAC?

- > COMBINATION OF FLOCCULANT AND FLOCCULATION AID
- > ONE DOSAGE STREAM INSTEAD OF TWO
- > NO INTERFERING SALTS

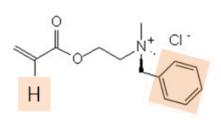


PRELIMINARY INVESTIGATIONS

BASIC REQUIREMENT: ADJUST SALT CONCENTRATION TO KEEP MONOMERS SOLUBLE BUT RENDER POLYMERS INSOLUBLE

> POSSIBLE WITH ALUMINIUM SALTS?? (MIXTURES OF ALUM AND PAC WERE TO BE USED)

SYNTHESIS OF MODEL POLYMERS FROM ACRYLAMIDE AND CATIONIC ACRYLATES WITH VARYING CHARGE DENSITIES


COPOLYMERS OF AA AND THESE MONOMERS CAN BE PRECIPITATED IN AQUEOUS $NH_4CI / (NH_4)_2SO_4$ ADAMIMQ: R=H; R*= CH₃

- Yes, it works with aluminium!
- ONLY HYDROPHOBIC BQ-STRUCTURES CAN BE PRECIPITATED BY AL SALT (NO MQ)
- ACRYLATE COPOLYMERS CAN BE PRECIPITATED AT LOWER SALT CONCENTRATIONS THAN METHACRYLATE COPOLYMERS (EQUAL CHARGE DENSITY)
- THE LOWER THE CHARGE DENSITY THE HIGHER THE NECESSARY SALT CONCENTRATION

START CONDITIONS FOR PROCESS DEVELOPMENT

> ADAMBQ AS THE CATIONIC COMONOMER (ADAMQUAT BZ80)

> CHARGE DENSITY 30%: MEDIUM CHARGE DENSITY FOR FLOCCULATION AIDS

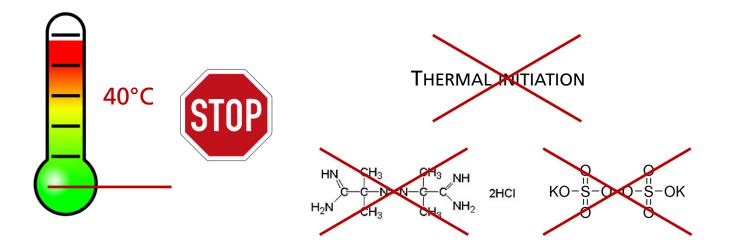
> POLYMER CONTENT: 20% (20-30% STATE OF THE ART FOR AMMONIUM SALTS)

> STARTING SALT CONCENTRATION: 20% $AL_2(SO_4)_3$; 4% PAC

DEVELOPMENT OF INITIATOR SYSTEM AND DOSAGE

DEVELOPMENT OF STABILIZER SYSTEM

VARIATION OF CHARGE DENSITY AND ACTIVE CONTENT

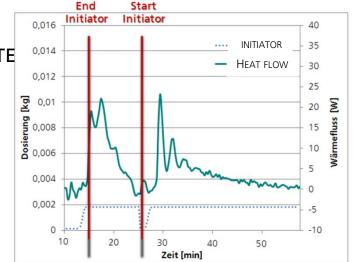


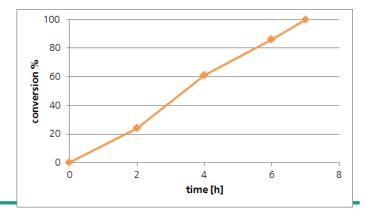
INITIATOR SYSTEM

SINCE NOTHING IS KNOWN ABOUT SUITABLE STABILIZERS, THESE FIRST EXPERIMENTS WERE RUN WITHOUT STABILIZER

> GIVES HIGHLY VISCOUS DISPERSIONS AT HIGH CONVERSION, BUT OK AS STARTING POINT

> SOLUBILITY OF RESULTING POLYMER INCREASES MARKEDLY WITH TEMPERATURE

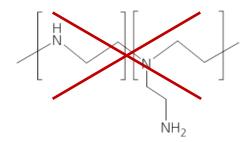

INITIATOR SYSTEM

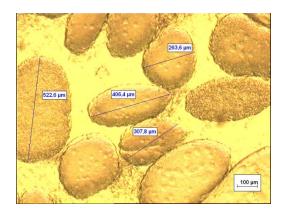

REDOX SYSTEM ASCORBIC ACID / FE(II) / PERSULFATE

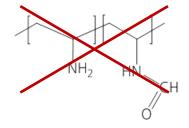
- WORKS AT 40°C
- VERY SHORT HALF LIFE TIME \geq
- DOSAGE HAS TO BE DEVELOPED
 - HIGH MOLECULAR WEIGHT (LOW FLUX OF RADICALS)
 - COMPLETE CONVERSION IN MODERATE TIME \geq
 - > UNIFORM CONVERSION OVER TIME (NO HEAT PEAKS)

DOSAGE OF PERSULFATE WAS OPTIMIZED:

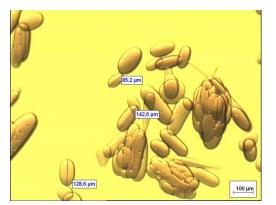
- > 100% CONVERSION IN 7H, UNIFORM DEVELOPMENT
- MOLECULAR WEIGHT ~ 5 MIO G/MOL (SLS)

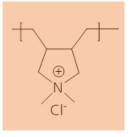


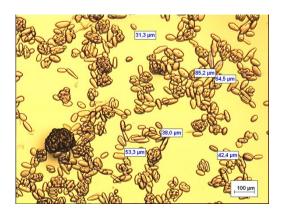

COMMERCIAL CATIONIC POLYMERS AS STABILIZERS


CATIONIC POLYMERS WITH DIFFERENT STRUCTURES

0.5% STABILIZER

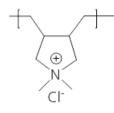



A: PEI M_n~25T G/MOL

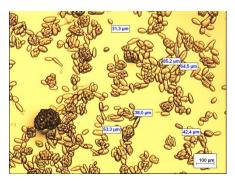


B: LUPAMIN 1595 M_n~10T G/MOL DEGREE OF HYDROLYSIS 95%

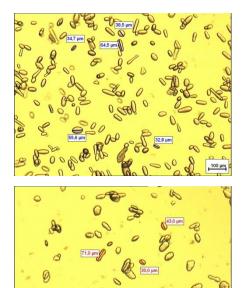
C2: PQ 40U10 M_n~20T G/MOL


> VISCOSITY DURING SYNTHESIS OK, VERY FAST COALESCENCE AFTERWARDS IN ALL CASES

BEST RESULT WITH POLY-DADMAC


COMMERCIAL CATIONIC POLYMERS AS STABILIZERS

VARIATION OF STABILIZER CONCENTRATION AND MOLECULAR WEIGHT



C2: PQ 40U10 M_n~20T G/MOL

0.5% STABILIZER

1.0% STABILIZER

C1: PQ 40U05NV M_n~10T G/MOL

> HIGHER STABILIZER CONCENTRATION RESULTS IN LOWER PARTICLE SIZE

> LOWER MOLECULAR WEIGHT STABILIZER GIVES MORE OR LESS THE SAME RESULTS

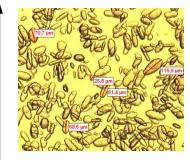
 \succ FAST COALESCENCE, PARTICLES WITH OVAL SHAPE \rightarrow PRECIPITATION TOO "SOFT"

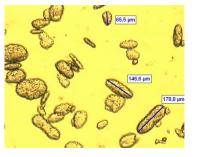
VARIATION OF SALT CONCENTRATION

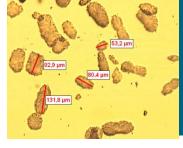
> INFLUENCE ON PRECIPITATION:

→ High salt concentration → hard precipitation → low molecular weight since swelling of particles with monomers gets hindered

> Low salt concentration → soft precipitation → high molecular weight but high viscosity of dispersion

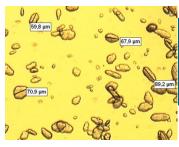

> Shape of particles is measure for type of precipitation

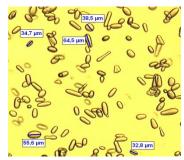

> AIM: SMALL, SPHERICAL PARTICLES

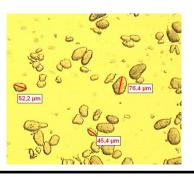


VARIATION OF SALT CONCENTRATION

IN ALL CASES NO LONG TERM STABILITY, NO SPHERICAL PARTICLES




ALUM CONCENTRATION ↑ HARDER PRECIPITATION LARGE ROUGH PARTICLES (FORMED FROM MANY PRIMARY PARTICLES)


PAC CONCENTRATION ↓ ROUGH PARTICLES TRANSFORM BACK INTO SMOOTH OVAL ONES

PAC CONCENTRATION ↑ SAME TENDENCY AS INCREASE IN ALUM CONCENTRATION

Starting point: Soft precipitation Smooth oval particles

PAC

DESIGN OF STABILIZER

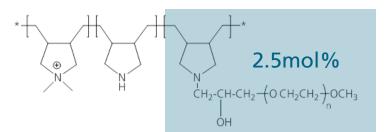
> Hydrophilicity:

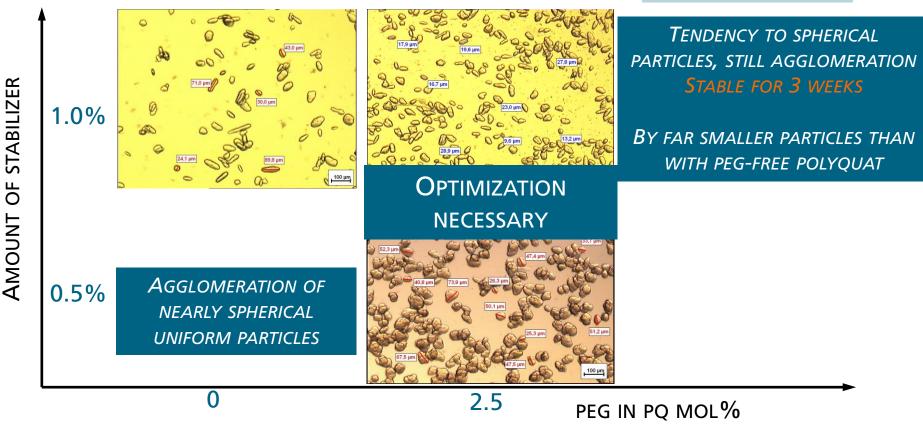
STABILIZER HAS TO BE SOLUBLE IN CONTINUOUS PHASE BUT INCREASING HYDROPHOBICITY WITHIN THIS LIMIT LEEDS TO LOWER VISCOSITY OF DISPERSION

MOLECULAR WEIGHT:

TOO LOW \rightarrow NO LONG TERM STABILITY DUE TO MISSING STERIC STABILIZATION TOO HIGH \rightarrow BRIDGING OF PARTICLES DURING POLYMERIZATION

- CHAIN STRUCTURE (STATISTIC, BLOCK, GRAFT) INFLUENCES CONFIGURATION OF STABILIZER AT PARTICLE SURFACE
- > Type and density of charge for electrostatic stabilization
- > Charged stabilizer acts as additional salt \rightarrow fine-tuning of salt concentration

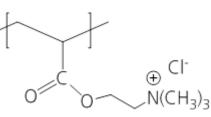

AFTER ALL MOSTLY TRIAL AND ERROR APPROACHES

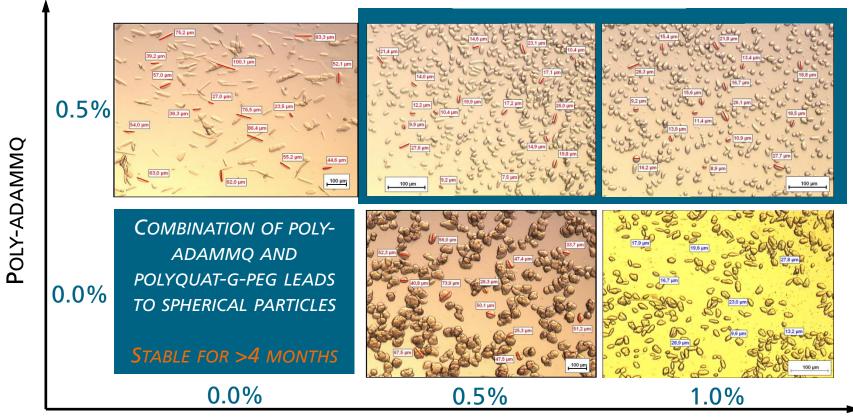


DESIGN OF STABILIZER

DEVELOPMENT BASED ON PQ 40U05NV
GRAFT COPOLYMERS WITH PEG 350:

POLYQUAT-G-PEG350





FINAL STABILIZER

ADDITIONAL STERIC STABILIZATION FOR LONG-TERM STABILITY

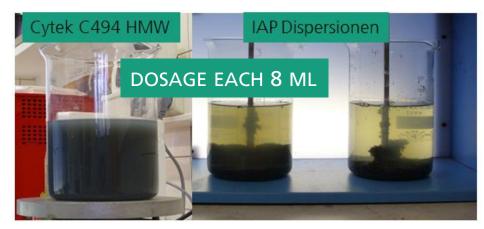
POLY-ADAMMQ M_n ~ 500T g/mol

POLYQUAT-G-PEG350

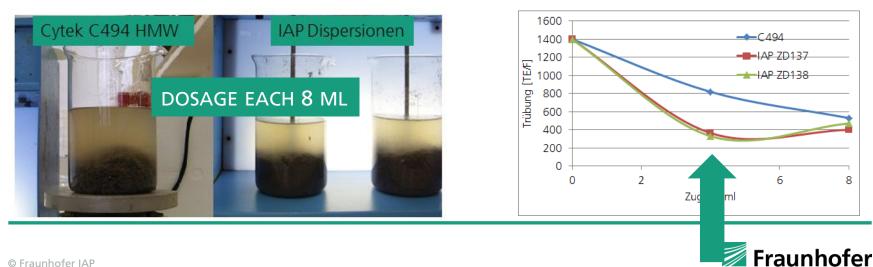
SYSTEM LIMITS

> ACTIVE UP TO 25 WT%; INCREASE OF STABILIZER CONCENTRATION NECESSARY

> CHARGE DENSITY BETWEEN 20% AND 50% POSSIBLE


- > Adjustment of salt and stabilizer concentration necessary
- COMMERCIAL DISPERSIONS BETWEEN 10 AND 50%
- > POLYMERS WITH CHARGE DENSITY <20% DO NOT PTRECIPITATE IN AL-SALTS
- MOLECULAR WEIGHTS BETWEEN 5 MIO TO 10 MIO G/MOL (MALLS)
 - COMMERCIAL BENCHMARK 8 MIO G/MOL (MALLS)

APPLICATION


> APPLICATION TRIALS IN "COMPLICATED" WASTE WATERS AT

LUNZENAUER PAPIER- UND PAPPENFABRIK (CIRCUIT WATER)

BETTER FLOCCULATION AND LESS RESIDUAL **TURBIDITY**

KÜBLER & NIETHAMMER (WASTE WATER FROM DISCOLORATION OF USED PAPER)

SUMMARY

PROJECT WAS AIMED ON SYNTHESIS PROCESS FOR CATIONIC POLYELECTROLYTES USING AL-SALT SOLUTIONS AS CONTINUOUS PHASE IN A AQUEOUS DISPERSION

SUITABLE STABILIZER SYSTEM : COMBINATION OF LOW MOLECULAR POLYQUAT GRAFTED WITH PEG AND HIGH MOLECULAR CATIONIC POLYELECTROLYTE

LONG-TERM STABLE DISPERSION WITH ACTIVE CONTENTS UP TO 25% AND CHARGE DENSITIES BETWEEN 20% AND 50%

> OPTIMIZED INITIATOR SYSTEM AND DOSAGE GIVES CONVERSIONS OF 100% AND MOLECULAR WEIGHTS IN THE RANGE OF KNOWN AQUEOUS DISPERSION SYSTEMS

APPLICATION TRIALS POINT TO ADVANTAGES OF THE PRODUCTS IN SOME COMPLICATED WASTE WATERS

NEW OPPORTUNITY FOR PROCESS DEVELOPMENT AT FH-IAP

INCORPORATION OF PHOTON DENSITY WAVE SENSOR INTO RC1E AUTOMATED REACTION CALORIMETER

INLINE PARTICLE DETECTION FOR PARTICLES FROM 50NM TO SEVERAL MM (PDW, FBRM AND VIDEO MICROSCOPY)

ΤΗΑΝΚ ΤΟ

> THE WHOLE TEAM:

- > ANITA SCHICKTANZ
- M.SC. MARIUS OHNESORGE
- > DR. MATHIAS HAHN
- > DR. WOLFRAM PALITZSCH, LOSER CHEMIE

ARBEITSGEMEINSCHAFT INDUSTRIELLER FORSCHUNGSVEREINIGUNGEN AIF

> ... AND TO YOU FOR YOUR ATTENTION

