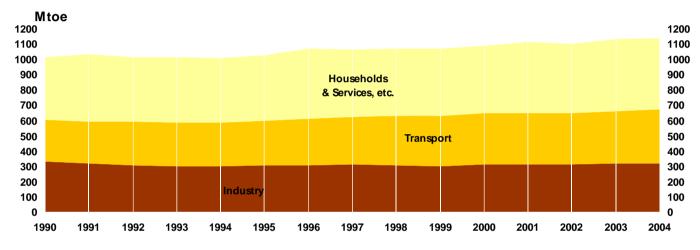
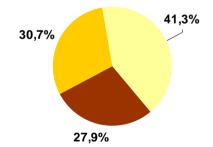
Elements of sustainable freight logistics

L2L-Conference – 4th BMBF-Forum for Sustainability Session A2 Future of European Mobility Tuesday, 8th of May 2007


Prof. Dr.-Ing. Uwe Clausen Director of Fraunhofer IML Chair of Transportation Systems and Logistics, Dortmund University

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML



Fraunhofer Institut Materialfluss und Logistik

Sustainability and Transportation Final Energy Consumption - EU25 by sector

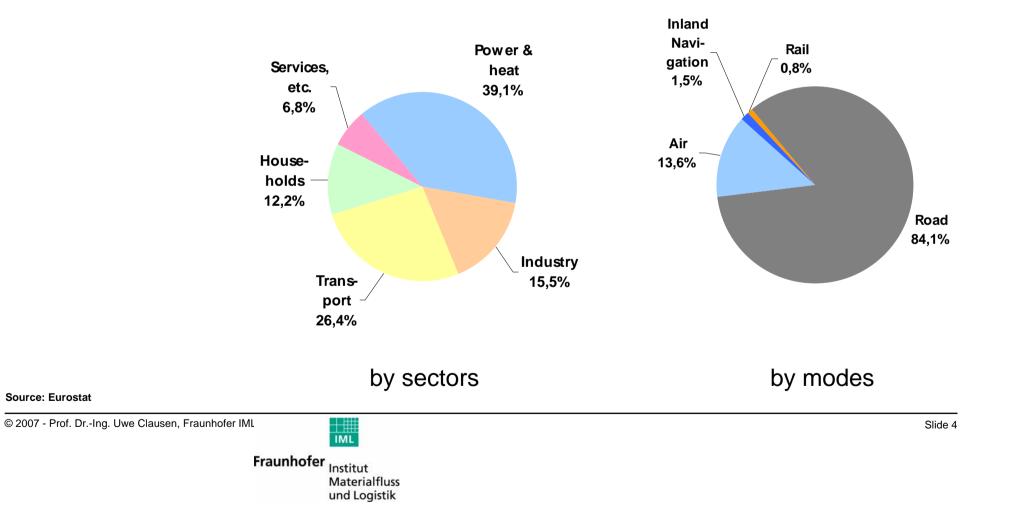
Year 2004


Source: Eurostat

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

Fraunhofer _{Institut} Materialfluss und Logistik

Sustainability and Transportation CO₂ Emissions by Sector


Source: Eurostat

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

Fraunhofer _{Institut} Materialfluss und Logistik

Sustainability and Transportation CO₂ Emissions by Sector (2004, EU 25)

Why optimizing logistics networks & systems?

Inefficient structures and processes lead to more kilometers driven, more emissions exhausted and more trucks used!

Optimized structures help to proceed towards a sustainable development

Grown structures lead to:

- Inefficient network/transport design
- Inefficient organization of distribution regions
- Inefficient distribution centers
- Suboptimal deployment of existing infrastructure

Optimized structures allow for:

- Lower transport costs / less kilometers driven
- Less stock necessary
- Shorter delivery times
- Optimized logistics facilities for more efficient operations
- → Better performance for more efficient logistics

How optimizing logistics networks & systems?

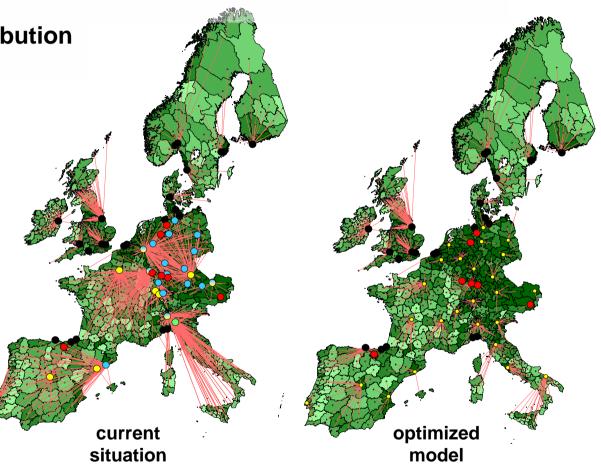
Different levels of optimization approaches:

- Strategic level
 → Planning of efficient logistic networks
- Tactical level
 - \rightarrow Selection and combining of different transport modes

Technical level

→ Improvement of vehicle technology and use of alternative fuels

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

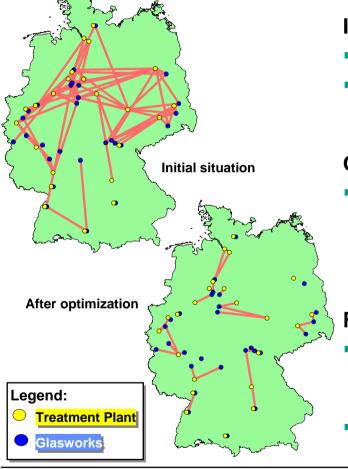

Efficient distribution

Example: European Car Distribution

Objectives

- Less kilometers driven
- Decrease logistics costs
- Improved delivery service
- Create synergies by bundling of transport volume
- Reduction of empty trips
- Cross-border optimization

Result: 12% improvement of transport efficiency



© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

IML

Example: Reduction of road transports for used glass

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

glass

Fraunhofer Institut Materialfluss und Logistik

Initial situation

- Transport relations have grown complex over long distances
- 98% of transports for used glass initially take place on the road

Objective

 Reducing and avoiding transports for used glass on the road by assignment optimization, shift to alternative transport modes, and application of new information technologies (planning & scheduling tools)

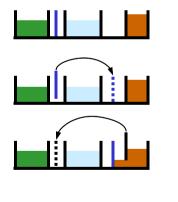
Results

- Avoiding transport of used glass via road by approx. 30% with aid of a software planning tool and application of IT to reduce transport volumes
- Development of new vehicle the Vario-Collector[®] with separate, flexible compartments for collecting different types of

Transition from unimodal to intermodal networks

- High number of actors with different interests: Shippers, Shipping Lines, Seaport-Terminals, Seaports, Inland Shipping Lines, Railroads, Intermodal Transport Operators, Inland-Terminals, Logistics Service Providers, Packing Companies, ...
- Bundling of large freight flows in the seaport allows a wide variety of transport alternatives and cuts costs
- Interface problems (technical, informational, organizational) through combination of different transport modes
- Huge number of processes and combination possibilities
- Competitiveness of transport alternatives depends largely on the given infrastructure network for barge, rail and road
- Higher Complexity
- More Infrastructure restrictions for barge and rail

Recent increase of the share of rail transport performance in Germany to 21%! (2006, source VDV)


 $\ensuremath{\textcircled{\sc 0}}$ 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

Fraunhofer Institut Materialfluss und Logistik

Vehicle Technology: Vario-Collector[®] - Logistic Solution for Separate Collection of Waste Glass

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

- The distribution of waste glass colours varies due to regional and seasonal deviations
- Rigid systems have to discontinue the collection tour when only one chamber is full
- The Vario-Collector[®] can adapt the chamber volumes to the glass colour fractions during the collection tour
- Empty room can be added gradually to either adjacent collection chamber (see illustration)
- Simple modification of existing vehicles, the crane is used to move the partition walls
- Optimal utilization of the collecting vehicle
- Up to 18% higher collection volume
- Less transports for the collection of waste glass

Biofuels: Optimized transports for biomass

- Biofuel production needs large amounts of biomass input e.g. CHOREN large-scale plant: ratio biomass/biofuel approx. 5:1 [kg/kg]
- Decentralized structures of biomass sources cause high volume of traffic
 - \rightarrow network planning (contracting with biomass producers)
- Seasonal arising of biomass complicates the continuous supply of the biofuels production
 - new farming techniques (e.g. farming presses), adapted transport and storage technology, optimal supply chain structures

Logistics optimization for biomass logistics means:

- development of integrated transport chains
- usage of information and communication technologies
- informational networking of all participants
- decision concerning centralized vs. decentralized structures

 $\ensuremath{\textcircled{\sc c}}$ 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

Fraunhofer Institut Materialfluss und Logistik

Biofuels: Biofuels as a part of sustainable transport

Biofuels advantages:

- Saving primary resources
- Reduction of CO₂-emissions and fostering of objectives of climate protection
- Chance for agricultural industry

Notice:

- As a prerequisite for sustainable logistics also the sustainable production of biofuels has to be considered
 - No import of biofuels which cause deforestation of rain forest
 - → Sustainable cultivation of biomass
 - → "competition" of different biomass utilizations (food, energy production, biofuels etc.)

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

Thank you for your attention

© 2007 - Prof. Dr.-Ing. Uwe Clausen, Fraunhofer IML

