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Abstract 
  
Reconstructed 3D volumes from computed laminography data suffer from blurring artefacts due to the 
laminographic geometry. Such losses in quality can be compensated for by integrating a priori information 
about the test object into the iterative reconstruction process. However, this requires the position of the a 
priori model to be fitted exactly to the measured data. A (semi-)automatic 2D-3D registration algorithm 
which only requires a minimal additional user input and is based on a mathematical optimization problem is 
presented. Using measurement data obtained by simulating X-ray projections of the laminographic scanner 
CLARA the algorithm is validated. 
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1. Introduction 
Over the last few decades, computed tomography (CT) has become a well-

established and widely used method of nondestructive testing.  
It allows a 3D analysis of the interior structure of an object using X-rays and 

mathematical reconstruction algorithms. To this end, the object is placed on a rotation table 
between an X-ray source and a detector, which provides irradiation images of the object 
(fig. 1). The object is then rotated by 360° while an entire data set of projections from all 
angles is obtained. From these images a volume representing the density distribution of the 
object can be computed using mathematical reconstruction algorithms. 

 
 

 
 
Figure 1. Industrial CT set-up. 
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Still there are some test cases in which this powerful technique for investigating the test 

object’s inner structure is not applicable. For instance, if a planar object, i.e. a potentially 
very large but extremely flat object, is to be measured using CT two major problems arise. 
The first of which is caused by the extreme differences in the object’s diameters in 
longitudinal and transversal direction. As CT relies on a full rotation of 360° the object 
needs to be penetrated by X-rays from each direction. In order for the X-rays not to be 
fully attenuated when passing through the object in longitudinal direction, their energy has 
to be sufficiently high which in turn leads to very weak contrast in transversal directions 
and may result in unusable measurements. The second problem is encountered when 
aiming for a high magnification ratio. The latter is increased by reducing the distance 
between object and X-ray source. Especially for fine-structured planar objects the feasible 
magnification factor may require the object to be so close to the detector that a full object 
rotation is no longer possible without causing a collision of object and X-ray tube. Both 
these problems are solved by computed laminography (CL). Contrary to traditional CT, for 
this X-ray technique, neither does the axis between source and detector need to be 
perpendicular to the rotation axis, nor does the rotation performed necessarily need to 
measure 360°. There are numerous different CL geometries, some relying on linear or 
planar translations of the components (classical CL), and others representing a tilted 
version of the traditional CT geometry using a 360° rotation (CLARA) [1] (fig. 2). Using 
this trajectory, the object can be placed arbitrarily close to the X-ray tube without risking a 
collision with the latter, thereby enabling an appropriate magnification factor. 

 

  

 Figure 2. CLARA geometrical composition. 
 
 

 

2. A priori Information 
While allowing for a high-resolution measurement of planar objects, computed 

laminography also has some limitations. Most important, the 3D reconstructions 
computable from CL data exhibit an anisotropic depth resolution in beam direction. In case 
of the CLARA geometry, this is due to the constrained ray directions which can only 



provide limited information. As the (planar) object is always irradiated from the same side, 
the information gained is not as complete as in a CT where the object can be irradiated 
from all sides. Therefore, CL reconstructions typically show artefacts and blurring 
orthogonal to the so-called focus plane  which lies normal to the rotation axis. This also 
results in the fact that the object's density cannot be reconstructed faithfully in an absolute 
sense but only in a relative way, so that the object's structure is still reconstructed correctly 
but not with the correct density values. Furthermore, CL data cannot be reconstructed 
using standard CT algorithms of filtered back projection type like the Feldkamp algorithm 
[11]. Instead, iterative methods like SART (simultaneous algebraic reconstruction 
technique) [2] have to be applied. This constitutes an advantage since iterative methods 
allow the use of geometric a priori information about the object. This prior knowledge may 
consist of the object's surface given by a mesh model or a CAD (Computer aided design) 
file. It allows restricting the reconstruction to areas where the a priori information predicts 
material to be present and avoid reconstructing empty air areas. This greatly reduces the 
typical laminographic artefacts by forcing them from the air area the into the material area 
leading to an increased contrast and defect detectability. 

 
The SART algorithm models the measurement process as a system of linear equations and 
tries to solve it iteratively. Let the 3D volume consisting of n voxels with indices 
1,… ,  be described by 	 ∈ , the measured rays be given by , 1,… ,  and  
correspond to the fraction of the i-th ray  passing through pixel j. Then, each SART 
iteration reads 
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where ∈  is a relaxation factor, chosen depending on the structure and material 
composition of the inspected object, and  the set of rays belonging to projection ∈

,… , . A priori information can easily be integrated into this reconstruction process if 
it is given as a second, binary voxel volume  of the same dimensions as the volume to be 
reconstructed, i.e. ∈ 0,1  with  indicating whether voxel	  contains material or not. 
In this case, the a priori SART iteration step is given by 
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This straight-forward integration of a priori information not only increases the convergence 
speed of the reconstruction process but at the same time offers the possibility of reducing 
the blurring artefacts characteristic for computed laminography reconstructions as well as 
increasing contrast. As a result, defects become more easily detectable [3,4]. As a priori 
information given CAD or STL (stereolithography) data or data obtained using a different 
method of nondestructive testing can be used. In most cases, the a priori data available 
does not coincide with the measured CL data concerning orientation and scale of the test 
object and therefore cannot be used without prior registration. This implies the need for a 
preprocessing step determining the transformation which positions the a priori data to 
properly fit the measured projections. 
 
 



3. (Semi-)Automatic Registration Algorithm 
 

Image registration has become a growing field of research with new algorithms keeping 
pace with the development of new imaging techniques and sensor hardware. Besides the 
traditional challenge of 2D-2D image registration, the ever expanding processing power of 
modern computers also brings the registration of volumes into focus. An overview of 
registration methods can be found in [6,8,9]. For our problem the obvious approach of 
reconstructing the measured CL data to obtain a 3D volume which can be registered to the 
a priori data of the same dimensionality cannot be pursued as the traditional CL 
reconstruction is severely degraded by blurring artefacts. Thus, instead of using a 3D-3D 
registration algorithm, the 2D projections are to be registered directly with the 3D a priori 
data, without prior reconstruction (Fig. 3). A strategy to perform such a 2D-3D registration 
[10] for CT projections and a 3D mesh model has been proposed in [7]. It registers 2D 
projections to a 3D STL model in order to compute a variance-comparison during the CT 
reconstruction. The proposed method to determine the rotation can be adapted to CL and is 
used in our approach to work with volume data instead of mesh models. 

A new algorithm solving this 2D-3D registration problem was developed and is discussed 
in the following. In order to register a given a priori volume, an affine transformation that 
consists of rotation, translation and scaling is to be applied to the laminographic data. The 
computation of these components will be discussed independently in the following. 

 
Figure 3. A priori reconstruction based on 2D-3D registration. 

 

Although a set of measured CL data usually consists of more than a hundred 
projections, each corresponding to a different rotation angle of the object, only three of 
these projections are used in the following computations. 



   
Figure 4. Reference CLARA Projections for rotation angles 0°, 120° and 240°. 
 
In theory, the information contained in three transmission images taken from different 
directions is sufficient for a unique determination of all the unknowns in such an affine 
transformation. For greater stability and reliability of the algorithm, the angular difference 
of these three reference projections should be maximal, i.e. approximately 120°, as shown 
in an example of a circuit board in figure 4. The a priori volume of this circuit board is 
pictured in figure 5. 
 

  
Figure 5. A priori volume, frontal and lateral view (transparent). 

 

3.1 Rotation	
In the computation of the rotation, a heuristic strategy based on systematic evaluation 

of rotation candidates leading to the global minimum of the evaluation function is used. 
Therefore, a mapping and a way of reasonably sampling the search space is found. The 
iterative algorithm consists of four basic steps, which will be further discussed below: 

1. Sampling of the search space 
2. Computation of projections of the rotated a priori volume 
3. Evaluation of the projections 
4. Selection of the best evaluated rotations and narrowing down the search space 

 

3.1.1 Sampling of the search space 
The initial search space is the space of all 3-D rotations  and can be parametrized 

by two angles , 	 ∈ 0,  which correspond to the spherical coordinates of the unit 
rotation axis and another angle ∈ 0,2  giving the rotation angle. In order to find an 
equidistant sampling of rotation angles in space, the spherical angles 	and  may not be 
sampled equidistantly as the transformation from spherical to Cartesian coordinates is non-
linear. This transformation : 0, →  can be written as 
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Thus, for any given grid distance ∈  a set ⊆  needs to be found such that 
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Solving these equations for adequate choices of distance ∈  leads to step sizes 
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For  ‘large’, the step distance  cannot be computed from the formula above 

as  1 1. In this case, we set . 

The sampling of the rotation angles is straightforward and given by 
 

1 ∙ |	 1, … , ,	with 1 , ∈ . 

 
The equidistant sampling of the parameter space  is then given by . 
 

3.1.2 Computation of projections of the rotated a priori Volume 
After having found a search space sampling the elements of that set need to be 

evaluated. In order to be able to do so, comparable data needs to be obtained. Therefore, 
three projections of the rotated a priori volume are to be computed. If the proper geometry 
information is used in these computations, the resulting projections can be compared to the 
three corresponding measured projections in order to find an evaluation for the rotation 
applied. The size and resolution of the projections to be created is chosen according to the 
originally measured CL data (i.e. original number of voxels multiplied by 2 , original 
voxel size multiplied by 2  for any ∈ ). 

The geometry data which needs to be plugged in is determined by the geometrical 
setup of the laminographic scanner used. Instead of applying the rotation to the given a 
priori Volume (3D), the rotation can be applied to the set of geometry data. For each 



measured projection, this data file contains the positions of the X-Ray source, the detector 
and its spanning vectors in 3-D space. Obviously, the computational effort in rotating the 
geometry data is significantly smaller than that in rotating a 3-D volume which may be 
made up of millions of voxels. Further, if rotating the discrete a priori volume, 
interpolating voxel values is inevitable leading to further losses of accuracy.  

Having rotated the given geometry data the projections can be computed by 
simulating one X-ray for each detector pixel to be evaluated. Therefore, for each volume 
voxel hit by the ray, a ray weight corresponding to the ray’s relative length within that 
voxel needs to be computed such that all the weights add up to unity. Note that the 
volume’s center is positioned in the origin just as it is in the SART reconstruction process. 
To find the pixel value corresponding to the detector pixel, the weighted sum of all voxels 
hit is computed. 
 

3.1.3 Evaluation of the simulated projections 
Finding a reasonable evaluation value is challenging since the grey values of the 

projection pairs cannot be compared directly because of the different image acquisition 
methods. Comparability can be achieved by binarization (or trinarization) of the 
projections, i.e. segmentation in 2 or 3 different areas. In order to segment a projection into 
two areas, distinguishing between pixels that where hit by X-rays either having passed any 
material on their way from source to detector or not, a single threshold is used. This 
threshold is found in a way similar to Otsu’s method [5]. Otsu starts with computing the 
variances of the two classes the image is divided into by a threshold 	 	 . The ‘ideal’ 
threshold is selected as the one minimizing the intra-class variances, or, completely 
equivalent, maximizing the between-class variance. Let  be the probability of the 
‘material class’ (consisting of all pixels with grey value < ),  and  the means 
of the material and the ‘air class’ and  the whole projections‘ mean. The between class 
variance, which is minimized in Otsu’s method, is given by 
 

	 1    (3) 
 
with 	 	2. In the algorithm introduced here, the parameter c is chosen greater than 2 
resulting in a higher weight on a small intra-class variance of the air class than on a small 
intra-class variance of the material class. This is reasonable as the air class is to consist 
only of pixels that where hit by X-rays not having crossed any material and therefore 
having been hardly attenuated on their path. Thus the variance of grey-values within this 
class should be very small, whereas the variance within the material class may be 
significantly higher. In some cases, distinguishing a third projection segment allowing for 
more distinguishable evaluations can be necessary. Therefore, a third class of pixels, 
containing those that were hit by very strongly attenuated X-rays and therefore 
corresponding to denser material, is defined. To accomplish such a distinction, another 
binarization using a single threshold is performed on the material class. In this case, the 
threshold is found by computing a specified quantile of the material class’s pixel values. 
As the translation is not known yet, the objects can be positioned differently within the 
projection pairs. To compensate for this, object barycenters are computed by averaging 
over all border pixels of the material class and the resulting real-valued pixel indices are 
moved to the projection center. Once the preprocessing is completed, the rotation’s 
evaluation value can be computed as 
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where  are the centered CL projections and  the centered simulated projections for 
rotation 	 	 .  
 

3.1.4 Selection of the best rotations and narrowing down the search space 
To find the ideal rotation, an iterative approach is used. After having evaluated all 

rotations of the first equidistant rotation set, the best or a number of best rotations are 
selected. When doing so only local minima of the initial set may be picked and the number 
of rotations picked is indirectly determined by a user-input parameter . This value 
determines up to which relative deviation from the best evaluation value obtained so far 
(∆  where ∈  is the number of iterations already performed) rotations may be 
selected as candidates for the next iteration. Thus, a rotation ∈  may only be selected 
if  

∆ ∆

∆
 (5) 

 
holds true. Around each selected rotation, a refined equidistant grid of rotations that are to 
be evaluated in the following iteration is computed. The size of that grid, i.e. the number of 
grid elements and the factor by which the grid spacing is downscaled, can also be 
determined by the user. In the following iterations, several independent grids are 
considered. The grid sizes should be chosen in such a way that the grids cannot overlap 
and each grid leads to a different local minimum. This procedure is repeated until the grid 
spacing falls below a certain threshold and thus, the local minima are approximated 
sufficiently exactly. As the evaluation mapping :	 	→ 	  is not convex and may have a 
large number of local minima, such an iterative procedure tracking different local minima 
is necessary in order to find the global minimum. Still, this is only possible if grid distance 
in the initial set of rotations is sufficiently small. In some cases, especially in case of binary 
a priori data, an initial rotation allowing for convergence against the unique global 
minimum may be inevitable. 
  

3.2 Translation	
The three-dimensional translation vector is computed after scaling and rotation 

have already been found, thus one can assume three pairs of projections showing the object 
in identical orientations. For each projection an image barycenter is computed and, by 
subtraction, a two-dimensional translation is found for each pair of projections as 
illustrated in figure 6. 

 
 
 
 
 
 
 
 
 
 

Figure 6. Pairs of projections, red measured CL data, green simulated projections. 



 
One can compute corresponding 3D translations , 1,2,3 within the detector plane as 
the detector orientation for each rotation angle is known from the CL measurement’s 
geometry data. These translations are projections of the actual object translation ∈  
onto the detector plane in respective X-ray directions. Thus, it holds for 1,2,3 
 

	 		 	 ∙ 	 	 	 	 ∙ 	     (6) 

 
with  the geometry-dependent magnification factor, ∈  the translation vectors 
computed from projection pairs and geometry, ∈  the X-ray transmission direction 
through the simulated projection’s barycenter and real numbers ∈ , 1,2,3. Due to 
small variations in the object’s actual magnification depending on its exact (unknown) 
position, this formula is not completely accurate. The translation  can be found by solving 
the optimization problem 
 

argmin	 min
∈

	 ∑ 	 	 ∙ 	 	 	 	 ∙ 	 	 	   (7) 

 
Computation of this convex function’s gradient and setting it equal to zero yields a 

linear system of six equations. The translation allowing for registration of a priori and CL 
data is then obtained by solving this system. 
 

3.3 Scaling 
 In many cases, a computation of a scaling factor is not necessary as it is already 
known or may be solved in a preprocessing step. The method described here for finding the 
scaling factor is not very exact and should not be used if high accuracy is required. 
Nevertheless, application of the method for differently scaled datasets allows for quite 
accurate computation of rotation and translation which is not possible without roughly 
determining the scaling factor to be applied. 
 Similarly to the rotations’ algorithm, a scaling factor can be estimated from the bi-
/trinarized projection sets. By summing up all foreground pixels (values 1 and 2) the 
projection’s object area can be computed. Comparing the summed up object areas of the 
two sets of three projections to each other gives an estimation for the scaling factor’s 
square. The estimation is better, the more similar the object orientation in the projection 
pairs, i.e. the smaller the evaluation value Δ. Still, caused by the two different image 
acquisition methods used, the scaling factor cannot be computed exactly even if the object 
orientations are completely conform. If available, other means of determining the scaling 
factor are to be preferred. 

4. Results & Discussion 

4.1 Simulated data 
To validate the algorithm, simulated data of a circuit board with a fracture is used. The 
projections were simulated using CLARA geometry; a voxel volume containing a defect 
free version of the circuit board was computed by the simulation software Scorpius XLab 



and was used as a priori model. The a priori volume was consecutively rotated by -26° 
around the x-axis, 40° around the y-axis and 72° around the z-axis which is equivalent to a 
single rotation of 76.38° around the axis (-0.5934, 0.2351, 0.7698). An additional 
translation by the vector (-1.0,-1.4,-0.8) was applied. This information is used to easily 
determine the algorithm’s accuracy. 

Table 1 summarizes the parameters of translation and rotation which were 
computed using the 2D-3D registration algorithm and compares these values to the actual 
transformation applied to the a priori volume. The computed rotation angles deviate by less 
than 0.0015% from the ground truth. For the translation vector, the maximal deviation is 
3.4 % for the z-component, and less for the other two components (0.81% and 0.58%). The 
accuracy depends on the bi- and trinarization thresholds which are applied to the projection 
sets to be compared. At the same time, precision can be increased by using larger 
projections due to the greater number of pixels contained. 

 
 

Table 1. Difference between computed and actual transformation parameters 
 

Axis Translation 
computed [cm] 

Translation [cm] Rotation 
computed [°] 

Rotation [°] 

x -1.0081 -1.0 -26.0038 -26.0 
y -1.4081 -1.4 40.0005 40.0 
z -0.8275 -0.8 71.9911 72.0 

 
 

 
 

Figure 7. Circuit board phantom, frontal view, left SART, right AP-SART using a registered a priori 
volume. 

 
 



 
 

 
 

Figure 8. Circuit board phantom, frontal view, magnified, left SART, right AP-SART using a registered a 
priori volume. 

 
The gain in quality that can be achieved by the use of registered a priori information is 
illustrated in a few figures: In the reconstruction’s frontal views shown in figure 7 and 8 
the defect, a branched crack, is clearly better visible when registered a priori information is 
used. Figure 9 shows the lateral views of the reconstructed volumes. The images 
demonstrate that the blurring artefacts can be drastically reduced by the use of a priori 
information. While the circuit board’s contours cannot be recognized in the traditional 
reconstruction, the a priori reconstruction not only shows the edges sharply but also allows 
the defects to be detected. In this lateral view the crack within the circuit board’s base 
consists of two branches and thus is visible as two porosities in the magnified AP-SART 
reconstruction, which cannot be discerned in the normal SART reconstruction without a 
priori information.   
 

     
 



Figure 9. Circuit board phantom, lateral view, left SART, right AP-SART using registered a priori volume. 
 

4.2. Measured data 
A test on measured data without known orientation was also performed. A fiber reinforced 
plastics T-profile was scanned with CLARA and a conventional CT scanner. An a priori 
volume of the entire object was computed using the reconstruction of the CT data. To this 
end, the CT reconstruction volume of 510 x 640 x 1024 voxels was binarized into air ( = 

0) and material ( = 1) areas. All air voxels inside the object were set to 1 also, to 

guarantee that no information about the object’s interior from the CT scan was used as a 
priori information. 400 projections of 20482 pixels were measured and used to do a 
standard SART and an AP-SART reconstruction of a volume  of 510 x 640 x 1024 voxels. 
The registration between the orientation of the a priori volume from the CT scanner and 
the projections from CLARA was computed using the proposed algorithm.  

     

Figure 10. T-profile, lateral view, left SART, right AP-SART using registered a priori volume. 
 

The standard SART reconstruction without additional knowledge (fig. 9 left) shows typical 
laminography artefacts which blur the shape of the object. There are also some fiber cross 
sections (small white points) falsely reconstructed in the air area (red box), where there 
clearly is no object. The AP-SART (fig. 9 right) result with registered a priori information 
on the other hand reconstructs the object’s form faithfully and significantly reduces the 
laminography artefacts. The fiber cross sections are also rendered clearly. The gray level 
difference in the upper and lower parts of the object are due to the laminographic geometry 
which cannot reconstruct the absolute density values faithfully, but which poses no 
problem for the identification of the fibers. 



5. Conclusion 
The use of a priori information in the reconstruction of laminographic measurement data 
can dramatically increase the quality of the resulting volume and thus enables the detection 
of defects which cannot be identified within the traditionally reconstructed volume. The 
algorithm presented in this work successfully registers 2D CL data with 3D a priori models 
and therefore allows for an effective use of given a priori knowledge in the SART 
reconstruction process. Apart from its benefits for computed laminography this technique 
is also very useful for classic CT, for instance reducing the number of projections needed 
for sufficient reconstruction quality and thereby minimizing the measurement and 
reconstruction time or for dealing with limited angle datasets. 
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