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Abstract—Energy efficiency is a very important aspect of
modern communication systems. In particular, industrial appli-
cations, that deploy wireless machine-to-machine communication
and process automation, demand energy-efficient communication
in order to prolong battery lifetime and reduce inter-node
interference, while maintaining a predefined probabilistic delay
bound. In this work, we propose an algorithm that minimizes the
transmit power in a WirelessHART network under statistical de-
lay constraints. We achieve this by utilizing a recently developed
network calculus approach for wireless networks performance
analysis. The evaluation of the algorithm shows that it reaches
quasi-minimal power settings within a few iterations.

I. INTRODUCTION

Energy-efficient wireless networking has received a sig-
nificant research interest over the last decade. Among other
subfields, wireless sensor networking community considers the
minimization of energy consumption, which leads to maximiz-
ing the lifetime of the network, as a primary design target.
Apart from being an academic topic, more recently sensor
networks have also become increasingly relevant in practical
deployments, which led to the definition of various standards.
IEEE 802.15.4 appears to be among the first of such standards
emphasizing low-power consumption for wireless networks.
Hence, many wireless sensor network architectures are based
on IEEE 802.15.4. Wireless sensor networks are nowadays
becoming increasingly commercially relevant, especially for
industrial applications [1]. Due to this, more specialized stan-
dards and protocols have been established (being mostly based
on IEEE 802.15.4) such as TSMP [2], WirelessHART [3]
and ISA 100 [4]. These standards focus on reliable network
operations primarily in the domain of process automation,
which requires closed-loop control with relatively relaxed
latency requirements in the range of seconds. Nevertheless,
the network reliability requirements for such applications, with
respect to deadlines in the range of hundreds of milliseconds,
needs to be high, usually above 95%. Furthermore, any means
to extend the lifetime of the wireless industrial network for
such applications is of high interest, as the corresponding plant
is usually operated for years (if not for decades), while the con-
trol network is supposed to run on batteries. Hence, network
maintenance and plant down-time should be at a minimum,
requiring an energy efficient operation of the network with
respect to the application demands.

The main energy consuming component of a wireless node
is usually its wireless transceiver. This suggests that minimiz-
ing transmission power would have the desired network energy
minimizing effect. However, transmission rate, and hence

latency and transmission reliability performance, degrades with
the reduction of transmission power. It is therefore necessary
to design an algorithm which adapts the transmission power of
a wireless node based on the required transmission rate, while
still maintaining probabilistic performance bounds.

Wireless networks are generally characterized by randomly
varying channel gain due to the effect of fading, which is usu-
ally modeled by a random process, e.g., Rayleigh, Nakagami-
m, etc. As a result, the channel exhibits time-varying channel
capacity. This makes the task of analyzing the performance
of wireless networks a challenging one. An approach to
address this difficulty is through the use of (min,×) stochastic
network calculus [5]. This approach allows the representation
of random traffic and service processes and provides a method-
ology to obtain probabilistic performance bounds for wireless
networks in terms of the underlying fading channel parameters.
The analysis using (min,×) network calculus proceeds by
transferring the network model into an alternate domain, called
the signal-to-noise ratio (SNR) domain, where traffic/service
quantities are measured in the amounts of signal-to-noise ratio
that is required/available at the receiver side. Hence, this
approach permits the analysis of a wireless network where
traffic flow is described using a network layer model, while
the service offered by the fading channel is described using a
physical layer fading channel model. It was shown in [5] that
this approach has several advantages over existing approaches
for the analysis of wireless systems.

In this work we develop a novel approach and an algorithm
for transmit power minimization at a single device in Wire-
lessHART systems. Our objective is to minimize the transmit
power while maintaining a target queuing performance of
the node, anticipating the target performance to correspond
to the quality of service (QoS) demands of an industrial
control application. To reach the envisioned goal, we resort
to stochastic network calculus (see [5] and references therein),
specifically (min,×) network calculus, to model and optimize
the system performance. The novel application of stochastic
network calculus to energy-efficient wireless networks and
the developed transmission power minimization algorithm is
our main contribution in this paper. This approach exposes
fundamental tradeoffs between transmission power efficiency
and wireless network performance. More relaxed performance
bounds would allow for a more energy-efficient system. It also
highlights the effect of channel variability on the achievable
probabilistic performance for a given transmission power. In
addition, the queuing perspective that we adopt distinguishes
this work from much work presented in the domain of physical



layer design for wireless systems, where the objective is
usually to maintain a certain average rate or outage-constrained
rate while minimizing the transmission power. When queuing
performance is considered in such approaches, the optimization
problem becomes much more difficult to track.

The remaining paper is structured as follows. In Section
II we present related work. The system model is described in
Section III. A brief background for (min,×) network calculus
is given in Section IV. The power optimization algorithm is
presented in Section V and numerical results are presented in
Section VI. Section VII concludes the paper.

II. RELATED WORK

The topic of energy minimization under QoS constraints
in wireless networks has attracted a lot of interest in the last
decade [6]–[12]. Qursoy, Qiao and Velipasalar [6] analyzed
the attainable bit energy levels in low power and wideband
regimes. They addressed the tradeoff between energy efficiency
and spectral efficiency using effective capacity in order to
capture QoS behaviour. They also provided energy-bandwidth-
delay tradeoff for constant arrival flows in case of no or
perfect channel side information (CSI) at the transmitter,
while the receiver has only perfect CSI. They concluded
that the presence of QoS constraints decreases the spectral
efficiency or equivalently increases the energy requirements
for fixed spectral efficiency values at low, but non-zero SNR
levels. However, direct optimization of the transmit power
was not considered. Julian et al. [7] presented a convex
optimization framework for resource allocation (power and
admission control, delay and throughput optimization) subject
to power constraints, data rates and outage probability. The
authors of [7] do not, however, consider probabilistic delay
bounds. Optimal rate control policy which minimizes the
energy consumption for transmitting delay constrained data
was addresses by Zafer and Modiano [8]. They obtained a
rate adaptation policy that minimizes the transmission energy.
This policy is based on a continuous time stochastic control
formulation. They further use cumulative curves and obtain an
optimal policy with variable deadline constraints, as well as
present an energy efficient policy for arbitrary packet arrival.
Our work considers transmission power control rather than the
rate adaptation used in [8], which is more suitable for the
intended application.

Energy-efficient scheduling policy for delay constrained
traffic over fading channels was also studied by Lee and Jindal
[11]. Near-optimal bit allocation policies are derived for delays
bigger than two time slots, while an analytic expression of the
optimal scheduler is obtained for a delay equal to two time
slots. This work indirectly minimizes the required transmission
energy, by controlling the number of transmitted bits per time
slot in such way, that the expected energy per time slot is
minimized. Fu and Modiano [9] presented an optimal closed-
form transmission schedule which maximizes the expected
data throughput. This approach was extended to minimization
of the energy required to send a fixed amount of data over a
fading channel given deadline constraints, when the transmitter
has a fixed amount of available energy. The numerical results
show a lower energy consumption compared to other threshold
policies. However, none of these works maps the obtained
policies to practical systems nor focuses on minimizing the
transmit power of the nodes.

An energy optimization problem in continuous time for
delay constrained data using a calculus approach is formulated
by Zafer and Modiano [10]. They considered a queuing system
with controllable service rate where the QoS constraints are
translated into a minimum departure curve constraint. The
authors provided optimal data transmission policies that offer
a QoS guarantee over a finite time interval and minimize
the expected energy expenditure. They numerically compute
the energy cost for any feasible policy. The analysis is done
for both deterministic and stochastic arrivals. However, the
work is based on deterministic network calculus and stochastic
performance bounds over wireless fading channels were not
considered. Berry and Gallager [12] tried to regulate both
transmission power and buffer delay incurred by the traffic by
adapting the transmission rate and power based on the channel
state information as well as the buffer occupancy. The authors
analyzed the tradeoff between the average delay and the aver-
age transmission power required for reliable communication.

Although the mentioned papers focus on energy mini-
mization for delay constrained traffic, none of them considers
probabilistic performance bounds for wireless fading channels,
while at the same time minimizing the transmit power. In this
work we address such performance bounds using the theory of
stochastic network calculus and propose an algorithm which
determines the minimal transmit power a node should use, in
order to satisfy statistical delay constraints and a probability
for their violation. To our knowledge, a transmit power op-
timization algorithm of WirelessHART under statistical delay
bound constraints does not exist.

III. SYSTEM MODEL

Industrial applications deploy WirelessHART for process
automation [3]. We present next a brief description of the
WirelessHART standard. We also provide description of the
underlying wireless channel model and traffic characterization.

A. WirelessHART

As mentioned earlier, we consider a wireless commu-
nication process in a network operating according to the
WirelessHART standard for industrial process automation [3].
The generic WirelessHART network topology is presented
in Fig. 1. Basically, WirelessHART is a centrally controlled
network, where the network manager assigns transmission
resources to communication nodes referred to as field devices.
It performs these resource allocations based on the applica-
tion requirements, while trying to maximize the lifetime of
the network. Thus, energy-efficient operation of the network
depends greatly on the operation of the network manager. The
field devices can be sensor and/or actuator nodes and are very
often battery-powered. In the following, we focus on a single
transmitter and receiver field device pair, which is controlled
by the network manager.

WirelessHART employs both direct-sequence spread spec-
trum (DSSS) and frequency-hopping spread spectrum (FHSS)
to mitigate fading and interference. The PHY layer of Wire-
lessHART follows the IEEE 802.15.4-2006 [14] standard for
low power devices and networks. The standard uses 16 chan-
nels in the 2.4 GHz ISM band and achieves total data rate
of up to 250 kbps and a symbol rate of up to 62,5 kBaud/s,
while the symbol duration is 16 µs. At the MAC layer, aside
from frequency hopping, WirelessHART employs TDMA, by
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Fig. 1. WirelessHART network architecture [13]

means of which each sender is allocated different time slots
for sending data. Each time slot in WirelessHART is 10 ms
long. The TDMA together with the channel hopping is realized
by the time synchronized mesh protocol (TSMP) [2] for self-
organizing multi-hop networks. In every time slot, a node
transmits on a different channel even if it communicates with
the same receiver. According to the TSMP time slot format,
more than half of each slot is overhead (ACK frame and
synchronization preambles). About 4 ms (or 250 symbols)
remain for payload transmission, which we will consider in
the following.

According to the IEEE 802.15.4 standard, a sequence of
consecutive and equally sized time slots builds a superframe.
A superframe can last from 15 ms up to several seconds and
its format is defined by the network manager. Within every
superframe, the network manager allocates specific number
of time slots to each device, during which the data is being
transmitted.

B. Wireless Radio Channel Model

As mentioned, we consider the payload communication
between a single WirelessHART transmitter p and receiver
q via a wireless link. The link is basically modeled as a
Rayleigh fading channel and no interference is considered.
More precisely, we assume a block-fading process in which
the channel gain stays constant within a time slot, but it
varies independently between two consecutive slots due to
the channel hopping. Let |hi|2 be the instantaneous channel
gain in the i-th time slot and let |h̄|2 be the average channel
gain (where the average channel gain results from the path
loss, while the instantaneous deviation from this average value
is due to fading). Therefore, the received power Prx and the
signal-to-noise ratio γ are exponentially distributed [15]:

f(γ) =
1

γ̄
e−

γ/γ̄ , γ ≥ 0,

where f(γ) is the probability density function of γ. The
average SNR of the channel, γ̄, is given by:

γ̄ =
Ptx

¯|h|2

σ2
, (1)

where Ptx is the transmit power and σ2 is the noise power. For
a known average SNR and average channel state information,

the sender can determine the transmit power from Eq. (1).
We further assume that the transmitter has knowledge of the
average channel gain, as this can be deduced in WirelessHART
from the acknowledgments sent back from the receiver im-
mediately after the payload transmission. Finally, we model
the instantaneous service si in time slot i, as the maximal
instantaneous channel capacity in that time slot, based on the
Shannon capacity [16]:

si = Ns log2(1 + γi) = log2(1 + γi)
Ns , (2)

where Ns is the number of payload symbols that can be
transmitted per time slot (in our case Ns = 250) and γi is
the instantaneous SNR in the i-th time slot.

C. Traffic Characterization

The traffic of interest originates from an industrial control
application in the field of process automation. Hence, we are
interested in a sensor or actuator information flows with low,
but constant data rate of k bps. The application has certain
quality of service (QoS) requirements which have to be met.
These QoS requirements are expressed through the delay w
and the probability ε that this delay is violated. w is given as
the maximum number of time slots needed for the application
data of the sending node p to reach the application layer of
the receiving node q. The violation probability represents the
maximum percentage of data packets that are not received
within the delay w, either due to a too low service rate of the
wireless channel or due to a corresponding build-up of data in
the queue. Typical process automation applications running on
top of WirelessHART have delay requirements in the range of
several hundreds of milliseconds with a violation probability
in the order of 10−3 [17].

D. Problem Formulation and Contribution

The major goal in this paper is to determine the minimum
power used by the transmitter that is required to still serve
the information flow with the corresponding quality of service
in terms of delay and delay violation probability. By finding
the smallest possible average SNR which satisfies such defined
QoS parameters, the sender can determine the lowest possible
transmit power it should use, according to Eq. (1). Obviously,
this will decrease the energy consumption of the node and
at the same time decrease the interference with simultaneous
neighbouring transmissions.

To account for the fact that a queue builds up at the
transmitter from time to time, and the delay and delay violation
probability requirements relate to the entire system (transceiver
+ queue), we resort to stochastic network calculus [18] to
model the problem. The theory of network calculus is suitable
for describing bounds on the delay for a given service and
arrival process characterization. Having the network calculus
definition of the delay bound, the major question becomes
how to minimize the transmit power (alias the SNR) within
the framework, i.e. which method to use to determine the
minimum SNR for the required QoS parameters. The main
contribution of this work is therefore an algorithm which deter-
mines the minimal SNR under the above stated requirements,
as a closed-form analytical solution is out of reach given the
complexity of the stochastic network calculus framework. The
algorithm can be executed by the field devices themselves,
as they all have the required input information (they get the



average channel gain from other field devices and application
data related information, like QoS requirements, from the
network manager). We will present the binary search-based
algorithm after introducing the network calculus model used
for our computations in the next section.

IV. STOCHASTIC NETWORK CALCULUS APPROACH TO
WIRELESS NETWORKS ANALYSIS

The recently developed wireless network calculus based on
(min,×) dioid algebra is the starting point for the development
of our power minimization algorithm for WirelessHART sys-
tem. The approach provides probabilistic performance bounds,
i.e., delay and backlog, in terms of the average received SNR.
The (min,×) network calculus relies heavily on the Mellin
transform [19] which is defined for any nonnegative random
variable X as follows

MX(s) = E[Xs−1], s ∈ R ,

when the expectation exists.
In the following, we view the network model in the link

and network layer as residing in a domain that we call bit
domain, while its transformed counterpart in the physical layer
in what we call SNR domain. After we introduce the arrival
and service process in these two domains, we define the delay
bound function by means of Mellin transforms.

A. Arrival and Service Processes in the Bit Domain

The cumulative arrival to, departure from and service of-
fered by the wireless channel during the time interval [τ, t) are
characterized by the bivariant processes A(τ, t), D(τ, t) and
S(τ, t) respectively, which are nonnegative (possibly random)
processes and increasing in t. Furthermore, we assume causal
system where D(0, t) ≤ A(0, t).

For a WirelessHART system it is reasonable to assume
arrival at a constant rate kts bits per time slot. Then we have
for any 0 ≤ τ ≤ t

A(τ, t) = kts(t− τ) . (3)

Similarly, the cumulative departure, i.e., the successfully trans-
mitted bits, is given by

D(τ, t) =

t−1∑
i=τ

di ,

where di denotes the number of successfully transmitted bits
during the i-th time slot.

The cumulative service (in bits) offered by the underlying
wireless fading channel is given by

S(τ, t) =

t−1∑
i=τ

si =

t−1∑
i=τ

log(1 + γ̄|hi|2)Bs

,
t−1∑
i=τ

log g(|hi|2) ,

where si is the instantaneous fading channel capacity which is
given by Eq. (2) and Bs = Ns/ log 2. Furthermore, we assume
stable operation of the underlying queuing system, where the

average arrival rate is smaller than the average service rate of
the wireless system, i.e.,

lim
t→∞

A(0, t)

t
≤ lim
t→∞

S(0, t)

t
. (4)

Then the delay W (t) experienced at the node is given by

W (t) = inf
u≥0
{A(0, t) ≤ D(0, t+ u)}. (5)

B. Arrival and Service Processes in the SNR Domain

In order to apply the (min,×) network calculus results,
we need to transfer our system description into the SNR
domain. Traffic and service processes in the bit domain, i.e.,
A,D and S, are related to their SNR domain counterparts
represented by the calligraphic upper case letters A,D and S
respectively, through the exponential function, i.e., A(τ, t) ,
eA(τ,t),D(τ, t) , eD(τ,t) and S(τ, t) , eS(τ,t).

The cumulative service of a fading channel in the SNR-
domain is therefore given by:

S(τ, t) =

t−1∏
i=τ

g(|hi|2) . (6)

Following the definition given with Eq. (5), the delay can be
expressed in terms of SNR traffic processes as follows

W(t) = W (t) = inf
u≥0
{A(0, t) ≤ D(0, t+ u)} . (7)

C. Mellin Transforms for Delay Analysis

Theorem 1 in [5] expresses the probabilistic delay bound
in terms of the Mellin transform of the SNR service and
arrival processes. According to that theorem, a probabilistic
delay bound wε defined for any violation probability ε, i.e.,
Pr(W (t) > wε) ≤ ε, is the smallest number satisfying

inf
s>0
{M(s, t+ wε, t)} ≤ ε , (8)

where

M(s, τ, t) =

min(τ,t)∑
u=0

MA(1 + s, u, t) · MS(1− s, u, τ). (9)

The minimization over s in Eq. (8) provides the tightest
possible bound on the delay violation probability for a given
delay bound wε. The detailed derivation of the bound can be
found in [5].

For the deterministic arrival process defined in Eq. (3), we
have A(τ, t) = ekts(t−τ), which has the Mellin transform

MA(s, τ, t) = E[As−1] = ekts(t−τ)(s−1). (10)

Assuming i.i.d fading channel1, the Mellin transform for
the SNR service process with Eq. (6) is given by

MS(s, τ, t) =

t∏
i=τ

Mg(|hi|2) =
(
Mg(|hi|2)(s)

)t−τ
,

where we used the product property of the Mellin transform.
Furthermore, assuming Rayleigh fading, we compute

1This assumption is valid for block-fading channels which is an acceptable
channel model for the WirelessHART system.



P (g(|hi|2) ≤ x) = P ((1 + γ̄|hi|2)Bs ≤ x)

= P (|hi|2 ≤
x1/Bs − 1

γ̄
)

= 1− e−
x
1/Bs−1
γ̄ ,

since for Rayleigh fading, the channel gain |hi|2 is expo-
nentially distributed. The probability distribution function of
g(|hi|2) is then given by

fg(|hi|2)(x) =

{
x

1
Bs

−1

γ̄Bs
e−

x
1/Bs−1
γ̄ , if x ≥ 1;

0 , otherwise.

The Mellin transform of g(|hi|2) is

Mg(|hi|2)(s) = e
1/γ̄ · γ̄Bs(s−1)Γ

(
Bs(s− 1) + 1,

1

γ̄

)
,

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the incomplete gamma

function. It follows that

MS(s, τ, t) =
[
e

1/γ̄ · γ̄Bs(s−1)Γ (Bs(s− 1) + 1, 1/γ̄)
]t−τ

.

(11)
Substituting Eqs. (10) and (11) in Eq. (9) we have

M(s, t+ w, t) =

(
e

1/γ̄ · γ̄−sBs · Γ(1− sBs,
1

γ̄
)

)w
·
∞∑
u=0

(
ektss · e1/γ̄ · γ̄−sBs · Γ(1− sBs,

1

γ̄
)

)v
,

where we use the change of variables v = t−u and let t→∞.
The sum above converges when

ektss · e1/γ̄ · γ̄−sBs · Γ(1− sBs,
1

γ̄
) < 1 . (12)

It follows that

M(s, τ, t) =

(
e1/γ̄ · γ̄−sBs · Γ(1− sBs, 1

γ̄ )
)w

1− ektss · e1/γ̄ · γ̄−sBs · Γ(1− sBs, 1
γ̄ )
≤ ε ,

(13)
for any s > 0.

The condition given with Eq. (12) is necessary for con-
vergence of the bound in order to obtain bounded violation
probability. Otherwise, the delay bound will increase with t
and the system becomes unstable. Hence, we refer to this
condition as ‘stability condition’.

For a WirelessHART pair of nodes p and q, communicating
over a Rayleigh fading channel, a unidirectional constant data
flow that has the QoS requirements w and ε and based on
Eq. (8), we make the following statement: Given a traffic flow
of rate kts, an average SNR γ̄ and some s > 0 that satisfy
Eq. (12) , the probability that the delay exceeds w is upper
bounded by ε.

Eq. (13) relates the QoS requirements of the incoming flow
to the underlying wireless channel average SNR, and hence to
the required transmission power. We propose a transmission
power minimization scheme based on Eq. (13) that satisfies
the required probabilistic delay bound constraints, i.e.,
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Find: min γ̄ ,

subject to: inf
s>0
{M(s, τ, t)} ≤ ε

AND ektss · e1/γ̄ · γ̄−sBs · Γ(1− sBs,
1

γ̄
) < 1 .

Due to the complexity of Eq. (13), an analytical solution
for the minimal γ̄ is not possible. Instead, we propose a
binary search algorithm to solve the minimization problem
defined above and find the minimum γ̄ that satisfies the QoS
requirements.

V. BINARY SEARCH ALGORITHM

In this section we present the main contribution of the
paper: An algorithm which finds the optimal average SNR
for a given wireless link in an industrial network. Having the
optimal SNR, the sending node p can determine the optimal
transmit power P ∗tx according to Eq. (1). The algorithm is
based on binary search in two dimensions: Along s > 0 and
along the average SNR γ̄. The QoS parameters w and ε, the
amount of incoming bits per time slot kts and the number
of payload symbols Ns, that can be transmitted within one
time slot, are input parameters of the algorithm. The algorithm
uses the convexity in s and the monotonicity in γ̄ of the
delay bound function M(s, γ̄), where we define M(s, γ̄) as
the right-hand side of Eq. (13). Hence, as the SNR is either
increased or decreased, the optimal s∗, which minimizes the
delay bound function, needs to be determined for each new
setting. Typically, these values of s do not correspond to
each other as the SNR is either increased or decreased. This
behavior is shown in Fig. 2.

In more detail, for a fixed γ̄, the value s∗ for which
M(s∗, γ̄) is minimal, is determined by doing binary search
along the interval (0, b), where b is the last point for which
the stability condition (12) holds. The main idea here is to
cut the interval (0, b) into four areas. The initial five chosen
points are represented in Fig. 3, where sm is the middle point
of (0, b). Note that we need five points in order to detect
an increasing or decreasing trend of M(s, γ̄). Whenever such
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trend of M(s, γ̄) is detected in one of the halves of the interval,
this half is discarded. For example, if by comparing the values
of M(sn, γ̄), where sn ∈ {sstart, sl, sm, sr}, a decreasing trend
is detected (see Fig. 3), then the left half of the interval (0, b) is
discarded and the minimum is further searched in the interval
(sm, b). If an increasing or decreasing trend is detectable from
both right and left side of (0, b), then the interval (sl, sr)
is considered for the next round. These three possible cases
during the search phase along s are shown in the pseudo code
of the function SEARCH S(sstart, send, γ̄,∆min, kts, w) given
in Algorithm 2. The function is called recursively until the
smallest size of an interval has been reached, defined with the
input parameter ∆min. At this point, the middle point sm of
the last considered interval is returned as s∗, i.e. as the point
s for which M(s, γ̄) reaches its minimum.

For the search in the second dimension along the average
SNR (see Algorithm 1), we start with a low value for γ̄, which
is defined as the lowest possible average SNR that would fulfill
Eq. (4), i.e. would result in a channel capacity big enough to
transfer kts bits per time slot. E.g., one could start with

γ̄init = (2
kts
Ns − 1) + 2, (14)

which is derived from the Shannon formula for the channel
capacity given with Eq. (2) and then increased by 3 dB.2
In case this SNR is not big enough to reach the violation
probability, i.e. if M(s∗, γ̄) > ε, then γ̄ is increased by a
factor f . In our case, we take f = 2, i.e. when we increase
γ̄ by 2, we actually add 3 dB. In case M(s∗, γ̄) lies below ε,
i.e. M(s∗, γ̄) < ε, then γ̄ is decreased for factor f in order
to come as close as possible to ε from below and be able
to further minimize the transmit power. Have in mind, that γ̄
should not be decreased to a value smaller than γ̄init (line 15
in Algorithm 1). The decreasing/increasing factor f is halved
whenever a decrease of γ̄ follows after an increase of γ̄ and
vice versa, in order to avoid that γ̄ oscillates between two equal
values (see lines 5 and 14 in Algorithm 1). In other words,
f ∈ {2, 1, 2−1, 2−2, ..., fstop}. In order to avoid decreasing f

2Note that γ̄ is given as a power ratio in both the algorithm and the
theoretical framework.

infinitely many times, we have introduced the stopping variable
fstop as a further input parameter (line 17 in Algorithm 1).

Recall again that the minimum of M(s, γ̄) shifts to the
right or to the left of the current s∗, whenever γ̄ has been
increased or decreased, respectively (see Figure 2): After each
modification of γ̄, the function SEARCH S, which determines
the value s∗ for which M(s∗, γ̄) is minimal, is called again
with either (s∗, b) (if γ̄ was increased) or (0, s∗) (if γ̄ was
decreased), (lines 9 and 25 in Algorithm 1). The algorithm
stops modifying γ̄ as soon as the following condition is met:

ε−M(s, γ̄) ≤ ∆εε. (15)

The so called proximity factor ∆ε defines how close we
want M(s∗, γ̄) to come to the given violation probability ε
and is also an input parameter of the algorithm. In other
words, ∆ε can be used as a parameter which sets the desired
algorithm precision. The number of iterations needed to reach
the near-optimal SNR is increased each time γ̄ is decreased
or increased (represented by the counter j in lines 7 and 23
in Algorithm 1) and is used as an evaluation metric of the
algorithm performance in the next section. Depending on ∆ε

and therefore, on the last value of f , the difference between
the actual optimum γ̄opt and the optimal SNR delivered by the
algorithm, γ̄∗, is given by

γ̄∗ − γ̄opt ≤ flast,

where flast is the last value of f before the algorithm exits.
The pseudo code of the binary search algorithm is given in

Algorithm 1. The function PROVE STABILITY(sstart, γ̄, kts)
finds the interval (0, b) for which the stability condition is
fulfilled, i.e. finds b, such that ∀s ∈ (0, b), and Eq. (12) holds.
The function performs a linear search starting from sstart and
iterating in small steps ∆s, until it reaches b + ∆s which
violates the stability condition. Note that in order to improve
the performance, similarly as in the case of SEARCH S,
PROVE STABILITY is called with sstart = 0 or sstart = s∗

each time γ̄ was decreased or increased, respectively. Due to
simplicity, we omit the pseudo code for this function.

VI. NUMERICAL EVALUATION

In this section we evaluate the performance of our algo-
rithm for different QoS parameters, as well as incoming data
rates, i.e. channel utilizations in a WirelessHART network.
We model the system on a time slot basis. We evaluate the
performance of the algorithm through the number of iterations
needed to compute the optimal SNR for given QoS parameters
(w, ε). This evaluation metric represents the number of times
γ̄ has been increased or decreased until the near-optimal value
has been found.

A. Methodology
In our evaluations we set the superframe duration to 100

ms. The sender p is allocated one time slot per superframe for
the data transmission. In the following, we are going to test
the algorithm performance and demonstrate its complexity for
a wide range of QoS constraints. Please note that the results
are showing a rather upper bound on the algorithm behaviour,
having in mind the Shannon capacity model we use.



Algorithm 1 Binary search
Require: ∆ε,∆min, kts, w, ε, fstop

Ensure: Determine the minimal SNR (γ̄∗) and the number of
iterations (j)
Initialize f = 2, j = 0, sstart = 0, Ns = 250, Bs =
Ns/log 2.
Set γ̄ = γ̄init, using e.g. Eq. (14), s.t. Eq. (4) holds

1: b = PROVE STABILITY(sstart, γ̄, kts);
2: s∗ = SEARCH S(sstart, b, γ̄,∆min, kts, w);
3: while true do

Compute M = M(s∗, γ̄) using Eq. (13)
4: if M > ε then
5: If γ̄ was decreased in previous round ⇒ f = 1

2f
6: γ̄ = γ̄ + f ;
7: j + +;
8: b = PROVE STABILITY(s∗, γ̄, kts);
9: s∗ = SEARCH S(s∗, b, γ̄,∆min, kts, w);

10: else if (M < ε) AND (ε−M ≤ ∆εε) then
11: return γ̄∗ = γ̄; Optimal SNR found ⇒ exit
12: else if (M < ε) AND (ε−M > ∆εε) then
13: Decrease γ̄ further
14: If γ̄ was increased in previous round ⇒ f = 1

2f
15: while γ̄ − f < γ̄init do
16: f = f/2
17: if f < fstop = then
18: Cannot decrease γ̄ further
19: return γ̄∗ = γ̄init;
20: end if
21: end while
22: γ̄ = γ̄ − f ;
23: j + +;
24: b = PROVE STABILITY(sstart, γ̄, kts);
25: s∗ = SEARCH S(sstart, s

∗, γ̄,∆min, kts, w);
26: end if
27: end while

Algorithm 2 Search s∗ ∈ (0, b) for which M(s∗, γ̄) is minimal
1: function SEARCH S (sstart, b, γ̄,∆min, kts, w)

Ensure: Find s∗
2: Compute sl, sm, sr ∈ (sstart, b)
3: send = b
4: if sm − sl > ∆min then
5: Find out in which interval lies s∗

***Case 1: s∗ ∈ (sstart, sm)
6: if M(send) > M(sr) > M(sm) > M(sl) then
7: s∗ = search s(sstart, sm, γ̄,∆min, kts, w)

***Case 2: s∗ ∈ (sm, send)
8: else if M(sstart) > M(sl) > M(sm) > M(sr) then
9: s∗ = search s(sm, send, γ̄,∆min, kts, w)

***Case 3: s∗ ∈ (sl, sr)
10: else if M(send) > M(sr) > M(sm)
11: AND M(sstart) > M(sl) > M(sm) then
12: s∗ = search s(sl, sr, γ̄,∆min, kts, w)
13: end if
14: else
15: s∗ = sm

16: return
17: end if
18: end function
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Fig. 4. Optimal SNR for different QoS parameters and incoming data rates.

We consider a wireless link between two nodes in a
WirelessHART network, on an approximate distance of 20-
30m. The propagation model is represented by the free space
path loss model [15], where the path loss exponent is α = 3,
due to the typical employment of such networks in industrial
environments, like for example fabric halls. We set ∆min =
10−10 for the smallest search interval (sstart, b), ∆ε = 0.01 as
the proximity factor in Eq. (15) and use a step of ∆s = 10−6

for the linear search of b in PROVE STABILITY. We stop
decreasing the factor f as soon as it gets smaller than fstop =
2−20. It is important to mention that we do not increase f
to a value bigger than 2, even if γ̄ has been increased in
two successive iteration rounds. This results into an increased
number of iterations for stricter QoS parameters. However,
when considering WirelessHART-based control applications,
it seems as a reasonable assumption the factor f to have a
maximal step of 2. Hence, in case when the target application
imposes stricter QoS requirements and bigger values of γ̄ are
in general expected, one can also double f each time γ̄ is
successively increased, in order to potentially lower the total
number of iteration rounds. Therefore, the factor f can be
adjusted according to the target control application.

B. Results
Let us now take a look at the performance of the algo-

rithm. Fig. 4 represents the optimal SNR in dB computed
by the algorithm for different target delay bound violation
probabilities, where k ∈ {3, 5} kbps and the delay bound
w ∈ {300, 500} ms. As expected, the optimal average SNR
is higher for smaller delays and violation probabilities, as well
as for bigger data rates. Hence, for w = 300 ms and ε = 10−8

as well as incoming data rate of 5 kbps, the minimal average
SNR is around 22 dB. Note that we represent here the SNR
and not the transmit power. As stated before, after computing
γ̄∗, the sending node can set its transmit power P ∗tx according
to Eq. (1).

Fig. 5 shows the minimal γ̄ vs. the target delay for different
violation probabilities and data rates. Especially in the area of
small delay bounds we notice that the violation probability
influences the choice of optimal SNR more than the data
rate. Both 2 kbps and 5 kbps curves converge to the minimal
possible average SNR, which is defined with γ̄init, as given in
Eq. (14). The value of the resulting SNR should not be lower
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Fig. 6. Algorithm performance for various violation probabilities and data
rates, where w = 500 ms. The increasing trend is especially seen for bigger
data rates, while the number of iterations for smaller data rate traffic fluctuates.

than γ̄init for a given incoming data rate k, as otherwise, the
channel capacity will be smaller than k and the channel will
be overutilized. As expected, the minimal allowed SNR, γ̄init,
is reached sooner for lower data rate flows.

Let us now look into the number of iterations that the
algorithm needs in order to compute γ̄∗. Fig. 6 shows the
number of iterations for different target violation probabilities
and different data rates, where w = 500 ms. As expected, the
number of iterations grows as the target violation probability
decreases. We also observe that in case of higher data rates, i.e.
higher γ̄∗, the algorithm needs more iterations until the stop-
ping criteria (15) is fulfilled (recall that the maximal increase
step is 3 dB). Hence, the increase in the number of iterations
is more obvious for higher data rates, in comparison to lower
ones, where it fluctuates. Note further, that for ε = 10−1 and
k = 2 kbps, the optimal SNR is already reached with γ̄init and
therefore, no iterations are needed.

Fig. 7 shows the number of iterations dependent on the
delay bound w, again for different data rates, in case when
ε = 10−4. For w = 0, 1 s the number of iterations is very
big and exceeds 50. The algorithm needs less iterations as the
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Fig. 7. Algorithm performance for different target delay bounds and data
rates, where ε = 10−4.
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Fig. 8. Iteration steps for different target delay bounds and violation
probabilities, where k = 5 kbps.

delay bound becomes less strict. Notice again, that the number
of iterations can fluctuate, especially when the resulting γ̄∗ is
not very high, which is in the case of lower data rates. The
number of iterations depends on the proximity factor ∆ε and
the stopping value fstop and varies for different settings. For
higher data rates, e.g. k = 10 kbps, the number of iterations
is strictly decreasing as the delay constraint is relaxed.

In Fig. 8 we present the algorithm performance for a traffic
flow with data rate k = 5 kbps and various QoS parameters
w and ε. We notice that for smaller delays and violation
probabilities, the number of iterations exceeds 40. As the target
delay is relaxed, the algorithm needs less steps to reach the
near-optimal SNR. Notice further, that for a fixed delay almost
always the number of iterations increases as the violation
probabilities become stricter. Moreover, as the QoS parameters
become less strict, they can be fulfilled with γ̄ = γ̄init and the
number of iterations equals 0. This is the case when w = 1 s
and ε = 10−2.

Finally, in Fig. 9 we show the relationship between the
number of iterations and the violation probability proximity
factor ∆ε, defined in Eq. (15). The target violation probability
is 10−5. As expected, the closer we want to come to the target
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Fig. 9. Number of iterations vs. the violation probability proximity factor
∆ε for different target delay bounds. The violation probability is ε = 10−5.
The trend is obvious: The closer we want to get to ε, i.e. the bigger algorithm
precision we want to achieve, the more iterations are needed.

ε, the more iterations are needed. Of course, the number of
iterations is bigger in case of stricter delay constraints.

What we have further noticed throughout the numerical
evaluations is that, the value flast is very often lower than
2−4, which results in an approximate distance to the actual
minimal average SNR of 0.01 dB and smaller. This means
that the optimum determined by the algorithm, γ̄∗, is very
close to the optimal SNR γ̄opt. Notice further, that the number
of iterations strongly depends on the initial value γ̄init, which
in turn, in our case, depends on the data rate of the control
application.

VII. CONCLUSION

In this work we present an algorithm which determines
a near-optimal average SNR, and therefore minimizes the
transmit power of a sending node in a wireless industrial
network. The traffic of interest is a QoS-constrained data
flow, with a delay bound and its violation probability as QoS
parameters, while the underlying system model is described
with the WirelessHART standard. The algorithm is based on
the definition for the delay bound function, defined with the
(min,×) network calculus in the SNR domain. It exploits the
convexity and the monotonicity of this function, while search-
ing for the near-optimal average SNR along two dimensions.
We have evaluated the algorithm performance for various
settings and broad range of QoS requirements. The numerical
results show that a near-optimal solution is found within a few
iterations. We have further witnessed a tradeoff between the
SNR and the target QoS system performance, which in turn
reflects the needed iteration rounds of the proposed algorithm.
In addition, we have identified several parameters which can be
set in advance in order to influence the algorithm performance.

It is important to add that, the algorithm can run on field
devices in a WirelessHART network, as no high computational
performance is needed. In order to additionally accelerate the
execution time, the computation of the incomplete gamma
function can be implemented by using look-up tables. Hence,
the nodes are going to be able to minimize their transmit power
while fulfilling given statistical delay constraints and violation
probabilities. This will result into increased energy efficiency

and at the same time reduce potential interference. As a further
step we plan to extend these evaluations to a multi-hop path
and consider end-to-end performance constraints.
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