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Abstract: To provide assistance functions in context of surgical interven-
tions, the use of a surgical phase detection plays an important role. By
assessing the progress of an on-going surgery, a tailored (i.e., context sen-
sitive) decision support for medical practitioners can be enabled. Subse-
quently, this provides opportunities to prevent errors, injuries, negligence
or malpractices. In this work, a surgical phase detection, combining Yet
Another Workflow Language (YAWL) with Dynamic Bayesian Networks
(DBNs) is proposed. Thereby, YAWL is used to model the relationship of
surgical phases; DBNs are used to allow for the detection of surgical phases
of interest. The approach is presented for the application example of a chole-
cystectomy (removal of the gallbladder).

1 Introduction

In modern medicine, the use of assistance functions becomes increasingly im-
portant [PFHB16]. Such functions can be realized as part of a computer as-
sisted surgery (CAS) to enable a decision support of the medical practitioners
[KWN+15]. Thereby, a decision support opens up a scope of optimization: E.g.
concerning the prevention of errors, injuries, negligence or (subsequently) mal-
practices.

In this context, a surgical phase detection plays an important role. Namely, be-
cause by assessing the progress of an on-going surgery, a tailored (i.e., context
sensitive) decision support during an intervention can be enabled. In doing so,
there is not only a passive dissemination (e.g. distribution via print media) of
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support (e.g. medical guidelines) – which was shown has only little effect on the
actual practitioners behavior [FL92, SGM+11]. Instead, we propose to provide
an interactive assistance in terms of a context sensitive decision support to assist
medical practitioners during an intervention.

In this work, we focus on the application example of the removal of the gall-
bladder (cholecystectomy). Thereby, we consider the standard procedure of a
cholecystectomy, the laparoscopic cholecystectomy. It is a minimal invasive ap-
proach using laparoscopes. These are endoscopes, specialized for an abdominal
surgery (i.e. a surgery concerning the stomach). It is therefore not surprising
that regarding CAS, the considered procedure can be categorized as a computer-
assisted abdominal surgery [KWN+15].

This contribution is structured as follows: first, in sections 2 and 3, the funda-
mentals of Yet Another Workflow Language (YAWL) and Dynamic Bayesian
Networks (DBNs) are presented. Section 4 gives details on the application ex-
ample of a laparoscopic cholecystectomy and the according model in YAWL.
Section 5 focuses on the modelling approach of combining YAWL and DBNS.
The approach is verified in section 6 and, finally, a conclusion is drawn in section
7 on page 12.

2 Fundamentals on YAWL

There are various reasons for choosing YAWL (Yet Another Workflow Language)
as a modeling tool for workflows [HRAA10]. One aspect is the expressive
power reflected in various so called workflow patterns. Another aspect is the
formal semantics which enable the application of analysis tools like WofYAWL
[VvdAtH06] to verify a model.

Nevertheless, YAWL is said to be comprehensive [HRAA10], and building a
valid model can be challenging task, especially if the medical expert uses YAWL
on his own – and therefore without the assistance of a technical domain expert.
Consequently, in [Phi16] we introduced translation rules transferring one com-
prehensible UML activity into a YAWL specification. That means, YAWL can be
used as an intermediate language for further assistance functions which are build
upon a YAWL specification.

Figure 2.1 depicts important elements of the YAWL notation. Since YAWL is
an extension of so-called Workflow Nets [AH03], their elements show a high de-
gree of similarity. Formally, a YAWL specification is a non-empty set of extended
workflow nets (EWF Nets). Such an EWF Net can comprise several conditions
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Figure 2.1: Important elements of the YAWL notation. A condition is repre-
sented by a circle and a task is represented by a square. There are two unique
conditions: the so called input condition (black triangle in a circle) and the output
condition (black square in a circle). A task can be expanded by a split and a join
behavior which is indicated by the corresponding symbols.

which are represented by circles1 (cf. Figure 2.1). Furthermore, an EWF Net
comprises two unique conditions: one unique input condition, which is repre-
sented by a black triangle in a circle, as well as a unique output condition, which
is represented by a black square in a circle (cf. Figure 2.1). A task of the EWF
Net is given by a square, which can be expanded by a split and a join behavior
(cf. Figure 2.1).

Formally, an EWF Net is given by the following tuple [VvdAtH06, HRAA10]:

EWF = (i, o, C, T, F, fsplit, fjoin, frem, fnofi) ,

where

• i ∈ C is the input condition,

• o ∈ C is the output condition,

• C is a set of conditions,

• T is a set of tasks,

• F ⊆ ((C \ {o})× T ) ∪ (T × (C \ {i})) ∪ (T × T ) is the flow relation,

• Every node in the graph (C ∪ T, F ) is on a directed path from i to o,

1Compared to Petri Nets, a condition can be interpreted as a place [AH03].
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• fsplit : T  {AND, OR, XOR} 2 specifies the split behavior of each task,

• fjoin : T  {AND, OR, XOR} specifies the join behavior of each task,

• frem : T  P+ (T ∪ C \ {i, o}) 3 specifies the tokens to be removed by
emptying a part of the net,

• fnofi : T  N × Ninf × Ninf × {dynamic, static} specifies the multiplicity
of each task.

In this work, we focus on the combination of a given YAWL specification with
Dynamic Bayesian Networks (DBNs). Therefore we introduced the necessary
basics of YAWL in this section and proceed with the fundamentals on DBNs in
the following section.

3 Fundamentals on DBNs

There are many reasons for considering Dynamic Bayesian Networks (DBNs)
[DK89] as a modeling tool for dynamic systems [Mur02]. With respect to the
modeling of medical workflows, we opted for DBNs because they combine a
reasonable tradeoff between expressiveness and complexity, and include proba-
bilistic models that have proved to be successful in practice (e.g. Hidden Markov
Models) [LJ14]. Additionally, due to their factorized state space, DBN models
allow improved modularity and interpretability. In contrast to a Hidden Markov
Model, their state space can be expressed in a factored form and not only as a
single discrete random variable. Furthermore, concerning Kalman Filter Mod-
els, DBNs allow for arbitrary probability distributions (not only for unimodal
linear-Gaussians) [Pad10].

A Bayesian Network (BN) is a probabilistic graphical model (PGM), combining
graph theoretic approaches with approaches of probability theory. Consequently,
a BN over random variables X0:N := X0, . . . , XN is given by a pair

B = (G,P ) .

Whereby G corresponds to a directed, acyclic graph (DAG)

G = (V,E) , and (3.1)

2Please note:  denotes a partial function. I.e., a task can have no specified split behavior, too.
3Please note: P+(X) denotes the power set of X without the empty set: P+(X) = P(X) \ {∅}
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P (X0:N ) =
N∏

n=0

P (Xn|Pa(Xn)) , (3.2)

corresponds to a joint probability distribution [KF09]. DAG G in (3.1) is used
to define dependencies between random variables X0:N . It is also known as the
structure of the BN. The vertex set V represents the set of random variables, while
a directed edge Vi → Vj of the set of edges E represents a direct dependency
between two variables. A missing edge symbolizes the independence of these
two variables (cf. Figure 3.1).

 X 
0

 X 
1  X 

2  X 
3

Figure 3.1: Graph of a Bayesian Network (BN) over random variables X0:3.
In this structure (also called Naive BN), there are directed edges connecting a
root node (X0) and its children (X1:3). Since a missing edge symbolizes an
independence of two variables, the joint probability P (X0:3) can be factorized
as follows: P (X0:3) = P (X0)P (X1|X0)P (X2|X0)P (X3|X0).

The joint probability distribution in (3.2) is given by the product of all conditional
probability distributions associated with the vertices of G. It is also known as
the parameters of the BN. Here, Pa(Xn) denotes the set of parents of a random
variable Xn. Graphically, this corresponds to vertices having a directed edge
pointing to Xn’s vertex. Please note, if Pa(Xn) = ∅, a random variable Xn is a
root node of the BN, and P (Xn| ∅) = P (Xn) gives the a-priori probability (cf.
Figure 3.1).

A Dynamic Bayesian Network (DBN) is an extension of a BN, also taking the
temporal dependencies of variables into account [Mur02]. A DBN is given by a
pair

DBN = (B0, B→) ,

where the BN B0 uses P (X0:N
0 ) to specify the a-priori probability distribution

over random variables X0:N in a time step with index 0 (cf. Figure 3.1 as an
example for a possible underlying DAG).

Furthermore, B→ specifies the conditional probability distribution over discrete
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Figure 3.2: Simplified graph of a 2-Slice Temporal Bayesian Network (2TBN).
In context of a DBN, a 2TBN (or: B→) is used as template for consecutive time
steps t. For simplification, we omitted X1:3

t−1, since in this example, there is no
direct dependency to X0:3

t .

time steps t by using

P (X0:N
t |X0:N

t−1 ) =

N∏
n=0

P (Xn
t |Pa(Xn

t )) . (3.3)

In Equation (3.3), Pa(Xn
t ) denotes the set of Xn

t ’s parents in the corresponding
graph. The parents can be in the same time slice (e.g. representing instanta-
neous causation) or the previous one (i.e., we assume the model to be fist-order
Markov). In the latter case, arcs point to time slices with ascending index, reflect-
ing the causal flow of time [Mur02]. Please compare Figure 3.2 for an exemplary
graph of B→ which is also known as a two-slice Temporal Bayesian Network
(2TBN).

For T time-slices, the joint distribution of the DBN is given by equation [Mur02]:

P (X0:N
0:T ) =

(
N∏

n=0

P (Xn
0 |Pa(Xn

0 ))

)
T∏

t=1

N∏
n=0

P (Xn
t |Pa(Xn

t ))

=

T∏
t=0

N∏
n=0

P (Xn
t |Pa(Xn

t )) .

Graphically, this corresponds to an unrolling of the DBN, using B0 as the initial
distribution, and B→ as template for each following time slice. Refer to Figure
3.3 for a DBN unrolled for three time slices. Similar to HMMs, parameters of
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Figure 3.3: Example of a DBN unrolled for 3 slices using graphs depicted in
Figure 3.1 and 3.2 as B0 and B→. For simplification some nodes are omitted,
which is graphically represented by three dots.

such a DBN, having N children, can be grouped as follows (cf. Figure 3.3):

P (X0
0 = i) = π(i) (3.4)

P (X0
t = j|X0

t−1 = i) =A(i, j) (3.5)

P (X1
t = j|X0

t = i) =B(1)(i, j) (3.6)
. . .

P (XN
t = j|X0

t = i) =B(N)(i, j) (3.7)

Equation (3.4) shows the inital probability distribution associated with the root
node X0 at time step t = 0 (X0

0 ). Consequently, π(i) is a vector representing
the a-priori probability of each of the values of X0

0 being present. Please note
that the statement P (X = x) is a shorthand for an event ω ∈ Ω : fX(ω) = x,
whereby the set of possible outcomes is denoted by Ω, and fX maps an event ω
to a possible value of a random variable X . We denote possible values x of X by
V al(X) [KF09].

In Equation (3.5) the probability distributions of the state transitions are given.
With this, the dependencies over time (and between states) are expressed. Con-
sequently,A(i, j) is an adjacency matrix extended by transition probabilities for
entries unequal to 0. In Equations (3.6) and (3.7), the probability distribution for
observations concerning the children of the root node are given. The naming of
the matricesA(i, j) andB(i, j) is inspired by Hidden Markov Models (HMMs).
Please note, that in case of HMMs the observation probabilities can be specified
by a single matrix B(i, j), since the corresponding probability distribution can-
not be factorized. That means, graphically, the root node would have only one
child which incorporates the complete probability distribution.
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4 Workflow of a Cholecystectomy

In Figure 4.1, the application example of this work, the workflow of a cholecys-
tectomy (surgical removal of the gallbladder) is depicted.

1: Generation of 
Pneumoperitoneum

3: Dissection of Bile Duct

5: Dissection of Cystic Artery

4: Clipping and Cutting Bile 
Duct

7: Intraoperative
Cholangiogram

8: Detaching of the 
Gallbladder

9: Liver Bed 
Coagulation

2: Placement of Trocars

6: Clipping and Cutting Cystic 
Artery

Figure 4.1: Workflow of a cholecystectomy (surgical removal of the gallbladder)
in YAWL. A sequence of tasks is followed by a decision, and two additional tasks
after the two possible flows are merged.
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The sequence of tasks is as follows: First, carbonic acid gas is injected to inflate
the abdomen (stomach). In task two, trocars, sharpened tubes, are used to break
through the abdominal wall. Trocars can be used to enable the placement of ad-
ditional medical instruments during the surgery. In the third task of the workflow,
the bile duct is dissected (exposed). The following task comprises the clipping
and cutting of the bile duct. In task five the cystic artery is dissected in prepa-
ration for the clipping and cutting in task six. After this task, an intraoperative
cholangiogram (radiographic imaging of the bile ducts with contrast medium) is
optionally performed. Thus, a decision has to be made after task six. When the
two possible flows are merged, another sequence of tasks has to be accomplished.
It includes the detaching of the gallbladder and the liver bed coagulation.

Each of the tasks is represented by a set of characteristic features. In this work,
we utilize surgical instruments to characterize the single tasks. The presence
of a certain surgical instrument is given as observation for our phase detection
models.

5 Combining YAWL and DBNs

To provide a reliable phase detection, we propose the combination of Yet An-
other Workflow Language (YAWL) with Dynamic Bayesian Networks (DBNs).
YAWL is used to model the relationship between surgical phases, in the sense
that possible transitions from one phase to another can be specified. The upper
part of Figure 5.1 shows the YAWL model of an exemplary workflow with three
subsequent phases a, b and c. The workflow starts with an input condition (black
triangle in a circle) followed by the three tasks a, b, c (squares), and ends by a
final condition (black square in a circle). A frame comprising the current phase
and the subsequent phases is shifted while the workflow progresses. Depending
on this frame, a different DBN model is chosen.

In order to do so, the corresponding DBN models have to be linked with the state
transitions of YAWL. In Figure 5.2 the internal structure of an atomic YAWL task
is outlined. The notation is inspired by Petri Nets [Pet62], and assumes that there
are so called transitions which consume marks, so-called tokens. Additionally,
there are so called places where these tokens can be stored. Thereby, transitions
can be interpreted as internal actions and places can be interpreted as internal
states of a task t. The example in Figure 5.2 depicts a transition named enter
which removes all tokens that enable the task t. In the simple case where task
t has no join behavior (e.g. there is only one predecessor task a before task b
like in Fig. 5.1), there is only one token (resulting from the predecessor task)
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Figure 5.1: A combination of YAWL with DBNs is proposed in this work.
YAWL symbols are depicted in the upper part of the figure. The workflow starts
by an input condition (black triangle in a circle) followed by three tasks (squares)
and ends by a final condition (black square in a circle). In the lower part of the
figure, DBNs are shown. Each DBN is associated with a frame comprising the
current task as well as possible follow up tasks.

to remove respectively. If there is join behavior and fjoin(t) = AND, all input
places of the transition entert need to hold a token. I.e., task t can only be entered
iff all other predecessor tasks are exited. For fjoin(t) = XOR and fjoin(t) = OR,
different rules for joining apply. Here, at least one token has to be present. For
more detailed information please refer to [AH03]. Further details on Petri Nets
can be found in [Rei13].

Figure 5.2: The internal states of an atomic YAWL task can be represented by a
Petri Net inspired notation. Modified from [AH03].

In Figure 5.2, the places mi at, mi et, mi ct, and the transition add are necessary
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for managing multi-instance tasks. For simplification, we consider a task to be
a single instance. That means one and the same task cannot be simultaneously
executed more than once.

Once, the transition entert has produced one token, the transition start is enabled
and can occur. When the superordinate task t starts to be executed, the internal
transition start consumes the corresponding token. While task t is executed, a
token resides in place exec. As soon as the superordinate task t is completed,
the transition complete consumes this token and produces a new token in the
adjacent place. The tokens produced by transition exit can activate follow up
tasks. Different activation mechanisms are possible: 1.) No split behavior, i.e.,
only one token allows to activate a subsequent task. 2.) In case of an AND-split,
for each subsequent task, one token is produced. 3.) In case of XOR- or OR-split
at least one token is produced for all of the successors.

In our approach that combines YAWL and DBNs, we chose the appropriate DBN
model based on the current phase. The current phase is represented by the task
currently executed, i.e., a token is present at the task’s internal place execute.
Each task is linked to a unique DBN model. This model consists of a root node
containing the current task, as well as all follow-up tasks as possible outcomes.
The follow-up tasks are given by the successors of the task’s internal transition
exit. All other tasks of the network are not considered for classification in this
case. As soon as the DBN model predicts that a follow-up phase is present, the
current YAWL task is exited and the predicted successor is executed. Once this
happens, a new DBN model is activated and used for the following classifica-
tion. The process can be described by sliding a classification window over the
workflow (cf. Figure 5.1).

6 Verification

To verify our approach, we used expert-based modeled DBNs of a cholecys-
tectomy [PFBss]. We generated 100 surgical procedures with simulated feature
values, using a median of algorithmic accuracies of 92%. Out of the generated
surgeries, 45 surgeries involved an intraoperative cholangiogram. The proposed
combination of YAWL and DBNs was utilized to classify the generated obser-
vation sequences. Figure 6.1 depicts the resulting confusion matrix. The results
show that the model is able to predict the correct task in most cases (overall accu-
racy of 89%). There is some confusion (which is expressed by the false classified
off-diagonal elements, since they are mistakenly confused with other classes),
especially in Clipping and Cutting Cystic Artery (task 6) and Intraoperative
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Figure 6.1: Normalized Confusion Matrix. A row represents an instance of an
actual surgical step, whereas a column represents an instance of the predicted
surgical step. Consequently, the values of the diagonal elements represent the
degree of correctly predicted classes.

Cholangiogram (task 7). In the first case, the observations are predominantly
confused with the two possible follow-up tasks (Intraoperative Cholangiogram,
task 7, and Detaching of the Gallbladder, task 8). Further confusion is present in
Intraoperative Cholangiogram, but predominantly with the last phase 9. This is,
because the model can hardly compensate wrong predicted transitions, which is a
direct consequence of the frame-wise moving classification window. To compen-
sate this aspect, auxiliary backward transitions, e.g. to the previous task, could
be added to the model. To sum up we can say that the proposed models work as
expected. Nevertheless, there is room of improvement concerning the robustness
of the classification which will be addressed in upcoming publications.

7 Conclusion

In this work, we discussed the fundamentals of YAWL (Yet Another Workflow
Language) and DBNs (Dynamic Bayesian Networks) in detail. On that basis, we
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introduced a combination of YAWL and DBNs for a surgical phase detection on
the application example of the removal of a gallbladder (cholecystectomy).

We showed that the proposed models are able to predict most of the tasks of the
surgery correctly. Nevertheless, there is some room of improvement with respect
to the robustness of the classification which will be adressed in future research.

Detecting the progress of an on-going surgery plays an important role for context
sensitive assistance: A reliable detection of the current task of a surgical work-
flow is the basis for a tailored decision support for medical practitioners. Subse-
quently, an intraoperative support can help to prevent errors, injuries, negligence
or malpractices.
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