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We present the application of the SPH-discretisation scheme to Phillips’ model for
shear induced particle migration in concentrated suspensions. This model provides
an evolution equation for the scalar mean volume fraction of idealised spherical
solid particles of equal diameter which is discretised by the SPH-formalism. In
order to obtain a discrete evolution equation with exact conservation properties we
treat in fact the occupied volume of the solid particles as the degree of freedom for
the fluid particles. We present simulation results in 2D and 3D channel flow. The
2D results serve as a verification by a comparison to analytic solutions. The 3D
results are used for a comparison with experimental measurements obtained from
computer tomography of injection moulded ceramic micro-parts. We observe the
best agreement of measurements with snapshots of the transient simulation for a
ratio Dc/Dη = 0.1 of the two model parameters.
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1. Introduction

A great need exists for micro-structured polymers, metals, and ceramics. The appli-
cation areas range from DNA analysis instruments in life science over biocompatible
materials for medical applications to a variety of electronic devices for sensors and
actuators. Injection moulding [1] represents an economically efficient process for the
micro-structuring of pure polymers or polymeric feedstocks with ceramic or metallic
particle load. Micro powder injection moulding (MicroPIM) is a shaping process in
which a highly filled polymer-powder compound (the feedstock) is heated above the
melting temperature of the polymer and injected with pressure into a micro-cavity.
The final ceramic or metallic micropart is obtained after subsequent debinding and
sintering steps. To optimise part and mould design prior to tool construction and
to reduce production costs there is a need for predictive process simulation.

Article submitted to Royal Society TEX Paper



2 D. Kauzlarić et al.

There are a variety of finite element based simulation approaches [2, 3]. Usually,
their disadvantage is the difficulty in handling free surfaces and large deformations.
Similarly, commercial software tools are based on one-phase material models, i.e.,
they show insufficient capabilities to simulate powder-binder mixtures. On the other
hand, particle-based approaches are able to deal with free surfaces and large defor-
mations easily. In this work we apply the method smoothed particle hydrodynamics
SPH [4] to the simulation of the MicroPIM process. The simulation of casting with
SPH was already successfully performed [5, 6]. Here, we have to apply this method
to materials, which are rheologically more complex and which carry a solid load. In
this work we focus on the shear induced segregation of the embedded powder parti-
cles [7-10]. caused by the extremely high shear rates of up to 106 s−1 in MicroPIM.
This may lead to non-homogeneous binder extraction during debinding or to an
anisotropic shrinkage during sintering resulting in porosity, deformations or even
cracks. Barriere et al. [3] accounted for segregation in a FE-simulation by imple-
menting a two phase model. This paper presents a SPH-based approach describing
the powder concentration as an internal degree of freedom.

After the presentation of the governing equations for fluid flow and of Phillips’
model for shear induced particle migration [11] in section 2, we show their discreti-
sation in section 3. Finally, we present several simulation results for the verification
of the model, for the reproduction of experimental measurements, and for complex
mould geometries in section 4.

2. Governing equations of motion

The basic equations used for the description of the MicroPIM-process are the con-
tinuity equation and the incompressible Navier-Stokes equation

dρ

dt
= −ρ∇ · v,

dv

dt
= −

∇P

ρ
+

1

ρ
∇ · (η∇v) (2.1)

both given in a Lagrangian reference frame with mass density ρ, velocity v, pressure
P , and shear viscosity η. Segregation will be described by the diffusive flux model by
Philips et. al. [11]. This model is based on two diffusive fluxes Jc and Jη of a mean
concentration of suspended particles φ. Jc includes the migration mechanisms due
to local variations in the collision frequency of the suspended particles and reads

Jc = −Dca
2φ∇(φγ̇) = −Dca

2(φ2
∇γ̇ + φγ̇∇φ) (2.2)

since variations in the collision frequency are caused by concentration gradients ∇φ
and variations in the shear rate ∇γ̇. The shear rate is defined in terms of the second
invariant γ̇ =

√

γ̇ : γ̇/2 of the strain rate tensor γ̇ = ∇v+(∇v)
T
. Dc is a diffusion

constant and a is the particle diameter. Dc is an empirical parameter and has to
be fitted by experiments. In addition a spatially varying viscosity due to a spatially
varying particle concentration can lead to an effective particle flux as well. It reads

Jη = −Dηγ̇φ2

(

a2

η

)

∂η

∂φ
∇φ (2.3)

where Dη is an empirical dimensionless rate constant. Using both migration mech-
anisms the conservation equation for the volume fraction φ becomes

∂φ

∂t
= −∇ · (φv) −∇ · (Jc + Jη) (2.4)
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The expression ∇ · φv covers the convective transport of the suspended particles.
For the dependence of the viscosity on the volume fraction we assume the Krieger

rheological model [12] which is

η(φ) = η0

(

1 −
φ

φm

)

−c

,
1

η

∂η

∂φ
=

c

φm − φ
. (2.5)

For a vanishing particle concentration the fluid has the reference viscosity η0 and
for the saturation volume fraction φ = φm the viscosity diverges.

3. SPH discretisation

We briefly summarise the discretisation of fluid flow. For a detailed description of
the SPH-discretisation formalism we refer the reader to the given references. We
then show in detail how the diffusive flux model for powder migration is discretised.

To compute the evolution of the densities ρi of the SPH-particles indexed with
i we discretise the equation of motion in (2.1), i.e.,

ρ̇i =
∑

j

mjvij · ∇Wij = −
∑

j

mjvij · rijwij (3.1)

where we have set vij = vi−vj and ∇Wij = −rijwij . Wij is the SPH-interpolation
kernel and mi a particle mass. This equation allows to simulate free surface flow
[13]. The discretisation of the pressure gradient term in eq. (2.1) reads

(∇P )i

ρi

=
∑

j

mj

(

Pi

ρ2
i

+
Pj

ρ2
j

)

∇Wij . (3.2)

Incompressibility is approximated by a weakly compressible equation of state [13]

P (ρ) = P0

[(

ρ

ρ0

)γ

− 1

]

, (3.3)

where γ = 7, ρ0 is a reference density and P0 = c2ρ0/γ, with the speed of sound
c chosen large enough so that density fluctuations remain below 1%. The viscous
term in the momentum equation in (2.1) is discretised as [14]

[

1

ρ
∇ · (η∇v)

]

i

= −
∑

j

mj

4ηiηj

ηi + ηj

wij

ρiρj

vij . (3.4)

Finally the tensor ∇v can be discretised by [4]

(∇v)i =
∑

j

mj

ρj

vij∇Wij (3.5)

which we require for the computation of the shear rate γ̇ in eqs. (2.2) and (2.3).
Instead of discretising eq. (2.4) directly, it is better to use the equation of motion

for the volume Vφ = φ/ρ occupied by powder particles, where we have set the mass
to m = 1m∗, i.e., to the unit of mass m∗ for simplicity. The discretised equation for
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Vφ will be antisymmetric under exchange of fluid particles, leading to exact volume
conservation. We have to switch from the Eulerian to the Lagrangian description.
Introducing the material derivative d/dt = ∂/∂t + v · ∇ and substituting φ = ρVφ

gives

dVφ

dt
= −Vφ

ρ̇

ρ
− Vφ∇ · v +

1

ρ
∇ ·

[

Dca
2φ∇(φγ̇) + Dηγ̇φ2

a2

η

dη

dφ
∇φ

]

(3.6)

which is the equation of motion for the occupied volume. The divergence of the
velocity field gives the relative volume expansion, i.e., ∇ ·v = V̇ /V = −ρ̇/ρ. Thus,
the first two terms on the right hand side of (3.6) cancel. Now, we apply the rule
for the SPH-discretisation of second derivatives [4]

(∇ · [B (r)∇A (r)])i ≈ −
∑

j

(Bi + Bj) (Ai − Aj) wij/ρj (3.7)

for two scalar fields A (r) and B (r) to the right hand side of eq. (3.6). This is a
simpler form than the discretisation (3.4) but we have not found any significant
difference between the two forms for the results shown here. We get

V̇φ,i = − Dca
2
∑

j

wij

ρiρj

(φi + φj)(φiγ̇i − φj γ̇j)

− Dηa2
∑

j

wij

ρiρj

(

γ̇iφ
2

i

(

dη

ηdφ

)

i

+ γ̇jφ
2

j

(

dη

ηdφ

)

j

)

(φi − φj) (3.8)

Note that the expression within the sum is antisymmetric under particle exchange.
In the discretised equation for φ̇, a factor 1/ρi is missing and the equation has no
symmetry. The advantage of the antisymmetry is that volume is exactly conserved,
because the amount of suspended volume that is deducted from particle i is added
to particle j.

We finally have to consider the numerical implementation of the Krieger model.
Both η(φ) and the derivative (dη/dφ)/η from eq. (2.5) diverge for φ → φm. There-
fore we have to use approximate expressions giving finite values for concentrations
φc < φ < φm, where φc is a critical limit. It is most convenient to start with an ap-
proximation for the relative derivative (dη/dφ)/η. The lowest order approximation
we can make is

1

ηd

dηd

dφ
=







1

η
dη
dφ

, φ < φc

1

η
dη
dφ

∣

∣

∣

φ=φc

, φ ≥ φc

=

{

c
φm−φ

, φ < φc

c
φm−φc

, φ ≥ φc

, (3.9)

where ηd(φ) represents the form of the Krieger model used for the discretised equa-
tions and may be obtained by solving the differential equation given in (3.9), i.e.,

dηd

dφ
=

c

φm − φc

ηd(φ), φ ≥ φc. (3.10)

For a continuous transition to η(φ) at φ = φc we need the boundary condition
ηd(φc) = η(φc). Then, solving (3.10) gives

ηd(φ) =







η(φ) = η0

(

1 −
φ

φm

)

−c

, φ < φc

η (φc) exp
(

c φ−φc

φm−φc

)

, φ ≥ φc

. (3.11)
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Figure 1. Left: Steady state analytic solution and computed powder concentration for
Poiseuille flow for discretisations with 9 and 19 SPH-particles in the cross-section. Right:
computed profiles of the flow velocity and the shear rate (second invariant). Symbols
represent the values of the SPH-particles and lines serve for guiding the eye.

For φ = φm a finite value ηd (φm) = η (φc) ec is obtained. Furthermore, since the
approximation for the derivative (3.9) does not diverge for φ → φm the flux Jη

from eq. (2.3) is limited artificially and allows for particle concentrations φ > φm

above the packing limit. An unphysical effect is to be expected only when γ̇ = 0 and
φ > φc. For the steady state simulations presented in this work it turns out that the
smoothing effect of the SPH-discretisation (3.5) of γ̇ counteracts and dominates over
this approximation. In the transient simulations – which resemble the PIM-process
more closely – the case φ > φc never occurs.

4. Simulation results and discussion

The SPH-form of the Phillips-model is verified against an analytic solution by com-
puting the concentration profile for pressure driven Poiseuille flow between two par-
allel plates. We choose dx = 250 µm as the width of the cross-section in x-direction.
This width corresponds to the experimental setup for which measurements from
computer tomography (CT) are available. The velocity component vy is driven by
a constant pressure gradient py = 1.28 MPa/cm which is implemented by apply-
ing an equivalent body-force on each SPH-particle in the periodic flow direction.
The particle diameter is taken as a = 0.01 µm, Dc = 1.17 × 109 is chosen such
that the time constant for reaching steady state is as small as possible and we set
Dc

/

Dη = (1 + 1/c)−1 ≈ 0.645. This allows for an analytic solution of the steady
state concentration profile which is for the left half of the channel x′ = [0, 1/2]

φ(x) =
φmφ0

φm − 2x′(φm − φ0)
(4.1)

with x′ ≡ x/dx and where φ0 is the concentration at the walls. Here we take
φ0 = 0.45, φm = 0.68 and c = 1.82 in accordance with Ref. [11].

The simulation is performed in 3D with periodic boundary conditions in the flow
direction y and in z-direction. The cross-section in x-direction is discretised with
two different resolutions of 9 and 19 SPH-particles which are initially at rest on a
cubic lattice. The x-direction is confined by solid boundaries where no-slip boundary
conditions are applied by boundary particles using the technique of Morris et al.

[15]. By forbidding any exchange of φ between the SPH-particles representing the
liquid and the SPH-particles representing the solid walls we assure zero migration
across the boundaries. Fig. 1 shows the powder concentration, the velocity and the
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Figure 2. Transient evolution of the powder concentration to steady state as obtained
from a simulation of flow through a quadratic 250 µm × 250 µm channel cross-section.

shear rate profiles in steady-state and the analytic solution (4.1). One observes that
the solid migrates to the centre of the channel and a blunted velocity profile. The
latter is due to an increased viscosity in the centre because of the larger solids
concentration. Hence, it is crucial to add the degree of freedom φ to account for
its effect on the rheology. The computed concentration does not fully reach the
analytic result φ = φm = 0.68 at the peak due to the smoothing of SPH. Thus, mass
conservation leads to concentrations at the walls larger than φ0 = 0.45 as compared
to the analytic solution. The error decreases when increasing the resolution.

Fig. 2 shows the transient evolution of the powder concentration as obtained
from a simulation of flow through a quadratic 250 µm × 250 µm channel cross-
section. The simulation settings are the same as before except for Dc/Dη = 0.4,
a = 9 µm, η0 = 33.2 Pas, φm = 0.794 and c = 0.714 which are taken now from vis-
cosity measurements of our feedstock “GoMicro” [9]. This corresponds to a “mean”
viscosity η

(

φ̄
)

= 100 Pas, where φ̄ = 0.625. We have simulated different ratios
Dc/Dη and have found that Dc/Dη = 0.1 reproduces best our computer tomogra-
phy (CT) measurement for a specially prepared injection-moulded test-specimen [7,
9]. For this case, fig. 3 plots the concentrations at the centre line of the cross-section
and also shows a concentration profile as obtained from CT and, for comparison,
a profile obtained from a simulation with Dc/Dη = 0.2, showing the trend when
increasing Dc/Dη. The right figure shows the CT-data in 2D. The global aver-
age concentration was conserved exactly in the simulations. In the simulations
presented here, the equilibration of φ was boosted by purpose by choosing large
constants Dc and Dη. Segregation starts close to the walls and propagates towards
the centre where, after t = 0.1 t∗ a cusp starts to grow. Around this time the profile
is similar with to our CT-measurement. This indicates that steady state was not
reached during the MicroPIM process, i.e., the longer the channel, the larger the
segregation. Observe also the similarity between the central plot in fig. 2 and the
right plot in fig. 3. It is known that the ratio of diffusion constants Dc/Dη is ma-
terial dependent. Our value of Dc/Dη = 0.1 is small with respect to the physically
reasonable range [0..1] [11]. Hence, the flux Jη from eq. (2.3) is dominant, which is
a reasonable observation for highly viscous PIM-feedstocks.

As a more complex application of the powder migration model we consider the
simulation of injection moulding into a 3D geometry. Some of our real PIM-parts
are shown in fig. 4 a) and a snapshot of the filling simulation in b). The arrows in
b) and d) indicate the flow direction at the gate. Besides the similarity of the flow
patterns, a) and b) illustrate the advantages of SPH over FE-methods. The SPH-
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Figure 3. Left: Snapshot of the powder density at the centre line of a quadratic cross-section
for Dc/Dη = 0.1, 0.2. The time is given as multiples of the time unit t∗ ≈ 66 ns. Also shown
is our CT-measurement at the centre line. Symbols represent measurement points while
lines are for guiding the eye. Note that the average concentration at the centre line increases
in time due to a net migration to the centre. Right: 2D-plot of the CT-measurement [9].

particles naturally reproduce the large deformations and the free-surface-dynamics
of the feedstock-material which do not have to be extracted from a fixed grid. By
the SPH-discretisation of Phillips’ model presented in this work, it is now possible
to track directly the solid load for which no CT-data are available. This is shown in
figs. 4 c) and d) which focus on the gate region. Fig. 4 c) is a snapshot of an early
stage of the injection. The distribution of the solid load indicates an aggregation
at convex corners (i.e. pointing into the mould material) and a decrease at concave
corners. This is intuitively understandable since concave corners are regions of large
shear rates. In later stages, the flow close to the gate becomes more homogeneous
and directed towards the two arms at the top and the bottom. In these narrow arms
strong shear rates occur. The effect can be seen in Fig. 4 d). The concentration in the
entrance volume is rather homogeneous and large. Inside the arms the concentration
is lower. A larger fraction of the solid particles prefers to stay in the entrance volume
where shear rates and flow velocities are lower. Additionally, the solid load has a
maximum in the centre of the arms as already observed earlier for flow in a channel.

5. Summary

An SPH-framework was developed which allows to simulate the injection process of
MicroPIM. The simulations can be performed in arbitrarily complex 3D geometries.

Shear induced powder migration was incorporated by means of Phillips’ diffusive
flux model. This model was discretised by formulating a SPH-equation of motion
for the occupied volume Vφ with exact pairwise conservation properties. The sim-
ulations correctly predict powder migration to regions with the lowest shear rates
and indicate that, for the available CT-measurements, the measured profile is not a
steady state. For injection moulding into complex geometries the simulations predict
regions of accumulation of the solids fraction. For a quantitative matching of the
transport coefficients Dc and Dη of the Phillips model we suggest CT-measurements
for well defined geometries such as long capillaries.

The authors acknowledge funding of this project by the Deutsche Forschungsgemeinschaft
(DFG) in the framework of the Sonderforschungsbereich Mikrourformen (SFB499) and by
the University of Freiburg through the German excellence initiative.
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a) b) c) d)

Figure 4. Segregation in a complex geometry. The arrows show the flow direction. a) Parts
produced by PIM. b) Snapshot of the simulated filling. c) solid load in an early stage of
the mould filling. d) solid load in a later stage.
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