An Experimental Investigation Of Seawater Desalination By Gas Hydrate Formation

F. Knappitsch, G. Janicki, B. Egenolf-Jonkmanns, S. Bruzzano, G. Deerberg

15th European Meeting on Supercritical Fluids 8th to 11th of May 2016, Essen

Outline

- Introduction
- Gas hydrate-based water desalination
- Materials and Methods
- Results
- Conclusion

- Global increasing demand for fresh water in the future
- Scarcity of natural fresh water resources (only 3 % of the worlds water supply)
- Need for energy saving and affordable desalination technologies

- Global increasing demand for fresh water in the future
- Scarcity of natural fresh water resources (only 3 % of the worlds water supply)
- Need for energy saving and affordable desalination technologies

[Shatat and Riffat, 2012 (figure modified)]

- Global increasing demand for fresh water in the future
- Scarcity of natural fresh water resources (only 3 % of the worlds water supply)
- Need for energy saving and affordable desalination technologies

→ Conventional desalination technologies are energy- and cost-intensive

- Global increasing demand for fresh water in the future
- Scarcity of natural fresh water resources (only 3 % of the worlds water supply)
- Need for energy saving and affordable desalination technologies

→ Hydrate-based technique has a high potential as desalination technology

What are gas hydrates?

Fabienne Knappitsch, 10th of May 2016

Stability of gas hydrates

Sea water/ Brackish water

[Cha and Seol, 2013 (figure modified)]

Sea water/ Brackish water

[Cha and Seol, 2013 (figure modified)]

[Cha and Seol, 2013 (figure modified)]

Characteristics of different desalination technologies

Characteristics of different technologies	Gas hydrate process	Reverse Osmosis	Distillation
Preliminary water treatment	not required	required	not required
Pressure conditions	5 – 50 bar	~ 60 bar	p _a
Temperature conditions	5 – 20 °C	T _a	90 - 120 °C
Heat of phase change	507 kJ/kg _{H2O}	No phase change	2256,7 kJ/kg
Energy consumption [kJ/kg _{fresh water}]	< 100 (Depends on hydrate former, number of stages etc.)	< 100	> 300
Salt content in water produced [g/L]	0 (in theoretical)	< 1	0
Operating and material costs	medium (moderate temperature, insensitivity to biological fouling, scaling and corrosion problems)	high (Fouling and scaling problems, short membrane lifetime)	high (corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]

Characteristics of different desalination technologies

Characteristics of different technologies	Gas hydrate process	Reverse Osmosis	Distillation
Preliminary water treatment	not required	required	not required
Pressure conditions	5 – 50 bar	~ 60 bar	p _a
Temperature conditions	5 – 20 °C	T _a	90 - 120 °C
Heat of phase change	507 kJ/kg _{H2O}	No phase change	2256,7 kJ/kg
Energy consumption [kJ/kg _{fresh water}]	< 100 (Depends on hydrate former, number of stages etc.)	< 100	> 300
Salt content in water produced [g/L]	0 (in theoretical)	< 1	0
Operating and material costs	medium (moderate temperature, insensitivity to biological fouling, scaling and corrosion problems)	high (Fouling and scaling problems, short membrane lifetime)	high (corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]

Characteristics of different desalination technologies

Characteristics of different technologies	Gas hydrate process	Reverse Osmosis	Distillation
Preliminary water treatment	not required	required	not required
Pressure conditions	5 – 50 bar	~ 60 bar	p _a
Temperature conditions	5 – 20 °C	T _a	90 - 120 °C
Heat of phase change	507 kJ/kg _{H2O}	No phase change	2256,7 kJ/kg
Energy consumption [kJ/kg _{fresh water}]	< 100 (Depends on hydrate former, number of stages etc.)	< 100	> 300
Salt content in water produced [g/L]	0 (in theoretical)	< 1	0
Operating and material costs	medium (moderate temperature, insensitivity to biological fouling, scaling and corrosion problems)	high (Fouling and scaling problems, short membrane lifetime)	high (corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]

Materials and Methods: Experimental setup

High pressure tank reactor (V = 540 mL)

Operating conditions:

- p_{max} = 200 bar
- -30 ≤ T ≤ 300 °C
- N_{max} ≤ 650 rpm

Materials and Methods: Experimental setup

High pressure tank reactor (V = 540 mL)

Operating conditions:

- p_{max} = 200 bar
- -30 ≤ T ≤ 300 °C
- N_{max} ≤ 650 rpm

- Target parameters:
 - Salt removal efficiency for
 - a batch (single- and two-stage) process
 - different post-treatment methods (washing, melting, vacuum filtration)
 - Impact of process time (begin nucleation end of exp.) and water conversion

Batch process (single-stage)

- 1. CO₂ hydrate formation
 - Synthetic seawater (150 mL; salinity of 3.5 wt.%)
 - Process conditions: 50 bar, 1 °C, N = 500 rpm
- 2. Phase separation of hydrates and brine
- 3. Hydrate dissociation
 - Measuring of electrical conductivity
 - Calculation of separation efficiency

Batch process (single-stage)

- 1. CO₂ hydrate formation
 - Synthetic seawater (150 mL; salinity of 3.5 wt.%)
 - Process conditions: 50 bar, 1 °C, N = 500 rpm
- 2. Phase separation of hydrates and brine
- 3. Hydrate dissociation
 - Measuring of electrical conductivity
 - Calculation of separation efficiency

$$\eta \, [\%] = \frac{c_i - c_h}{c_i} * 100$$

Batch process (two-stage)

- 1. CO₂ hydrate formation
 - Synthetic seawater (150 mL; salinity of 3,5 wt.%)
 - Process conditions: 50 bar, 1 °C, N = 500 rpm
- 2. Phase separation of hydrates and brine
- 3. Hydrate dissociation
 - Measuring of electrical conductivity
 - Calculation of separation efficiency
- 4. Reuse of dissociated hydrate phase (Second hydrate formation)

Batch process+Post-treatment

- 1. CO₂ hydrate formation
 - Synthetic seawater (150 mL; salinity of 3.5 wt.%)
 - Process conditions: 50 bar, 1 °C, N = 500 rpm
- 2. Phase separation of hydrates and brine
- 3. Post-treatment of hydrate phase (Washing, melting (for 15 min), vacuum filtration)
- 4. Hydrate dissociation
 - Measuring of electrical conductivity
 - Calculation of separation efficiency

Results: Batch process (single-stage)

- \rightarrow Separation efficiency between 5.3 and 58.4 % (22 % on average)
- \rightarrow Long process time promotes the purity of the hydrate phase

Results: Batch process (single-stage)

- \rightarrow Separation efficiency between 5.3 and 58.4 % (22 % on average)
- \rightarrow Long process time promotes the purity of the hydrate phase
- → Increase in water conversion leads to lower separation efficiencies

Results: Batch process (two-stage)

 \rightarrow Separation efficiency could be increased by around 15 % on average

Results: Post-treatment methods

→ Vacuum filtration is the most effective of the three methods (increase from 22 % up to nearly 68 % on average)

Results: Separation efficiency in different hydrate section

- Problem: Significant amount of remaining impurities in hydrate bulk
 - adsorption of impurities on hydrate surface
 - porosity of hydrate bulk
 - dendritic nature of hydrate particles and high amount of interstitial water

Results: Separation efficiency in different hydrate section

- Problem: Significant amount of remaining impurities in hydrate bulk
 - adsorption of impurities on hydrate surface
 - porosity of hydrate bulk
 - dendritic nature of hydrate particles and high amount of interstitial water
- Detection of the position of impurities in hydrate bulk

Results: Hydrate formation from blackcurrant juice

- Hydrate formation from blackcurrant juice
- Visual observation of the position of remaining impurities in hydrate phase

> Pigment concentration varies in different hydrate sections

 \rightarrow Validation of the theory

Conclusion

- Separation efficiencies between 5 % and 70 % were achieved
 - → Stage-wise process and post-treatment methods enhance the salt removal
- Purity of hydrate phase depends on different factors (water conversion, process time,..)
- Need for further research to understand the separation mechanism
 - Change of morphological characteristics (dendritic growth, interstitial water) and physical-chemical properties
 - Scale-up and technical implementation (e. g. phase separation, apparatus design for continuous operating mode)

Thank you for your attention!

Contact: Fraunhofer Institut UMSICHT

Osterfelder Straße 3 46047 Oberhausen Web: <u>www.umsicht.fraunhofer.de</u>

Fabienne Knappitsch, M. Sc. Tel.: +49 (0)208-8598-1509 E-Mail: <u>Fabienne.Knappitsch@umsicht.fraunhofer.de</u>

Literature

Cha, J.-H.; Seol, Y. (2013): Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests. In: ACS Sustainable Chem. Eng. 1 (10), p. 1218–1224.

Fournaison, L.; Delahaye, A.; Chatti, I.; Petitet, J.-P. (2004) : CO2 Hydrates in Refrigeration Processes. In: Industrial and Engineering Chemistry Research 43, 20, p. 6521–26.

Han, S.; Shin, J.-Y.; Rhee, Y.-W.; Kang, S.-P. (2014): Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating. In: Desalination 354, p. 17–22.

McCormack, R. A.; Andersen, R. K. (1995): Clathrate Desalination Plant. Preliminary research study. In: Water Treatment Technology Program Report No. 5

Miller, J. E. (2003): Review of Water Resources and Desalination Technologies. In: Sand Report

Rogers, G.F.C.; Mayhew, Y.R. (1994): Thermodynamic and Transport Properties of Fluids, Fifth edition Blackwell Publishing

Shatat, M.; Riffat, S. B. (2012): Water desalination technologies utilizing conventional and renewable energy sources. In: International Journal of Low-Carbon Technologies 0, p. 1–19

Van der Bruggen, B; Vandecasteele, C. (2002): Distillation vs. membrane filtration: overview of process evolutions in seawater desalination. In: Desalination 143, p. 207-218.

