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Introduction

= Global increasing demand for fresh water in the future
= Scarcity of natural fresh water resources (only 3 % of the worlds water supply)

= Need for energy saving and affordable desalination technologies
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Introduction

= Global increasing demand for fresh water in the future
= Scarcity of natural fresh water resources (only 3 % of the worlds water supply)

= Need for energy saving and affordable desalination technologies

Desalination processes

Major Alternative
processes processes
[ | |
Thermal processes Membrane —  Freezing
i- istillati —— lon Exchange
| | Multi Stage(hi:?jsF}; Distillation | Reverse Osmosis (RO) g
Gas hydrate
' | Multiple-Effect Evaporation | T process

(MED) Electrodialysis (ED)

Vapor Compression Membrane
Evaporation (VC) ~ Distillation

— Co-generation

[Shatat and Riffat, 2012 (figure modified)]
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Introduction

= Global increasing demand for fresh water in the future
= Scarcity of natural fresh water resources (only 3 % of the worlds water supply)

= Need for energy saving and affordable desalination technologies

Desalination processes

Major Alternative
processes processes
I | l
Thermal processes Membrane —  Freezing
i- istillati ——{ lon Exchange
| | Multi Stage(hi:?jsF}; Distillation | Reverse Osmosis (RO) 9
Gas hydrate
| | Multiple-Effect Evaporation T process

]

(MED) Electrodialysis (ED)

Vapor Compression Membrane
Evaporation (VC) ~ Distillation

— Co-generation

— Conventional desalination technologies are energy- and cost-intensive

Slide 5

\

~Z Fraunhofer

UMSICHT



Introduction

= Global increasing demand for fresh water in the future
= Scarcity of natural fresh water resources (only 3 % of the worlds water supply)

= Need for energy saving and affordable desalination technologies

Desalination processes

Major Alternative
processes processes
| | |
Thermal processes Membrane —  Freezing
i- istillati —— lon Exchange
| | Multi Stage(hi:?jsF}; Distillation | Reverse Osmosis (RO) g
Fole-Ef . n Gas hydrate
Multiple-Eftect Evaporation
M P (MED) P — Electrodialysis (ED) process
Vapor Compression Membrane
Evaporation (VC) = Distillation

— Co-generation

— Hydrate-based technique has a high potential as desalination technology
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What are gas hydrates?
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Stability of gas hydrates
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Gas hydrate-based water desalination

Sea water/
Brackish water

[Cha and Seol, 2013 (figure modified)]
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Gas hydrate-based water desalination

Sea water/
Brackish water

[Cha and Seol, 2013 (figure modified)]
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Gas hydrate-based water desalination

— Hydrate formation
Brackish water Formaton process

[Cha and Seol, 2013 (figure modified)]
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Gas hydrate-based water desalination

Potable water

!

— Hydrate formation
Brackish water Formaton process

Dissociation :
Brine

[Cha and Seol, 2013 (figure modified)]
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Characteristics of different desalination technologies

Characteristics of different
technologies

Preliminary water treatment
Pressure conditions
Temperature conditions

Heat of phase change

Energy consumption
[k‘J/ kgfresh Water]

Salt content in water
produced [g/L]

Operating and material costs

Gas hydrate Reverse
process Osmosis
not required required
5 — 50 bar ~ 60 bar
5-20°C T,

a

507 kJ/KGpp0
<100

No phase change

(Depends on hydrate < 100
former, number of stages
etc.)
0
: . <1
(in theoretical)
medium high

(moderate temperature,
insensitivity to biological
fouling, scaling and
corrosion problems)

(Fouling and scaling
problems, short
membrane lifetime)

Distillation

not required

Pa
90-120°C

2256,7 kJ/kg

> 300

high

(corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]
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Characteristics of different desalination technologies

Characteristics of different
technologies

Preliminary water treatment
Pressure conditions
Temperature conditions

Heat of phase change

Energy consumption
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Salt content in water
produced [g/L]

Operating and material costs

Gas hydrate Reverse
process Osmosis
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5 — 50 bar ~ 60 bar
5-20°C T,

507 kJ/KGyio0
<100

No phase change

(Depends on hydrate < 100
former, number of stages
etc.)
0
: : <1
(in theoretical)
medium high

(moderate temperature,
insensitivity to biological
fouling, scaling and
corrosion problems)

(Fouling and scaling
problems, short
membrane lifetime)

Distillation

not required

Pa
90 - 120 °C

2256,7 kJ/kg

> 300

high

(corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]
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Characteristics of different desalination technologies

Characteristics of different
technologies

Preliminary water treatment
Pressure conditions
Temperature conditions

Heat of phase change

Energy consumption
[k‘J/ kgfresh Water]

Salt content in water
produced [g/L]

Operating and material costs

Gas hydrate Reverse
process Osmosis
not required required
5 — 50 bar ~ 60 bar
5-20°C T,

a

507 kJ/KGpp0
<100

No phase change

(Depends on hydrate < 100
former, number of stages
etc.)
0
: . <1
(in theoretical)
medium high

(moderate temperature,
insensitivity to biological
fouling, scaling and
corrosion problems)

(Fouling and scaling
problems, short
membrane lifetime)

Distillation

not required

Pa
90-120°C

2256,7 kJ/kg

> 300

high

(corrosion problems)

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012]
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Materials and Methods: Experimental setup

High pressure tank reactor (V = 540 mL)
Operating conditions:

* Pmax = 200 bar

« -30<T=<300°C

* Njax <650 rpm
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Materials and Methods: Experimental setup

High pressure tank reactor (V = 540 mL)
Operating conditions:

* Pmax = 200 bar

« -30=<T=<300°C

* Njax <650 rpm

= Target parameters:
= Salt removal efficiency for

a batch (single- and two-stage) process s Al
different post-treatment methods (washing, melting, vacuum filtration)

= |Impact of process time (begin nucleation — end of exp.) and water
conversion
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Materials and Methods: Experimental procedure

Batch process (single-stage) |

1. CO, hydrate formation
Synthetic seawater (150 mL; salinity of 3.5 wt.%)
Process conditions: 50 bar, 1 °C, N = 500 rpm

2. Phase separation of hydrates and brine

3. Hydrate dissociation
Measuring of electrical conductivity

Calculation of separation efficiency
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Materials and Methods: Experimental procedure

Batch process (single-stage)

1. CO, hydrate formation
Synthetic seawater (150 mL; salinity of 3.5 wt.%)
Process conditions: 50 bar, 1 °C, N = 500 rpm

2. Phase separation of hydrates and brine

3. Hydrate dissociation

Measuring of electrical conductivity

Ci

Calculation of separation efficiency |7 [%] = Z==% « 100]
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Materials and Methods: Experimental procedure

Batch process (two-stage)

1. CO, hydrate formation

= Synthetic seawater (150 mL; salinity of 3,5 wt.%)
= Process conditions: 50 bar, 1 °C, N =500 rpm
2. Phase separation of hydrates and brine
3. Hydrate dissociation
= Measuring of electrical conductivity
= Calculation of separation efficiency

4. Reuse of dissociated hydrate phase (Second hydrate formation)
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Materials and Methods: Experimental procedure

Batch process+Post-treatment

1. CO, hydrate formation

= Synthetic seawater (150 mL; salinity of 3.5 wt.%)
= Process conditions: 50 bar, 1 °C, N =500 rpm
2. Phase separation of hydrates and brine

3. Post-treatment of hydrate phase (Washing, melting (for 15 min), vacuum
filtration)

4. Hydrate dissociation
= Measuring of electrical conductivity

= Calculation of separation efficiency
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Results: Batch process (single-stage)

Process time
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— Separation efficiency between 5.3 and 58.4 % (22 % on average)
— Long process time promotes the purity of the hydrate phase
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Results: Batch process (single-stage)

Process time Water conversion
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— Separation efficiency between 5.3 and 58.4 % (22 % on average)
— Long process time promotes the purity of the hydrate phase
— Increase in water conversion leads to lower separation efficiencies
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Results: Batch process (two-stage)

60
50
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30
20
10

Separation efficiency [%]

= first stage
m second stage
m total

total
second stage
first stage

— Separation efficiency could be increased by around 15 % on average
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Results: Post-treatment methods

90

Separation efficiency [%0]
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— Vacuum filtration is the most effective of the three methods (increase from 22 %
up to nearly 68 % on average)
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Results: Separation efficiency in different hydrate section

= Problem: Significant amount of remaining impurities in hydrate bulk
= adsorption of impurities on hydrate surface

= porosity of hydrate bulk

= dendritic nature of hydrate particles and high amount of interstitial water

\
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Results: Separation efficiency in different hydrate section

= Problem: Significant amount of remaining impurities in hydrate bulk
= adsorption of impurities on hydrate surface
= porosity of hydrate bulk
= dendritic nature of hydrate particles and high amount of interstitial water

= Detection of the position of impurities in hydrate bulk
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Results: Hydrate formation from blackcurrant juice

= Hydrate formation from blackcurrant juice

= Visual observation of the position of remaining impurities in hydrate phase

= 1

— Pigment concentration varies in different hydrate sections
— Validation of the theory
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Conclusion

= Separation efficiencies between 5 % and 70 % were achieved
— Stage-wise process and post-treatment methods enhance the salt removal

= Purity of hydrate phase depends on different factors (water conversion,
process time,..)

= Need for further research to understand the separation mechanism

— Change of morphological characteristics (dendritic growth, interstitial water)
and physical-chemical properties

— Scale-up and technical implementation (e. g. phase separation, apparatus
design for continuous operating mode)
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