
© Fraunhofer UMSICHT  

F. Knappitsch, G. Janicki, B. Egenolf-Jonkmanns, S. Bruzzano, G. Deerberg 

 

An Experimental Investigation Of Seawater 

Desalination By Gas Hydrate Formation  

15th European Meeting on Supercritical Fluids 

8th to 11th of May 2016, Essen 



Fabienne Knappitsch, 10th of May 2016 

Slide 2 

Outline 

 Introduction 

 Gas hydrate-based water desalination 

 Materials and Methods 

 Results 

 Conclusion 

 



Fabienne Knappitsch, 10th of May 2016 

Slide 3 

Introduction 

 

 Global increasing demand for fresh water in the future  

 Scarcity of natural fresh water resources (only 3 % of the worlds water supply) 

 Need for energy saving and affordable desalination technologies 
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[Shatat and Riffat, 2012 (figure modified)] 
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 Global increasing demand for fresh water in the future  

 Scarcity of natural fresh water resources (only 3 % of the worlds water supply) 
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→ Conventional desalination technologies are energy- and cost-intensive 
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→ Hydrate-based technique has a high potential as desalination technology 
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What are gas hydrates? 
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Stability of gas hydrates 
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Gas hydrate-based water desalination 

 

 

 

 

[Cha and Seol, 2013 (figure modified)] 
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Gas hydrate-based water desalination 
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Gas hydrate-based water desalination 

 

 

 

 

[Cha and Seol, 2013 (figure modified)] 
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Gas hydrate-based water desalination 

 

 

 

 

[Cha and Seol, 2013 (figure modified)] 
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Characteristics of different desalination technologies 

 

 

 

 

 

 

 

[McCormack, 1995; van der Bruggen, 2002; Fournaison, 2004; Miller, 2013; Roger, 1994; Shatat, 2012] 

Characteristics of different 

technologies 
Gas hydrate 

process 

Reverse 

Osmosis 
Distillation 

Preliminary water treatment  not required required not required 

Pressure conditions 5 – 50 bar ~ 60 bar pa 

Temperature conditions 5 – 20 °C Ta 90 - 120 °C 

Heat of phase change 507 kJ/kgH2O No phase change 2256,7 kJ/kg 

Energy consumption  

[kJ/kgfresh water] 

< 100 
(Depends on hydrate 

former, number of stages 

etc.) 

< 100 > 300 

Salt content in water 

produced [g/L] 

0  

(in theoretical) 
< 1 0 

Operating and material costs 

medium 

(moderate temperature, 

insensitivity to biological 

fouling, scaling and 

corrosion problems) 

high 

(Fouling and scaling 

problems, short 

membrane lifetime) 

high  

(corrosion problems) 
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Characteristics of different desalination technologies 
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Materials and Methods: Experimental setup 

 High pressure tank reactor (V = 540 mL) 

Operating conditions: 

• pmax = 200 bar 

• -30 ≤ T ≤ 300 °C 

• Nmax ≤ 650 rpm 
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Materials and Methods: Experimental setup 

 

 

 

 

 

 

 

 Target parameters: 

 Salt removal efficiency for  

 a batch (single- and two-stage) process 

 different post-treatment methods (washing, melting, vacuum filtration) 

 Impact of process time (begin nucleation – end of exp.) and water 

conversion 

 

 

High pressure tank reactor (V = 540 mL) 

Operating conditions: 

• pmax = 200 bar 

• -30 ≤ T ≤ 300 °C 

• Nmax ≤ 650 rpm 
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Materials and Methods: Experimental procedure 

 

1. CO2 hydrate formation 

 Synthetic seawater (150 mL; salinity of 3.5 wt.%) 

 Process conditions: 50 bar, 1 °C, N = 500 rpm 

2. Phase separation of hydrates and brine 

3. Hydrate dissociation 

 Measuring of electrical conductivity 

 Calculation of separation efficiency 

 

 

 

Batch process (single-stage)  
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1. CO2 hydrate formation 

 Synthetic seawater (150 mL; salinity of 3,5 wt.%) 

 Process conditions: 50 bar, 1 °C, N = 500 rpm 

2. Phase separation of hydrates and brine 

3. Hydrate dissociation 

 Measuring of electrical conductivity 

 Calculation of separation efficiency 

4. Reuse of dissociated hydrate phase (Second hydrate formation) 
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Materials and Methods: Experimental procedure 

 

1. CO2 hydrate formation 

 Synthetic seawater (150 mL; salinity of 3.5 wt.%) 

 Process conditions: 50 bar, 1 °C, N = 500 rpm 

2. Phase separation of hydrates and brine 

3. Post-treatment of hydrate phase (Washing, melting (for 15 min), vacuum 

filtration) 

4. Hydrate dissociation 

 Measuring of electrical conductivity 

 Calculation of separation efficiency 

 

 

 

 

 

Batch process+Post-treatment 
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Results: Batch process (single-stage) 

 

 

 

 

 

 

 

 

 

 

→ Separation efficiency between 5.3 and 58.4 % (22 % on average) 

→ Long process time promotes the purity of the hydrate phase 
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Results: Batch process (single-stage) 

 

 

 

 

 

 

 

 

 

 

→ Separation efficiency between 5.3 and 58.4 % (22 % on average) 

→ Long process time promotes the purity of the hydrate phase 

→ Increase in water conversion leads to lower separation efficiencies 
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Results: Batch process (two-stage) 

 

 

 

 

 

 

 

 

 

 

→ Separation efficiency could be increased by around 15 % on average 
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Results: Post-treatment methods 

 

 

 

 

 

 

 

 

 

 

 

 

→ Vacuum filtration is the most effective of the three methods (increase from 22 % 

 up to nearly 68 % on average) 
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Results: Separation efficiency in different hydrate section 

 Problem: Significant amount of remaining impurities in hydrate bulk  

 adsorption of impurities on hydrate surface 

 porosity of hydrate bulk 

 dendritic nature of hydrate particles and high amount of interstitial water 
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Results: Separation efficiency in different hydrate section 

 Problem: Significant amount of remaining impurities in hydrate bulk  

 adsorption of impurities on hydrate surface 

 porosity of hydrate bulk 

 dendritic nature of hydrate particles and high amount of interstitial water 

 Detection of the position of impurities in hydrate bulk 
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Results: Hydrate formation from blackcurrant juice 

 Hydrate formation from blackcurrant juice  

 Visual observation of the position of remaining impurities in hydrate phase 

 

 

 

 

 

 

 

 

 

→ Pigment concentration varies in different hydrate sections 

→ Validation of the theory 



Fabienne Knappitsch, 10th of May 2016 

Slide 29 

Conclusion 

 Separation efficiencies between 5 % and 70 % were achieved 

→ Stage-wise process and post-treatment methods enhance the salt removal 

 Purity of hydrate phase depends on different factors (water conversion, 

process time,..) 

 Need for further research to understand the separation mechanism 

→ Change of morphological characteristics (dendritic growth, interstitial water) 

and physical-chemical properties  

→ Scale-up and technical implementation (e. g. phase separation, apparatus 

design for continuous operating mode) 
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