Temperature Challenges for Integrated Systems due to High Power Density

ECPE Tutorial Wide-Bandgap User Training

Andreas Schletz

Christoph Bayer Aaron Hutzler

Picture source: Fraunhofer IISB

20.05.2021

Contents

- Motivation
- Integration
 - Power Semiconductors
 - Passive components: DC-link capacitor
 - Electrical insulation
 - Die attach
- Conclusion

Slide 2 20.05.2021 Andreas Schletz © Fraunhofer IISB

- TI LMG3410
- QFN32 Direct drive concept
- Chip by Chip
- 600V/ 12A/ 70mΩ
- Chip Size GaN 2.1mm x 5.7mm=11.97mm²
- Chip Size Si 1.3mmx2.7mm=3.51mm²
- All functionality integrated into Si
- State of the art reflow soldering
- Temp max. 150°C

Slide 4 20.05.2021 Andreas Schletz © Fraunhofer IISB Paul L. Brohlin et.al.: The benefits of direct drive for GaN devices are achieving hig. . . . switching power efficiencies and better system level reliability due to the integration of device protections, Texas Instruments; Texas Instruments LMG3410 Datasheet

What's Integration? Integration Examples

System integration

- Electric motor
- Cooling channel
- 3x Halfbridge power modules
- 3x Halfbridge gate drivers
- 3x Current sensor
- 3x Thermal shielding
- Common dc link capacitor
- Control electronics
- EMI filter
- Housing against ambient

Slide 5 20.05.2021 Andreas Schletz © Fraunhofer IISB

What's Integration? High Temperature

- Case Study: Research Project CREAM (EU)
 - DC/AC converter
 - Integrated with motor for a high temperature actuator
 - Assembled in multi-chip power module operated at 250°C junction temperature
 - SiC and SOI components
 - Output power: 7 kVA
 - Operating temperature range:
 - -55°C / 170°C (cold plate)
 - Power density: 4.5 kW/liter for the demonstrator

Slide 6 20.05.2021 Andreas Schletz © Fraunhofer IISB

Power Electronics for High Temperature

6 Phase Inverter Bridge, SiC-JFET Half Bridge Power Modules

- Ceramic DC link capacitor
- Current Sensor for each motor phase
- Gate Driver with galvanic isolation via magnetics
- EMI Filter

Slide 7 20.05.2021 Andreas Schletz © Fraunhofer IISB

Power Electronics for High Temperature

Slide 8 20.05.2021 Andreas Schletz © Fraunhofer IISB

- Monolithic GaN power stage
- Si dc link capacitor
- Die on Die concept
- Integrated gate driver
- Low parasitics
- Silver sintered die-attach for power devices
- Extended lifetime
- Temp ...200°C

Slide 9 20.05.2021 Andreas Schletz © Fraunhofer IISB

Concept

- H bridge (600V/ 80A)
- Chip on busbar
- Minimal par. inductance < 2 nH</p>
- Operating temperature ...250°C
- Technologies
 - Double sided Ag sintering
 - Sic Mosfet
 - Integrated Si-DC link capacitor (600 V)
 - Hybrid polymer insulation material

10

Slide 10 20.05.2021 Andreas Schletz © Fraunhofer IISB

Ceramic Embedding

- Goal: High temperature packaging for high voltage
- Problem: State of the art organic materials do not cover WBG needs
- Solution
 - Embedding in ceramic circuit board like DCB, LTCC
 - Subtractive laser ablation for extremely fine pitch and cavities

Ceramic Embedding

- Highlights
 - High integration density
 - High temperature capability >300°C
 - High voltage resistant (>10 kV demonstrated)
 - Hermetic for harsh environments
- Relevance
 - Power electronics building block for air cooled applications

Slide 12 20.05.2021 Andreas Schletz © Fraunhofer IISB

Integration Summary

All components coupled thermally

- Technology push, two trends
 - Case A: Integration of power stage (GaN) and driver (Si, GaN), sensors (?), logic (Si), magnetics
 - Temperature keeps state of the art
 - First solutions on the market
 - Case B: Integration of power stage (SiC), dc link (Si, ceramic), parts of the gate drive
 - Temperature goes up (to the next bottleneck)
 - Demonstrated on power module level

Slide 13 20.05.2021 Andreas Schletz © Fraunhofer IISB

Application Pull: Integration leads to High Temperature Power Electronics

Case I

Case II: SiC integration

T_{j(chip)} > 150°C ■ T_{coolant}, ambinent_in < 85°C

- Driver: Low cost on semiconductor level
- Challenge: Only power semiconductor chip, its packaging and the heat path affected
- Relevance: Broad sustainable trend

- Driver: Low cost and low volume for passives devices
- Challenge: Dielectrics, magnetics, packaging
- Relevance: Difficult but new capacitors available or on the horizon

Slide 14 20.05.2021 Andreas Schletz © Fraunhofer IISB

Application Pull: Integration leads to High Temperature Power Electronics

Case III

Case IV: WBG full integration

T_{j(chip)} >150°C ■ T_{cool,amb_in,passives} = 85...125°C

- Driver: Low cost on system level*
- Challenge: All devices affected
- Relevance: Broad market but cost effective alternatives on system level available

T_{j(chip)} >175°C ■ T_{coolant,amb_in,pasives} > 175°C

- Driver: Application needs**
- Challenge: All devices affected (availability, lifetime, cost)
- Relevance: Niche markets

Slide 15 20.05.2021 Andreas Schletz © Fraunhofer IISB

* e.g. no second coolant ciruit for hybrid electric cars ** e.g. gear box electronics

Definition of High Temperature Power Electronics...

- ...is strongly dependent on the application
 - High temperature power semiconductor
 - Reduces cooling effort, increases removable power losses
 - Reduces chip sizes and therefore cost
 - High temperature where beneficial
 - High temperature for the complete electronics
 - Reduces cooling effort
 - Makes it suitable for hot ambient
 - High temperature everywhere
 - Depending on the temperature device by device and technology by technology cannot keep up

Slide 16 20.05.2021 Andreas Schletz © Fraunhofer IISB

Integration: Semiconductors

Slide 17 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Semiconductor Devices (1)

Material	Bandgap energy, E _g in eV	Intrinsic carrier conc., n _i in cm ⁻³	Perme- ability ε _r	Electron Mobility, μ _n in cm²/(Vs)	Crit. el. field strength, E _c in MV/cm	Elec. sat. velocity, v _s in 10 ⁷ cm/s	Therm. cond., λ in W/(cmK)	Bandgap type
Ge	0.66	2.4E13	16.0	3900	0.1	0.5	0.6	
Si	1.1	1.5E10	11.8	1350	0.3	1.0	1.5	
GaAs	1.4	1.8E6	12.8	8500	0.4	2.0	0.5	D
InN	1.86	~1E3	9.6	3000	1.0	2.5	-	D
Al₅Ga₄As	1.9	-		3000	0.3		0.1	
GaP	2.3	7.7E-1	11.1	350	1.3	1.4	0.8	
SiC (6H)	2.9	-	9.7	415	2.5	2	5	
SiC (4H)	3.26	8.2E-9	10	~700	2.0	2.0	4.5	
GaN	3.39	1.9E-10	9.0	900	3.3	2.5	1.3	D
Ga ₂ O ₃	4.8	-						
C	5.45	1.6E-27	5.5	1900	5.6	2.7	20	
Diamond	5.6	-	5.7	4000	10	3	20	
BN	6.0	1.6E-31	7.1	5	10	1.0	13	
AIN	6.1	~1E-31	8.7	110	11.7	1.8	2.5	D

Ge…Germanium, Si…Silicon, GaAs…Gallium arsenide, InN…Indium nitride, Al_xGa_{x-1}As…Aluminum gallium arsenide, GaP…Gallium phosphide, SiC…Silicon carbide, GaN… Gallium nitride, Ga₂O₃…Gallium oxide, C…Carbon, BN…Boron nitride, AlN…Aluminum nitride

Slide 18 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Semiconductor Devices @ High Temperature

- With increasing temperature
 - Intrinsic vs. extrinsic @high T
 - increased reverse voltage
 - decreased forward voltage drops at pn junctions
 - decreased conductivities
 - increased gain in bipolar junction transistors (BJTs)
 - decreased threshold voltages in field effect semiconductor transistors (FETs)
 - Changed temperature coefficient
 - change in the switching characteristics, ...

Slide 19 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Semiconductor Devices Thermal Runaway

- Power dissipation of a device increases with temperature (e.g. during blocking when leakage current causes heat up)
- The limits of thermal stability have to be taken into account when operating semiconductor devices

- The maximum operating temperature for semiconductors can be calculated from their intrinsic carrier density which depends on the bandgap of the material
- For HV applications the theoretical limit for Si devices is reached at 150 °C; for devices up to 100 V blocking it is supposed to be at 250 °C

Slide 20 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Semiconductor Devices Electrical Properties of WBG

- Si 25..125°C: a factor of 2 is accepted by the application designers
- State of the art SiC on resistance increases by a factor of 1.5 at 200°C !
- SiC on resistance looks usable for high temperature
 → perfect candidate for dc-link integration
- GaN cannot keep up (so far)
 - Devices with a factor > 4 !
 - Devices available with a factor approx. 2 only

 perfect candidate for driver & logic integration

Comparison of the R_{DS(on)} Si MOS8 (1.2 kV, 0.30 Ω Si MOSFET, Microsemi) SiC MOS (1.2 kV, 80 mΩ SiC FET, Cree) GaN1 FET (650V, 35mΩ, GaN FET, Transphorm) GaN2 FET (600V, 140mΩ, GaN FET, Panasonic)

Technology Push: Semiconductor Dies (5) Limits in High Temperature with Respect to the Device

Metallization of the device:

- Ranging from up to 200 °C aluminum will satisfy almost all applications
- From 200 °C the relatively low electro migration activation energy may need elements to suppress electro migration
- More additives needed to further increase temperature to approx. 300 °C (simultaneously increasing resistivity of Al alloy)
- > 300°C will afford copper or costly material (Au, Pt, ...)
- Lifetime
 - High temperature swings degrade the metallization
 - High temperature degrade isolation (gate oxide)
- No real trend for temperatures > 200°C so far on the market

Integration: Passive components

Slide 23 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: DC-link capacitors

- DC link capacitors for high temperatures
 - Electrolytic capacitors not suited
 - Simply too big
 - Foil capacitors go for 350°C with special material
 - Limited energy density
 - High power losses during operation (high temp material)
 - Ceramic capacitors
 - Big variety of different materials mostly based on BaTiO
 - Exciting energy densities available
 - Excellent high temperature capabilities
 - Candidate for integration
 - Silicon capacitors
 - Limited energy density
 - Exciting high power density
 - Excellent high temperature capabilities
 - Candidate for integration

Slide 24 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: DC-link capacitors

- Nothing new!
- Well known from high performance micro processors...
- I...and integrated DC/DC Converters for consumer electronics

Murata LXDC, 6 MHz, 10V range

Slide 25 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Monolithic Integrated Silicon DC link Chip Capacitor

Device concept and implementation

- Integrated in silicon chip
- Voltage rating up to 600V 900V
- Temperature rating up to 200°C Si is the substrate only, no semiconductor
- Capacitance: typ. 5-30nF
- Manufacturing of known technologies
- Packaging of known technologies

Slide 26 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: DC Link Capacitors for Integration

- Comparison of switching methods
 - Classic slow (200V overshoot)
 - High speed (400V overshoot, -50% switching losses)
 - High speed with Snubber (200V overshoot, -50% switching losses!)

Slide 27 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: DC Link Capacitors for Integration

- Cost analysis (simple calculation)
 - Cost classic version: $\in_{Classic} = k_{SiC} * A_{SiCO}$

- Cost snubber version: $\in_{\text{Snubber}} = k_{\text{SiC}} * A_{\text{SiC1}} + k_{\text{Si}} * A_{\text{Si}}$
- Assuming chip size ratio $A_{siC0}/A_{si} = 3/1$ (worst case taken from picture)
- SiC chip size ratio directly linked to power losses ratio A_{SiC0}/ A_{SiC1} = (P_{Classic,cond} + P_{Classic,switching})/ (P_{Snubber,cond} + P_{Snubber,switching})
- Assuming
 Assuming
 A_{sic0}/ A_{sic1} = (50% + 50%)/ (50% + ½ * 50%)
- $\in_{\text{Snubber}} < \in_{\text{Classic}} (!)$
- \rightarrow k_{SiC} > 1,33 * k_{Si} (will be true forever!)
- Plus additional savings on gate driver power

Slide 28 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: DC Link Cap for Integration

- Low energy density
- Low temperature coefficient
- Low isolation current
- High temperature capability
- Ready for integration

T. Erlbacher et al., WoDiM 2012, Dresden, GER

Slide 29 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Ceramic DC-link Capacitor

- Ceramic capacitors have outstanding energy density, low ESR, low ESL
- High nonlinearity capacitance over temperature and voltage depending on the material
- Calculated energy density is important (at a certain voltage level)
- Isolation current can be very high up to self destruction of the components (thermal runaway)
- Anti ferroelectric dielectrics (e.g. EPCOS CeraLink) seems to be as a good alternative for high temperature at moderate cost
- Temperature can go for > 200°C

Slide 30 20.05.2021 Andreas Schletz © Fraunhofer IISB

Application Pull: Active Power cycling tests - Capacitors

- Ceramic capacitors need soft termination because of mechanical stress (capacitor crack is a well known failure mechanism)
- Capacitors can have significant heating
 - passively by the power semiconductor → active PCT of active devices
 - active by own power losses → active PCT of passive devices

Ceramic DC link capacitor at end of life

Slide 31 20.05.2021 Andreas Schletz © Fraunhofer IISB

Integration: Electrical Insulation

Slide 32 20.05.2021 Andreas Schletz © Fraunhofer IISB

Slide 33 20.05.2021 Andreas Schletz © Fraunhofer IISB

Technology Push: Electrical insulation

Organic substrates

- New PCB materials are available for temperatures up to 300 °C
- Inorganic substrates
 - Technologies like DCB, AMB, DAB on Al₂O₃, AIN, Si₃N₄
 - No temperature limit from the material
- Limitations in terms of temperature cycling (CTE mismatch)

Technology Push: Electrical insulation Passive Thermal Cycling Capability

Al₂O₃ DBC @ -40/ 230 °C metallization delamination (concoidal fracture)

Initial state

17 thermal cycles

AIN DBA @ -40/ 230 °C: no delamination

983 cycles \rightarrow Rz \approx 5.25 μ m

Slide 34 Andreas Schletz © Fraunhofer IISB

Technology Push: Electrical insulation (3) Active Power Cycling Capability

- Impact on ceramic substrates
 - Failure mechanism for DCB, AMB
 - Vertical cracks in the substrate metal
 - Delamination of metal from ceramic
 - Concoidal fracture near the semiconductor die
 - Corrosion, oxidation, …
 - Failure mechanism for DAB
 - Recrystallization of the metal layer → Corrugated chip bond line

source: Fraunhofer IISB

Slide 35 20.05.2021 Andreas Schletz © Fraunhofer IISB

Dielectric Breakdown in Insulation Materials

From continuous partial discharge to material breakdown

- Breakdown mechanisms intrinsic (µs), thermal (ms), erosion (h-a)
 - Dielectric strength in kV/mm (reference values)

Air	~3
Ceramics (AIN, Si ₃ N ₄ ,Al ₂ O ₃ , etc.)	14 – 25
Potting (silicone gel, epoxy, etc.)	20 – 30
Transformer Oil	40 – 60

Slide 36 20.05.2021 Andreas Schletz © Fraunhofer IISB

Corrosion on Insulating Substrates - Dentrides

Fraunhofer

Slide 37 20.05.2021 Andreas Schletz © Fraunhofer IISB

PCB Embedding – Failure Mechanisms

- Copper cracks in
 - Layers
 - all kind of vias
 - Vias/layer interconnections
- Delamination between
 - Embedded chips/ polymer
- CAF

Slide 38

Andreas Schletz

- (Conductive anodic filament)
- Vertical and lateral shorts
- Groth of conductive filament along the glass fiber
- Driven by temperature, humidity and electric fields
- Driven by improper PCB manufacturing

All videos taken from http://www.pwbcorp.com/EN/portfolio.php

FR4 PCB after 730h CAF testing at 1500V, 85°C and 85% rH

Technology Push: Joining Technologies, Die Attach (1)

- Alternative resins bonding is extremely fast and polymers are available that can be processed from well under 200 °C to over 400 °C
- Electrically conductive adhesives maximum operating temperatures between 200 °C and 350 °C but low electrical conductivity is less favorable
- Transient liquid phase diffusion bonding (Amalgam) a bonding layer with a higher melting temperature than the bonding temperature, T_m of the interlayer and can be about 1000 °C (Ag_xIn_y, Au_xIn_y, Cu_xSn_y >350 °C)
- Welding, like wire-bonding (Al, Cu) tested up to 300°C
- Soldering hundreds of materials and compound materials for soft soldering, as eutectic or non-eutectic solder materials ranging from 100 °C to 400 °C (melting temperature T_m)
- Sintering high material limit of silver and already tested for temperatures up to 300 °C
- High lifetime, high temperature, big die size, chip to wafer die attach technologies for heterogeneous integration needed ;-)

Die Attach Lifetime (1)

Slide 40 20.05.2021 Andreas Schletz © Fraunhofer IISB

Die Attach, PCT Results: Silver sintering (4)

Die Attach, PCT Results: Gold-Germanium (5)

For comparison: Standard SnAgCu solder: 8,000 cycles at 40 °C / 104 °F

Andreas Schletz © Fraunhofer IISB

Slide 44

Die Attach, PCT Results Explanation (6) Material Properties of Silver

Slide 45 20.05.2021 Andreas Schletz © Fraunhofer IISB

Conclusion

Take out advantage of high speed switching Power electronics building block for easy use and cost reduction

Fraunhofer IISB

Energy Electronics

Materials

POWER ELECTRONIC SYSTEMS

From Material to Power Electronic Applications • Everything from One Partner •

Technologies

Devices, Moduls and Reliability Vehicle Electronics

Andreas Schletz Andreas.Schletz@iisb.fraunhofer.de Tel. +49 9131 761 187 Schottkystr. 10 91058 Erlangen www.iisb.fraunhofer.de

Slide 47 20.05.2021 Andreas Schletz © Fraunhofer IISB