IAC-12-A1.5.10 »INVESTIGATION OF CLEANING TECHNOLOGIES AND VALIDATION PROCEDURES APPROPRIATE TO NEEDED CLEANLINESS FOR INSTRUMENTS USED IN THE SEARCH FOR LIFE«

John Vrublevskis

SEA (Systems Engineering & Assessment Ltd), Bristol, United Kingdom

Dr.-Ing. Udo Gommel Guido Kreck

Fraunhofer IPA, Department Ultraclean Technology and Micromanufacturing, Stuttgart, Germany

Robert Lindner

European Space Agency (ESA)

1: Introduction and Background

Cleanliness Requirements of "Search for Life" Missions

- high reliablity & long life cycles of components
- "Planetary Protection" aspects
- exobiology instrument requirements: avoid "false positive" results caused by terrestrial cross-contamination
- ➔ final cleaning of parts and components necessary

1: Introduction and Background

Relevant Contamination and Specific Cleanliness Requirements

abiotic & anorganic

- manufacturing process residues (dust from abrasive processes, abrading agents, ...)
- dust from the environment
- → extraterrestrial samples
- → etc.

biotic

- → bacteria
- spores
- → flakes of skin & cell fragments
- → etc.

filmic (organic & anorganic)

- residues from auxiliary production materials (cooling lubricants, preserving agents, ...)
- fingerprints
- → etc.

- Phenylethylamine

2: Available Cleaning Technologies

Cleaning Technologies Trade-Off

Which cleaning technologies are available? (34 cleaning methods)

- Which cleaning technologies are most suitable? (Pre-/Main-/Post-Cleaning)
- → How can I preserve the final cleanliness state? (Packaging Concept)

Validating CO₂ Snow Jet Cleaning: Definition of Constraints

advantages:

- → effective cleaning method
- removal of organic and particulate contamination
- universally applicable
- → residue-free
- ➔ dry

standardized test geometry for robot-assisted cleaning

- → diameter of test substrate:
 100 mm (≈ 4" Wafer)
- → materials, roughness, etc.: freely alterable

Dispenser

Crushing

Analysis

Acquisition

Chamber

test environment:

- Class 1 cleanroom acc. to ISO 14644-1
- benchmark for clean environment
- Iaminar airflow
- controlled temperature and humidity

Particle Removal Efficacy - Approach

Particle Removal Efficacy - Results

Matarial	Run	Cleaning Efficacies for the Particle Sizes in %					
Wateria		≥ 1 µm	≥ 5 µm	≥ 10 µm	≥ 50 µm		
Aluminium	1st	99.41%	99.97%	99.96%	100%		
AI 6061	2nd	97.71%	99.94%	100%	100%		
Titanium Alloy	1st	99.97%	99.99%	100%	100%		
Ti-6Al-4V	2nd	99.87%	99.95%	99.97%	100%		
Aluminium Alodine 1200	1st	99.99%	100%	100%	100%		
	2nd	99.99%	99.99%	100%	100%		
Aluminium Black Anodized	1st	100%	100%	100%	100%		
	2nd	100%	100%	100%	100%		
Steel AISI 304	1st	100%	100%	100%	100%		
	2nd	100%	100%	100%	100%		
	3rd	100%	100%	100%	100%		

- → Steel ($R_a \approx 0.8$): zero count twice
 - Titanium Alloy (R_a≈0.5): very good
- → Aluminium Alloy ($R_a \approx 0.5$): > 97.71%
- → Aluminium Black Anodized* & Aluminium Alodine 1200* (R_a≈2.4): very good *<u>Notice:</u>

incompatibility to the cleaning method

Spore Removal Efficacy - Approach

Spore Removal Efficacy - Approach

Fraunhofer

Transfer of Particulate Results

»Adhesive forces are the cause of all surface effects leading to contamination and influencing cleaning«

Hauser G. (2008). Hygienic Manufacturing Technology Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA

Organic Removal Efficacy - Approach

Organic Removal Efficacy - Results

Organic Removal Efficacies											
	Toluene	DMP		Hexadecane		ne	PDMS				
Aluminium (R _a ≈0.5) Al 6061	97%	99%		99%			99%				
Aluminium (R _a ≈2.4) Black Anodized	92%	100%		99%			97%				
Aluminium (R _a ≈2.4) Alodine 1200	94% 98%		%	97%			99%				
Titanium Alloy Ti-6Al-4V (R _a ≈0.5)	98%	96%		98%			98%				
Steel (R _a ≈0.8) AISI 304	98% 9		%	99%			99%				
contamination in µg per material				Steel AISI 304 (R _a ≈0.8)			Aluminum Al 6061(R _a ≈0.5)				
calculated contamination				420	4200	42	420	4200			
detected contamination prior cleaning first elution				149.2	5012	17.5	470.0	4918			
detected contamination prior cleaning second elution				13.2	118.6	8.3	11.6	900.5			
detected contamination after cleaning				13.1	8.1	9.2	7.3	7.3			

TD-GC/MS & IC Analysis:

elution efficacy [%]

cleaning efficacy [%]

- → 92% (worst) to 100% (best)
- no appreciable difference in organic cleaning efficacy for different materials

69.24

74.17

91.16

91.19

97.63 52.37

99.84 47.31

97.52

98.44

81.69

99.85

4: Packaging Concept

based on techniques and materials from the semiconductor industry

inner layer

- cleaned polycarbonate holder
- small contact area
- middle/outer layer
 - ultra-clean PP Ziploc bags with ESD protection
 - no contaminants generated during heat sealing
 - PP: low levels of outgassing & shedding
- Iong term storage samples were prepared
- Ievel of contamination on these samples will be measured after storage periods of
 - 6 months
 - 12 months
 - 18 months
 - 2 years

5: Detailed Test Design

6: Summary

requirement: high cleanliness levels of parts & components (PAR/BIO/VOC)

- → cleaning and selection of suitable cleaning technologies
- → quantitative assessment of cleaning technologies
- cleaning validation approach:
 - particles: automated SEM analysis with tracer contaminants
 - spores: plating with Agar
 - transfer of particle results: measuring particle adhesion forces
 - organics: combination of TD-GC/MS and IC analysis
 - suitability demonstrated: quantitative assessment of CO2 snow cleaning efficacies
- preserve cleanliness state: packaging concept
 - standard wafer equipment (optimized in regard of PAR, VOC and ESD)
 - Iongterm storage tests: assessment of recontamination potential
- statistical hedging: detailed test plan
 - ightarrow repetition test series required

7: Acknowledgements

The Authors would like to thank Thomas Rohr, Nadine Fritz and Gerhard Kminek of the European Space Agency as well as Markus Keller of Fraunhofer IPA for their assistance throughout the study.

