
Vol. 35

Jens Knodel

Sustainable Structures in
Software Implementations by
Live Compliance Checking

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Prof. Dr. Frank Bomarius
 Prof. Dr. Peter Liggesmeyer
 Prof. Dr. Dieter Rombach

FRAUNHOFER VERLAG

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

PhD Theses in Experimental Software Engineering
Volume 35

Editor-in-Chief: Prof. Dr. Dieter Rombach

Editorial Board: Prof. Dr. Frank Bomarius, Prof. Dr. Peter Liggesmeyer,
 Prof. Dr. Dieter Rombach

Zugl.: Kaiserslautern, Univ., Diss., 2010

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. The quotation of those designations in whatever way does not
imply the conclusion that the use of those designations is legal without the consent of the
owner of the trademark.

© by Fraunhofer Verlag, 2011
ISBN 978-3-8396-0233-1
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 800469, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon +49 7119 70 - 25 00
Telefax +49 7119 70 - 25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Sustainable Structures in
Software Implementations

by Live Compliance Checking

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr. Ing.)

genehmigte Dissertation
von

Dipl.-Inf. Jens Knodel

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h. c. Dieter Rombach
 Prof. Dr. Jürgen Ebert

Dekan: Dr. habil. Bernd Schürmann

Tag der Wissenschaftlichen Aussprache: 12.05.2010

D 386

 ii

iii

“All the forces in the world are not so powerful as an idea whose time has come.”
Victor Hugo (*1802 – †1885)

 iv

 v

Abstract

Software architecture – besides other aspects – outlines the structure of
software systems prescribing the intended decomposition into
components and dependencies among them. Developers then translate
the abstract building blocks of the system into source code. Architecture
compliance captures the degree to which required or requested
demands on the structure in the implementation of a software system
have been met. Analyzing the actual decomposition reveals a dilemma of
today’s software development organizations: Almost all implementations
exhibit significant structural violations. We could observe this practical
problem across various application domains such as embedded systems
and information systems, as well as for academic systems.

We first investigated the impact of this lack of compliance on the
development effort in three replications of a controlled experiment. We
compared the effort for a sample system evolution task on two
functionally equivalent implementation variants of the same system –
one with significant structural violations and the other one realized in
compliance with the architecture. The results showed that the effort
required was, on average, more than double (204%) for the
implementation with structural violations. The empirical results provide
evidence that the evolution of a system becomes effort-intensive when
lacking compliance, which imposes maintenance risks for the
development organization. The architecture as a management vehicle for
stakeholders turns out to be unreliable, delusive, and almost useless. To
counteract these threats, the development organization would have to
invest significant effort to reshape the system towards the
decomposition as specified by the architecture.

The primary contribution of this thesis is live architecture compliance
checking, which sustains the structure in software implementations. This
new compliance checking technique verifies any source code
modifications made. Any delta – source code locally modified by a
developer – is first mined for relevant information and then checked for
compliance. Developers receive live feedback on the compliance
checking results and are immediately made aware of drifts between
architecture and implementation. Live compliance checking supports
distributed teams of developers – starting from day one of the
development. The entire source code is constantly monitored, analyzed,
and checked continuously. This live detection allows developers
correcting violations promptly: It further acts as pro-active training for
developers regarding the intended structural decomposition.

 vi

Live compliance checking detects architecture violations at the earliest
point in time possible – right after their insertion. The fast response time
for feedback enables developers to repair the structure with minimal
effort and, thus, to sustain the intended decomposition over time.

The idea of live compliance checking has been realized as an extension
of the Fraunhofer SAVE tool (Software Architecture Visualization and
Evaluation). This variant – called SAVE LiFe (Live Feedback) – is a client-
server-client system, which enables live feedback on compliance for
distributed development teams. One central server performs compliance
checking for the modification made by multiple distributed developers
while the architects’ client tracks the overall compliance status. The
application of SAVE LiFe over a period of 35 days in an experiment
provided empirical evidence for its usefulness. The developers supported
by the live compliance checking caused about 60% less structural
violations throughout than the developers of the control group. Based
on this result, we can conclude that live compliance checking potentially
leads to less rework and to effort savings due to the reduced number of
structural violations.

In short, this thesis presents live architecture compliance checking – an
empirically validated, tool-supported approach for sustaining structure in
software implementations. It enables development organizations to
successfully rely on their software architecture as the instrument for
guiding the evolution of the software system.

 vii

Acknowledgements

I would like to express my sincere gratitude to the people who supported
me, accompanied me, and empowered me in the journey of my PhD.

First of all, I would like to thank Dieter Rombach for supervising my
thesis and his guidance along the way. I appreciate working at
Fraunhofer IESE, especially the opportunities I had and the lessons
I learned here. Secondly, I would like to thank Jürgen Ebert for agreeing
to review this thesis. My thanks go also to Jens Schmitt for steering the
dissertation committee.

I would like to thank my friends and colleagues at Fraunhofer IESE for
many fruitful discussions about my work, software architectures, and
other topics. I appreciated your comments on my ideas, on early drafts
of this thesis, or at the rehearsal of my PhD defense. Here I want to
specifically mention Michalis Anastasopoulos, Joachim Bayer, Martin
Becker, Ralf Carbon, Christian Denger, Slawomir Duszynski, Jörg Dörr,
Thomas Forster, Mikael Lindvall, Dirk Muthig, Thorsten Keuler, Matthias
Naab, Daniel Pech, Dominik Rost, Marcus Trapp, Christian Webel,
Balthasar Weitzel. I am grateful that I had the opportunity to get to
know you and to work with you. I also thank Sonnhild Namingha for
proofreading this thesis.

Furthermore, I would like to express my sincere thanks to all members of
the SAVE team. What started as a proof-of-concept turns out to become
market-ready product these days. I would like to take this opportunity to
thank everyone who was and still is involved in evolution of SAVE.
I enjoyed working with you and appreciate all your contributions made
to SAVE and SAVE LiFe.

I would like to thank the people who helped me realizing the
experiments of my thesis as well as all participants of the experiments.
Moreover, I would like to thank the many people from our industrial
partners who allowed me applying my ideas.

Last but far from least, I want to thank my wife Catalina and my parents
Martina and Hubert who have supported me in every possible way. I am
eternally grateful for their constant love.

Kaiserslautern, May 2010
Jens Knodel

 viii

Table of Contents

 ix

Table of Contents

Abstract ... v
Acknowledgements .. vii
Table of Contents .. ix
List of Figures ...xiii
List of Tables ... xvii
List of Definitions..xix

1 Introduction ..1
1.1 Compliance Checking ..8
1.2 Effects of Architecture Compliance ..12

1.2.1 Survey on Industrial Software Systems13
1.2.2 Evidence of Compliance Benefits17
1.2.3 Summary ...21

1.3 Principles of Live Compliance Checking22
1.4 Contribution ..26

1.4.1 Research Method ...27
1.4.2 Proposed Solution ..28

1.5 Outline ...31

2 Measuring Architecture Compliance ..33
2.1 Meta-Model of the Structural View ..33
2.2 Meta-Model of the Source Code ..36
2.3 Meta-Model of the Mapping ..38
2.4 Compliance Metric ...40

2.4.1 Basic Formulae ...41
2.4.2 Formalization of Metric Input ...42
2.4.3 Lifting and Mapping Operator43
2.4.4 Compliance Function ...44
2.4.5 Internal Composition ...45
2.4.6 External Dependencies ...46
2.4.7 Summary ...47

2.5 Metric Examples ...48
2.5.1 Scenario: Beginning of Implementation49
2.5.2 Scenario: Composition Flaw ...49
2.5.3 Scenario: Integration Flaw ..50
2.5.4 Scenario: Unplanned Growth ...51
2.5.5 Scenario: Unplanned Interdependencies51
2.5.6 Scenario: Architecture-Compliant System52

2.6 Conclusions ...53

3 Compliance Checking Techniques ...55
3.1 Reverse Engineering ...56

Table of Contents

 x

3.2 Applying the Reverse Engineering Archetype 59
3.2.1 Context – System Artifacts .. 59
3.2.2 Extraction .. 61
3.2.3 Abstraction ... 61
3.2.4 Presentation .. 62
3.2.5 Interpretation .. 62

3.3 State Of The Art in Compliance Checking 64
3.3.1 Commonalities in Structural Compliance Checking 64
3.3.2 Reflexion Models .. 66
3.3.3 Dependency Rules ... 69
3.3.4 Equivalence of Expressiveness 72
3.3.5 Tools for Compliance Checking..................................... 73
3.3.6 State Of The Art beyond Compliance Checking 74

3.4 Applicability of Compliance Checking Techniques 75
3.4.1 Dimensions ... 75
3.4.2 Comparison .. 78
3.4.3 Summary .. 82

3.5 Paradigm Shift towards Live Compliance Checking 82

4 Live Compliance Checking Approach ... 85
4.1 Process Overview ... 86

4.1.1 Architecting Process Part ... 88
4.1.2 Coding Process Part .. 90
4.1.3 Compliance Checking Process Part 91
4.1.4 Summary .. 94

4.2 High Execution Frequency ... 94
4.2.1 Learning Effect .. 95
4.2.2 Prompt Removal Effect .. 96
4.2.3 Summary .. 97

4.3 Theoretical Model on Effort Savings .. 97
4.3.1 Assumptions ... 97
4.3.2 Effort Savings .. 98
4.3.3 Compliance Impact on Evolution 100

5 Software Architecture Visualization and Evaluation with Live
Feedback ... 103

5.1 Solution Overview ... 104
5.1.1 Conceptual view ... 105
5.1.2 Client-Server-Client Deployment 107
5.1.3 Distributed Communication Platform 110
5.1.4 Development Environment Integration 110

5.2 SAVE LiFe Building Blocks .. 111
5.2.1 Fat Client: Architecture Manager 111
5.2.2 Server: Compliance Checker (Extensible Analysis and

Communication Platform) ... 114
5.2.3 Thin Client: Development Monitor 116
5.2.4 SAVE ... 118

5.3 Realization of Live Compliance Checking Requirements 119

Table of Contents

 xi

5.4 Technical Solution ... 120
5.5 Summary .. 121

6 Validation ... 123
6.1 Feedback by Live Compliance Checking 124

6.1.1 Setup Experiment GSE2007 .. 125
6.1.2 Results .. 127
6.1.3 Threats to Validity ... 132
6.1.4 Conclusion .. 134

6.2 Benefits of Regular Compliance Feedback 135
6.2.1 Product Line of Climate and Flue Gas Measurement

Devices ... 135
6.2.2 Remote Measurement Devices 140

6.3 Conclusion .. 142

7 Analysis and Outlook .. 145
7.1 Results and Contribution ... 146
7.2 Future Work .. 148

7.2.1 Experimentation .. 148
7.2.2 Compliance Checking ... 149
7.2.3 Quasi-Constructive Reverse Engineering 149
7.2.4 Live Feedback Platform ... 150

7.3 Final Remarks .. 151

8 References .. 153

9 Appendix .. 169

Appendix A Architectural Views and Compliance Checking ... 171
A.1 Architectural Views and Viewpoint .. 171
A.2 Architecture Compliance Checking and Violations 173

Appendix B Experiment Compliance ... 175
B.1 Experiment Procedures .. 176
B.2 Experiment Object Description .. 177
B.3 Briefing Questionnaire ... 178
B.4 Task Description .. 179
B.5 Debriefing Questionnaire .. 180
B.6 Experiment Results .. 182

B.6.1 Results Subject Performance 182
B.6.2 Results Briefing Questionnaire: Subject Background 183
B.6.3 Results Debriefing Questionnaire: Task Related Questions

 ... 184
B.6.4 Results Debriefing Questionnaire: Questions with Respect

to Material .. 185

Appendix C Example Source Code DRVFaçade 187
C.1 Class BusinessLogic.java .. 187

Table of Contents

 xii

C.2 Class DriverFacade.java ... 188
C.3 Class HardwareDriver.java ... 188
C.4 Class EmulationDriver.java ... 188

Appendix D Algorithms SAVE LiFe in Pseudo Code 189
D.1 Algorithms Architecture Manager: SAVE LiFe Fat Client 189

D.1.1 Method: publishArchitecture 189
D.1.2 Method: requestComplianceStatus 190

D.2 Algorithms Development Monitor: SAVE LiFe Thin Client 191
D.2.1 Method: monitorCodeAndSendDelta 191
D.2.2 Method: determineLocalDelta 192
D.2.3 Method: receiveLiveFeedback 192
D.2.4 Method displayDeltaResult .. 193

D.3 Algorithms Compliance Checker: SAVE LiFe Server 194
D.3.1 Method: receivePublishedArchitecture 194
D.3.2 Method: updateStructuralModel 194
D.3.3 Method: updateMapping .. 194
D.3.4 Method: publishComplianceStatus 195
D.3.5 Method: receiveDelta .. 195
D.3.6 Method: extractDeltaFacts .. 196
D.3.7 Method: parseCompilationUnit 196
D.3.8 Method: updateSourceCodeModel 197
D.3.9 Method checkCompliance .. 198
D.3.10 Method: distillViolations ... 199

Appendix E Experiment Live Feedback 201
E.1 Briefing Questionnaire ... 202
E.2 Debriefing Questionnaire .. 203
E.3 Results Briefing and Debriefing Questionnaire 205

Lebenslauf ... 207

List of Figures

 xiii

List of Figures

Figure 1 Simplified Development Process .. 9
Figure 2 Example: Structural View (left) with Strict Layering and Sample

Implementation (right) ... 13
Figure 3 Compliance Experiment – Box Plot Effort Data 19
Figure 4 Compliance Experiment – Box Plot Correctness 20
Figure 5 Analytical Compliance Checking of System Snapshots 23
Figure 6 Live Compliance Checking .. 24
Figure 7 Experimental Software Engineering Paradigm: Characterization

of Problem, Solution, and Benefits 28
Figure 8 Overview Proposed Solution – Scientific (left) and Engineering

(right) Building Blocks .. 30
Figure 9 Solution – SAVE LiFe: Server, Fat Client, and Thin Clients 30
Figure 10 Simplified Meta-Model of Software Architecture 34
Figure 11 Meta-Model of the Structural View 34
Figure 12 Meta-Model of the Source Code ... 36
Figure 13 Meta-Model of the Mapping ... 40
Figure 14 Illustration Lifting Operator ... 44
Figure 15 Compliance Metric .. 48
Figure 16 Structural View Specifying Three Layers Enforcing Strict

Layering ... 49
Figure 17 Scenario: Beginning of Implementation 49
Figure 18 Scenario: Composition Flaw .. 50
Figure 19 Scenario: Integration Flaw ... 50
Figure 20 Scenario: Unplanned Growth .. 51
Figure 21 Scenario: Unplanned Interdependencies 52
Figure 22 Scenario: Architecture-Compliant System 52
Figure 23 Archetype of Reverse Engineering ... 57
Figure 24 DRVFaçade: Source Code in Java Package Explorer 60
Figure 25 DRVFaçade: Source Code Model ... 60
Figure 26 DRVFaçade: Structural Model .. 61
Figure 27 DRVFaçade: Visualized Structural Model in SAVE 62
Figure 28 Source Code of Methods doit() and doitWrong() 63
Figure 29 Principle of Structural Compliance Checking 65
Figure 30 Reflexion Model Example: Structural Model (left), Source Code

Model (middle), and Compliance Checking Results (right) 67
Figure 31 DRVFaçade: Specified Structural Model 68

List of Figures

 xiv

Figure 32 DRVFaçade: Compliance Checking Results with Reflexion
Models ... 68

Figure 33 DRVFaçade: Compliance Checking Results with Dependency
Rules .. 72

Figure 34 Deming Cycle for Analytical Quality Engineering 83
Figure 35 Deming Cycle for Quasi-Constructive Quality Engineering 84
Figure 36 Live Compliance Checking: Process Overview 88
Figure 37 Live Compliance Checking: Architecting Process Part 89
Figure 38 Live Compliance Checking: Coding Process Part 90
Figure 39 Live Compliance Checking: Compliance Checking Process Part92
Figure 40 Effort Saving Learning Effect (left) and Prompt Removal Effect

(right) ... 100
Figure 41 Effort Saving Combined Effects ... 100
Figure 42 SAVE LiFe: Conceptual Building Blocks 105
Figure 43 SAVE LiFe and SAVE: Conceptual View 105
Figure 44 SAVE LiFe: Fat Client: Architecture Manager 108
Figure 45 SAVE LiFe: Server: Compliance Checker (Extensible Analysis

and Communication Platform) ... 108
Figure 46 SAVE LiFe: Thin Client: Development monitor 109
Figure 47 SAVE LiFe: Eclipse Integration and Reused Plug-ins 111
Figure 48 Architect Manager: Pipe-and-Filter View for Model Definition112
Figure 49 Architect Manager: Screenshot of User Interface 114
Figure 50 Compliance Checker: Screenshot of SAVE Server Console ... 115
Figure 51 Compliance Checker: Screenshot of SAVE Repository Browser115
Figure 52 Compliance Checker: Pipe-and-Filter View of Compliance

Checking ... 116
Figure 53 Development Monitor: Pipe-and-Filter View of Fact Extraction117
Figure 54 Development Monitor: Screenshot Display of Compliance

Checking Results .. 118
Figure 55 Live Feedback Experiment: Architectural Violations per

Component ... 128
Figure 56 Live Feedback Experiment: Architectural Violations Aggregated

by Supported and Control Group 129
Figure 57 Live Feedback Experiment: Architectural Violations and Total

Relations .. 129
Figure 58 Live Feedback Experiment: Transfer Success Factors 130
Figure 59 Structural Model: Framework Usage 136
Figure 60 Structural Model: Layering .. 137
Figure 61 Compliance Status: Visualization of Convergences,

Divergences, and Absences .. 137
Figure 62 Structural Model: Subsystems and Dependencies 141
Figure 63 Method Overview: Live Compliance Checking 145

List of Figures

 xv

Figure 64: Experiment Compliance: Experiment Procedures 176
Figure 65: Experiment Compliance: Briefing Questionnaire 178
Figure 66: Experiment Compliance: Task Description 179
Figure 67: Experiment Compliance: Debriefing Questionnaire 180
Figure 68: Experiment Compliance: Results Subject Performance 182
Figure 69: Experiment Compliance: Results Briefing Questionnaire 183
Figure 70: Experiment Compliance: Results Debriefing Questionnaire:

Task Related Questions .. 184
Figure 71: Experiment Compliance: Results Debriefing Questionnaire:

Questions with Respect to Material 185
Figure 72: Experiment Live Feedback: Briefing Questionnaire 202
Figure 73: Experiment Live Feedback: Debriefing Questionnaire 203
Figure 74: Experiment Live Feedback: Results Briefing and Debriefing

Questionnaire .. 205

List of Figures

 xvi

List of Tables

 xvii

List of Tables

Table 1 Compliance Survey on Industrial Software Systems 16
Table 2 Compliance Experiment – Replication Overview 18
Table 3 Compliance Experiment – Results .. 19
Table 4 Essential Requirements on Live Compliance Checking 25
Table 5 Elements of the Structural View Meta-Model 35
Table 6 Elements of the Source Code Meta-Model 37
Table 7 Assignment of Programming Language Construct to Source

Code Model Elements .. 38
Table 8 Elements of the Mapping Meta-Model 40
Table 9 DRVFaçade: Specified Rules ... 71
Table 10 GQM Goals ... 76
Table 11 Compliance Technique Comparison 79
Table 12 Impact Factors on Compliance Achievement Effort 99
Table 13 Compliance Side-Effect on Architecture-Centric Evolution... 101
Table 14 SAVE LiFe: Conceptual Components 107
Table 15 SAVE LiFe: Data Stores .. 107
Table 16 Realization of Essential Requirements on Live Compliance

Checking ... 119
Table 17 Live Feedback Experiment: Component Teams 126
Table 18 Compliance Status: Checking Results Grouped per Product and

Evaluation Date .. 138
Table 19 Comparison of Architectural View Sets 173
Table 20 Overview of Architecture Compliance Checking 174

List of Tables

 xviii

List of Definitions

 xix

List of Definitions

Definition 1 Software Engineering .. 8
Definition 2 Quality Engineering.. 8
Definition 3 Analytical Quality Engineering .. 9
Definition 4 Constructive Quality Engineering 9
Definition 5 Verification .. 10
Definition 6 Validation .. 10
Definition 7 Software Architecture .. 10
Definition 8 Implementation ... 10
Definition 9 Integration ... 10
Definition 10 Architecture Compliance Checking 11
Definition 11 Structural Violation ... 11
Definition 12 Compliance .. 12
Definition 13 Architecture Compliance .. 12
Definition 14 Precision ... 41
Definition 15 Recall ... 41
Definition 16 F-Measure .. 41
Definition 17 Formalization of Software System 42
Definition 18 Formalization of Architecture 42
Definition 19 Formalization of Implementation 42
Definition 20 Lifting Operator .. 43
Definition 21 Formalization of Mapping .. 43
Definition 22 Lifting Operator Application ... 44
Definition 23 Architecture Compliance Function 44
Definition 24 Element Compliance Function 45
Definition 25 Internal Composition .. 46
Definition 26 External Dependencies ... 47
Definition 27 Knowledge ... 56
Definition 28 Information .. 56
Definition 29 Data ... 56
Definition 30 Reverse Engineering ... 56
Definition 31 Equivalence of Sets ... 72
Definition 32 Compliance Achievement Effort 98

List of Definitions

 xx

Introduction

 1

1 Introduction

The key assets for every software development organization are the
implementations of its respective software systems. The implementation
is the result of a planned application of software engineering principles,
techniques, methods, and tools following a predefined development
process (see [Naur 1968]). The implementation determines the overall
success of the organization – delivering a software system with the
requested functionality while meeting effort, quality, and time
constraints is crucial. Because of these essential demands on every
commercial software product, development organizations need to
efficiently manage the implementations they produce. This need is an
even more pressing issue in the evolution of the implementation, due to
the laws of continuing change and of increasing complexity (these laws
were stated by [Lehman 1985] and repeated by [Sommerville 2001]).

Producing the implementation is a coding process executed by several
(teams of) developers. The developers write source code statements in
order to translate solution ideas into algorithms and data structures. The
implementation typically consists of many source code entities, which are
the distinct building blocks of the system (e.g., up to hundreds and
thousands of files or classes in procedural or object-oriented
programming languages, which are distributed over many folders or
packages). Due to the size and complexity of software systems, however,
it is obviously not feasible to manage software development efficiently
on the source code level. Abstractions are needed to handle the sum of
source code entities and to manage the software system as a whole
from a global perspective. Such abstractions enable efficient
development and allow accomplishing the essential demands mentioned
above. Software architectures – introduced as an auxiliary construct into
the software lifecycle – promise to provide these abstractions.

The notion of software architectures was first introduced by [Zachman
1987]). Software architecture is the conceptual tool for efficiently
managing and evolving software systems. They define the fundamental
decomposition of a software system [IEEE-Std.1471 2000] and are based
on the principles of “divide and conquer” [Endres 2003] and “separation
of concerns” [Parnas 1972], [Dijkstra 1982]). The applicability, the
usefulness, and the benefits of software architectures have been widely
accepted in both research and industrial practice (e.g., see [Bosch 2000],
[Clements 2003], [Hofmeister 2000], [Jazayeri 2000], [Perry 1992],
[Rozanski 2005], [Shaw 1996], or [Tyree 2005]).

Introduction

 2

Consequently, in the 1990s, architecting became an integral part of any
modern software engineering approach. This is, amongst others,
reflected in [Boehm 1995], who states that “if a project has not achieved
a system architecture, including its rationale, the project should not
proceed”. The software architecture is typically defined before any
implementation activities start – in fact, it is the first solution-oriented
artifact (in contrast to previous lifecycle activities, which constitute
problem-oriented views). As soon as there is a first draft of the
architecture, it is possible to predict whether or not the final system will
meet the needs and concerns of the stakeholders. The abstractions
provided by the software architecture enable effective communication
among stakeholders and thus, allow sound decision making, which
iteratively refines the architecture. Eventually, the abstract solutions
designed in the architecture are transformed into their concrete
counterparts in the source code – the implementation. To cover all the
different stakeholder concerns and still provide simple, expressive
documentation, several perspectives must be taken to describe the
architecture. Such documentations comprise multiple architectural views
on the software system (e.g., see [Kruchten 1995], [Davis 1997],
[Hofmeister 2000], [Herzum 2000], [Clements 2002a], [Rozanski 2005],
[Bayer 2004], or [Knodel 2006a] for examples of architectural view sets).
When comparing the most commonly used view sets, all comprise the
structural view (or something named similarly). The structural view
describes the decomposition of the software system. It captures the
static structure of a system in terms of layers, subsystems, components,
and connectors, the interfaces provided by them, as well as the
relationships and dependencies between the various elements and to the
environment [Knodel 2006a].

The structural view is the most important architectural view for
developers. Developers – being the stakeholders who realize the
software system – receive task assignments on the basis of the
information provided in structural views. They execute the assignment
and, ideally, the developers would comply with all the decisions made by
the architects. However, in practice, most development organizations fail
to meet this challenge. Hence, what sounds like a straightforward task is
hampered by the following reasons (this list is based on the work by
[Eick 2001], [Gurp 2002], [Hochstein 2005], [Parnas 1994]):

� Developers have to bridge the abstraction gap between architecture
and source code. The solutions sketched out by the architecture are
documented on an abstract level. Developers, transforming and
refining these abstract solutions into concrete implementations, have
to translate abstract concepts into working solutions. However, the
developers may fail at interpreting the documentations or may lack a
clear understanding of the motivation behind the abstract solution.

Introduction

 3

� The primary goal of the developers is to get the system running.
Developers work under tight time schedules and have constant effort
pressure; they are typically overloaded with feature requests,
development tasks, and so on. Their primary goal is to implement,
solve the problem, and get a running version that fulfills the
acceptance criteria of testing. For this reason, developers might use
shortcuts or workarounds and may ignore the architecture.

� Developers have to switch the development context for each task
assignment. When developers work on one development task (e.g.,
changing one component), a certain set of architectural decisions
applies. When switching the context (i.e., working on another
component), a different set of decisions might be valid. Nevertheless,
developers may neglect the switch and continue working with a
different context in mind.

� Developers work with a local, limited scope, while the architecture is
balanced from a global viewpoint. They focus on a concrete problem
only. However, the architecture might prescribe that developers
implement locally sub-optimal solutions in order to satisfy global
constraints. The developers may ignore these constraints by
optimizing their local implementation.

All these arguments provide explanations for one dilemma of modern
software development organizations: Almost all implementations exhibit
significant structural violations. The coding process produces an output –
the implementation – that diverges from its input – the structural view of
the software architecture. In other words, the implementation lacks
compliance1, whereby structural violations denote the items where the
realization (i.e., the actual or implemented system) deviates from its
respective counterpart – the specification (i.e., the planned or intended
system).

An analysis of industrial practice covering various software systems
distributed across diverse application domains such as embedded
systems or information systems revealed that there was not even a single
system that the developers implemented in full compliance with the
architecture. On the contrary, all systems analyzed featured substantial
structural violations [Knodel 2006c]. Other researchers confirm that the
lack of compliance is a practical problem in industrial practice (for
instance, see [Murphy 2001], [Bourquin 2007], or [Rosik 2008]). But not
only industrial software systems lack compliance: open source software
systems face the same problem. The most prominent example here is
probably the Mozilla web browser, where [Godfrey 2000] observed

1 Please note that in this thesis, we refer to compliance as the compliance of structural

views with the respective counterparts in the implementation. Thus, (unless stated
otherwise) compliance means structural compliance, violation means structural
violation, etc. Please refer to Appendix A for an overview of views and compliance
checking.

Introduction

 4

significant architecture decay within a relatively short lifetime – the
browser was still under development after a complete redesign from
scratch. Another prominent study is reported in [Garlan 1995], where
architectural mismatches resulted in a number of issues (e.g., excessive
code, poor performance, need to modify external packages, need to
reinvent existing functionality, unnecessarily complicated tools), which
eventually hampered successful reuse of components.

The lack of compliance bears an inherent risk for the overall success of
the development organization: The architecture as a communication,
management, and decision vehicle for stakeholders becomes unreliable,
delusive, and useless. Decisions made on the basis of the architecture are
risky, because it is unclear to which degree these abstractions are
actually still valid in the source code. Hence, structural violations seriously
undermine the value of the architecture. It is unclear whether or not the
development organization will meet the essential demands of the
requested functionality delivered while meeting effort, quality, and time
constraints for the software system under development. Even worse is
the long-term perspective during maintenance and evolution, which was
already observed by [Lehman 1985] stating that “an evolving program
changes, its structure tends to become more complex”. The source code
surpasses innovations designed in terms of the architecture and can
prevent their introduction. Because all decisions made to obtain the
goals were derived from the architecture, the imperative need for
architecture compliance becomes apparent.

The discipline of architecture compliance checking emerged from this
need. Since compliance is always measured relative to distinct aspects,
the inputs of compliance checking are always twofold: the architectural
view as the planned specification and the system artifact as the actual
realization, while the output is a collection of violations. Hence,
structural compliance checking requires the structural view and the
source code as input in order to reveal the structural violations. All
structural compliance checking techniques are based on the same
principles:

� First, the structural view of the architecture is processed in order to
create a structural model comprising the architectural entities and the
dependencies among them.

� Second, a snapshot of the source code is processed using some kind
of reverse engineering technology [Chikofsky 1990]. The processing
creates a source code model comprising the source code entities and
the dependencies among them.

� Third, the structural model and the source code model are aligned on
the same level of abstraction (e.g., lifting the source code model onto
the level of the structural model). The alignment exploits expert

Introduction

 5

knowledge, architecture documentation, or implementation
guidelines to bridge the abstraction gap.

� Fourth, the two models (now on the same level of abstraction) are
compared against each other. The differences between the two
models are detected and marked as structural violations. Backward
traceability to the models allows locating the violations in the
structural model or in the source code model for further analysis or
processing.

As an analytic quality engineering technique, structural compliance
checking can only be performed when all input is available. The
developers have to first execute the coding process and thus, deliver the
source code before compliance checking is possible. It is typically applied
late in the software lifecycle [Lindvall 2003], which means that structural
violations are only detected late in the development process. Structural
compliance checking has been proven as a sound analytic quality
engineering technique adopted by industry (e.g., see [Feijs 1998],
[Krikhaar 1999], [Murphy 2001] [Postma 2003], [Riva 2004], [Knodel
2006c], [Kolb 2006] or [Bourquin 2007]).

To put it another way, structural compliance checking reveals the
dilemma of development organizations: their implementations lack
compliance with the architecture. However, structural compliance does
not contribute to solving this problem. Knowing about violations does
not remove them from the source code2. The late interception due to the
late application of compliance checking leaves the development
organization to decide between two fundamental options. None of them
is really appealing to the development organization because they have
substantial drawbacks:

� React: On the one hand, the development organization has the
opportunity to react to structural violations and invest effort to
remove them.

� Prompt reaction: The short-term removal of structural
violations causes an overhead effort in the ongoing project
– at a late point in time. The overhead effort is spent on
conducting workshops and meetings to discuss the
compliance checking results and find appropriate remedies.
The actual removal is a special kind of refactoring –
changing the source code without changing the external
behavior. These refactoring activities require a
re-understanding of the source code causing structural
violations and then implementing the change to achieve
structural compliance. To avoid unwanted side-effects

2 Please note that unless stated otherwise, we consider that the architecture takes

over the implementation, which means we assume that the structural violation is
caused by improper implementation and not by inadequate architectural design.

Introduction

 6

introduced by the modifications made, all quality
engineering activities have to be repeated (e.g., regression
testing), including compliance checking, which, of course,
may reveal newly introduced or forgotten violations.

� Deferred reaction: Because of tight schedules or
resources, the development organization may decide to plan
for a special refactoring project that tackles only the
structural violations. However, such a project has to be
justified by higher management. To convince higher
management to promote such a project is not trivial
because neither added value nor innovation is visible to the
users of the system. And a gradually growing risk is best
expressed by the popular saying: “The later something is
done, the more effort is required to do it”.

� Ignore: On the other hand, the development organization may
decide to ignore the structural violations (or, if the organization does
not apply compliance checking at all, it faces the same problems
without even knowing about it).

� Disregard in the short term: Traceability between
architecture and source code is not given anymore. The
architecture as a communication and decision vehicle is no
longer reliable and useful. The lack of up-to-date,
consistent, and traceable architecture documentation causes
a maintenance problem. Changing the system becomes
error-prone due to unknown side-effects. The return-on-
investment of software as a valuable asset decreases and,
eventually, the evolution becomes unnecessarily time-
consuming and effort-intensive.

� Disregard in the long term: Detached from their
architectures, the implementations evolve uncontrolled,
disorderly and chaotically; in short, all benefits produced by
well-defined architectures are lost. Over time, the
implementation degenerates more and more. Eventually,
this will cause the need for the documentation of the
architecture to be reconstructed. Numerous approaches,
methods, techniques, and tools for architecture
reconstruction (sometimes also called architecture recovery)
have been developed (the works by [Chikofsky 1990],
[Deursen 2004], [Koschke 2005], [Knodel 2006b] and [Pollet
2007] present overviews on this research field). Architecture
reconstruction, however, addresses only the symptoms of a
lost architecture. But as stated in [Wallnau 1996], “although
source code is often the most reliable arbiter of what a
system does, it does not reflect all of the attributes of an
application necessary to develop a true system-level
understanding”. Development organizations have to invest
immense effort and resources in order to be successful in

Introduction

 7

the reconstruction – research in this broad field over the
past twenty years shows that many development
organizations suffer from the reconstruction burden and,
more often than not, fail to meet this challenge.

Whatever the development organization decides to do along these
alternatives, it will result in the essential demands of functionality, time,
effort, and quality not being met – either due to a short term reaction
creating overhead effort or in the long term, by affecting all demands
negatively. To tackle this problem, this thesis proposes a new approach
that turns analytical compliance checking into a quasi-constructive
quality engineering technique. The primary contribution of this approach
– called live architecture compliance checking – pro-actively detects the
introduction of structural violations into the source code.

Live compliance checking pursues two primary goals: first, to achieve
structural compliance during construction and second, to sustain
compliance during the course of the evolution. It is executed
continuously and constantly from day one of the implementation. Any
modification made by any developer is analyzed immediately and, if
necessary (i.e., if a violation was detected), live feedback is given straight
to the developer originating the violation. This instant notification allows
prompt removal of these violations. The constant repetition of this
feedback whenever the same or another developer touches the same
source code file (no matter at what point in time) spreads the
information about the violation among the team of developers.
Awareness for structural violations is raised early (i.e., almost in real time)
and forwarded to its creator and all other developers working with the
same source code elements – as long as the violations remain in the
source code. The assistance provided by live compliance checking
educates developers regarding the intended structural decomposition by
constantly reminding them. Potentially, this education reduces the total
number of violations introduced in the first place. In all cases, it prevents
the drift between the structural view and the implementation. The high
frequency (i.e., continuous live feedback) of compliance checking
executions with fast response times turns the analytical technique into a
quasi-constructive quality engineering technique.

In other words, live compliance checking sustains the upfront investment
the development organization made into architecting. It raises the
awareness of developers regarding structural violations, just after they
have been introduced. Developers can react immediately and remove the
violation by refactoring – as soon as it has been introduced and while
they still have context information in mind. The mean time for structural
repair – the time from inserting a violation until its removal – is reduced
to almost zero (of course, only if developers pay attention to the live
feedback provided by live compliance checking). Thus, development
organizations can rely on the software architecture as an instrument for

Introduction

 8

the successful and efficient development and evolution of software
systems – a demand that is gradually gaining more and more importance
and, at the same time, a challenge that currently most development
organizations fail to meet.

The remainder of this introduction continues with a discussion of the
role of compliance checking in the software development process (see
Section 1.1) and pinpoints the effects of compliance on effort (see
Section 1.2). The characterization and empirical evidence for the benefits
of evolving a system with structural compliance – three replications of a
controlled experiment providing evidence that compliance allows
evolution with savings in effort, at least for the experimental task
executed by the participants – motivate the proposed approach of this
thesis: prevention of structural violations by live compliance checking.
Section 1.3 introduces this new approach to achieving compliance by
construction and sketches its essential requirements. Then Section 1.4
discusses the primary contribution. Finally, this introduction concludes
with the outline in Section 1.5, which gives an overview of the structure
and content of the remaining sections of this thesis.

1.1 Compliance Checking

The discipline that provides principles, techniques, methods, and tools
for systematically developing and maintaining software systems is called
software engineering.

Definition 1 Software Engineering

Software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to
software [IEEE-Std-610.12 1990].

Software engineering applies a defined development process to produce
a software system that achieves certain functionality and certain quality
goals. As an example, Figure 1 depicts the phases of a simplified
development process based on the V-Model [Broehl 1995]. The V-Model
comprises a set of artifacts that capture information about the system
under development. Most modern development processes include the
artifacts as depicted in Figure 1. The information flows step by step from
left to right, passing all artifacts (i.e., from requirements to the accepted
system in use). Each artifact allows the development organization to
apply quality engineering activities.

Definition 2 Quality Engineering

Quality engineering subsumes all activities in an organization that
contribute to the quality of end products. Methods and techniques
enabling the achievement of a certain level of quality can be

Introduction

 9

distinguished into two categories: constructive and analytic quality
engineering techniques (the latter are also called quality assurance
techniques).

Definition 3 Analytical Quality Engineering

Analytic quality engineering is performed after the creation of the
objects under examination to assess, verify, or validate them with
respect to a certain quality.

Definition 4 Constructive Quality Engineering

Constructive quality engineering is performed while the object under
examination is created and aims at proactive, a priori, preventive
minimization of quality decay in the first place. Hence, they aim at
achieving a certain quality by construction.

Requirements

Architecture

Implementation

Assembled
Components

Integrated
System

Accepted
System in Use

Components

Legend:

Analytical Quality Engineering:

Constructive Quality Engineering:

Lifecycle Phase

Information Flow

Verification & Validation

Construction Methods
and Support Techniques

Requirements

Architecture

Implementation

Assembled
Components

Integrated
System

Accepted
System in Use

Components

Legend:

Analytical Quality Engineering:

Constructive Quality Engineering:

Lifecycle Phase

Information Flow

Verification & Validation

Construction Methods
and Support Techniques

Legend:

Analytical Quality Engineering:

Constructive Quality Engineering:

Lifecycle Phase

Information Flow

Verification & Validation

Construction Methods
and Support Techniques

Figure 1 Simplified Development Process

On the one hand, constructive quality engineering techniques aim at
building quality into the artifacts, which means minimizing defects
during the construction of products (e.g., systems, components,
documents). They prevent defects from being introduced. The
construction activities aim at producing artifacts (i.e., in Figure 1, first
requirements, then architecture and components, and finally yielding the
implementation) with the desired quality. Each artifact refines the
previous one by lowering the abstraction level towards the source code.

On the other hand, analytic techniques focus on artifacts in a stable state
(i.e., after construction). They detect defects that need to be corrected
afterwards. Analytical activities on the artifacts (i.e., in Figure 1,
assembled components, integrated system, and eventually the accepted
system in use) make sure that the resulting systems really exhibit the

Introduction

 10

desired quality. Analytical quality engineering techniques are further
decomposed into verification and validation (V&V) activities:

Definition 5 Verification

The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the
conditions imposed at the start of that phase [IEEE-Std-610.12 1990].

Definition 6 Validation

The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies
specified requirements [IEEE-Std-610.12 1990].

In short, V&V evaluates whether the product is being built right
(verification) and that the right product is being built (validation).
Applying these definitions means that structural compliance checking is
a verification technique ensuring that the implementation realizes the
architecture right (i.e., that structural compliance is achieved). However,
it does not guarantee that the right implementation is produced (i.e.,
that the implementation satisfies the requirements). Hence, validation of
architectures is not in the scope of this thesis3.

As depicted in Figure 1, two artifacts are inputs to compliance checking:
the architecture and the implementation. Because the architecture
prescribes the fundamental decomposition, compliance checking – as an
analytical technique – can be executed as soon as an integrated system is
available.

Definition 7 Software Architecture

Software architecture is the fundamental organization of a system
embodied in its components, their relationships to each other and to
the environment and the principles guiding its design and evolution
[IEEE-Std.1471 2000].

Definition 8 Implementation

Implementation is the result of the process of translating a design
into hardware components, software components, or both [IEEE-Std-
610.12 1990].

Definition 9 Integration

Integration is the process of combining software components,
hardware components, or both into an overall system [IEEE-Std-
610.12 1990].

3 Techniques for validating an architecture range from approaches that use

questioning, structured interview, checklist, measuring, simulation (e.g., [Bosch
2000]), to scenario-based (e.g., [Clements 2002b]) techniques. Most popular are
scenario-based evaluations. [Ionita 2002] and [Babar 2004] provide a comparison of
selected scenario-based approaches.

Introduction

 11

The architecture is then input to component engineering and
implementation. Based on a well-defined architecture documentation,
developers refine the abstract concepts and models prescribed by the
architecture. They implement the abstract solutions specified in the
architecture. Architectural elements are realized as a set of source code
files; architectural inter-element relationships are codified as usage
dependencies using the capabilities provided by the respective
programming language. They write code and codify algorithms and data
structures to satisfy the requirements on a software system. The resulting
concrete solutions are implemented source code.

When the writing of the source code has been completed, verification of
the implementation is possible. The analytic quality engineering
technique for verifying that the system’s implementation was built right
is called architecture compliance checking.

Definition 10 Architecture Compliance Checking

Architecture compliance checking is a technique that verifies to
which degree the realized architecture A’ complies with the specified
architecture A. The inputs to architecture compliance checking are an
architectural view and the respective counterparts in the software
system; the outputs are a set of architectural violations.

The goal of architecture compliance checking is to reveal where the
traceability between architectural views and the resulting software
system is no longer given. This thesis analyzes structural architecture
compliance checking. Structural compliance checking reveals violations
introduced during the implementation phase.

Definition 11 Structural Violation

A structural violation is an architectural component or a relationship
between components that has a counterpart in the source code,
which is not realized as specified.

By its nature, compliance checking is a quality engineering instrument
(see Definition 2). The application of compliance checking as an
analytical quality engineering technique produces results late in the
development process – at integration time. Analytic techniques focus on
artifacts in a stable state (i.e., after construction). They detect defects
that need to be corrected afterwards. Consequently, structural violations
cause an overhead effort due to their late detection in the development
process.

Applying live compliance checking as a quasi-constructive quality
engineering technique aims at minimizing defects during the
construction of products (i.e., the implementation). The early detection
of structural violations right after their insertion allows their prompt

Introduction

 12

removal. The fast response times for live feedback can reduce the mean
time needed for structural repairs to the absolute minimum.

The next two sections investigate the architecture in more detail. While
Section 1.2 delivers evidence for the overhead effort caused by lack of
compliance and its late detection, Section 1.3 explains the principles of
live compliance checking – the novel approach introduced by this thesis.

1.2 Effects of Architecture Compliance

In general, compliance means that certain characteristics articulated by
stakeholders are, in fact, fulfilled by the actual product, typically realized
by different stakeholders.

Definition 12 Compliance

Compliance is the act or process of complying with a desire, demand,
proposal, or regimen. Complying means to conform, submit, or adapt
(as to a regulation or to another's wishes) as required or requested
[Merriam-Webster 2009].

Compliance is always measured relative to two distinct aspects: on the
one hand the intention, plan, or specification and on the other hand the
facts, actual, or realization. Consequently, the translation of the
compliance definition into the field of software architecture yields the
following definition.

Definition 13 Architecture Compliance

Architecture compliance captures the degree of having accomplished
required or requested demands realized in the implementations of
software systems. Architecture compliance means that the specified
architecture Aspec is equivalent to implemented architecture Aimpl ,
hence Aspec ↔ Aimpl.

Here, the architects define the required or requested demands, while the
developers carry out their realization in terms of the source code in the
implementation. If they code the structure as prescribed by the
architecture, structural compliance is achieved. Of course, it is possible to
define other types of compliance (e.g., see Appendix A for an overview),
but these other types are outside the scope of this thesis. Having
compliance between structural view and implementations thus means
the absence of structural decay in the system. Traceability from the
abstract elements of the structural architectural view to its concrete
counterparts in the implementation is ensured and vice versa. Typically,
traceability enables a one-to-many mapping, which means that one
architectural element is realized by many source code elements. Figure 2
depicts an example structure comprising three abstract layers (left) and
the corresponding implementation (right) in Java. Each layer is realized

Introduction

 13

by a distinct package, and traceability is given by the respective
numbering of layers and packages. This simple example illustrates the
abstraction gap between architecture and implementation.

Relationship

Legend:
Layer

Relationship

Legend:
Layer

Relationship

Legend:
Layer

Relationship

Legend:
Layer

Figure 2 Example: Structural View (left) with Strict Layering and Sample Implementation (right)

To motivate live compliance feedback for sustaining structure in the
implementation – the contribution of this thesis – we conducted several
empirical studies. First, a survey of industrial systems exemplifies that lack
of compliance causes an overhead effort for structural repairs or
reconstruction. Second, a controlled experiment replicated three times
provides evidence about the benefits of compliance in terms of effort
savings in the further evolution of the system.

1.2.1 Survey on Industrial Software Systems

This section analyzes in Table 1 the impact of lack of compliance for
several industrial software systems4. In several case studies, we
investigated the following research question: “What is the impact of
architecture compliance in the lifecycle of a software system?”.

In particular, our survey aimed at answering two questions: Do
implementations of software development organizations lack compliance
and if so, does this really cause an overhead effort for the development
organization? This leads to the following null hypothesis H0 to be tested
and the alternative hypothesis H1 – describing what is expected to
happen:

� HL0: The null hypothesis is that architectural compliance has no effect
on the development or maintenance effort for a software system.

4 Please note that the names of the software system, products, or architectural

elements have been anonymized partly due to confidentiality reasons.

Introduction

 14

� HL1: Lack of compliance creates an overhead effort for the
development organization.

All cases described in Table 1 were elicited by informal interview with the
stakeholders of the development organization (i.e., the architects,
developers, or project managers) of the respective case. The author of
this thesis assessed the compliance status using the Fraunhofer SAVE
tool [Knodel 2009a], but was neither involved in development nor in
maintenance activities at the development organization. Table 1
describes each case following a template: The context gives general
information about the development organization and the system or
product line under examination, compliance status reports on the degree
of compliance (please refer to Section 2 for details on measuring
compliance), and impact discusses the overhead caused or problems
experienced due to the lack of compliance.

Case Description
Case A –
Embedded
System

Context: Testo AG is developing a product line of climate and
flue gas measurement devices. The software part of these
measurement devices is developed by about 35 developers. They
are responsible for maintaining and evolving the existing products
and, of course, for developing new products. All measurement
devices share the same reference architecture [Schmid 2005] and
a common core of reusable components, called framework. After
release to the market, the first three products were analyzed with
respect to their compliance.
Compliance Status: Compliance checking measured the
following degrees of compliance: product P1 was 95.7%
compliant, P2 89.8 %, and P3 only 72.7%. Quantified, the
number of structural violations was in the range of 4-digit levels,
especially P3 had more than 2000 distinct violations. Several
reusable core components had dependencies on product-specific
parts, which basically ruined their reusability (see [Kolb 2006] for
more details).
Impact: The compliance status resulted in a dedicated but
unplanned restructuring project aimed at removing structural
violations. The restructuring project bound significant resources of
the development organization; workshops for communicating the
compliance status alone consumed more than 10 person-days of
effort (2-day workshop with more than 5 attendees on average,
neither counting preparation nor time for solution finding and any
structural repairs). The structural violations negatively affected
reusability and imposed a major threat for the future evolution of
the product line. The architects and developers invested
significant effort in a dedicated restructuring project to tackle the
structural violations (unfortunately, no effort data was tracked for
this project).

Introduction

 15

Case Description
Case B –
Multi-
Media
System

Context: The development of a multimedia system was adapted
to new hardware technology including a graphics component
(implemented in C++, comprising approximately 180 kilo lines of
code). At the time of the analysis, the component was still under
development. To ensure adequacy of the graphics component,
the architects were interested in the compliance status of the
component.
Compliance Status: The compliance status of the component
was analyzed twofold. First, compliance with the intended
decomposition into the three layers was analyzed. Second, the
layer internals of the component were analyzed. Although the
implementation was still in progress, minor violations had already
made their way into the component. Only few – less than 1% –
dependencies violated the top-level layering, but by that time,
only two out of three layers had been realized (the third layer only
existed in stubs). The detailed analysis of the layers detected
further minor compliance issues (see [Knodel 2005c] for more
details).
Impact: Due to the fact that the implementation was still in
progress the developers’ attention was called to the structural
violations. However, it is remarkable that there already was a lack
of compliance, although there was not even a first release of the
graphics component yet. Moreover, additional effort was spent
on running a workshop to communicate the compliance checking
results.

Case C –
Information
System

Context: The development organization is producing software for
the management of stock market data. The case study analyzed a
high-end asset management system (large-scale system
programmed in Delphi, 2-tier client-server architecture, developed
for more than 10 years). To address new market requirements
only a subset of the current product functionality was needed,
hence it was decided to extract one core component and reuse it
in the new products.
Compliance Status: By the time of the analysis, the core
component existed only on paper. It was not possible to draw
clear line between the component and other parts of the system.
The component was heavily coupled to user interface, database
access, and business logic and included a large number of
dependencies on certain initialization and global variables. The
core component was not encapsulated with clearly defined,
explicit dependencies; it was rather an integral part of the system.
Impact: The lack of compliance led to a decision (i.e., reusing the
component), which could not be executed due to its blurred
boundaries. Instead, resources had to be devoted to a
reconstruction project, which analyzed reuse feasibility, identified
potential risks, and redocumented the interface of the
component. The negative findings of the reconstruction project
revealed the technical pitfalls regarding potential reuse of the
component, and the development organization decided to strive
for an alternative solution (see [Knodel 2004] for details). In short,
reuse failed because the implementation lacked compliance.

Introduction

 16

Case Description
Case D –
Information
System

Context: Because of exceeded time and budget constraints,
unreliable functionality, and an overall unclear status, the
customer of a development project asked Fraunhofer IESE to
conduct an independent architecture assessment for a software
system developed by an external contractor (implemented in Java,
comprising several million lines of code).
Compliance Status: The compliance checking of the system
addressed several structural viewpoints. All of them revealed
substantial structural violations between intention and actual
implementation (the percentage of violations was considerably
higher than 5%). Most noteworthy was the analysis of the
layering, where almost 33% (quantified: nearly 50000) of the
dependencies were violations.
Impact: The mismatch between architecture and implementation
was so severe that the customer lost confidence in the abilities of
the contractor to repair the structural violations. Eventually, the
development project was canceled by the customer. Hence, the
previous investments into this project were made in vain.

Case E –
Testbed for
Avionics

Context: TSAFE is a prototype of the Tactical Separation Assisted
Flight Environment specified by NASA Ames Research Center
[Erzberger 2001] and implemented at MIT [Dennis 2003].
Fraunhofer Center Maryland (CESE) turned TSAFE into a testbed
to be used for software technology experimentation
(implemented in Java, comprising 20 kilo lines of code). One of
the technologies experimented with was architecture compliance
checking (see [Lindvall 2005] for details of the study).
Compliance Status: The TSAFE testbed was seeded with six
detectable structural violations, which were then presented to the
subject (a senior person skilled in applying compliance checking).
The subject also had the architecture documentation at hand and
was asked to inspect the issues.
Impact: In this special setting, detailed data could be collected for
the analysis of the structural violations. In total, six violations were
detected by the compliance checking technique. The subject
spent four hours just on inspecting the violations, judging their
potential impact, and reporting on them. The effort data collected
for this rather simple testbed is a good indicator for the potential
overhead effort caused by lack of compliance and follow-up
structural repairs.

Table 1 Compliance Survey on Industrial Software Systems

The findings of Table 1 show that lack of compliance is, in fact, a
recurring, practical problem in industry, which many software
development organizations face. Actually, we could not observe a single
case where there were no violations at all. The list of cases in Table 1 is
far from complete; we present more cases in [Knodel 2006c], and other
researchers also report on the lack of compliance (e.g., see [Murphy
2001], [Koschke 2003], [Bourquin 2007], [Rosik 2008]).

Introduction

 17

For all cases in Table 1, we could observer an overhead effort caused by
a lack of compliance. These are hints to accept the hypotheses HL1 – lack
of compliance creates an overhead effort in software development
organizations. This negative impact motivates the pro-active prevention
of structural violations. However, so far, we have not shown yet that
compliance really allows effort-efficient evolution. The next subsection
will investigate this topic in detail.

1.2.2 Evidence of Compliance Benefits

In the research community, it is assumed that architecture compliance
has a positive effect on the evolution of a software system. Changes
(either modifications of existing parts or extensions) can be realized
efficiently because the developers can rely on the information provided
by the software architecture documentation. Hence, in order to motivate
a new compliance checking technique – as we do with live compliance
checking – we have to provide evidence that lack of compliance is one of
the root causes for effort-intensive and time-consuming evolution.

Therefore, we designed a controlled experiment that addresses this
claim. Our research goal was to understand the benefits of compliance
in the evolution of a software system. We compared the effort for an
evolutionary task on two functionally equivalent implementation variants
of the same system – one with significant structural violations and the
other one realized in compliance with the architecture. As a side-effect,
we could observe whether or not the structure of the respective system
was kept in place.

In total, we conducted three replications of the experiment. The first run
took place at the Fraunhofer-Center for Experimental Software
Engineering, Maryland, USA (CESE). The subjects were students working
as interns at CESE. The second replication was performed as part of the
project ArQuE (Architecture-Centric Quality Engineering, which is a
German research project partially funded by the German Ministry of
Education and Research (BMBF)). And the last run took place at the
Technical University of Kaiserslautern, Germany, as part of the practical
lecture “Grundlagen Software Engineering (GSE 2008)”. Table 2 gives
an overview of the three replications. Preceding the three runs, we
conducted a pilot with two students to test the experiment materials and
the solvability of the task. Both were able to accomplish the task
successfully. Based on their feedback, we changed minor wordings in
the material.

The group name encodes the context (first letter) and the group
membership (second letter). Group A worked with the implementation
containing structural violations, while Group B had the compliant
implementation. Each time the participants of the experiment were

Introduction

 18

randomly assigned to one group. All participants received the same
material (except for the implementation variant) and had to solve the
same evolutionary task.

Context Group Subjects Subject Type

Pilot
P_A 1 computer science students, average

experience: 6 semesters P_B 1

CESE
F_A 2 computer science students, average

experience: 7 semesters F_B 2

ArQuE
I_A 4 professional software engineers, average

more than 10 years of industry
experience

I_B 4

GSE2008
K_A 9 computer science students, average

experience: 6 semesters K_B 7
Table 2 Compliance Experiment – Replication Overview

The hypotheses were also the same in all three replications. The first
hypothesis captures the comparison of the effort required, while the
other one addresses the correctness of the task:

� HC0.1 – The null hypothesis is that compliance has no effect on the
effort required to accomplish the evolutionary task.

� HC1 – The evolutionary task can be realized with less effort for the
architecture-compliant implementation.

� HC0.2 – The null hypothesis is that compliance has no effect on the
correctness of the evolutionary task.

� HC2 – Compliance supports the subjects in accomplishing the correct
solution (i.e., correctness here means being compliant to the
reference solutions provided by an independent expert beforehand).

To operationalize the hypotheses, we used two already existing
functionally equivalent implementation variants of the TSAFE testbed5
[Lindvall 2005], which were implemented based on the same reference
architecture. Variant A actually was a predecessor of variant B, which
underwent major restructuring.

The experimental task was stated as follows: “To support distributed
development and outsourcing, TSAFE has to be refactored into distinct
components. Each TSAFE component has to be realized in a separate
Eclipse project, which can then be managed and evolved by an
independent development group. After the refactoring, ensure that
TSAFE is working correctly: no compilation errors, and pass of system
test.” As support all subjects received the architecture documentation

5 Please note that the two variants are different from the variants discussed in case E

in Section 1.2.1.

Introduction

 19

and technical material on Eclipse and its task-relevant features. Then the
subjects conducted the task independently.

We collected effort data in person-hours and measured the correctness
of the task a-posteriori (i.e., we compared the individual solutions to the
expert reference and measured the matching degree).

The average results of the three replicated runs for the different groups
are listed in Table 3, while the box plots in Figure 3 and Figure 4 detail
results depicting the corresponding effort data and task correctness of all
subjects (excluding the pilot) per group.

Run Group Effort (in minutes) Correctness (in %)

CESE
AVG(F_A) 114,00 61,00
AVG(F_B) 50,00 100,00

ArQuE
AVG(I_A) 103,25 66,00
AVG(I_B) 88,00 100,00

GSE2008
AVG(K_A) 116,22 73,11
AVG(K_B) 37,71 99,00

Total
AVG(A) 112,47 69,60
AVG(B) 55,08 99,46

Table 3 Compliance Experiment – Results

Figure 3 Compliance Experiment – Box Plot Effort Data

Introduction

 20

Figure 4 Compliance Experiment – Box Plot Correctness

Overall, we can make the following observations for the effort data (see
Figure 3):

� The box plot shows good separation for the effort data.

� On average, subjects in group B (working with the architecture-
compliant implementation variant) required less effort to solve the
task. This is true for all three replications.

� In group A (the implementation variant lacking compliance), there are
larger deviations from the average effort data than in group B.

� The best participant of group A (45 minutes) required almost the
same effort as the median of group B (47 minutes), whereas the
worst participant of group B (120 minutes) required almost the same
effort as the median of group A (118 minutes).

With respect to correctness (see Figure 4), the following observations can
be made:

� The box plot shows good separation for correctness. All but one
participant of group B (working with the architecture-compliant
implementation variant) accomplished 100% correctness for the
evolutionary task.

� In group A (the implementation variant lacking compliance), there are
larger deviations from the average correctness than in group B.

� The best participant of group A accomplished 100% correctness. The
worst participant of group B (93% corrected) outscored more than
75% participants of group A.

Introduction

 21

The briefing questionnaire analyzed the background of the participants.
Answers could be given on an ordinal scale with five values ranging from
1 (“none at all”) to 5 (“professional”). The average experience of the
participants in both group was very similar (Java: A=2.60 vs. B=2.23;
Eclipse: A=2.47 vs. B=2.31; Refactoring: A=1.33 vs. B=1.38).

Debriefing questionnaires revealed further interesting findings. Answers
could be given on an ordinal scale with six values ranging from 1 (“don’t
agree at all”) to 6 (“totally agree”).

� The participants further understood the task well (A=4.60 vs. 4.69)
and were comfortable in applying the Eclipse refactoring (A=5.27 vs.
B=5.23).

� The participants agreed that the goal of the task (A=4.13 vs. B=4.31),
the task description (A=4.80 vs. B=4.77), and the architecture
description including the component (A=4.40 vs. B=4.85) were clear.

� The participants agreed that the task was realistic (A=4.40 vs.
B=4.38).

The results show that compliance of the implementation – as the only
varying factor between the two groups – allows effort-efficient evolution
of software systems. The lack of compliance caused, on average, an
effort twice as high, or 204% (average of group A/average of group B).
Moreover, all but one participant of group B solved the task 100%
correctly, while group A had only an average of 69.60%. For a detailed
discussion of the experiment and its threats to validity, please refer to
[Knodel 2009b].

1.2.3 Summary

In short, we presented a discussion of many industrial cases where
structural repair due to lack of compliance consumed substantial,
unplanned effort in the lifecycle of the software system. The three
replications of the controlled experiment could isolate compliance as one
of the root causes for high maintenance and evolution effort.

Based on this empirical evidence, we claim that sustaining compliance is
a worthwhile research theme. The solution proposed by this thesis is a
new approach: We turn compliance checking into a quasi-constructive
quality engineering activity that pro-actively enables developers to
adhere to the intended structure – while changing the implementation,
they receive live compliance feedback on all changes made. Hence,
investments into architecture – made in advance – pay off while the
system evolves. Compliance grants traceability between architecture and
code and the structural decomposition is sustained.

Introduction

 22

1.3 Principles of Live Compliance Checking

To harvest the fruits (i.e., the effort saving) promised by compliance, we
had to define an approach that is able to prevent structural decay and
sustains architectural structures over time. The main underlying idea of
this approach is to transform compliance checking into a quasi-
constructive quality engineering technique. This section outlines the key
principles of live compliance checking (to be detailed in the remainder of
the thesis).

To understand the requirements and constraints imposed by the live
feedback approach, we delineate it from the regular analytical approach,
where the compliance of single system snapshots is checked offline.
Snapshots here represent one distinct version of source code of the
system at a certain point in time. Figure 5 depicts the five conceptual
phases of analytical compliance checking – abstracted from concrete
techniques.

� Architecture: The architect models the intended structural
decomposition of the system in terms of components and relations
among them. This description of the to-be plan is the input for the
developers to start the implementation. Besides, the structural model
serves as input for the compliance check in the analysis phase.

� Implementation: Developers translate the abstract solution into
source code (i.e., algorithms and data structures) adhering to the
plan. By refining the abstract, coarse-grained entities, they implement
many fine-grained, concrete code elements. Typically, teams of
developers concurrently produce the source code or modify and
extend existing code. Eventually, the source code is stored in a
repository. The repository allows analyzing a distinct snapshot of the
software system.

� Analysis: The analysis processes the predefined structural model and
one distinct snapshot of the source code to run the compliance
check. It is possible to apply model-based or rule-based compliance
checking techniques (see Section 3 for a comparison). However,
independent of the technique chosen, the results are equivalent. The
checking results distinguish between compliance and violations.

� Communication: The architect reviews the checking results and
defines structural repair tasks for the respective developers. The same
developers causing the violations would be the ideal candidates for
correcting it.

� Correction: The correction phase then realizes the structural repairs.
Again, teams of developers concurrently refactor violating code parts.
Correction leads to another implementation phase, which means
iterating again over all phases to avoid unwanted side-effects and
verify the corrected violations.

Introduction

 23

Architecture Analysis Communication Correction

Code
Snapshot

Source
Code

Repository

Results:
Compliance

Violations

Source
Code

Source
Code

Implementation

Structural
Model

Legend:
Developer

Information Flow

Compliance Check

Architect

Source
Code

Source
Code

Source
Code

Architecture Analysis Communication Correction

Code
Snapshot

Source
Code

Repository

Results:
Compliance

Violations

Results:
Compliance

Violations

Source
Code

Source
Code

Implementation

Structural
Model
Structural
Model

Legend:
Developer

Information Flow

Compliance Check

Architect
Legend:

Developer

Information Flow

Compliance Check

Architect

Source
Code

Source
Code

Source
Code

Figure 5 Analytical Compliance Checking of System Snapshots

Figure 6 shows how live architecture compliance checking works. In
contrast to Figure 5 and contrary to regular analytical compliance
checking, we have only two phases, architecture and implementation:

� Architecture: The architecture phase is the same as for analytical
compliance checking – the structural model is the input for the
follow-up phase.

� Implementation (enriched with Live Analysis and Direct
Communication): As for analytical compliance checking, developers,
of course, produce source code on the basis of the structural model.
But in contrast to it, the implementation phase is enriched by live
analysis of all deltas (i.e., the code just written) and direct
communication about violations to the developers causing it (i.e., live
feedback to the originators of violations). Because they receive
instant feedback, developers are enabled to react promptly. Their
minds are still in the current context (i.e., they are still working on the
same task, they just wrote the violating source code lines). Thus, they
can immediately repair the structure with minimal, close-to-zero
effort. In other words, the compliance check and the correction
happen while the developers are implementing. Thus, the developers
are constantly trained and educated regarding the architecture.

Introduction

 24

Architecture Implementation (Enriched with Live Analysis and Direct Communication)

Source
Code

Structural
Model

Legend:
Developer

Information Flow

Compliance Check

Architect

Delta

Violations

Source
Code Delta

Violations

Source
Code Delta

Violations

Architecture Implementation (Enriched with Live Analysis and Direct Communication)

Source
Code

Structural
Model
Structural
Model

Legend:
Developer

Information Flow

Compliance Check

Architect
Legend:

Developer

Information Flow

Compliance Check

Architect

Delta

ViolationsViolations

Source
Code Delta

ViolationsViolations

Source
Code Delta

ViolationsViolations

Figure 6 Live Compliance Checking

The points in time for analytical compliance checking can be formulated
as follows: t Architecture << t Implementation << t Analysis < t Communication << t Correction.
Except between analysis and communication, there is a considerable
delay (i.e., several days, weeks, or months) between the stages. Live
compliance checking executes the four phases (i.e., implementation,
analysis, communication, and correction) at the same time. The high
execution frequency with live feedback justifies the classification as a
quasi-constructive quality engineering approach, which leads to
t Architecture << (t Implementation = t Analysis = t Communication = t Correction). While there is
still a delay between the architecture and the follow-up phases, all other
phases are performed concurrently.

To be considered as quasi-constructive, compliance checking has to
satisfy these timing constraints – and thus has to be executed live. Based
on these characteristics and the concepts shown in Figure 6, we can
deduce a set of essential requirements for live compliance checking as
listed in Table 4.

Requirement Description
Live
Feedback

To empower developers to promptly remove structural
violations with minimal or zero effort, they need to be made
aware of the violations as soon as possible. The least delay
obviously has immediate feedback: just after the source code
has been written, developers receive live instant feedback on
compliance.

Ease of Use Any developer shall be able to interpret the live feedback.
There should not be any extra effort to understand the
feedback; further, there should not be a need for special
training or support.

Introduction

 25

Requirement Description
High
Execution
Frequency

The high execution frequency of compliance checking requires
computer-aided, tool-supported automation. The results have
to be computed without humans being involved in the regular
execution. Of course, for initialization and major changes
(e.g., adaptation of the structural model, new developers), the
architect has to manually manage the configuration of live
compliance checking.

Delta
Analysis

The analysis of local deltas defines the limited scope for
compliance checking. Each developer only receives feedback
on violations that are within the respective modification scope
(i.e., the file currently being edited). The delta analysis allows
direct feedback directed to the originator or to the developers
currently changing the source code files causing violations.

Distributed
Team
Support

Organizations typically produce software systems with many
distributed teams of developers. In order to be successful live
compliance checking has to support this distribution. Further,
it has to scale to the number of developers implementing the
system and to the size of the software system.

Smooth
Integration
into
Environment

One characteristic of live compliance checking is the
avoidance of unnecessary context changes. We consider the
integration as smooth if developers are not required to switch
to another context (i.e., by opening a web site or another
tool). Hence, in order to not distract developers from their
current task, the feedback results have to be presented in a
non-intrusive manner. Ideally, the feedback presentation is
presented as part of the source code editor of the integrated
development environment (IDE) that the developers use to
write code.

Robustness Live compliance checking starts on the first day of
development. It is executed all the time and while the system
is still being written. Compliance checking has to be robust
towards incomplete source code and compilation errors.

Commit
Control

Source code commits to the repository (i.e., the configuration
management system) should be under commit control. The
architects have the option to apply either strict control (no
commit possible for source code files containing violations) or
loose control (violations can be committed).

Separation
of Roles:
Architect
and
Developer

The two roles of compliance checking – architect and
developers – have to be acknowledged in live compliance
checking, too.
Architects define and manage the structural view. They are
the only ones in control of changing the view and updating it,
if necessary. Furthermore, the architects are interested in a
global view on the whole system. They have to analyze the
full picture, spanning over local changes made by the
developers. They require architecture visualization and in-
depth analysis capabilities to reveal architectural flaws.
In contrast to the architect, developers have a local viewpoint;
they only need to see the impact of their local modifications.
Hence, they can ignore structural violations in other parts.

Table 4 Essential Requirements on Live Compliance Checking

Introduction

 26

A solution meeting the requirements stated in Table 4 leads to a tool-
supported approach for live compliance checking. Such a solution would
empower developers to sustain structure during the evolution of the
software implementation. Sustainable structures in implementations
yield less time-consuming and less effort-intensive evolution because the
benefits promised by architectures are valid over time. The effort savings
are achieved due to the following characteristics achieved by live
compliance checking:

� Live Compliance Checking Characteristic (LCCC) 1: Live
compliance checking continuously educates and trains
developers on the architecture: The constant live feedback
educates developers and trains them on the structural decomposition
as specified by the architect. The continuous feedback produces a
learning effect: Over time, less structural violations are introduced.

� Live Compliance Checking Characteristic (LCCC) 2: Live
compliance checking allows the prompt removal of structural
violations: The developers’ awareness is raised immediately after the
violations have been introduced. This enables developers to remove
the violations with minimal effort because they are still in the
problem context and no effort for re-understanding the source code
is required.

In short, live compliance checking promises sustainable structure, which
yields effort savings for the development organization. This thesis
introduces such an approach to achieving architecture compliance by
construction. The next section sketches the contribution and
characterizes it threefold: The scientific, engineering, and empirical
building blocks of this thesis are summarized (and detailed in the
remainder of the thesis).

1.4 Contribution

The research questions addressed in this thesis are centered on
architecture compliance. In particular, we investigate the following
questions:

� What is the impact of architecture compliance on software
implementations?

� How can we achieve the construction of a software system with
compliance? How can we sustain compliance in the evolution of a
software system?

� Is it possible to turn analytical compliance checking into a quasi-
constructive quality engineering technique? What are the effects of
live compliance checking? Is this technique adequate for achieving
compliance in the construction of software implementations? Does it
sustain structures over time?

Introduction

 27

� How can we support live compliance checking with tools? What are
the requirements to enable live analysis and instant feedback? Can
such a technology be successfully transferred to a development
organization?

� Does live compliance checking educate developers on the
architecture? Does it cause a learning effect? And will developers
eventually use the live feedback to remove structural violations?

1.4.1 Research Method

To examine these research questions, we applied the principles of the
experimental software engineering paradigm [Basili 1993]. Figure 7
summarizes the stages of the experimental software engineering
paradigm (the boxes from left to right map to the respective steps and
list the respective section in this thesis relevant to the step).

� First, we observed industrial software development organizations in
order to identify a practical problem. In our survey covering various
application domains, we were able to show that the evolution of
software implementations is time-consuming and effort-intensive. A
common factor shared by all software implementations analyzed was
the lack of compliance – causing substantial overhead effort for the
development organization in reaching its development objectives and
for applying refactoring or restructuring projects to repair the
implementation.

� Second, context factors influencing the problems were analyzed to
identify the underlying scientific problem and to investigate it in
detail. We conducted three replications of a controlled experiment
with compliance as the only varying factor. Solving a sample
evolutionary task for the variant comprising structural violations led
to effort data twice as high (204%) than solving the same task for
the compliant variant. The results constitute the research questions
tackled in this thesis: How can we successfully sustain structure in
software implementations over time?

� Third, an innovative solution was defined and introduced – live
compliance checking. This new approach continuously monitors
source code modifications, pro-actively detects structural violations,
immediately provides developers with live feedback, and enables
developers to react promptly. Hence, compliance is sustained, which
avoids decay in software implementations.

� Fourth, we performed empirical evaluation to prove that the solution
actually addresses the problem (i.e., that there is a scientific benefit).
For this purpose, we conducted an experiment where 19 students
developed a system over a period of 35 days. The students were
assigned to two groups, both applying a regular development
approach – one group with live feedback on compliance, the other
one without. The experiment provided evidence about the positive

Introduction

 28

effects of live compliance checking – resulting in 60% less structural
violations for the supported group.

� Fifth, we further empirically evaluated the effects to show the desired
benefits in industry. In two case studies, we observed that
compliance degrees of up to 99% are feasible – after investing effort
for structural repair and with regular feedback on compliance
(though not live). The sustained compliance increased the
productivity of the development organization. While spending the
same effort as before, the development organization could produce,
evolve, and maintain more systems at the same time. Though
compliance might not be the sole factor responsible for this fact, the
industrial stakeholders confirmed in interviews that it is at least one
of the crucial factors.

Industrial Problem:
Effort-Intensive Evolution
(Section 1.2.1)

Scientific Problem:
Lack of Compliance
(Section 1.2.2)

Solution:
Live Compliance Checking
(Section 2, 3, 4, 5)

Scientific Benefit:
Sustained Compliance
(Section 6.1)

Industrial Benefit:
Increased Productivity
(Section 1.2.2, 6.2)

Industrial Problem:
Effort-Intensive Evolution
(Section 1.2.1)

Scientific Problem:
Lack of Compliance
(Section 1.2.2)

Solution:
Live Compliance Checking
(Section 2, 3, 4, 5)

Scientific Benefit:
Sustained Compliance
(Section 6.1)

Industrial Benefit:
Increased Productivity
(Section 1.2.2, 6.2)

Figure 7 Experimental Software Engineering Paradigm: Characterization of Problem, Solution, and
 Benefits

1.4.2 Proposed Solution

The empirical building block of this thesis distinguishes between the
eligibility of compliance as a worthwhile research theme on the one
hand and the validation of live compliance checking on the other hand.
In the empirical part, in particular, we provide evidence for the following
hypotheses – the first two addressing compliance in general, the latter
two addressing regular (or live) feedback:

� HC1 – Evolution consumes less effort for implementations that are
architecture-compliant.

� HC2 – Compliance supports structure in remaining compliant over
time.

� HF1 – Live feedback on compliance reduces structural violations in
implementations.

� HF2 – Compliance increases the productivity of the development
organization.

As depicted in Figure 7, the empirical motivation for this thesis is given in
Sections 1.2.1 (addressing HC1) and 1.2.2 (addressing HC2), while

Introduction

 29

evidence for the positive impact of live compliance checking and regular
feedback is reported in Sections 6.1 (addressing HF1) and 6.2 (addressing
HF2). Further, the effort reduction shown in the three replications of the
experiment reported in 1.2.2 is another hint for the increased
productivity in an industrial context.

The solution introduced by this thesis is split into two distinct building
blocks – scientific and engineering (see Figure 8). The scientific building
block comprises three parts:

� The measuring compliance part (see Section 2) presents a formal
definition of the meta-models for the structural view, the source code
model, and the mapping required between them. Based on these
models, the compliance metric as frequently applied throughout this
thesis is defined. The compliance metric is a relative measure that
captures the percentage to which a software implementation
accomplishes the structure specified.

� The techniques part (see Section 3) characterizes first the base
technologies underlying any compliance checking technique: reverse
engineering and its discipline fact extraction, which mines the source
code for relevant information. Then the survey on the state of the art
in analytical compliance checking reveals the equivalence in
expressiveness of the two most prominent (and practically the only
relevant) techniques – Reflexion models and dependency rules. The
comparison of the two techniques shows that the Reflexion model
technique outscores dependency rules in terms of applicability,
explicitness, and ease of use with respect to live compliance
checking.

� The approach part (see Section 4) finally introduces how the concepts
of live compliance checking have been composed into a well-defined
solution. This new approach defines adapted processes for architect
and developer. Further, we discuss the positive effects of how the
high frequency of live feedback can reduce the overall development
effort.

Besides the scientific contribution, the engineering building block (see
Section 5) presents the tool support for live compliance checking. To
systematically counteract the drift between architecture and
implementation, the compliance checking tool has to be fully
automated, integrated with the development environment, and scale for
the whole development organization.

As part of the thesis, we developed the SAVE LiFe tool – Software
Architecture Visualization and Evaluation with Live Feedback (see Figure
9). SAVE LiFe is a client-server variant built on top of the Fraunhofer
SAVE tool [Knodel 2009a].

Introduction

 30

Tool – SAVE LiFe
Architecture
SAVE vs SAVE LiFe
Fat Client, Thin Client, Server
Algorithms

(Section 5)Techniques
Reverse Engineering
State-of-the-Art Compliance
Comparison

(Section 3)

Approach
Processes
Communication
Frequency

(Section 4)

Measuring Compliance
Meta-Models
Metric

(Section 2)

Tool – SAVE LiFe
Architecture
SAVE vs SAVE LiFe
Fat Client, Thin Client, Server
Algorithms

(Section 5)Techniques
Reverse Engineering
State-of-the-Art Compliance
Comparison

(Section 3)

Approach
Processes
Communication
Frequency

(Section 4)

Measuring Compliance
Meta-Models
Metric

(Section 2)

Figure 8 Overview Proposed Solution – Scientific (left) and Engineering (right) Building Blocks

<<SServer>>
SAVE LiFe

<<FFat Client>>
Architect

<<uses>>

<<TCP/IP>>

<<TThin Client>>
Developer

<<uses>>

<<TThin Client>>
Developer

<<uses>>

<<TThin Client>>
Developer

<<uses>>

<<TCP/IP>>

Legend:
Developer

Information Flow

Architect

<<SServer>>
SAVE LiFe

<<FFat Client>>
Architect

<<uses>>

<<TCP/IP>>

<<TThin Client>>
Developer

<<uses>>

<<TThin Client>>
Developer

<<uses>>

<<TThin Client>>
Developer

<<uses>>

<<TThin Client>>
Developer

<<uses>>

<<TCP/IP>>

Legend:
Developer

Information Flow

Architect
Legend:

Developer

Information Flow

Architect

Figure 9 Solution – SAVE LiFe: Server, Fat Client, and Thin Clients

Fraunhofer SAVE is an Eclipse plug-in for goal-oriented analysis,
compliance checking, and optimization of implemented software
architectures. SAVE is a joint development of Fraunhofer IESE (Institute
for Experimental Software Engineering IESE in Kaiserslautern, Germany)
and the Fraunhofer Center Maryland (Center for Experimental Software
Engineering in College Park, Maryland, USA). It realizes analytical
compliance checking for implementation snapshots. SAVE comprises a
set of extractors, analyzers, and generators that extract information from
system artifacts, perform an arbitrary kind of computation, visualize the
results, or generate system artifacts.

Introduction

 31

The engineering contribution differentiates SAVE LiFe – the client-server
variant – from its ancestor SAVE – the snapshot analysis tool. Moreover,
Section 5 introduces how SAVE LiFe meets the essential requirements
listed in Table 4. We further discuss the architecture of SAVE LiFe,
including its deployment to a central server, to a fat client for architects,
and to thin clients for developers. SAVE LiFe is a client-server variant as
depicted in Figure 9. The server manages a centralized repository that
stores the information needed to execute the compliance checking and
provides the computational logic for executing the analysis. The fat client
allows the architect to manage the structural architectural view and to
define the structure that the implementation shall comply with. The
developers’ thin client enables the execution of compliance checking in
real time and visualizes live feedback in the source code editor.
Modifications made by the developers are sent to the server and the
server corresponds with live feedback on the compliance of the
modifications made. The clients perceive the feedback as live because of
low response times due the analysis scope being limited to the local
delta of the respective developer. Both clients (fat and thin) and server
are fully integrated into the Eclipse [Eclipse 2009] development
environment.

In short, SAVE LiFe enables automated live architecture compliance
checking and empowers developers to counteract structural violations.
Thus, it is an instrument for realizing software implementations with
sustainable structures – provided that developers have pay attention to
the live feedback they receive.

1.5 Outline

The introduction (i.e., this section) presented the primary idea and
motivation of this thesis. We stated the research questions, derived
hypotheses from it, and sketched the proposed solution. The remainder
of this thesis is structured as follows.

Section 2 continues with the presentation of meta-models relevant for
compliance checking. Based on these models, we define a generally
applicable metric for compliance. Then Section 3 summarizes the state of
the art of analytical compliance checking techniques, compares them,
and shows their equivalence in terms of expressiveness. Section 4
discusses the necessary adaptations and new concepts enabling live
compliance checking. Further, a theoretical model for effort savings due
to live compliance checking is introduced. Then Section 5 presents the
tool support for live compliance checking – SAVE LiFe (which is the
acronym for Software Architecture Visualization and Evaluation with Life
Feedback).

Introduction

 32

Section 6 presents the validation of the effects of feedback on
compliance checking in one experiment and two industrial case studies.
Finally, Section 7 concludes this thesis by summarizing the results
achieved. We further discuss the limitations, open questions, and
sketches for future work. This thesis ends with final remarks in
retrospective.

Measuring Architecture Compliance

 33

2 Measuring Architecture Compliance

The scope of this thesis is to investigate the impact of the compliance of
a software implementation with the structural view of the software
architecture on the lifecycle. Therefore, we aim at making statements on
the effects of compliance on the development effort. For this purpose, it
is necessary to quantify compliance. In this section we define a metric
that determines the degree to which the state of having accomplished
required structural demands is realized in the software implementation.

The compliance metric (see Section 2.4) measures two factors: the
internal composition (i.e., the degree to which a component is realized
by the right set of compilation units) and external dependencies (i.e., the
degree to which specified dependencies are realized by the compilation
units of the implementation) of each individual components. Hence, the
compliance of the overall implementation aggregates the single
component values.

The metric definition builds on top of the meta-models of the two
distinct aspects between which compliance is measured. Hence, we first
introduce the meta-model of the structural view (see Section 2.1) and
followed by a generic source code model (see Section 2.2). The generic
source code model abstracts the compliance metric from concrete
programming languages. While the structural model represents abstract
architectural concepts, the source code model captures concrete
implementations. To bridge the gap between these two models, we
introduce the concept of mapping (see Section 2.3), which defines
1-to-many relations and links elements of one meta-model to the other.
Hence, this mapping allows identification of the respective counterparts
on each level.

To see the metric in action, we present several simple examples
combining different architectures and their implementations and
illustrating the measurement of compliance (see Section 2.5).

2.1 Meta-Model of the Structural View

The software architecture aggregates a set of architectural views to
describe the fundamental organization of a system. Figure 10 (using the
UML notation [UML 2008]) depicts a simplified meta-model of a
software architecture. It presents the subset of elements of the IEEE
standard 1471 “Recommended Practice for Describing Software
Architecture” [IEEE-Std.1471 2000] related to architectural views.

Measuring Architecture Compliance

 34

Architecture

View Viewpoint1

*<<aggregates>> <<is instance of>>

Figure 10 Simplified Meta-Model of Software Architecture

The structural view captures the static structure of a system in terms of
layers, subsystems, and components, the interfaces provided by them,
and the relationships between the various elements. The structural view
only describes the static structure of a system and therefore does not
provide any information about dynamic aspects and behavior.

The structural view (see Figure 11 for the meta-model) is represented
using several structural models that decompose the system into
architectural elements. Architectural elements have distinct
responsibilities and encapsulate certain functionalities. To achieve their
objective, architectural elements interact with other elements. These
inter-element relationships enable the interplay of the architectural
elements needed to eventually realize the functional and quality
requirements of the system.

Figure 11 depicts the meta-model of the structural view using the UML
notation [UML 2008]. An architectural element is a hierarchical entity
that can contain other architectural elements. The architectural element
is a generalization of concrete elements (e.g., layers, subsystems,
components, or clusters; please note that Figure 11 only depicts the
most commonly used elements). All architectural elements can act as
containers and may contain other elements. Each architectural element
can aggregate a set of inter-element relationships (e.g., dependency
rules, connectors). An inter-element relationship links two architectural
elements together. Table 5 explains the model elements of Figure 11 in
more detail.

<<aggregates>>

<<depends on>>

Architectural
Element

Layer Subsystem Component Cluster

Inter-Element
Relationship

1 *

1

*<<contains>>

1 1

ConnectorDependency

Figure 11 Meta-Model of the Structural View

Measuring Architecture Compliance

 35

Model Element Description
Architectural
Element

An architectural element is an abstract hierarchical
container that can be instantiated by concrete
elements.

Layer Layering decomposes the structural view into several
horizontal abstraction levels. A layer encapsulates
functionality on different levels of abstraction (e.g., user
interface, business logic, service, and hardware
abstraction layer). Layering allows only top-down inter-
element relationships. Strict layering enforces a strict
hierarchy so that each layer is only allowed to use the
layer directly below it.

Subsystem A subsystem is a grouping element, which ideally has
high cohesion and low coupling to other subsystems. A
subsystem can contain either other subsystems or
components.

Component Components are the building blocks of a software
system. Components have a predefined interface that
encapsulates their internals. The internals of
components realize the functionality the component
provides. Single components comprise many source
code elements, which implement the functional and
quality requirement specified for the component.

Cluster Clustering decomposes the structural view into several
vertical clusters. Clustering allows elements in one
cluster to only access other elements in the same cluster
or non-clustered elements. Strict clustering enforces
access only within a cluster. Clustering and layering are
often used jointly to achieve vertical and horizontal
decomposition.

Inter-Element
Relationship

An inter-element relationship is an abstract, direct
dependency from one architectural element to another
that can be instantiated by concrete inter-element
relationships.

Dependency A dependency specifies how one architectural element
may depend on another. It defines the type of access
allowed (e.g., include directives, method invocations or
function calls, read or write accesses to variables,
inheritance, etc.). Dependencies may use regular
expressions or patterns to define criteria matching a set
of architectural elements.

Connector A connector is an abstract mechanism that mediates
communication, coordination, or cooperation among
components (e.g., shared representations, remote
procedure calls, message-passing protocols, and data
streams).

Table 5 Elements of the Structural View Meta-Model

The structural view of the architectures may have more than just one
structural model, but all are an instantiation of the same meta-model.
Having several structural models separates the different concerns of
stakeholders: not all information is relevant to everyone. Furthermore,

Measuring Architecture Compliance

 36

having only a single structural model yields one complex and
complicated structural view of the architecture, without any
encapsulation. To optimize clarity, readability ease of use, and
maintenance, decomposition into several structural models is an
appealing and preferable option. In practice, several but consistent
structural models comprise the structural view of the system’s software
architecture.

2.2 Meta-Model of the Source Code

The source code of a software system consists of the written statements
implemented by the developers. The source code is written in a specific
programming language prescribing the constructs that developers can
use to realize solutions for algorithms, data structures, and so on. Figure
12 (using the UML notation [UML 2008]) depicts the generic source
code meta-model.

The source code model captures the static structure of a system at
development time. In contrast to the structural view, the source code
model comprises a number of elements that is entire orders of
magnitude higher. These source code elements are the key of the
generic source code model. Through their genericity, they represent
corresponding code elements spanning many different programming
languages. Hence, any programming language requires interpretation in
order to assign the programming language constructs to the elements of
the generic source code model.

<<aggregates>>

<<depends on>>

1 *

1 1

Source Code
Element

Source Code
Relationship

Folder

Compilation Unit
1

*

1

*<<contains>>

<<contains>>

Routines
1

*<<contains>>
Variables

1 *<<contains>>

<<contains>>
1

*

Figure 12 Meta-Model of the Source Code

Source code elements are interconnected by source code relationships. A
source code relationship is a directed connection from one concrete

Measuring Architecture Compliance

 37

code element to another. Again, the concrete dependencies
implementable by programming language constructs have to be
assigned to the generic source code relationship. Table 6 explains the
model elements of Figure 12 in more detail.

Model Element Description
Source Code
Element

A source code element is an abstract representation
that can be instantiated by concrete elements.

Folder A folder represents either a grouping element that is
visible in the file system (i.e., a directory) or the
constructs of the programming language (e.g.,
packages in Java). Folders are hierarchical elements that
can contain other folders, compilation units, or both.

Compilation Unit Compilation units are the source code elements that
are written by the developers. Compilation units are
distinct elements that are processed individually by the
compiler. Compilation units represent classes or files.
They contain routines or variables.

Routines Routines are closed fragments of source code within
compilation units, which perform specific tasks and
have a predefined signature (i.e., routines can have
parameters and return values). Dependent on the
programming language, routines are often referred to
as subroutines, functions, methods, procedures, or
subprograms. Routines are executed (i.e., called by or
invoked by) by other routines.

Variables Variables represent identifiers in the source code. They
are symbolic representations used to bind a variable to
a memory location. The variable stores values of a data
object in that location so that the object can be
accessed and manipulated at a later point in time.

Source Code
Relationship

A source code relationship represents a dependency
from one concrete source code element (e.g., see
above) to another. The type of relationship depends on
the capabilities of the programming language (e.g., in
Java, it is possible to implement imports, method
invocations, variables accesses, inheritance, etc.).
Source code relationships are directed, which means
they have an origin and a target.

Table 6 Elements of the Source Code Meta-Model

Due to its genericity, the source model is instantiated for specific
programming languages. Such an instantiation may involve the addition
of further concrete and programming language-specific elements;
however, the meta-model depicted in Figure 12 has been sufficient
when analyzing software systems implemented in programming
languages like Java, C/C++, or Delphi. Table 7 presents the assignment
of programming language constructs to the generic source code model.
Here, we chose two representatives, Java for object-oriented and C for
procedural languages. As Table 7 shows, all relevant language constructs
can be assigned to the meta-model. However, it is possible to filter the

Measuring Architecture Compliance

 38

source code model and focus only on a limited set of elements (e.g., not
delving into details and having all source code relationships go out from
folders or compilation units).

Model
Element

Language Constructs
in Java

Language Constructs
in C

Folder Java Package Files System Directory
Compilation
Unit

Java Class C Implementation File (.c)
C Header File (.h)

Routines Class Method Function
Variables Class Instances

Global Variables
Local Variables

Global Variables
Local Variables

Source Code
Relationships

Class Import
Class Inheritance
Class Instance Access
Method invocation
Variable Access
Interface Implementation

Header Include
Function Implementation
Function Call
Variable Access

Table 7 Assignment of Programming Language Construct to Source Code Model Elements

2.3 Meta-Model of the Mapping

Architectures do not prescribe the structure in full detail; they rather
provide a sketch and the rules that define how the architectural
elements and their inter-element relationships should be translated into
source code. Hence, the structural view captures the decomposition
from a global system perspective. However, local decisions (i.e., details
on the source code level) are still made by the developers. So it is not
surprising that functionally equivalent systems realized based on the
same architecture but coded by two different developers most likely yield
two different implementations.

To confine the diversity in implementation, there are typically mapping
instructions for developers. Such instructions prescribe how to name the
source code elements and hierarchically structure them. Ideally, the
structural models would be clearly reproduced by the hierarchy of folders
and compilation units. Due to the abstraction gap, many source code
elements represent one architectural element, respectively the same
holds for relationships. In forward engineering [Chikofsky 1990], the
developers create and name source code elements based on these
mapping instructions – and create the internal composition of
architectural elements. Examples of mapping instructions are naming
conventions like prefixes for all compilation units that encode the
component name, representations of each subsystem as a distinct folder
in the file system, or distinctive mapping models designing and detailing
an arbitrary decomposition of architectural elements. One of the

Measuring Architecture Compliance

 39

responsibilities of an architect is to provide developers with these
mapping instructions.

In cases where the mapping instructions are outdated, obsolete, or
unknown, remedy comes from the field of reverse engineering
[Chikofsky 1990]. The mapping instructions – often the whole
architecture documentation, too – have to be extracted from the source
code because the documentation was lost, underwent significant
changes so it is no longer possible to match the mapping instructions
with the implementation, or the documentation never existed at all. The
analysis of existing software systems with the aim of recovering
architecture-relevant information from artifacts is broad field of research
– mostly referred to as architecture reconstruction (please refer to
[Koschke 2005], [Knodel 2006b] and [Pollet 2007] for an overview).

By implementing architectural elements such as components, the source
code is produced. Developers write many new source code files and
modify existing ones; in other words, they fill an initial skeleton
implementation with content. In doing this, developers use other source
code files; hence, they create directed dependencies among the
compilation units. The location of origin and target compilation unit
classifies the relationship either as an internal or as an external
dependency. Internal dependencies remain within a component, while
external dependencies realize a relationship between two architecture
elements such as components (of course, there might be many concrete
instances for the relationship on the code level).

Documenting how to bridge the gap between structural view and source
code is the purpose of the mapping. Mapping (see Figure 13 for the
meta-model using the UML notation [UML 2008]) defines the
relationship between architectural elements and source code elements
and vice versa. The same holds for architectural inter-element
relationships and source code relationships. Typically, one entity of the
architectural level is represented by numerous entities on the source
code level. The mapping has been defined as a distinct meta-model to
achieve a clear separation of the two abstraction levels – the structural
model and the source code model remain independent of each other,
and there are no direct dependencies from one model to the other.

The mapping comprises all information needed to bridge the abstraction
level gap from architecture to source code. Information about the
respective counterparts can be extracted from the references of the
element mapping and the relation mapping. Element mapping links
architectural elements to source code elements. The extraction of
corresponding counterparts is possible for both directions. The relation
mapping provides the same link between architectural inter-element
relationships and source code relationships. Table 8 explains the model
elements of Figure 13 in more detail.

Measuring Architecture Compliance

 40

Mapping

1

*

Architectural
Element

Inter-Element
Relationship

Source Code
Element

Source Code
Relationship

Element
Mapping

Relation
Mapping

1

*

1
*

1

1

1

*

1
1

<<contains>><<contains>>

<<references>> <<references>>

<<references>> <<references>>

Figure 13 Meta-Model of the Mapping

Model Element Description
Mapping The mapping is a container for all mapping,

either element mappings or relationship
mappings. Mapping is the root to bridge the
abstraction gap mapping between the
architecture and the source code.

Element Mapping The element connection links one architectural
element to one source code element.

Architectural Element See description above.
Source Code Element See description above.
Relation Mapping The relation mapping links one architectural

element to one source code element.
Inter-Element Relationship See description above.
Source Code Relationship See description above.

Table 8 Elements of the Mapping Meta-Model

Having defined the meta-models for structural views, source code, and
their mapping allows specifying the compliance metric. This metric
measures compliance for concrete instances of the respective meta-
models.

2.4 Compliance Metric

The compliance metric is a measure that is relative to exactly one set of
one instance each of structural model, source code model, and mapping,
respectively.

The compliance metric compares the architecture specified with the
implementation realized by developers. This section first introduces basic
formulas, and then continues with the formalization of inputs and the
definition of operators. Finally, we define the compliance function,
which aggregates measures from individual architectural elements.

Measuring Architecture Compliance

 41

2.4.1 Basic Formulae

Because we compare given classifications of an item (i.e., the realization
of source code elements and source code relationships) with desired
correct classifications (i.e., the specification of architectural elements and
inter-element relationships), we can apply two measures from statistical
classification. In this context, the comparison results in assignment to
one of the following categories:

� True positives: specification equals realization

� False positives: realized but not specified

� True negatives: specified but not realized

To obtain a single measure representing the comparison results, we can
compute the harmonic mean of precision and recall for the specification
and realization, which is defined as their F-Measure [Frakes 1992].

Definition 14 Precision

Precision measures the degree of correctly realized elements among
all realized elements.

fptp
tpprecision
�

�

where tp stands for true positive, and fp for false positive.

Definition 15 Recall

Recall measures the degree of correctly realized elements among all
specified elements.

tntp
tprecall
�

�

where tp stands for true positive, and tn for true negatives.

Definition 16 F-Measure

The F-Measure is the standard combination of precision and recall,
defined as their harmonic mean.

recallprecision
*recall*precisionMeasureF
�

��
2

Measuring Architecture Compliance

 42

2.4.2 Formalization of Metric Input

Software systems comprise the architecture and the implementation.

Definition 17 Formalization of Software System

Let the software system be a tuple of the architecture, the
implementation, and the function fmap, which enables traceability
between the abstract architecture and the concrete implementation
and defines the relationship between architectural elements and
source code elements.

) (A, I, fSYS map�

where SYS stands for the software system, A for architecture, I for
implementation, and fmap for the mapping function. Note that we
explicitly ignore other system artifacts produced in the lifecycle of the
software system.

The structural model (representing the architecture), source code model
(representing the implementation) are mandatory inputs required to
measure compliance.

Definition 18 Formalization of Architecture

Let the structural model of the architecture be a set of architectural
elements with a set of inter-element relationships among them.

AEIERIERAE S) with S, S (SA ��

where A stands for the architecture, SAE for the set of all architecture
elements with SAE = {AE1, …, AEi , AEj ,…, AEn}, where AE stands for
architectural element, SIER for the set of all inter-element relationships,
with SIER = {IER, IERij}, where IER stands for an inter-element
relationship between two architectural elements AEi and AEj.

Definition 19 Formalization of Implementation

Let the source code model of the implementation be a set of source
code elements with a set of source code relationships among them.

SCESCRSCRSCE S) with S, S (SI ��

where I stands for the implementation, SSCE for the set of all source
code elements with SSCE = {SCE1, …, SCEi , SCEj ,…, SCEn}, SCE for a
source code element, SSCR for the set of all source code relationships
with SSCR = {SCR, SCRij}, where SCR stands for an source code
relationship between two source code SCEi and SCEj.

Measuring Architecture Compliance

 43

2.4.3 Lifting and Mapping Operator

Because the structural model and the source code model are on different
levels of abstraction, we have to define a lifting operator and a mapping
operator in order to bring the two models to the same level of
abstraction. Hence, lifting and mapping are the tools for bridging the
gap. They operationalize lifting source code model elements and
relationship to the level of the architecture and vice versa.

Definition 20 Lifting Operator

The lifting operator flift lifts a given implementation to the abstraction
level of the architecture using the mapping. The lifting operator can
be executed for source code elements and source code relationships.

SCRSCRiftl

AESCElift

SCRIER

SCEAE
lift

IERAESCRSCElift

S Sf
S Sf

 or
S bS
S bS

bf

 withSS SSf

�
�

�
�
	

���

)(
)(

;
;

)(

)()(

where flift stands for the lifting operator, which defines the
relationship between source code elements and architectural
elements, and relationships respectively.

Definition 21 Formalization of Mapping

Let the mapping be an is-part-of relation between source code
elements and architectural elements.

1�� liftmap ff

where fmap stands for the mapping function, which defines the
relationship between architectural elements and source code
elements, and relationships respectively.

Figure 14 illustrates the mode of operation of the lifting operator. The
implemented architectural elements aggregate many concrete source
code elements. This aggregation is depicted by the shadow of the
architectural elements, which covers the source code elements resolved
from the mapping. Further, the inter-element relationships aggregate
the concrete source code relationships. Of course, relationships within
one architectural element are possible, too.

Applying the lifting operator to the source code of an implementation
Iimpl produces one model – the implemented or realized architecture Aimpl.
This model is now on the same level of abstraction as the structural
model – the specified architecture Aspec.

Measuring Architecture Compliance

 44

Definition 22 Lifting Operator Application

Applying the lifting operator flift to a given implementation I yields the
implemented architecture.

implnn

impln nlift

implliftimpl

}) IER }), ({IER AE ({AE
) }) SCR}), ({SCR SCE (({SCE f

) (I f A

�

�

�

11

11

where Aimpl stands for one specific implemented architecture, and Iimpl
for one specific implementation.

Architecture

Implementation

Implemented
Architectural

Element (AEimpl)

SCE SCE

SCESCE

Implemented
Architectural

Element (AEimpl)

SCESCE

SCE

SCESCE

SCE

Implemented
Inter-Element

Relationship (IERimpl)

Architecture

Implementation

Implemented
Architectural

Element (AEimpl)

SCE SCE

SCESCE

Implemented
Architectural

Element (AEimpl)

SCESCE

SCE

SCESCE

SCE

Implemented
Inter-Element

Relationship (IERimpl)

Figure 14 Illustration Lifting Operator

2.4.4 Compliance Function

The aim of the compliance function is to compare the specification with
the realization.

Definition 23 Architecture Compliance Function

The architecture compliance metric is a function that computes a
value between 0% (zero compliance) and 100% (full compliance) for
a given specification and a given realization. The compliance function
is the normalized arithmetic mean of the element compliance
function, which computes the compliance for one architectural
element.

� �
)(

1
implspeci

n

i
i

size
i

implspecAC

 AA with AE * ECw

 , AA fAC

�
�

�

�
�

where AC stands for architecture compliance, Aspec for one specific
specified architecture, Aimpl for one specific implemented architecture,
EC for element compliance, and wsize is a weighting factor based on
the size of an architectural element.

Measuring Architecture Compliance

 45

The architectural compliance metric is an aggregate of the individual
measures for each individual architectural element – this measure we call
the element compliance. The single architectural elements are
normalized by means of a weighting factor wsize, which allows assigning
a relative weighting based on an arbitrary size metric. The weighting
factor can either be computed using code metrics (e.g., lines of code,
number of routines, number of compilation units), complexity metrics
(e.g., cyclomatic complexity [McCabe 1976], component complexity
[Henry 1981]), or be assigned by the architect according to the subjective
importance of the element. The sum of all weights combined has to be
equal to one (hence, the default weighting factor 1/n expresses equal
weighting among the elements).

Definition 24 Element Compliance Function

The element compliance metric is a function that computes a value
between 0% (zero compliance) and 100% (full compliance) for a
given specification and a given realization of an architectural element
(i.e., the implementation). The element compliance is the product of
the internal composition IC (i.e., it captures to which degree the
planned decomposition structure matches the actual one) and the
external dependencies ED (i.e., it captures to which degree the
planned dependencies match the actual ones).

� �
� � � � IERIER * ED , AEAEIC

 IER,, IER, AEAE fEC

implspecimplspec

implspecimplspecEC

,�

�

where AEspec stands for a specified architectural element, AEimpl for an
implemented architecture element, IERspec for a specified inter-
element relationship, IERimpl for an implemented inter-element
relationship, for IC for internal composition and ED for external
dependencies.

The element compliance function is the product of two factors: the
internal composition and the external dependencies.

2.4.5 Internal Composition

The internal composition of architectural elements captures the degree
to which the mapping instructions for the source code elements (i.e., the
counterparts as specified by the architect) have been implemented
correctly by the developers. There are three categories for internal
composition:

� Correct composition (true positives): The implemented
architectural element has been composed as specified by the
architect (i.e., AEspec is equivalent to AEimpl). There are only correctly
placed source code elements in the implementation of the

Measuring Architecture Compliance

 46

architectural elements and the containment hierarchy of the source
code element reflects the mapping instructions.

� False composition (false positives): The implemented architectural
element violates the specification. Source code elements have been
misplaced in the implementation of the architectural element (e.g.,
code elements belonging to a different architectural elements) or the
decomposition structure does not adhere to the mapping instructions
(e.g., naming convention violated).

� Missing composition (true negatives): There were no
implemented architectural elements (i.e., no source code elements
could be lifted) for the specified architectural elements.

The definition of true positives, false positives, and true negatives allows
calculating the F-Measure for the internal composition.

Definition 25 Internal Composition

The internal composition IC captures the degree to which the
planned decomposition structure matches the actual one.

� � � �

 recallprecision
lon * recal * precisi

,AEAE F-Measure ,AEAEIC implspecimplspec

�
�

�

2

where IC stands for the harmonic mean of precision and recall of the
comparison of the specified structure with the realized structure.

The architect has to decide whether or not architectural elements are
well-composed. Hence, subjective expert ratings are required to identify
flaws in the source code model containment (i.e., logically misplaced
elements or poorly structured decomposition).

2.4.6 External Dependencies

The external dependencies of architectural elements capture the degree
to which the specified architectural inter-element relationships have
been realized by the developers. There are three categories for external
dependencies [Murphy 2001]:

� Convergent dependency (true positives): a relationship between
two architectural elements that was implemented as specified (i.e.,
IERspec is equivalent to IERimpl).

� Divergent dependency (false positives): a relationship between
two architectural elements that was implemented but not specified.

� Absent dependency (true negatives): a relationship between two
architectural elements that was specified but not implemented.

Measuring Architecture Compliance

 47

The definition of true positives, false positives, and true negatives allows
calculating the F-Measure for the external dependencies.

Definition 26 External Dependencies

The external dependencies ED capture the degree to which the
planned dependencies match the actual ones.

� � � �

 recallprecision
lon * recal * precisi
,IERIER F-Measure ,IERIERED implspecimplspec

�
�

�

2

where ED stands for the harmonic mean of precision and recall of the
comparison of the specified dependencies with the realized
dependencies.

By lifting source code elements to the level of the software architecture
using the mapping, the external dependencies are lifted as well. Hence,
objective, automated measurement is possible.

2.4.7 Summary

We defined the compliance metric as a composed measure comprising
several aspects. Figure 15 summarizes the compliance metric graphically.
Architecture compliance is the weighted average element compliance of
all elements the system is built of. The individual elements’ compliance
investigates the internal composition on the one hand and the external
dependencies on the other hand.

Both are computed by using the harmonic mean of precision and recall.
Precision measures the degree to which correctly implemented elements
or dependencies are found in the implementation, while recall measures
the degree to which correctly implemented elements or dependencies
are specified. For internal composition, precision computes the degree of
correctly composed elements among all present elements (i.e., correctly
and falsely placed elements) and recall the degree of correctly composed
elements among all required elements (i.e., correct and missing
elements). For external dependencies, precision computes the degree of
convergent dependencies among all existing dependencies (i.e.,
convergences plus divergences) and recall the degree of convergences
among all specified relationships (i.e., convergences plus absences).

Measuring Architecture Compliance

 48

Architecture Compliance (Architecture, Implementation) =
weighted arithmetic mean of architectural elements

AEspec vs. AEimpl AEspec vs. AEimpl AEspec vs. AEimplAEspec vs. AEimpl …….

Internal Composition:
Harmonic Mean AE

Precision
= tp / (tp + fp)
= correct / (correct + false)

Recall
= tp / (tp + tn)
= correct / (correct + missing)

Precision
= tp / (tp + fp)
= conv / (conv + div)

Recall
= tp / (tp + tn)
= conv / (conv + abs)

External Dependencies:
Harmonic Mean IER

product of

∑

Architecture Compliance (Architecture, Implementation) =
weighted arithmetic mean of architectural elements

AEspec vs. AEimpl AEspec vs. AEimpl AEspec vs. AEimplAEspec vs. AEimpl …….

Internal Composition:
Harmonic Mean AE

Precision
= tp / (tp + fp)
= correct / (correct + false)

Recall
= tp / (tp + tn)
= correct / (correct + missing)

Precision
= tp / (tp + fp)
= conv / (conv + div)

Recall
= tp / (tp + tn)
= conv / (conv + abs)

External Dependencies:
Harmonic Mean IER

product of

∑

Figure 15 Compliance Metric

After defining the compliance metric, we now illustrate the metric in
action. For this purpose, we use a simple example system where we vary
architecture and implementation.

2.5 Metric Examples

This section presents several typical scenarios of a small hypothetical
system with variations. For each variation, we calculate its architecture
compliance.

All examples are based on the same structural view – a three-layered
architecture (see Figure 16). The layering is strict meaning that each layer
is only allowed to use and access the layer directly below (i.e., Layer-1
can use Layer-2, Layer-2 can use Layer-3; all other relationships are
forbidden). The architect further defined mapping instructions that all
source code elements have to encode the layering information. The
example implementations should reflect this layering through a
corresponding decomposition structure. The example implementations
were created in the Java programming language.

Measuring Architecture Compliance

 49

Relationship

Legend:
Layer

Relationship

Legend:
Layer

Relationship

Legend:
Layer

Figure 16 Structural View Specifying Three Layers Enforcing Strict Layering

2.5.1 Scenario: Beginning of Implementation

At the beginning of the implementation, as depicted in Figure 17, source
code does not exist yet. For this reason, the internal composition and
external dependency values for the architectural elements are both zero.
Hence, the overall architecture compliance is 0%.

Figure 17 Scenario: Beginning of Implementation

2.5.2 Scenario: Composition Flaw

Figure 18 shows one implementation variant where all source code files
have been composed into the same default Java package. The
composition of source code elements does not reveal any structure,
which indicates that the developers ignored the mapping instructions
formulated by the architect. Hence, the overall architecture
compliance is 0%, too.

Because none of the source code elements has been composed correctly
according to the mapping instructions, the internal composition of each
architectural element is zero. This example might be exaggerating but
misplacements or poorly structured source code element hierarchies can
be observed in practice, as the discussion of the case studies has shown.
Furthermore, according to [Lehman 1985], initially well-structured

Measuring Architecture Compliance

 50

implementations degenerate over time if no counteractive measures
(e.g., refactoring or restructuring) are taken to prevent the structural
decay.

Figure 18 Scenario: Composition Flaw

2.5.3 Scenario: Integration Flaw

The integration flaw scenario illustrates in Figure 19 a well-structured
system where the internal composition is clear. Each layer has been
realized in a distinct package, where the number of the package
indicates the layer the package is representing. The internal composition
for this implementation variant is 1 for all architectural elements.
However, there is an integration flaw, which Figure 19 captures by
showing only layer-internal dependencies as convergences and the
required external dependencies as absences.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 19 Scenario: Integration Flaw

Measuring Architecture Compliance

 51

Computing the element compliance for all three layers now results in the
following degrees of compliance: Layer-1 = 66%, Layer-2 = 66%, and
Layer-3 = 100%. Note that we considered the internal dependencies
within a layer as convergent true positives resulting in a precision of 1
and a recall of 0.5 for the layers Layer-1 and Layer-2. Hence, for this
implementation variant, the overall architecture compliance is 77%.

2.5.4 Scenario: Unplanned Growth

This scenario captures the case when the system is growing in an
unplanned way. New architectural elements outdate the architecture
documentation and cause a drop in compliance. Figure 20 depicts an
example where the architectural element Layer-4 is part of the
implementation but is not specified in the structural view (see Figure 16).
The internal composition of all three specified layers equals 1, which
holds as well for the external dependencies of Layer-1 and Layer-2. The
element compliance for both Layer-1 and Layer-2 is 1.0. However, Layer-
3 comprises a violating use of Layer-4, which causes an external
dependency value of 0.66 resulting in a element compliance of 0.66 as
well. Layer-4 as an unspecified element scores zero in its element
compliance. Aggregating the values for the four architectural elements
using the arithmetic mean results in an overall architecture compliance
of 66%.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 20 Scenario: Unplanned Growth

2.5.5 Scenario: Unplanned Interdependencies

The scenario with unplanned interdependencies is one of the most
typical scenarios we observed in industrial practice. Although the internal
composition of each architectural element has been realized correctly (IC
is 1 for all elements), the elements are heavily coupled (as depicted in

Measuring Architecture Compliance

 52

Figure 21). There are a lot more actual dependencies among the
architectural elements than originally planned. The values for external
dependencies are 0.8 for Layer-1 and Layer-2, where in both cases
precision is 0.66 (2 convergences and 1 divergence) and recall is 1.0. In
contrast, Layer-3 has a value of 0.4 (1 convergence but 2 divergences).
Aggregating the individual element compliance results yields an overall
architecture compliance of 66%.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 21 Scenario: Unplanned Interdependencies

2.5.6 Scenario: Architecture-Compliant System

Figure 22 shows the rare case of an implementation that fully complies
with its architecture. All architectural elements and the inter-element
relationships have been realized as intended by the architect and hence,
the overall architecture compliance is 100%.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 22 Scenario: Architecture-Compliant System

Measuring Architecture Compliance

 53

2.6 Conclusions

This section introduced the metric for measuring architecture compliance
based on the meta-model of the structural view, the source code, and
the mapping. The example with the structural view comprising strict
layering and the different implementations illustrates how the
architecture compliance metric works (assuming equal weighting).

The architecture compliance metric allows quantifying the degree to
which the implementation of the system has been realized as specified.
Obviously, full architecture compliance (i.e., compliance equaling 100%)
is the optimal case. In practice, however, this optimal case is rarely
achieved. Our experience with industrial partners shows that when
compliance measurement is institutionalized and communicated as a
clear development goal, compliance of up 98-99% can be achieved
(e.g., see [Knodel 2008b]).

Experiences with compliance checking projects at Fraunhofer IESE has
consolidated a rule of thumb: Compliance lower than 95% calls for
special attention. It constitutes a major threat for the development
organization. The 95% threshold is an indicator of systemic problems
that may eventually affect the entire system. This status requires special
activities, which include in-depth analyses of root causes or explicit
planning and effort investments for refactoring activities to repair the
implementation. Often, a compliance drop below the 95% threshold
leads to even further structural degeneration (i.e., more and more
violations over time). Development organizations have to identify the
root cause for the lack of compliance (e.g., inadequate architectural
solution, inadequate documentation of solution, lack of quality
assurance, or insufficient education of software developers). However, to
date, there is no empirical confirmation for this 5% threshold yet and so
this rule of thumb has to be considered with caution.

Measuring compliance verifies only that the specified plan of the system
matches the implemented facts. Note that the verification of compliance
does not allow any other statements about the appropriateness of the
architecture as a whole with respect to the envisioned development
goals, functional requirements or quality requirements.

Measuring Architecture Compliance

 54

Compliance Checking Techniques

 55

3 Compliance Checking Techniques

Analytical compliance checking techniques detect structural violations in
the source code. They aim at verifying that the structural decomposition
is in place and point to the violating source code statements.

This section shows that the most popular compliance checking
techniques – the Reflexion model and dependency rules – are equivalent
in expressiveness (see Section 3.3). Thus, independent of the concrete
technique applied, compliance checking produces the same results
because dependencies rules can be transformed into Reflexion models
and vice versa (although the transformation may become a tedious task).

So in general, both techniques offer themselves as candidates for
adaptation and usage as base technology in live compliance checking.
For this reason, we investigated the applicability of these two techniques
in several dimensions determined by the envisioned usage goal as a
quasi-constructive quality engineering technique (see Section 3.4). A
thorough analysis of advantages and drawbacks reveals that Reflexion
models outscore dependency rules in their suitability for the intended
use. In particular, the characteristics explicitness, ease of use, ease of
learning, and low probability of false positives are clear advantages of
Reflexion models. They make it possible to educate developers on the
intended structure of the software implementation.

We continue with the derivation of the key principle of live compliance
checking (see Section 3.5). Using the Deming cycle [Deming 1986], we
distinguish the new live approach from its analytical siblings for system
snapshots. The paradigm shift executes the checking not at distinct
points in time but continuously and quasi-constructively while developers
are writing the code.

The explanation of the underlying concepts and the mode of operation
of both Reflexion models and dependency rules first introduces the
generic reverse engineering archetype – extraction, abstraction, and
presentation – to gain knowledge from existing artifacts (see Section
3.1).

We further discuss how the reverse engineering discipline fact extraction
is applied in compliance checking (see Section 3.2). Fact extraction mines
the source code for relevant information, which is then used by the
checking technique to derive statement about the compliance.

Compliance Checking Techniques

 56

3.1 Reverse Engineering

The ultimate goal of reverse engineering is to gain knowledge from
existing artifacts. Knowledge is the dynamic capacity that enables a
stakeholder to perform a task and to solve problems: “Knowledge
means the confident understanding of a subject with the ability to use it
for a specific purpose“ [Wikipedia 2008]. Knowledge is always bound to
individuals [Probst 1999] and is based on information, which in turn is
based on data [Rus 2002].

Definition 27 Knowledge

Knowledge is the result of a learning process and can be seen as a
function of (task-related) information, experience, skills and attitude
at a given moment in time [Weggeman 1999].

Definition 28 Information

Information is data that is organized to make it useful for end users
who perform tasks and make decisions [Rus 2002].

Definition 29 Data

Data consists of discrete, objective facts about events and entities but
nothing about its own importance or relevance; it is raw material for
creating information [Rus 2002].

Individuals create knowledge dynamically by interpreting the provided
information units based on their own context, background, and
experience. Therefore, knowledge is dependent on the individual and is
tacit. Information on the other hand is independent of the individual and
can be explicitly documented and thus, is easy to duplicate (see [Miller
2002] and [Sveiby 1997]). Stakeholders typically have the need to gain
knowledge about a software system as a whole or about one specific
aspect of the system to guide their decision-making. In particular, they
require knowledge because they would like to resolve uncertainties,
clarify unknown characteristics, or increase their level of confidence.

The basis for gaining knowledge is information on the subject – the
software system. Reverse engineering supports this stakeholder goal by
providing information – representations or abstractions (or both
combined).

Definition 30 Reverse Engineering

Reverse engineering is the process of analyzing a subject system to
identify the system’s components and their interrelationships and
create representations of the system in another form or at a higher
level of abstraction [Chikofsky 1990].

The reverse engineering archetype describes the typical steps of most
reverse engineering processes (e.g., see [Müller 1994], [Mendoca 1996],

Compliance Checking Techniques

 57

[Ebert 2002]). The activities performed are named extraction,
abstraction, and presentation – typically executed in iterative cycles,
repeated and refined, if appropriate, until the intended goal has been
obtained. Figure 23 depicts this reverse engineering archetype including
the concluding activity – interpretation which illustrates how
stakeholders use the results.

Extraction

Reverse Engineer

System Artifacts

Abstraction

Presentation

Repository

Legend:

Activity

Stakeholder

Work Product

Information Flow

Document

Stakeholders

Interpretation

Results

ExtractionExtraction

Reverse EngineerReverse Engineer

System ArtifactsSystem Artifacts

AbstractionAbstraction

PresentationPresentation

RepositoryRepository

Legend:

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Activity

Stakeholder

Work Product

Information Flow

Document

StakeholdersStakeholders

InterpretationInterpretation

ResultsResults

Figure 23 Archetype of Reverse Engineering

� Extraction: Extraction processes the raw data contained in system
artifacts – these pieces of data are often called facts. A fact
represents one basic piece of information about a software system
(e.g., the source code comprises classes A and B, class A has a
method A1, and method A1 calls method B1). Fact extraction spans
manual inspection [Moonen 2002], lexical analysis (e.g., [Murphy
1996]) pattern matching (e.g., [Pinzger 2002], [Knodel 2003]), island
grammars [Moonen 2001], configuration management systems (e.g.,
[Zimmermann 2005]), defect management system (e.g., [Fischer
2003]), and document analysis [John 2003]). Most popular, however,
are static analyses [IEEE-Std-610.12 1990] based on source code or
dynamic analyses [IEEE-Std-610.12 1990] based on run-time traces
generated from instrumented system executions. Finally, all facts are
aggregated in a repository, which is the foundation of all further
analyses.

� Abstraction: Abstraction processes the raw data generated in the
extraction and turns it into information. The repository allows
performing queries, filtering particular data sets of interests, and, of
course, storing new results produced during the abstraction. Single
analysis techniques are applied (e.g., see the overviews in [Koschke
2005], [Knodel 2006b], [Pollet 2007]), but more often than not, an
arbitrary combination of analysis techniques is applied (e.g., [Waters

Compliance Checking Techniques

 58

1999], [Pinzger 2003], [Knodel 2005a], [Sartipi 2006]). Abstraction
identifies the facts relevant to a given request and then abstracts
these facts to the level of abstraction appropriate for their intended
users, which can then be presented to the users. For each
abstraction, concrete goals have to be defined in order to perform
the respective reverse engineering analysis in an efficient way. In
abstraction, we explicitly distinguish between basic and detailed
analysis [Knodel 2004]. On the on hand, basic analyses are
predefined, parameterized, repeatable analyses that can be applied
with reasonable usage of available resources. These analyses can be
regarded as a standard catalog that can be executed directly with
only slight adaptation necessary. In our opinion, it pays off to have
predefined, reusable basic analyses collected in a catalog to be
executed by the reverse engineer on demand. Examples of such basic
analyses are context analysis of code entities, reconstruction of class
and inheritance hierarchies, call graphs, standard data flow analysis,
design pattern recognition, and architecture compliance checking.
On the other hand, detailed analyses, in contrast to basic analyses,
may require significant additional effort for their application, for
extending the analysis infrastructure, for fact extraction, and often
require several iterations and calibrations until they produce adequate
results. They aim at getting a deeper understanding of specific system
aspects, and therefore, more effort is required. Also, the involvement
of human experts is increased.

� Presentation: The presentation shows the information produced in
abstraction to the stakeholders. The result reports may consist of text,
tables, or visualized information. Visualization is a sound means to
facilitate the understanding of complex correlations and offers a
broad variety of concepts. The visualization of data offers human
beings the potential to easily see complex correlations, which are not
obvious by just looking at the pure data in a textual or tabular form
[Knodel 2006d]. These abstractions are packaged into views on the
system that the intended stakeholders interpret based on their
knowledge of the system.

� Interpretation: Eventually, stakeholders interpret the information
produced by reverse engineering. Interpretation follows one of three
interaction cases – either refinement of reverse engineering analyses,
derivation of action items, or keeping the status quo:

� Refinement of reverse engineering analyses: The results
produced by reverse engineering were either not sufficient,
raised further questions about the system under
investigation, or did not address the stakeholders’ requests
appropriately. The reverse engineering analyses have to be
refined or different analysis techniques have to be selected.

� Derivation of action items: Based on the reverse
engineering results, stakeholders perceive potential root
causes of problems, determine explicit threats, or have

Compliance Checking Techniques

 59

confidence in the probabilities of certain risks. Hence, the
stakeholders trigger counteractive measures that eventually
lead to changes in the system artifacts. Once conducted, the
same analyses can be repeated to evaluate if the changes
had the envisioned impact on the system artifacts.

� Keeping the status quo: The reverse engineering results
indicated the wanted or envisioned state and require no
further action, but stakeholders’ confidence in keeping the
status quo has been confirmed.

3.2 Applying the Reverse Engineering Archetype

The discipline of reverse engineering, which processes existing artifacts
and mines them for relevant information, is called fact extraction.
Compliance checking uses fact extraction to distill the source code
model from the implementation of the software system. The source code
model is generic and abstracts from concrete programming languages.
Because manually populating the source code model is not possible due
to the size of modern software systems, fact extraction applies source
code parsing or pattern matching to generate the facts about the system
under investigation. Parsing and pattern matching are specific to one
programming language but can be applied to all systems implemented in
this language. They process certain language constructs and populate
the fact base (or a repository) with selected, relevant pieces of data. All
fact base entries are made according to a predefined format, which
allows querying the fact base afterwards.

In this section, we present how fact extraction works for one toy
example system called DRVFaçade implemented in the Java
programming language. Appendix C lists the complete source code for
this example. The example exemplifies the distinct steps according to the
reverse engineering archetype (i.e., extraction, abstraction, presentation,
interpretation) and uses the Fraunhofer SAVE tool [Knodel 2009a] for
visualization purposes.

3.2.1 Context – System Artifacts

Figure 24 depicts the small toy example DRVFaçade in the Java package
explorer of the Eclipse development environment. We can see that the
Java project comprises two packages, one called business and the other
one called driver. Both packages contain further Java files, which contain
the source code realizing the functionality of the system.

The DRVFaçade system comprises two variants, one operating on
hardware and the other emulating the hardware. Depending on the
mode, the system class DriverFaçade determines which actual driver has

Compliance Checking Techniques

 60

to be executed by the class BusinessLogic. The package driver comprises
the façade for encapsulating the HardwareDriver and the
EmulationDriver classes.

Figure 24 DRVFaçade: Source Code in Java Package Explorer

Figure 25 DRVFaçade: Source Code Model

Compliance Checking Techniques

 61

3.2.2 Extraction

In the extraction, each source code file is processed and mined for
relevant information about structure and relationships to other source
code files. Figure 25 depicts the source code model of the example
DRVFaçade. The structural elements of the Java packages, files, and
classes have been extracted and are now represented as hierarchical
nodes of the source code model. Further, the model comprises methods
and the dependencies caused by them. Here we show the CallRelation,
which stands for a directed method invocation from one method to
another, and the AccessRelation, which represents the access to a class
instance.

3.2.3 Abstraction

In order to visualize the example system, we created a structural model
according to simple mapping instructions. Java packages and classes are
mapped one-to-one onto architectural elements (i.e., packages are
abstracted to subsystems, classes to components). Figure 26 depicts the
structural model for this simple abstraction. It shows six architectural
elements, with the elements business and driver representing the Java
packages of the source code model, and the others representing the
respective classes. The relationships among the source code elements
have been lifted to the level of architectural elements.

Figure 26 DRVFaçade: Structural Model

Compliance Checking Techniques

 62

3.2.4 Presentation

Figure 27 shows the structural model of the system DRVFaçade using the
Fraunhofer SAVE tool. It displays the relationships between the
subsystems and components as arrows. We can see that the
BusinessLogic accesses the driver subsystem twice, once the DriverFaçade
and the other time the HardwareDriver.

Legend:
Subsystem

Relationship

Component

Legend:
Subsystem

Relationship

Component

Legend:
Subsystem

Relationship

Component

Figure 27 DRVFaçade: Visualized Structural Model in SAVE

3.2.5 Interpretation

We now use the example to exemplify how a severe maintenance
problem is created by just introducing a single structural violation.

As already stated, the BusinessLogic is responsible for setting the mode
for the driver execution – either emulation or the real hardware. The
DriverFaçade determines which actual driver is currently set and
eventually executes the right driver. The package driver comprises the
DriverFaçade for encapsulating the HardwareDriver and the
EmulationDriver classes. The architect intended this façade to be the only
interface to the package driver. No other accesses are allowed.

Figure 27 shows the visualized structural model based on the
implemented source code. As we can see, there are two invocations
from BusinessLogic to the subsystem driver. Figure 28 lists the respective
source code for two BusinessLogic methods – doit() and doitwrong() –
implementing these dependencies.

Compliance Checking Techniques

 63

public void doit(){

DriverFacade.activate();

}

public void doitWrong(){

HardwareDriver.activate();

//EmulationDriver.activate();

}

public void doit(){

DriverFacade.activate();

}

public void doitWrong(){

HardwareDriver.activate();

//EmulationDriver.activate();

}

Figure 28 Source Code of Methods doit() and doitWrong()

While doit() implements the access using the DriverFaçade as intended
by the architects, doitwrong() directly invokes the HardwareDriver. This
invocation is the cause of a structural violation. The developer of the
method doitWrong() was either not aware of the façade as specified by
the architect or ignored it.

Due to this structural violation, potential maintenance problems may
arise:

� The concept of separation of concerns is broken: Replacing the
HardwareDriver with a new implementation will cause the need to
modify not only the DriverFaçade but the BusinessLogic as well.

� The concept of localization of changes is violated: Changes to
the DriverFaçade (e.g., the introduction of logging or security
functionality in one central place) are not reflected by the method
doitWrong().

� Running the system might produce unwanted system
behavior: Using doitwrong() might activate the HardwareDriver,
although the rest of the system is running in emulation mode.

� Evolution becomes effort-intensive: Introducing a new driver
mode in the DriverFaçade requires not only implementing the new
driver, but also reviewing and adapting all usages of the driver
subsystem.

Compliance checking detects these structural violations, provided that
the structural view has been documented. However, structural repairs by
refactoring the implementation consume time and effort. The developers
who are responsible might have introduced the violations months
before. They might have been busy with other development tasks (or
worse, they might even have left the development organization or
worked in different projects). To remove the violations, the developers
have to re-understand what they did and have to comprehend the
architectural concept (in this case the façade) in order to implement an
adequate, architecture-compliant solution.

Compliance Checking Techniques

 64

3.3 State Of The Art in Compliance Checking

This section introduces the two main techniques for structural
compliance checking – model-based and rule-based checking. Most
prominent for model-based techniques are Reflexion models, while
dependency rules are most typical for rule-based techniques. Both
techniques share the same principles and instantiate the reverse
engineering archetype. We first introduce the commonalities before
delving into the specialties of each technique. Last but not least, we
show the equivalence of expressiveness of these two techniques.

3.3.1 Commonalities in Structural Compliance Checking

Both techniques share common steps as depicted in Figure 29 using the
[SPEM 2008] notations. Common to both techniques are the
stakeholders involved: the architect and the developers as the roles
providing input to compliance checking, and the reverse engineer (or
quality engineer) who is responsible for conducting the compliance
check. As an instantiation of the reverse engineering archetype, we can
map the compliance checking activities to the fundamental reverse
engineering activities.

Extraction from system artifacts encompasses the preparation of
compliance checking, the inspection or parsing of the architecture
documentation, and fact extraction from source code by applying
parsing technology. In case of the architecture, parsers can analyze the
repository or data files of the architecting tools used to manage and
evolve its documentation. In case of the source code model, parsers
analyze one distinct snapshot of the implementation. Hence, extraction
produces the structural model (see Section 2.1) and the source code
model (see Section 2.2).

Abstraction embraces two different activities – mapping and
comparison. The names of the two activities already denote the key
distinguishing mark of the two techniques. While Reflexion models
compare two instances of models on the same level of abstraction,
dependency rules resolve and evaluate textual rules defined to be valid
for the architecture. The mapping is responsible for matching the
specification with the implemented realization. Then the comparison
does the actual verification. It verifies whether or not there are structural
violations. And if so, it provides information on the specific location of
each violation in the source code. Hence, abstraction processes the
mapping instruction (see Section 2.3) to execute the compliance check.

Presentation continues with the visualization of the output – the
resulting list of structural violations – which is then displayed for
interaction with the stakeholders – the architect and the developers.

Compliance Checking Techniques

 65

Visualization can use graphical elements for display diagrams or tabular
lists or a combination of both. Configuration of the visualization (i.e., of
the graphical elements it is composed of) is crucial for the perception of
results [Knodel 2008c].

Interpretation then allows the stakeholders to take actions. Based on the
information presented, they derive decisions on either applying
counteractive measures, keeping the status quo, refining the results, or
repeating the compliance check.

Parsing

Reverse Engineer

Source Code

Mapping

Comparison

Source Code Model

Legend:

Activity

Stakeholder

Work Product

Information Flow

DocumentDecision
Making

Architecture

DevelopersArchitect

Structural Model

Inspection/
Parsing

Visualization Results

Parsing Parsing

Reverse EngineerReverse Engineer

Source CodeSource Code

Mapping Mapping

ComparisonComparison

Source Code ModelSource Code Model

Legend:

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Activity

Stakeholder

Work Product

Information Flow

DocumentDecision
Making
Decision
Making

ArchitectureArchitecture

DevelopersDevelopersArchitectArchitect

Structural ModelStructural Model

Inspection/
Parsing

Inspection/
Parsing

VisualizationVisualization ResultsResults

Figure 29 Principle of Structural Compliance Checking

The next sub-sections present a detailed description of each technique
using the example compliance checking presented in Section 3.2. We
discuss Reflexion models and dependency rules by giving an overview of
the techniques, explaining how the techniques work, and giving an
example application.

Compliance Checking Techniques

 66

3.3.2 Reflexion Models

Reflexion models compare two models of a software system against
each other: the structural model specified by the architect and a source
code model implemented by the developers.

3.3.2.1 Overview

In [Murphy 1995], [Murphy 1997], and [Murphy 2001], Murphy et al.
introduce the Reflexion models. Initially, the technique was proposed to
“help an engineer use a high-level model of the structure of an existing
system as a lens through which to see a model of that system’s source
code”. It was applied in cases where no or limited information existed
about the software system and its architecture. For instance, a developer
of Microsoft with more than 10 years experience applied the Reflexion
model technique on Microsoft Excel to reconstruct where it was
necessary to identify and extract components from the source code. This
developer specified and computed an initial Reflexion model (containing
15 components with 19 connections) of Excel in one day and then spent
about four weeks interactively refining it [Murphy 1997]. We performed
another further reconstruction-driven case study at Agilent Technologies
on the firmware used to test integrated circuits – an embedded system
of approx. 1.5 MLOC – [Knodel 2002]. The case study revealed the need
for hierarchies within the structural models, which eventually led to an
extension of the Reflexion model to overcome this shortcoming [Koschke
2003].

Knodel et al. [Knodel 2005b] and [Lindvall 2002] started to shift the
application of the Reflexion model technique from reconstruction
towards analytic quality assurance. We integrated the Reflexion model
into architecting and first coined the term architecture compliance
checking. In [Knodel 2006c], we reported on our experiences from
conducting nine industrial and academic case studies. Our adaptations
aim at counteracting the drift caused by structural violations – and
hence, they propose using the Reflexion model technique as an analytic
quality engineering technique for the verification of architectures.

Recent work by [Christl 2005] proposes a new mapping approach, which
derives semi-automatic mappings based on similarity clustering of source
code files and aims at reducing the expert effort in the mapping step.
[Frenzel 2007] describes an extension that uses clone detection
techniques and similarity metrics to transfer mappings from one variant
to another within a product line context.

3.3.2.2 Mode of Operation

The Reflexion model requires a mapping between the two models to be
compared, which is a human-based task. The structural model (see left

Compliance Checking Techniques

 67

side of Figure 30) specifies three architectural elements, namely
components hlm1, hlm2, and hlm3. The arrows between the
components indicate the prescribed inter-element relationships. Parsing
the implementation produces the source code model (see center of
Figure 30), which also comprises three elements, namely scm1, scm2,
and scm3. The arrows in the source code model represent the source
code relationships.

The results of compliance checking (see right side of Figure 30) –
regardless of which concrete technique is applied – reveal that the
developers have two flaws in the implementation: The inter-element
relationship from hlm3 to hlm1 has not been realized (indicated by the
X), and one additional dependency from hlm2 to hlm3 has been
implemented (see exclamation mark). Only the inter-element relationship
from hlm1 to hlm2 has been implemented as specified.

Structural Model Source Code Model Compliance Checking ResultsStructural Model Source Code Model Compliance Checking ResultsStructural Model Source Code Model Compliance Checking Results

Figure 30 Reflexion Model Example: Structural Model (left), Source Code Model (middle), and
Compliance Checking Results (right)

The mapping lifts the source code models to the abstraction level of the
structural view. For the example given in Figure 30, the mapping defines
how the architectural elements of the structural model are mapped to
the elements of the source code model. For the example, this is a rather
simple straightforward activity resulting in the following mapping: hlm1
is implemented by scm1, hlm2 by scm2, and hlm3 by scm3. For both
the specification and the realization, it is possible to describe the model
as a set of inter-element relationships. The specification comprises the
tuples A = {(hlm3, hlm1), (hlm1, hlm2)}, while the realization
implements A’ = {(hlm1, hlm2), (hlm2, hlm3)}.

Having the mapping lift both models to the same level of abstraction
allows the comparison, the actual computation of the results. The
computation of the Reflexion model assigns one of three types to each
inter-element relationship, which can be expressed as set operations:
convergence (i.e., Convergences = A � A’), divergence (i.e.,
divergences = A’ \ A), or absence (i.e., absences = A \ A’).
Visualization dependent on the result type of the computation then

Compliance Checking Techniques

 68

shows the compliance checking results as depicted on the right side of
Figure 30.

3.3.2.3 Application to DRVFaçade Example

Revisiting the example DRVFaçade as discussed above for Reflexion
models requires formulating the architect’s intentions as a structural
model. Figure 31 depicts the layering as intended by the architect. The
layer Business Logic uses only the layer Abstraction Layer to access the
layer Drivers.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 31 DRVFaçade: Specified Structural Model

We map the source code elements BusinessLogic to the architectural
layer Business Logic, the element DriverFaçade to the layer Abstraction
Layer, and the source code elements HardwareDriver and
EmulationDriver to the layer Drivers. Using this mapping, we can execute
the comparison and produce the compliance checking results depicted in
Figure 32. The structural violation is highlighted by the exclamation mark
icon. It represents the direct invocation of the method doitwrong() to the
HardwareDriver.

Relationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

AbsenceRelationship

Legend:

Layer
Convergence

Divergence

Absence

Figure 32 DRVFaçade: Compliance Checking Results with Reflexion Models

Compliance Checking Techniques

 69

3.3.3 Dependency Rules

Dependency rules – sometimes also called relation rules – allow
specifying allowed or forbidden inter-element relationships between two
architectural elements.

3.3.3.1 Overview

Dependency rules specify the constraints for the interaction of
architectural elements. The constraints allow, forbid, or enforce certain
relationships among the architectural entities. In contrast to the
Reflexion model technique, dependency rules do not require an explicit
structural model as input. They rather allow textual statements on
allowed and forbidden relationships among architectural elements or
their counterparts in the source code. Hierarchies of architectural
elements are not specified by the rules (i.e., inter-element relationships
among leaf architectural elements can be checked without defining the
super- architectural elements containing them) and one dependency rule
can cover multiple inter-element relationships among different
architectural elements.

First ideas for the verification of structural views with dependency rules
have been envisioned [Harris 1995]. One of the first applications of rules
for detecting structural violations is reported by [Carmichael 1995]. They
manually evaluated how the components of an implemented system
match the original design. To overcome the effort-intensive manual
inspection, few automated approaches have been proposed, for instance
[Areces 1998] using modal logic, directed colored graphs and relational
algebra [Holt 1996], [Holt 1998], or relation partitioning algebra (RPA)
[Feijs 1998]. Rules have been successfully applied to verify the
architecture of large-scale software systems (e.g., [Bourquin 2007],
[Postma 2003]).

Component rules are a special type of dependency (or relation) rules.
They are defined for each single component and do not assume any
knowledge about the rest of the software system. Component rules
allow specifying simple ports for components that other components are
allowed to call. These rules help to increase the information hiding of
components on a level that might not be supported by the
implementation language itself.

In Java, for example, declaring methods as public within a component is
necessary for invoking such methods from other classes and packages
located in the same component. All these public methods are also
accessible from other components, although typically not all of them
were intended to serve as an interface or a port of the component to the
outside. The implementation language does not guarantee that entities
outside the component boundary do not call the public methods within

Compliance Checking Techniques

 70

a component. Thus, component rules encapsulate components and
allow opening only certain ports for component interaction. While
dependency rules specify a relation between two components, a
component rule defines which parts of it are accessible by other
components.

Component rules are typically a natural language statement about the
architectural elements. These statements have to be formalized into
concrete rules specifying to which parts of the component access is
granted and to which not. Specifying further by whom the access is
granted or not turns the component rules into regular dependency rules.
Typically, regular expressions are applied to match the names of
component internals. Component rules are inspired by ports in
architecture description languages (ADL) [Medvidovic 2000] and
exported packages in OSGi [OSGi 2009]. In [Knodel 2007], we report on
a first application of such component rules.

3.3.3.2 Mode of Operation

Dependency rules allow specifying allowed or forbidden relationships
between two components. Such a rule is typically a natural language
statement about the inter-element relationships of architectural
elements. The statements can then be formalized into concrete rules,
which consist of a rule type (allowed, forbidden, enforced), a source
component, a target component, and a relation type (the type of inter-
element relationship). For both the source and the target components of
the rule, a regular expression may be defined for matching the names of
components.

Dependency rules can detect similar defects as Reflexion models, but the
mapping is done automatically for each conformance check by resolving
the specified rules and regular expressions. In contrast to the Reflexion
models, leaf-level relations of models can be checked without defining
the super-components of a leaf component. One dependency rule can
cover multiple relations of different components. Additionally,
dependency can be used to specify allowed or forbidden connections to
the context of an analyzed system, such as third-party libraries.

For the example given in Figure 30, applying the rules requires the
mapping and concretization of rules. The rule types required are for
allowed dependencies may_use, for enforced dependencies must_use
(which, of course, implies may_use), for forbidden dependencies
must_not_use, and for actually implemented dependencies uses. This
classification is based on the approach by [Postma 2003] proposing
may_use, must_not_use, uses. Depending on the architect’s intention,
the inter-element relationships in the structural model of Figure 30 can
be assigned to be allowed (i.e., may_use = {(hlm3, hlm1), (hlm1,hlm2)}),

Compliance Checking Techniques

 71

enforced (i.e., must_use = {(hlm3, hlm1), (hlm1,hlm2)}), and forbidden
(i.e., must_not_use = {(hlm1, hlm2)}). Hence, the specification is the
unification of all three sets: A = may_use � must_use � must_not_use.
The realization implements relationships, which are lifted by applying the
same mapping again: hlm1 is implemented by scm1, hlm2 by scm2,
and hlm3 by scm3. So the lifted source code model presents the actual
dependencies (i.e., uses = {(hlm1, hlm2), (hlm2, hlm3)}).

The computation of the rules assigns one of three types to each inter-
element relationship, which can be expressed as set operations:

� convergences = may_use � uses
� divergence = uses \ may_use
� absences = must_use \ uses

Visualization dependent on the result type of the computation again
results in the compliance checking results as depicted on the right side of
Figure 30.

3.3.3.3 Application to DRVFaçade Example

Revisiting the example DRVFaçade as discussed above for dependency
rules requires formulating the architect’s intentions as rules. Table 9 lists
the rules and their mappings to regular expressions.

Rule Description Regular Expression
R1 Any architectural element may use the

Abstraction Layer.
.* may_use
 DriverFaçade

R2 It is forbidden for the Business Logic
to use the layer Drivers directly.

BusinessLogic must_not_use
Driver

R3 The DriverFaçade has to use all
elements within the layer Drivers.

DriverFaçade must_use
.*Driver.java

Table 9 DRVFaçade: Specified Rules

For rule R1, we map all source code elements of BusinessLogic as
allowed origin of the rules, while the allowed target is the element
DriverFaçade. However, this dependency is not enforced. For rule R2, we
map the source code elements HardwareDriver and EmulationDriver to
the layer Drivers and the source code elements of BusinessLogic to the
layer Business Logic. Using this mapping, we can execute the comparison
and produce the compliance checking results depicted in Figure 33. The
results show the structural violation highlighted by the exclamation mark
icon. It represents the direct invocation of the method doitwrong() to the
class HardwareDriver. In the same way, we translate rule R3.

Compliance Checking Techniques

 72

Legend:
Subsystem

Relationship

Component

Divergence

Legend:
Subsystem

Relationship

Component

Divergence

Legend:
Subsystem

Relationship

Component

Divergence

Figure 33 DRVFaçade: Compliance Checking Results with Dependency Rules

3.3.4 Equivalence of Expressiveness

The two architecture compliance checking techniques Reflexion models
and dependency rules are equivalent in their expressiveness.

Definition 31 Equivalence of Sets

Let A and B be two sets: A and B are equivalent if:

� �AaBaAaBA
ABBABA

�
�
��
�����

Applying this definition to the sets produced by the different architecture
compliance techniques shows the equality of the following sets:

� convergencesreflexion = A � A’= may_use � uses = convergencesrules.

� divergencesreflexion = A’ \ A = uses \ may_use = divergencesrules
� absencesreflexion = A \ A’= must_use \ uses = absencesrules.

By this, we can conclude that both the dependency rules and the
Reflexion model produce the same results, and hence, they have the
same expressiveness. The conclusion was already indicated by the
application of the two techniques to the example system.

Thus, independent of the concrete technique applied, compliance
checking produces the same results. However, there are certain
differences in the applicability of each technique, which will be discussed
in the next section, where the focus is rather on the qualitative
assessment of the applicability of the technique as a basis for live
compliance checking.

Compliance Checking Techniques

 73

3.3.5 Tools for Compliance Checking

There are several architecture and source code analysis tools that allow
checking compliance analytically (though they do not support live
architecture compliance checking). The following list gives an overview
of representative, mature, and industrial-strength tools6:

� Bauhaus: Bauhaus [Bauhaus 2008] is a reverse engineering tool
suite, which supports the computation of hierarchical Reflexion
models. In addition to the commercial tool, an academic sibling is a
research tool for source code analysis and reverse engineering
features (see [Raza 2006] and [Koschke 2008]).

� jDepend: The [jDepend 2008] tool analyzes the source code to
measure the quality. The package dependencies (i.e., the coupling)
can be used to control the structure of the software system.

� jRMTool: The [jRMTool 2008] is the original tool for applying
Reflexion models technique [Murphy 2001]. The main drawback of
this tool is the lack of support for hierarchies. The results can be
visualized using Graphviz [Graphviz 2008], which is a graph drawing
tool offering hierarchical layouts of trees as well as directed acyclic
graphs and virtual physical layouts of undirected graphs.

� Klocwork Insight: [Klocwork 2008] is a reverse engineering tool,
which main focus is on computing source code metrics and checking
the code for security holes. Next to these main features, rules on an
architectural level can be verified, too.

� Lattix: [Lattix 2008] is a tool that visualizes software systems in the
form of a dependency matrix, which is a simple square matrix where
both rows and columns denote compilation units of the system and
dependencies are indicated by values in the respective cells of the
matrix. Rules can be specified to define may_use and must_not_use.

� Semmle .QL: The source code query language proposed by [Semmle
2008] uses an SQL-like syntax to define and check architectural
constraints. .QL relies on standard relational database systems to
store facts about the software system under investigation.

� SonarJ: [SonarJ 2008] supports the analysis of Java source code.
Similar to SAVE, compliance checking for dependency rules is
possible.

� Sotograph: The Software Tomograph [Sotograph 2008] analyzes the
software system and stores the information in a software repository,
which allows formulating architectural rules as queries and thus
checking the compliance of the system. The results can be visualized
using graphs.

6 Please note that the list of architecture compliance tools does not aim at

completeness; we present only a subset of tools, which we believe to be most
popular in industry.

Compliance Checking Techniques

 74

� Structure101: This tool [Structure101 2008] lets the user define
structural models in terms of layers and allowed relations among
them, which can then be checked for compliance with the source
code.

� SAVE: Last but not least, SAVE and its extension SAVE LiFe (see
Section 5 and [Knodel 2009a]) are introduced in this thesis and are
especially designed to enable live compliance checking and meet the
essential requirements as stated in Table 4.

3.3.6 State Of The Art beyond Compliance Checking

Compliance is one crucial internal quality characteristic of the
architecture of a software system. In addition to compliance checking,
other quality engineering techniques for software architectures have
emerged, namely architectural encoding in source code, scenario-based
architecture evaluations, and architecture description languages.

3.3.6.1 Architectural Encodings in Source Code

A promising approach for avoiding architectural decay caused by
structural violations is to directly encode architectural elements into the
source code using specially defined constructs of the implementation
language (e.g., [Aldrich 2002], [Lam 2003]). If programming languages
provide mechanisms for denoting architectural elements like
components or connectors, they can be more easily kept consistent with
the code, and since the mechanisms are part of the code, changes in the
code result in changed architectural elements. For example, a design
may call for several components to belong to a certain layer of a layered
architecture, which will be stated directly in the source code.

However, the most popular programming languages (e.g., C/C++, Java)
do not support such mechanisms. So typically developers are not
explicitly made aware of architectural decisions while implementing the
solutions. Thus, changes or implementation decisions that affect the
planned architecture might not be recorded appropriately.

3.3.6.2 Scenario-based Architecture Evaluation

Architecture evaluation aims at assessing whether or not a system to be
constructed will meet its quality requirements. This kind of evaluation
can be applied as soon as there is a first idea about the software
architecture (either explicit or as a shared mental model). Two surveys
give an overview of architecture evaluation (see [Dobrica 2002] and
[Babar 2004]). The most prominent ones are scenario-based techniques.
The software architecture analysis method (SAAM [Clements 2002b])
evaluates the modifiability of software architectures with respect to a set
of representative change scenarios. The architecture trade-off analysis

Compliance Checking Techniques

 75

method (ATAM [Clements 2002b]) is also a scenario-based method,
which extends SAAM to address other quality attributes. Its goal is to
analyze whether the software architecture satisfies given quality
requirements and how the satisfaction of these quality requirements
trades off against each other. In [Bosch 2000], Bosch presents four
architecture assessment techniques: scenario-, simulation-, mathematical
model-, and experience-based assessments. These techniques also aim at
the evaluating whether a system fulfils its quality requirements or not.

3.3.6.3 Architecture Description Languages

Architecture description languages (ADL) [Medvidovic 2000] provide
formal notations for defining the architecture of a software system. The
formal definition of the architecture enables the processing of the
models specified by various tools for parsing, analysis, simulation, and
code generation. Several ADLs have been proposed, for instance see
[Allen 1997], [Batory 1997], [Medvidovic 1999], [van Ommering 2000] ,
or [Dashofy 2002]. Architecture constraint languages, a specialization of
all-purpose ADLs, define formal notations for formulating constraints for
the static structure of a system. Examples are the Structural Constraint
Language (SCL) [Hou 2006] and LogEn [Eichberg 2008]. Due to their
constructive nature, architecture description languages can typically not
be adopted for existing systems.

3.4 Applicability of Compliance Checking Techniques

The main goal of architecture compliance checking is to detect spots in
the source code that cause structural violations in the architecture. As
mentioned above, the detection of such source code spots is
independent of the selected compliance checking technique. This section
compares Reflexion models and dependency rules by assessing their
potential applicability as base techniques for live compliance checking.
The comparison is an update of our previous work in [Knodel 2007].

3.4.1 Dimensions

Inspired by the Goal-Question-Metrics (GQM) approach [Basili 1994] (see
Table 10 for the GQM goals) we derived several dimensions to determine
the criteria for the comparison of the two compliance checking
techniques.

Compliance Checking Techniques

 76

GQM Description
Object Structural compliance checking techniques:

– Reflexion models
– Dependency rules

Purpose Evaluation of their potential use as base technology for live
compliance checking (i.e., as a quasi-constructive quality
engineering technique)

Quality Aspect Applicability
Viewpoint Developer: user of the live compliance checking feedback

Architect: defines, maintains, and evolves the architecture,
which is input to live compliance checking

Context Software architecture, software implementation, software
evolution, quality engineering, and compliance checking

Table 10 GQM Goals

The dimensions were proposed by the author, but underwent
refinements when two other members of the architecture group at
Fraunhofer IESE thoroughly reviewed the dimensions. In total, we
defined 16 dimensions:

� Input: The dimension input lists the system artifacts that are
necessary in order to apply the compliance checking technique.

� Involved Stakeholders: The stakeholders are those persons, groups,
or roles who are involved in the compliance checking activity. This
dimension lists the stakeholders involved.

� Automation: This dimension lists the automated, tool-supported
activities of the compliance checking technique.

� Manual Activities: The manual activities capture the interaction
with the stakeholders for producing compliance checking results. The
main activities must be carried out by the analyst with the involved
stakeholders but they are not (semi)-automated by tools. The
automated tasks, such as fact extraction or computation of the
results, are ignored here, since all are automated by the SAVE tool.

� Performance: The verification performance captures the time
required to compute the compliance checking results. For comparison
purposes, a lab environment for both techniques was set up and
compliance checking was executed for the same source code and the
same structural view.

� Scalability: Scalability captures the degree to which the approach
scales up for handling large-scale software systems. Scalability ranges
from small via medium to large-scale systems; the rating is done
based on project experiences and publications in the literature.

� Violation Types: The primary violation types dimension classifies the
distinct groups of defects the compliance checking technique detects.
In particular, we consider the following distinct groups: violating
architectural elements, missing architectural elements, violating
dependencies, and missing dependencies.

Compliance Checking Techniques

 77

� Explicitness: Explicitness captures the degree to which the models
used in compliance checking technique can be expressed without
vagueness, implication, or ambiguity (i.e., the degree of leaving no
question as to meaning or intent). The explicitness dimension
captures the potential degrees to which developers can learn about
the structural decomposition from the results provided by the
compliance checking technique. Explicitness is measured on an
ordinal scale with the values low (low education potential due to
unclear, ambiguous results), medium, and high (high education
potential due to clarity and unambiguity of the results).

� Ease of Use: Ease of use captures our subjective experiences
regarding the intuitiveness of the compliance checking technique.
We rate intuitiveness (how easily and intuitively an analyst can apply
the approach) on an ordinal scale with the values low, medium, and
high.

� Ease of Learning: Ease of learning captures our subjective
experiences regarding how much training is needed for a new analyst
to be able to conduct compliance checking and to produce useful
results. This dimension ranges from high (few iterations and training
required) to low (many iterations and a lot of training required).

� Probability of False Positives: The probability dimension captures
the likelihood of false positives in the analysis results measured on an
ordinal scale with the values low, medium, and high.

� Maintainability: The maintainability dimension captures the
robustness of the architecture compliance checking approach with
respect to code evolution. In particular, we consider the addition,
modification, or removal of either architectural or source code
elements.

� Transferability: The transferability dimension describes how the
work products created in the compliance checking approach can be
reused when evaluating another version of the system, a distinct
variant of the system, or a different system. The first two are closely
related to the system (i.e., mostly the same components, the same
architecture), while the third is a completely different system with
limited reuse.

� Multiple Views: Typically, there is not only one view of the static
structure of the system; the architects often have different views,
sometimes overlapping or even conflicting. This dimension captures
how the approach is able to handle such multiple views and how
easy it is to find out about the commonalities and variabilities in the
created work products.

� What-If Scenarios: Restructuring scenarios captures the exploration
of what-if analyses of the actual system. It aims at answering how
the architecture compliance would change for different structural
decompositions.

Compliance Checking Techniques

 78

� Validation Support: This dimension captures how the architecture
compliance checking approach supports the validation of the
architecture, decision-making, trade-off analyses or scenario-specific
analyses when reasoning about architectural or non-functional
qualities. This dimension ranges from almost no, limited, medium, to
high support.

3.4.2 Comparison

Table 11 shows the comparison results for the criteria defined above for
the two major architecture compliance checking approaches – Reflexion
models and dependency rules. Rows with only one entry for the two
approaches indicate a commonality between them. The table assumes
the general case of the application of the compliance checking
technique, however, in special cases, there might be exceptions where
cells of the table might be different. We derived the table based on our
consolidated practical experiences gained in several industrial and
academic applications.

The main inputs for the two approaches are obviously the source code
and the structural view of the architecture, either as a model or
formulated as rules. This information is usually obtained from the
architecture documentation. The main stakeholders involved are the
architect and the developers. The automation and the manual
activities were already been discussed in the previous sections, where
the two techniques were introduced and their mode of operation was
exemplified. Except for the manual activities, all of the above-mentioned
dimensions are common for both techniques.

Comparison
Criterion

Reflexion
Models

Dependency
Rules

Input - structural architectural view
- source code

Involved
Stakeholders

- architect
- developers

Automation - parsing of structural view
- parsing of source code
- computation of verification results
- results presentation (e.g., tabular lists or visualization)

Manual
Activities

- formalization of models
- decision-making

- formalization of rules
- decision-making

Performance equivalent, results produced fast
Scalability equivalent, applicable to large-scale software systems
Violation Types - violating architectural

elements
- missing architectural
elements
- violating dependencies
- missing dependencies

- violating dependencies
- missing dependencies

Compliance Checking Techniques

 79

Comparison
Criterion

Reflexion
Models

Dependency
Rules

Explicitness high low
Ease of
Application

high intuitiveness medium intuitiveness

Ease of
Learning

high medium

Probability of
False Positives

low high

Maintainability - architectural elements:
update structural model
and mapping

- source code elements:
review mapping,
refinements might be
necessary

- architectural elements:
update structural model
and rules

- source code elements:
review rules, refinements
might be necessary

Transferability - version: no consequences
for structural model and
mapping

- variant: adaptations to
structural model and
mapping

- different system: no reuse
possible

- version: no consequences
for structural model and
rules

- variant: adaptations to
rules

- different system: no reuse
possible

Multiple Views yes yes
What-If
Scenarios

direct support with
tracking

no direct support but
tracking possible

Validation
Support

limited

Table 11 Compliance Technique Comparison

The performance in terms of computing the verification results is
obviously dependent on the implementation and on the number of
elements and dependencies that have to be checked. We conducted a
series of evaluations with different systems (up to 500 KLoC) and varying
configurations (mappings, number of rules, etc.) on a typical computer
(processor 1,2 GHz, 1 GB RAM, Microsoft Windows XP Professional).
The two approaches were realized in the same architecture analysis tool
using the same fact extraction and visualization capabilities. The time
required to compute the compliance checking results for the two
approaches was less than 5 minutes for all configurations; other steps in
the analysis like fact extraction and visualization of results took
significantly more time. Thus, we consider the two approaches as
equivalent in this dimension.

The compliance checking techniques themselves are more affected by
the capabilities architecture analysis tools to parse and visualize large-

Compliance Checking Techniques

 80

scale software systems. Thus, we consider the scalability of the
techniques as equal. The literature reports also on successful application
to large industrial systems for both techniques.

The violation types of the two approaches have already been explained
in the previous sections. Reflexion models can detect missing or violating
architectural elements when performing the mapping step.

The explicitness of the two techniques is different. While the Reflexion
models explicitly assign the source code elements to architectural
elements, the resolution of the rules might create overlaps. One rule
might assign a convergence to source code relationships, while they are
divergent for another rule.

Ease of use is a subjective measure based on our experience. We rated
the intuitiveness of Reflexion models as high since both can be applied
straight forward without requiring any special training: The mapping can
be done easily without any special training based on given
documentation. In contrast, natural language rules can mostly be
formalized but require in-depth knowledge of regular expressions.
Further, the expression might become complicated depending on the
elegance with which regular expressions can be formulated. For this
reason we rated them as medium.

The ease of learning also differentiates the two techniques. Both the
Reflexion models and the dependency rules support incremental
refinements. They also allow trial-and-error refinements. Both can start
with basic mappings or rules for parts where confidence is high. The left-
out parts of the system can be expanded over time. We rated the
dependency rules as medium due to the higher effort in order to apply
regular expressions.

The probability of false positives (e.g., a computed divergence that is
actually a convergence or vice versa) for Reflexion models is low, because
the resolution of mappings can be reviewed and adjusted by the
architect before the compliance checking is executed. It is high for the
dependency rules because compliance checking is only based on regular
expressions, which are only resolved at checking time.

The maintainability dimension addresses the ability of the compliance
checking approach to evolve with the source code. We distinguish
between two levels of evolution: changes resulting in addition,
modification, or removal of architectural elements and changes affecting
source code elements in the same way. Dependency rules are only
affected by the addition of new components, because they might have a
different naming convention not yet taken into account by the rules.
Obviously, when adding new components, new rules are required and
thus, have to be defined. When modifying components, the component

Compliance Checking Techniques

 81

rules have to be reviewed with respect to potential refinements.
Changes to components imply for Reflexion models that both the
structural model and the mapping have to be at least reviewed, if not
updated. Changes in source code elements affected neither the
Reflexion models nor the dependency rules.

The transferability differs between the compliance checking
approaches: Reflexion models require at least rework of the mapping.
Even for variants the architectural model might need a refinement, and it
is not possible to transfer work products from Reflexion models when
evaluating a different system. Dependency rules allow or forbid certain
kinds of relationships. The rules can be applied organization-wide if
naming conventions are applied consistently. However, their applicability
has to be reviewed with respect to their usefulness in the context of
different systems.

Reflexion models provide good support for multiple views. For
example, consider a system with a layered architecture composed
partially of reusable components distributed across the layers. The
architects would be interested in the compliance of the layering on the
one hand and in whether or not the reusable components have
dependencies on the system-specific parts on the other hand. With
Reflexion models, this is easily checked by creating two distinct structural
models and mapping pairs, each capturing one of the two compliance
checking scenarios. Dependency rules are able to reflect different views
through different rules sets but the rule sets are all dependent on the
decomposition hierarchy. Thus, views that crosscut hierarchies are
difficult to define with dependency rules.

What-if scenarios for hypothesizing potential restructurings are
supported by Reflexion models in two different ways: by creating
artificial components as part of the architectural model and by defining a
target architecture towards the implementation of the systems should be
refactored to. Evaluating the implementation at constant intervals
enables monitoring and tracking the progress made towards reaching
the restructuring goals. Since dependency rules just operate on one
model, they do not support what-if analyses. However, once the target
architecture has been established, a new set of dependency rules can be
created to check the compliance of the implementation regarding the
target and thus, monitoring and tracking are supported.

The validation support offered by each technique itself is rather
limited. The reasoning of the architects is dependent on their
interpretation and decisions are not derived by the evaluation results
only but use a significant amount of additional context information and
rationales. Furthermore, there is no guidance on how to address
architectural violations that have been detected.

Compliance Checking Techniques

 82

3.4.3 Summary

The Reflexion models and the architectural rules share the same
expressiveness, but the applicability of each technique has different
benefits and advantages as the comparison of the two techniques has
shown. Common to all approaches are criteria input, stakeholders,
verification performance scalability, and validation support. We did not
expect any major difference in these dimensions.

Although the two techniques are based on the same principle of
compliance checking, the techniques differ in many ways. The main
differences concern the dimensions maintainability, transferability,
multiple view support, and what-if scenarios. Due to these differences,
the architects have to decide which alternative fits better to their goals
and the application context for architecture compliance checking.

Our goal – applying compliance checking as a quasi-constructive quality
engineering technique – favors the high education potentials due to the
explicitness of Reflexion models. Further, their ease of use and ease of
learning make them an appealing choice in technology transfer projects
because the overhead due to the new technology is limited. Moreover,
the probability of false positives is lower than for dependency rules.

In short, goal-driven selection of the compliance checking technique is
crucial. This section elaborated on our decision to choose Reflexion
models as the base technology for live compliance checking.

3.5 Paradigm Shift towards Live Compliance Checking

In order for compliance checking to be applicable as a quasi-constructive
compliance checking technique, a paradigm shift is required. We
illustrate this paradigm shift by using the general approach for the
achievement of a certain quality as proposed by Deming [Deming 1986].
This so-called Deming cycle consists of four consecutive steps: Plan, Do,
Check, and Act (PDCA).

Using these four steps to describe the technique as the approach to
achieving the quality compliance yields the following steps:

� Plan: The plan establishes the objectives that the resulting software
system has to fulfill. In order to verify that the implementation is built
right, the architect defines the plan – the specification of the
structural decomposition. This decomposition prescribes the structure
of the system in terms of architectural elements and inter-element
relationships.

� Do: The developers do their work, which means they write source
code. This step realizes the software system according to the plan.

Compliance Checking Techniques

 83

The developers create the solution using algorithms and data
structures using the basic constructs offered by the programming
language. In other words, they implement the system from scratch or
modify an existing system.

� Check: The check evaluates the results against the objectives and
specifications and reports the outcome, which is exactly what the
comparison does in architecture compliance checking. It compares
the specification defined by the architects with the realization
implemented by the developers. The compliance checking results are
the outcomes.

� Act: In case deviations from the plan have been detected during the
check step, the act step decides about counteractive measures for
necessary improvement and creates a new plan to be realized by the
developers.

Compliance checking and correction aim at shaping the implementation
towards the plan. This means eventually iterating over all steps (Plan, Do,
Check, Act) again and again until architecture compliance is finally
achieved. Figure 34 depicts the Deming cycle, illustrating the consecutive
execution of the steps at distinct points in time. Executing compliance
checking now as a live analysis technique with direct feedback to
developers requires major adaptations to these steps. In contrast, live
compliance checking executes the latter three of the four steps of the
Deming cycle concurrently (see Figure 35). Still, the plan step is the
same; the architect is responsible for defining the decomposition that
the implementation should adhere to. But the steps Check and Act are
executed while the developers are executing the Do step (i.e., while they
are writing the source code). The Check step is conducted continuously
and constantly from day one of the implementation phase. Hence, for
every single modification made by developers in the Do step, compliance
checking is executed and provides immediate live feedback. The live
feedback on compliance – just after the modification was made – allows
prompt and direct reaction. The developers receive information on
where the source code is not compliant, and can immediately remove
the structural violation just introduced. Hence, this quick, high-frequency
cycle of executing Do, Check, and Act concurrently for every source code
modification reduces the mean time for structural repairs.

Plan Check ActDo

Timet1 t2 t3 t4

Plan Check ActDo

Timet1 t2 t3 t4

Figure 34 Deming Cycle for Analytical Quality Engineering

Compliance Checking Techniques

 84

Plan

Check

Act

Do

Timet1 t2

Plan

Check

Act

Do

Check

Act

Do

Timet1 t2

Figure 35 Deming Cycle for Quasi-Constructive Quality Engineering

Furthermore, the constantly repeated feedback presents a live education
for the developers. They are trained over time and become aware of the
intentions the architect had in mind with the structural decomposition.
Eventually, this knowledge created by quasi-constructive compliance
checking will lead to avoiding structural violations in the first place.
Hence, developers will create realizations that do not require any or
require significantly less refactorings due to structural violations.

To enable architecture compliance checking as a quasi-constructive
quality engineering technique, the existing techniques must be modified.
The adaptation towards their application in a forward engineering
environment supporting distributed development teams yields the
essential requirements introduced in Table 4 (see Section 1.3). Section 4
shows how these essential requirements and thus the idea of live
compliance checking have been accomplished.

Live Compliance Checking Approach

 85

4 Live Compliance Checking Approach

The live compliance checking approach executes compliance checking
with high frequency and delivers fast responses, which enables both a
learning effect (i.e., developers are continuously trained on the
architecture) and a prompt removal effect (i.e., the immediate detection
of structural violations allows their immediate removal). Both effects
combined cause the ultimate goal of this thesis to become a reality: the
construction of architecture-compliant implementation with sustainable
structures. In Section 4.2, we explain our line of argumentation: Live
compliance checking acts like a just-in-time architectural compiler. Let us
draw an analogy to regular compilers: Compilers process source code
based on a predefined grammar and are able to detect syntax errors
caused by statements of the developers that are mal-written. Similarly,
the architectural compiler (as realized by live compliance checking)
detects structural violations caused by source code statements mal-
written the developers. In contrast to regular compilers, live compliance
checking operates on a higher level of abstraction – that of the software
architecture.

To institutionalize live compliance checking within a development
organization, process adaptations are required. Section 4.1 introduces
these adaptations, which comprise three different but interacting
process parts. The overall process instantiates and is aligned to Figure 6
(see Section 1.3) – the conceptual view on live compliance checking.
Each process part describes the activities from the viewpoint of the roles
involved – architect, developer, and compliance checker. While the first
two represent engineers of the development organization, the latter
represents an automated system. Architects and developers interact with
the compliance checker while doing their daily work – architecting and
implementing. All three process parts are executed continuously (i.e., all
the time, while development is ongoing) and constantly (i.e., every time
a change is made, either to the architecture or to the source code).
However, while the architect’s interaction with the compliance checker is
rather seldom, developers very frequently receive live feedback.

Due to the high execution frequency, developers learn about the
architecture every time they cause a structural violation. We assume a
learning effect over time, resulting in less violations created and a
prompt removal effect for any violations actually created. Based on these
assumptions we derive a simple theoretical model quantifying the
hypothetical benefits of live compliance checking (see Section 4.3).
Development organizations have to spend an average effort x for fixing
one single structural violation, hence the effort n*x is required to remove

Live Compliance Checking Approach

 86

n structural violations. For live compliance checking, we have the
conservative assumption that the number of structural violations is
halved (due to the learning effect) and the effort to remove them
requires only two-thirds (due to the prompt removal effect). Hence, we
can conclude that the overall effort required to achieve compliance for a
given implementation is (2*x*n)/2*3 = (x*n)/3. In other words, live
compliance checking – hypothetically – reduces the overhead effort by
67%. Additionally, compliance allows reaping the fruits of the
investments made into architecting.

4.1 Process Overview

The process for achieving architecture-compliant implementations of
software systems is depicted in Figure 36. It comprises three process
parts: architecting, coding, and compliance checking. Architecting and
coding are executed by architects and developers, respectively, while
compliance checking is a system that is triggered by either one of the
other two process parts and then runs a sequence of fully automated
activities.

The process realizing the principles of live compliance checking consists
of two loosely-coupled loops. The first loop is executed by the (typically
few) architects, while the second loop is executed by typically many (or
several teams of) developers. The loose coupling is due to the fact that
the architecture managed by architects is input for the coding carried
out by the developers. Both loops are executed continuously (i.e., all the
time, while development is ongoing) and constantly (i.e., every time a
change is made, either to the architecture or the source code).
Consequently, the process part for compliance checking is also triggered
continuously and constantly.

The loop of the architect iterates over four activities:

� A.1. architect: Architects, by nature, of course design the
architecture of the software system. They define, document, and
evolve the fundamental organization of the software system. The
abstractions provided by the architecture enable the efficient
evolution of the software system. Once a first draft of the
architecture has been completed and consolidated, the architecture is
ready to be communicated. However, architecting never really stops.
Due to new or changing requirements, business goals, or
organizational objectives, the architecture evolves as long as the
system is alive.

� A.2. communicate Architecture: Architects communicate the
architecture to developers, either verbally or via documentation. The
developers use the architecture (and additional information sources
like requirements) to start the coding process.

Live Compliance Checking Approach

 87

� A.3. publish Architecture: Architects publish the latest state of the
architecture (in particular its structural view) to the compliance
checker. From that point on, compliance checking is active and can
support developers with constructive, live feedback.

� A.4. publish Compliance Status: The compliance checker publishes
the compliance status on demand. Architects can track compliance as
a crucial quality and can access the overall compliance status of the
system. The compliance checker allows publishing the compliance
status. The overall compliance status of the system comprises the
evaluation of the latest state of the complete source code. The
architect may use advanced graphical visualization concepts to
analyze the status from a global system perspective and navigate the
compliance checking results. If necessary, the architect plans and
makes refinements due to recurring compliance problems.
Integrating such refinements starts another cycle of architecting,
which eventually results in an update of the published architecture.
Hence, the developers always execute the coding process against the
latest published release of the architecture.

The loop of the developer also iterates over four activities. In contrast to
the coarse-grained activities of the architect, the developers’ activities are
fine-grained and executed by each individual developer on his/her own.

� D.1. code: Developers code the source code files of the
implementation. They write statements using the constructs offered
by the programming language, which transforms solution ideas into
algorithms and data structures. All source code combined eventually
realizes the software system as specified (if everything works out
fine). The input to the coding process is the architecture, which
prescribes the intended structural decomposition into components
and the relationships among them.

� D.2. send Deltas: Developers send the delta to the compliance
checker. Any modification made by any developers is forwarded to
the compliance checker, but instead of sending all the source code,
only the locally changed delta of the developer is propagated; other
unchanged source code is ignored. The sending of changed deltas is
triggered and performed automatically (i.e., without direct
involvement the developer) based on events within the integrated
development environment.

� D.3. send Live Feedback: Developers receive live feedback sent by
the compliance checker on the violations that are contained in the
delta forwarded. If there are no violations, the developers can
continue without interruption. Otherwise, the violations are
highlighted smoothly in the source code editor. The feedback is
tailored to the individual developers and focuses only on their local
scope (i.e., it is directed at those developers who just submitted the
changed deltas). The fast response time delivers the results while the

Live Compliance Checking Approach

 88

developers are editing the same source code fragments. Their minds
are still in context, allowing prompt correction of the violations.

� D.4. correct: Developers correct the structural violations, which is
equivalent to writing source code. Hence, the statements just written
or modified automatically constitute the next delta to be forwarded
to the compliance checker. Potential side-effects of the correction
causing new structural violations are detected immediately, because
the compliance checker processes the modifications instantly. In
other words, the correction is equivalent to writing source, but with
the purpose of achieving compliance, which thus starts another cycle
of the coding process part.

The next subsections detail the process parts architecting, coding, and
compliance checking. As depicted in Figure 36, the name of the message
exchanged between compliance checking and architecting or coding
indicates its size. While publish stands for long messages transferring full
models, send represents rather short messages.

A.4. publish Compliance Status D.3. send Live Feedback

Compliance Checker

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

DevelopersArchitect

Architecting Compliance Checking Coding

A.3. publish Architecture D.2. send Deltas

A.2. communicate Architecture

D.1. code
D.4. correct

A.1. architect
A.4. publish Compliance Status D.3. send Live Feedback

Compliance CheckerCompliance Checker

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

DevelopersDevelopersArchitectArchitect

ArchitectingArchitecting Compliance CheckingCompliance Checking CodingCoding

A.3. publish Architecture D.2. send Deltas

A.2. communicate Architecture

D.1. code
D.4. correct

A.1. architect

Figure 36 Live Compliance Checking: Process Overview

4.1.1 Architecting Process Part

The architecting process part comprises the cycle of activities conducted
by the architect only (see Figure 37). All activities operate only on
architecture-related work products and are obviously performed by the
architect. For the sake of simplicity, we have ignored other lifecycle
phases (e.g., requirements engineering).

Live Compliance Checking Approach

 89

Architecting

1. architect

3. formalize

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecture

Architect

Structural Model

Compliance Checking

Coding

4. define Mapping

5. publish Architecture

2. communicate Architecture

6. request Compliance StatusCompliance Status

7. review

Architecting

1. architect

3. formalize

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecture

ArchitectArchitect

Structural Model

Compliance Checking

Coding

4. define Mapping

5. publish Architecture

2. communicate Architecture

6. request Compliance StatusCompliance Status

7. review

Figure 37 Live Compliance Checking: Architecting Process Part

Figure 37 list seven activities performed by the architect. While the first
two activities (i.e., architect and communicate architecture) represent the
regular workflow of architects, all other activities are extensions
especially introduced as enablers for live compliance checking:

� 1: architect Architecture: see description above.

� 2: communicate Architecture: see description above.

� 3: formalize Structural Model: To enable compliance checking, the
architect formalizes the architecture, resulting in the structural model.
If executed for the first time, the model is created, whereas later
(optional) executions of this activity yield only minor refinements.

� 4: define Mapping: The architect defines the mapping, which links
the structural model to the source code. If executed for the first time,
the architect has to define the mapping completely. Therefore, the
architect requires knowledge about the source code model. Later
executions of this activity are optional and typically result in
refinements due to changes in the hierarchy of the source code
model or new source code elements. Once the system is maturing,
this activity is rather optional.

Live Compliance Checking Approach

 90

� 5: publish Architecture: The architecture (i.e., the structural model
and the mapping) are published; see above description.

� 6: request Compliance Status: The architect requests the overall
status from the compliance checker. The compliance status contains
the collection of all deltas made since the start of development (i.e.,
the latest state of the source code). The published compliance status
is made available to the architect on demand.

� 7: review Compliance Status: The architect then reviews the
compliance status. Depending on the status, the architect either
continues with the next architecting cycle or requests an update of
the compliance status at a later point in time.

4.1.2 Coding Process Part

The architecting process part comprises the cycle of activities conducted
by the architect only (see Figure 38). All activities operate only on source
code-related work products. The only exception is the architecture,
which acts as the overall input to any coding activities. The coding
process part is performed by any developer writing source code. For the
sake of simplicity, we have ignored other lifecycle phases (e.g., testing).

Developers

Coding

1. code

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecture

Source Code

Compliance Checking

Architecting

3. send Delta Local Delta

4. receive Live Feedback

2. determine Local Delta

5. display Results

6. correct

Delta
Results

DevelopersDevelopers

Coding

1. code

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecture

Source Code

Compliance Checking

Architecting

3. send Delta Local Delta

4. receive Live Feedback

2. determine Local Delta

5. display Results

6. correct

Delta
Results

Figure 38 Live Compliance Checking: Coding Process Part

Live Compliance Checking Approach

 91

Figure 38 lists six activities performed by the developers. While the first
activity (i.e., architect and communicate architecture) represents the
regular workflow of architects, all other activities are extensions
especially introduced as enablers for live compliance checking:

� 1: code Source Code: see description above.

� 2: determine Local Delta: The developer writes source code; the
local modification scope is determined automatically. The
modification scope comprises the locally changed compilation units –
the delta or the addition in terms of source code just created by the
developer. The determination uses features of the integrated
development environment to monitor and track locally changed
compilation units. At certain distinct events (e.g., saving a
compilation unit, committing to the configuration management
system) the delta determination is triggered automatically (i.e.,
without direct involvement the developer).

� 3: send Delta: see description above.

� 4: receive Live Feedback: The developers receive live compliance
feedback on their individual modification by the compliance checker.
The feedback is considered live because of the fast response time. In
contrast to the analytical technique, live compliance checking delivers
the results magnitudes faster because of limiting fact extraction,
lifting, and checking to the delta only. The live feedback is received
automatically by the integrated development environment and has
no interaction with the developers. The results received include the
set of violations relevant for the delta sent (i.e., the locally modified
compilation units).

� 5: display Delta Results: The live feedback provides the developers
with the results of the compliance check. The integrated
development environment displays the violations in the source code
editor in a smooth way (i.e., non-intrusive, non-distracting but
nevertheless appropriate). The presentation of results allows the
developers to perceive the structural violations and their context (i.e.,
which statement causes the violations, what kind of violation it is,
and what the architectural context is, such as origin and target
component). Perceiving the results raises the awareness of the
developers and empowers them to achieve architecture-compliant
implementation by correcting the violations.

� 6: correct: see description above.

4.1.3 Compliance Checking Process Part

Figure 39 depicts the compliance checking process part, which is fully
automated. The compliance checking has two distinct entry points: one
triggered by architecting and the other one triggered by coding. While
the entry point used by architecting is a singleton (i.e., the architecture is
managed in a central place), the entry point used by the developers can

Live Compliance Checking Approach

 92

activate many compliance checking parts concurrently and execute them
in parallel.

Compliance Checking

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecting

A.1. receive
Published Architecture

Compliance Checker

Structural Model

Coding

Mapping

C.1. check Compliance

A.2. update
Structural Model

Compliance Status

A.3. update
Mapping

Source Code Model

D.1. receive
Delta

D.2. extract
Delta Facts

D.3. update
Source Code Model

D.5. send
Live Feedback

A.4 publish
Compliance Status

Delta Model

D.4. distill
Delta Violations

Delta
Results

Compliance Checking

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Legend:

Process Part

Activity

Stakeholder

Work Product

Information Flow

Document

Architecting

A.1. receive
Published Architecture

Compliance CheckerCompliance Checker

Structural Model

Coding

Mapping

C.1. check Compliance

A.2. update
Structural Model

Compliance Status

A.3. update
Mapping

Source Code Model

D.1. receive
Delta

D.2. extract
Delta Facts

D.3. update
Source Code Model

D.5. send
Live Feedback

A.4 publish
Compliance Status

Delta Model

D.4. distill
Delta Violations

Delta
Results

Figure 39 Live Compliance Checking: Compliance Checking Process Part

We now describe the compliance checking process part by its entry
points. The entry point used by architects is the counterpart of the
activity “publish Architecture” (process part “architecting”, activities 5,
see Section 4.1.1). Figure 39 depicts the activities on the right side:

� A.1: receive Published Architecture: see description above.

� A.2: update Structural Model: The structural model is updated
based on the information published by the architect. The previous
version of the model is replaced with the one published newly. At
any update, the architect may have modified or refined the structural
decomposition with which the developers should comply. As a side-
effect, dependencies that were compliant before may change into
violations when an update of the architecture is published and vice
versa. This advantage propagates decisions on the structure directly
to all developers concerned by the revised decision.

� A.3: update Mapping: In addition to the structural model, the
architect may also update the mapping. Again, the previous version
of the mapping is replaced with the one published newly and
decisions are propagated immediately, too.

Live Compliance Checking Approach

 93

� A.4: publish Compliance Status: At any time, the architect can
request the compliance status. This request is triggered on demand
and activates the compliance checker to publish the current status,
which comprises the overall result of compliance checking based on
the latest state of the source code model (i.e., the aggregate of all
deltas). The published compliance status is then the basis for in-depth
analyses or review by the architect.

The entry point used by the developers is the counterpart of the activity
“send Delta” (process part “coding”, activities 3, see Section 4.1.2).
Figure 39 depicts the activities on the left side:

� D.1: receive Delta: The compliance checker receives the delta sent
by the developer. For every delta sent, a new cycle of the compliance
checker handles the processing of the delta. Consequently, many
deltas can be processed concurrently and compliance checking
support is provided for many different developers.

� D.2: extract Delta Facts: The delta (i.e., the compilation unit
comprising changes) undergoes fact extraction, which mines the
delta for relevant information.

� D.3: update Source Code Model: The compliance checker updates
the source code so that it comprises the latest source code state. The
history of the model is kept, allowing browsing each state in a flip-
book manner.

� D.4: distill Delta Violations: To prepare the response, the
compliance distills the violations caused by the delta received by the
developers. The set of delta violations is then sent back to the
originator. The respective developer can now react to the live
feedback and correct the source code in order to achieve architecture
compliance.

� D.5: send Live Feedback: see description above.

The primary and most crucial activity of live compliance checking is – of
course – to check the compliance. It is central to both entry points and
most important for the process (see Figure 39). It computes the actual
results based on the Reflexion model technique. The activity comprises
six steps:

� C.1: lift Delta: The delta model as part of the source code model is
lifted using the mapping; as a result, both models are on the same
abstraction level as the structural model.

� C.2: compare Models: Model comparison updates the compliance
status based on the structural model, the source code model, and the
delta model. With the models of specified structure and the
implemented system at hand, the comparison can be performed. The
compliance status is updated in terms of added, modified, or deleted
model elements, while unchanged elements retain their status.

Live Compliance Checking Approach

 94

� C.3: compute Convergences: The compliance checker computes
convergences: dependencies implemented as intended by the
architect.

� C.4: compute Divergences: The compliance checker computes
divergences: unwanted dependencies comprised by the delta caused
by developers.

� C.5: compute Absences: The compliance checker computes
absences: dependencies intended but not (yet) implemented.

4.1.4 Summary

Executing all three process parts concurrently enables the overall process
for live compliance checking. The process is integrated into the regular
workflow of both roles, extended by new activities that are specialties of
the new approach. The extensions for the architects enable them to
track compliance from day one of the development, during
implementation, and throughout the evolution. Modifications to the
architecture are propagated to compliance checking and hence, the
developers receive information on changing plans for the structure. They
always implement against the latest published state of the architecture.

The extensions for developers are non-intrusive, automated, and
integrated with the development environment. The source code editor
displays the violations within the current modification scope (i.e., the
deltas). The feedback is received live, while they are still editing the same
or nearby statements. Developers “just” have to perceive the violations:
Displaying them in the editor raises the developers’ awareness without
distracting them from their current task. And once they are aware of the
violations, the developers can remove them promptly. In other words,
live compliance checking sustains the intended structure during
implementation and ensures traceability between architecture and
source code.

4.2 High Execution Frequency

The high execution frequency with constant live feedback turns
compliance checking into a quasi-constructive quality engineering
technique. It acts like a just-in-time architectural compiler for structural
flaws in the implementation. The continuous application educates
developers and trains them over time.

Over time, we assume that live compliance checking constitute two
effects: a learning effect over time resulting in less violations created in
the first place on the one hand, and a prompt removal effect for any
violations actually created on the other hand. The following two sections
investigate both effects – the live compliance checking characteristics.

Live Compliance Checking Approach

 95

4.2.1 Learning Effect

The learning effect (LCCC1) acknowledges the feedback on compliance.
The approach of providing live feedback promises to educate and train
developers about the decisions the architect has made regarding the
structural decomposition of the software system. The learning curve
effect [Wright 1936] states that the more times a task has been
performed, the less time will be required on each subsequent iteration.
Repetition of the same operation results in less time or effort expended
on that operation.

Because it is likely that the developers mainly work in one part of the
system (i.e., they specialize in one subsystem or component according to
the principles of separation of concerns or divide and conquer), they will
get experienced on the architectural constraints of those parts they are
mainly working on. We believe that the same principle of this learning
effect is applicable to structural violations. Each time a structural
violation is detected, the developers are notified and gain more
experience on the architecture. The developers receive the information
about the structural decomposition already while they are in the process
of writing code. They can immediately react to the feedback in order to
make the solution of their current task compliant to the architecture.

Furthermore, the architect has the chance to identify recurring patterns
of such violations. Analyzing these patterns enables an experience gain
for both the architect and the developers. The architects can improve the
architecture documentation with respect to the parts needing more
explanation or improvements. Because of the experience gain, the
likelihood that they will introduce the same or a similar structural
violation again decreases over time.

In addition, the continuous monitoring of compliance makes it an explicit
organizational goal. By giving regular feedback, the developers learn that
it is important to be compliant to the architecture. This explicitness
creates a peer pressure within the development organization, which
further promotes the learning effect. When we imagine the live
compliance checking as an architectural compiler, it is likely that the
number of structural violations will be close to zero in the long run,
especially when compliance has been stated as an explicit organizational
goal by management.

Hence, we claim that there will be a learning effect in being architecture-
compliant.

Live Compliance Checking Approach

 96

4.2.2 Prompt Removal Effect

The prompt removal effect (LCCC2) acknowledges the fact that the later
in the project defects are found, the more effort is required to remove
these defects. Structural violations are another type of defects that have
no direct visibility to the end-user of the software system. They rather
have an indirect impact on the software development process by making
the architecture unreliable as a communication and steering vehicle and
causing projects to not meet their goals with respect to time, effort, and
quality. The removal of structural violations can cause an overhead effort
when detected late in the project.

In contrast, live compliance checking detects structural defects with fast
response time. This fast detection allows reducing the mean time for
identification to seconds instead of several weeks or months (depending
on the frequency in which analytical compliance checking is applied).
According to the general law of software engineering (see [Boehm
1981], [Endres 2003]and [Pressman 2004]), the later risks are identified
and solved, the higher the total effort for fixing them (it is commonly
agreed that the effort increases; however, the factor by which the effort
is increased differs and depends on the detection time). The same holds
for structural violations: The refactoring effort for repairing the structure
increases the later the violations are detected. However, if they just have
been introduced, they can be removed easily and the required solution
can be achieved differently. If they reside in the implementation for a
long time the risk is that an integral part is being built wrong. Thus, the
refactoring of this part becomes complicated and effort-intensive. When
such structural violations are removed, significant effort must be spent
on understanding the source code causing the violations.

An adequate solution removes the violations without creating new ones.
Because of this, structural repairs are a non-trivial task. The developers
have to understand the source code, the context, and the architecture
decomposition. A study by [Fjelstad 1983] revealed that up to 50% of
the effort for maintenance tasks is required just to re-understand the
software to be changed. The live feedback providing the compliance
checking results instantly removes the additional effort for re-
understanding the context. The minds of the developer are focused on
the problems because they are already working on solving them. The
quick identification of violations reduces the overall time for structural
repairs and the assumption that prompt removal requires less effort has
been confirmed by various researchers in the literature.

Because this is acting like an architectural compiler, it is likely that the
effort for repairing the structure virtually disappears because it is part of
the task to be carried out anyway, whereby making the solution
compliant is only a minor factor in creating the solution.

Live Compliance Checking Approach

 97

Hence, we claim the effort reduction for structural repairs because live
compliance checking integrates these directly into the daily work and
problem-solving activities (i.e., writing source code) of the developers.

4.2.3 Summary

Combining the above lines of argument indicate that we can accept that
live compliance checking achieves the envisioned learning effect and the
prompt removal effect.

We claim live compliance checking leads to fewer instances of structural
violations, and at the same, that the effort required for their removal is
reduced. The live compliance checking characteristics form the
foundations for the theoretical model on effort savings.

4.3 Theoretical Model on Effort Savings

In order to be useful but simple, the theoretical model for achieving
architecture compliance has to make certain assumptions. Section 4.3.1
presents these assumptions and explains in detail why they are made
and how they might affect the theoretical model. Then a theoretical
model is introduced, which captures the overhead effort caused by the
removal structural violations. Finally, Section 4.3.3 discusses the overall
impact of an implementation that is compliant to the architecture
specified on the subsequent development and evolution. The validation
in Chapter 6 analyzes the validity of the theoretical model by conducting
a case study and experiments. The aim of the validation is to give
evidence on the validity of the model and to confirm the assumptions
made.

4.3.1 Assumptions

In order to be applicable, the theoretical model has to be simple and
easy. Therefore, we make several assumptions that have to be
considered when applying the model:

� The architecture is well-defined and correct. It overrides the
implementation. If a structural violation is detected, we assume that
the structural violation is caused by the source code (and it is not an
architectural flaw).

� The architecture does not change. While developers are in the
process of repairing, the architecture remains untouched, and no
modifications are caused due to changes in the architecture.

� All structural violations are to be repaired in the implementations. In
practice, there might be a few exceptions due to technical constraints

Live Compliance Checking Approach

 98

or a remaining set of violations may be ignored due to time and
effort restrictions.

� All structural violations are distinct instances. There is no recurring
pattern. It is not possible to implement one complex correction fixing
many violations at the same time.

� Structural repairs do not re-introduce other violations as a side-effect.
Although this might happen in practice (i.e., removing one violation
but creating another one as a result of the correction), we assume
that each developer will find an appropriate solution for structural
repairs.

� Structural repairs are an atomic task. We assume that the atomic task
of removing one violation consumes, on average, the same amount
of effort independent of the developer carrying out the task.

� Structural repairs are conducted sequentially. One violation after the
other is removed without interference or distraction by other tasks.

� Structural repairs do not require any communication between
architect and developer. The tasks for removing the violations are
clear and unambiguous.

4.3.2 Effort Savings

Compliance promises that the architecture is a reliable instrument for
decision-making and communication. Achieving architecture compliance
is an investment into the future. The effort for achieving compliance is
the effort for structural repair (i.e., the effort spent to correct all
violations):

Definition 32 Compliance Achievement Effort

The compliance achievement effort is the total investment to repair
all structural violations in the implementation of a software system
(i.e., to remove them from the source code).

x*nE tAchievemen Compliance �

where ECompliance_Achievement denotes the compliance achievement effort,
n stands for the number of violations, and x for the effort to repair
one structural violation.

Based on the lines of argumentation on the consequences of high
execution frequency (see Section 4.2), we can assume the impacts listed
in Table 12 on the total number of violations n and the time x required
to repair one single violation. Table 12 summarizes the effects in the
description and lists the impacts for weak, medium, and strong impact.

We derive three scenarios for the learning impact. Compared to regular
development without any compliance checking support at all, a weak
learning effect halves the number of violations, with a strong learning

Live Compliance Checking Approach

 99

effect resulting in the square root of the total number of violations. For
the prompt removal effect, we base the weak effect on the data by
[Fjelstad 1983], which quantifies the effort for re-understanding at 50%
(i.e., not required due to live feedback). The zero value for the strong
prompt removal effect assumes that removing violations is a (close to)
zero factor in creating the solution at all.

Effect Description Impact
Learning
Effect

Due to live feedback received constantly
and continuously developers are educated
and trained. Developers learn about the
intended architecture over time. The impact
of the learning effect is a decrease in the
total number of violations.
We claim on the learning effect according
to our discussion in Section 4.2.1.

weak effect:
n/2

medium effect:
n/3

strong effect:
√n

Prompt
Removal
Effect

Due to the live feedback received
developers become immediately aware of
violations.. The developers can repair the
structure promptly as part of their daily
work.
We claim on the prompt removal effect
according to our discussion in Section 4.2.2

weak effect:
x/2

medium effect:
x/4

strong effect:
x*0

Table 12 Impact Factors on Compliance Achievement Effort

Figure 40 depicts the impact for both effects graphically, while Figure 41
shows the overall graphs for a combination of the two effects, both
times assuming weak effects.

The theoretical model shows in Figure 41 the substantial effort savings,
which – hypothetically – can be achieved due to live compliance
checking. Even if we only assume weak effects for learning and prompt
removal, we can see that the compliance achievement effort is reduced
to (n*x)/4 compared to analytical compliance checking, which does not
even take into account the overhead effort for workshops, meetings,
and communication required to propagate the compliance checking
results in the analytical application case. Assuming the effects to be
medium active, we would have a compliance achievement effort of
(n*x)/12, which reduces the effect even more. And if developers
automatically react to feedback on violations and repair them as part of
their daily work –with virtually no overhead – we can assume strong
learning and prompt removal effects. The compliance achievement effort
in this case would be (√n*x*0)=0, hence the overall effort for making
implementations compliant is close to or even equal to zero. This is just a
barely discernible factor of the effort spent for regular development.

Of course, we speculated as to the quantification of the learning effect
and the prompt removal effect. However, as we have discussed above,
there are reasonable arguments for these numbers. In addition to the

Live Compliance Checking Approach

 100

concrete savings in terms of compliance achievement effort, we expect
side effects on the evolution due to increased compliance.

Number of
Violations

Time

Analytical Compliance
Checking

Live Compliance Checking
(weak learning effect)

Reduction of
Number of Violations
due to Learning Effect

Effort

Number of Violations

Analytical Compliance
Checking

Live Compliance Checking
(weak prompt removal effect)

Reduction of
Effort
due to Learning Effect

Number of
Violations

Time

Analytical Compliance
Checking

Live Compliance Checking
(weak learning effect)

Reduction of
Number of Violations
due to Learning Effect

Effort

Number of Violations

Analytical Compliance
Checking

Live Compliance Checking
(weak prompt removal effect)

Reduction of
Effort
due to Learning Effect

Figure 40 Effort Saving Learning Effect (left) and Prompt Removal Effect (right)

Effort

Time

Analytical Compliance
Checking

Live Compliance Checking
(weak learning effect,
weak prompt removal effect)

Reduction of
Effort
due to
Combined Learning Effect

Effort

Time

Analytical Compliance
Checking

Live Compliance Checking
(weak learning effect,
weak prompt removal effect)

Reduction of
Effort
due to
Combined Learning Effect

Figure 41 Effort Saving Combined Effects

4.3.3 Compliance Impact on Evolution

Live compliance checking reduces the overhead effort as described. At
the same time, of course, it leads to higher architecture compliance of
the software implementation, which sustains the investments made for
architecting. Table 13 characterizes these side-effects and their impact
on the architecture-centric evolution. The architecture is the conceptual
instrument for dealing with the inherent complexity that software

Live Compliance Checking Approach

 101

systems have. By providing critical abstractions, the architecture makes it
possible to manage the development activities. If implementation is
compliant to the architecture, the envisioned benefits of well-defined
architectures can be achieved (although there is no guarantee). In
contrast, the lack of compliance almost guarantees that the benefits
promised by high-quality architectures will not be obtained.

Table 13 discusses the side-effects of compliance on the key
responsibilities of software architectures. These responsibilities have been
compiled from key publications in the field of software architecture (e.g.,
see [Bosch 2000], [Clements 2003], [Hofmeister 2000], [Jazayeri 2000],
[Perry 1992], [Rozanski 2005], [Shaw 1996], or [Tyree 2005]).

Architecture
Responsibility

Side-effects of Compliance on Evolutions

The architecture
serves as a
mediator for
stakeholder
communication.

Architecting enables stakeholders to reason about the
software system. However, this reasoning becomes
(partially) void when the implementation lacks
compliance. It is unclear whether or not the abstraction
imposed by the architecture is still valid, which jeopardizes
the overall success of the development project.

The architecture
serves as vehicle
for efficient
project planning,
management,
and controlling.

The decomposition provided by the architecture allows
defining, handling, distributing, and progress tracking of
work assignment for developers. Lacking compliance, the
task assignments are made in vain. Developers write
source code in a disorganized manner, which potentially
worsens the lack of compliance. Furthermore, controlling
progress becomes difficult.

The architecture
serves as vehicle
for the efficient
maintenance of
software systems.

The [IEEE-Std-610.12 1990] defines maintenance as the
process of modifying a software system after delivery to
correct faults, improve its attributes, or to adapt it to a
changed environment. To perform maintenance tasks
efficiently (and typically these tasks face tight time
pressure), the architecture is required as a map of the
system. To locate the points of modification, to learn
about risks and understand potential side-effects, and to
plan the change, the architecture is crucial. When lacking
compliance, maintenance becomes risky and consumes
more effort than planned to first reconstruct the map (i.e.,
the architecture).

The architecture
serves as an
instrument for the
successful and
controlled
evolution of
software systems.

Software systems continuously change to correspond to
the frequent and increasing requests for new features,
new functionality, or customer-specific customizations.
The architecture is the means to plan for future
modifications, prepare envisioned extensions, and define
placeholders on how to integrate new components or
variants. The consequence of implementations lacking
compliance is that the plans are not reliable. The
architecture no longer serves as a means to cope with the
inherent complexity of the system.

Table 13 Compliance Side-Effect on Architecture-Centric Evolution

Live Compliance Checking Approach

 102

To conclude, the architecture is responsible for achieving the overall
success in software development. Consequently, the success of
architecting stands or falls with the compliance of the resulting
implementation.

Software Architecture Visualization and Evaluation with Live Feedback

 103

5 Software Architecture Visualization and
Evaluation with Live Feedback

To be applicable, to justify the name “live”, and to enable direct and fast
feedback to developers, compliance checking needs to be tool-
supported to automate the necessary activities. The tool realizes the
requirements stated for live compliance checking and supports the
process introduced in the previous section.

The tool is called SAVE LiFe – Software Architecture Visualization and
Evaluation with Life Feedback (see Section 5.1). It consists of three parts
– the fat client for architects, the central server, and the thin client for
developers. This deployment into client-server-client reflects the roles
defined in the process for live compliance checking (see Section 4) and is
based on the meta-models defined for compliance (see Section 2). The
key functionality of the tool is, of course, the compliance check based on
Reflexion models (see Section 3).

Underlying the logic functionality of checking compliance is a basic
communication platform that enables logical, bi-directional channels for
data exchange between the server and the clients. On the one hand the
communication platform establishes one channel for transferring models
back and forth, which allows publishing and receiving large amounts of
data. We call this channel model exchanger. On the other hand, a
second channel is used for sending and receiving small data packages.
This channel is called delta exchanger. While the first channel consumes
network bandwidth and considerable time for the data transfer, the
latter enables fast response and live feedback. Correspondingly, the
architects publish the architecture and receive the compliance status
using the large channel, while developers send the deltas and receive live
feedback on compliance using the fast communication channel.

The communication platform is extensible towards different kinds of
analysis, where live compliance checking is the first instance that uses its
features. We discuss in Section 5.3 how SAVE LiFe addresses the
essential requirements on live compliance checking listed in Table 4 (see
Section 1.3). In addition, we envision extending the platform towards
other reverse engineering techniques and their quasi-constructive
application [Knodel 2008a], which would enrich the analysis capabilities
of SAVE LiFe.

Technically, all three building blocks of SAVE LiFe (see Section 5.2) are
implemented in Java and built on top of the Eclipse platform. Eclipse is

Software Architecture Visualization and Evaluation with Live Feedback

 104

an open-source platform that provides an Integrated Development
Environment (IDE) for developers. The platform is generic but highly
extensible, which is exactly what SAVE LiFe does: it specializes the Eclipse
platform for its own purpose – live compliance checking with clients and
server constituting three different, individually deployable specializations.

SAVE LiFe extends its ancestor SAVE – the snapshot analysis tool – by the
live feedback communication platform, the client-server architecture, the
delta analysis, and the ability to execute analytical analysis techniques in
a quasi-constructive manner. SAVE is a snapshot analysis tool for
analyzing and optimizing the architecture of implemented software
systems. It extracts information from system artifacts, performs an
arbitrary kind of computation, visualizes the results, or generates system
artifacts. SAVE is a joint development of Fraunhofer IESE (Institute for
Experimental Software Engineering IESE in Kaiserslautern, Germany) and
the Fraunhofer Center Maryland (Center for Experimental Software
Engineering in College Park, Maryland, USA). The work on SAVE as an
architecture analysis tool – with live compliance checking as the driving
vision in mind – started in 2004 [Miodonski 2004]. The initial idea of live
compliance checking evolved towards SAVE LiFe – a scalable and mature
research prototype providing a live analysis platform on a central server
supporting developers and architect as clients.

5.1 Solution Overview

SAVE LiFe consists of three distinct, logical building blocks, which are
depicted in Figure 42. The architecture manager is responsible for
realizing the process part as defined for the architect (see Section 4.1.1),
and the development monitor for the coding process part (see Section
4.1.2). Both communicate with the compliance checker (see Section
4.1.3), which realizes the remaining process part. Accordingly, the roles
are represented by the actors architect and developer.

The next subsections introduce the conceptual view and its instantiations
for the different building blocks. We then continue with a discussion of
the distributed communication platform and finally show the
development environment integration of SAVE LiFe.

Software Architecture Visualization and Evaluation with Live Feedback

 105

SAVE LiFe – Software Architecture Visualization and Evaluation with Life Feedback

System
Artifacts

Architecture
Manager

Legend:

Building
Block

Data Store

Actor

Information flow

Compliance
Checker

Developer

Development
Monitor

Architect

Figure 42 SAVE LiFe: Conceptual Building Blocks

5.1.1 Conceptual view

The conceptual view is the most abstract architectural view used for
capturing the application domain by mapping the functionality of the
system to conceptual components and showing data stores, external
interfaces, and hardware devices. It also depicts the relationships among
the conceptual elements.

Figure 43 depicts the conceptual view on the SAVE product line
architecture, which is instantiated (partially or completely) for every SAVE
analyzer, while Table 14 and Table 15 describe the conceptual
components and data stores.

Fraunhofer SAVE – Software Architecture Visualization and Evaluation

Extractor

Visualization

Generator

System
Artifacts

Legend:

Conceptual
Component

Data Store

Actor

Information flow

Repository Management

UI
Analyzer

User

Logic

SAVE
Repository

Client

UI

Logic

UI

Logic

Figure 43 SAVE LiFe and SAVE: Conceptual View

Software Architecture Visualization and Evaluation with Live Feedback

 106

The conceptual view separates the abstract, logical concepts realized by
SAVE LiFe. In fact, this conceptual view is also shared by SAVE, the
ancestor for analyzing system snapshots.

The actor user interacts with SAVE LiFe using the visualization or the user
interfaces of conceptual components. Clients (remotely or locally) directly
access the logic of the conceptual components. The conceptual
components are independent from each other. This characteristic allows
having many different extractors, analyzers, or generators in parallel
within one SAVE LiFe or SAVE configuration. Integral for the different
interactions is the repository management, which enables coupling on
the data level (i.e., one analyzer can operate on data provided by one
extractor). Table 14 details the description of the conceptual
components, while Table 15 explains the roles of the data stores.

Conceptual
Component

Responsibility

Visualization The conceptual component Visualization is responsible for the
visualization of information stored in the SAVE Repository. The
information visualized in models comprising entities and
relations is produced by the conceptual components Extractor
or Analyzer. The visualized information may be displayed in
graphical, charting, tabular, or textual form. The actor User is
able to interactively navigate, browse, filter, and manipulate
the information presented in order to gain knowledge from
the information.

Extractor The conceptual component Extractor analyzes existing system
artifacts by applying fact extraction functionality (e.g., parsing,
pattern matching, filtering, or data importing) to gather
information about the System Artifacts processed.

Generator The conceptual component Generation is responsible for
producing System Artifacts that are generated based on the
information stored in the SAVE Repository. System Artifacts
can be created newly or existing ones can be modified.

Analyzer The conceptual component Analyzer provides analysis
functionality for abstracting, aggregating, comparing,
transforming, or enriching a SAVE model.
All computation functionality processes information from at
least one existing model in the SAVE Repository and either
modifies it, or creates a new model(s), which is (are) stored in
the SAVE Repository, too. The information extracted by the
conceptual component Extractor is typically processed by the
Analyzer to mine it for relevant and crucial information in the
SAVE Repository.
Analyzers are either initiated by the actor User or executed
(semi-) automatically by an external Client. If necessary, the
actor User or the actor Client provides input or decides about
the parameters and configuration for one specific execution of
an Analyzer.

Software Architecture Visualization and Evaluation with Live Feedback

 107

Conceptual
Component

Responsibility

Repository
Management

The conceptual component Repository Management is
responsible for creating, accessing, managing, loading and
storing the SAVE Repository, the internal data model of SAVE.
All accesses to a SAVE Repository have to use Repository
Management; no direct access is allowed.

Table 14 SAVE LiFe: Conceptual Components

Data
Stores

Responsibilities

System
Artifacts

The data store System Artifacts comprises all artifacts of the
system. The most commonly analyzed artifact is the source
code; however Extractors are not limited to it. System Artifacts
comprise data from configuration management systems (e.g.,
CVS, SVN), instrumented run-time traces, intermediate
representations (e.g., GXL, RSF, CSV), CASE tools (e.g.,
Rational Modeler), defect databases (e.g., BugZilla, JIRA), third-
party metrics tools (e.g., Understand, JHawk), build scripts
(e.g., Makefiles, Antfiles), and other available artifacts.

SAVE
Repository

The SAVE Repository is the central data store of SAVE. By its
nature, it stores all data produced by one of the Extractors, or
Analyzers, and is the basis for the output produced by the
Generators.

Table 15 SAVE LiFe: Data Stores

5.1.2 Client-Server-Client Deployment

The three building blocks – architect manager, compliance checker as
application on top of the extensible analysis and communication
platform, and development monitor – are depicted in Figure 44, Figure
45, and Figure 46, respectively.

Software Architecture Visualization and Evaluation with Live Feedback

 108

SAVE LiFe: Fat Client: Architecture Manager

Extractor

Visualization

Generator

System
Artifacts

Legend:

Conceptual
Component

Data Store

Actor

Information flow

Repository Management .

UI
Analyzer

Architect

Logic

SAVE
Repository

UI

Logic

UI

Logic

Interface SAVE LiFe Server:
Compliance Checker

Model
Exchanger

publish Architecture
receive Compliance Status

Figure 44 SAVE LiFe: Fat Client: Architecture Manager

SAVE LiFe: Server: Compliance Checker

Extractor

Visualization

Generator

System
Artifacts

Legend:

Conceptual
Component

Data Store

Actor

Information flow

Repository
Management

UI
Analyzer

Logic

SAVE
Repository

UI

Logic

UI

Logic

Interface SAVE LiFe Fat Client:
Architecture Manager

Model
Exchanger

receive Architecture
publish Compliance Status

Interface SAVE LiFe Thin Client:
Development Monitor

Delta
Exchanger

receive Delta
send Live Feedback

Figure 45 SAVE LiFe: Server: Compliance Checker (Extensible Analysis and Communication Platform)

Software Architecture Visualization and Evaluation with Live Feedback

 109

SAVE LiFe: Thin Client: Development Monitor

Extractor

Visualization

System
Artifacts

Legend:

Conceptual
Component

Data Store

Actor

Information flow

. Repository Management

UI

Developer

Logic

Interface SAVE LiFe Fat Client:
Architecture Manager

Delta
Exchanger

send Delta
receive Live Feedback

IDE

Figure 46 SAVE LiFe: Thin Client: Development monitor

By preserving the layout and positioning for the same elements
throughout the figures (i.e., Figure 44 to Figure 46), we can illustrate the
differences between thin client, fat client, and server.

The fat client instantiates the conceptual view completely. We
highlighted the expanded repository management, which contains the
model exchanger. The model exchanger is responsible for publishing the
architecture and receiving the latest compliance status. The compliance
status allows browsing, navigating, and delving into details. The fat
client is very similar to the stand-alone version of SAVE. It allows
analyzing one snapshot of the system, which, in this case, is always the
latest state of the development. Using the history feature of SAVE, the
architect can navigate back in time using a flip-book kind of browsing,
which visualizes the changes that have occurred at distinct points in
time.

The server realizes the basic communication and analysis platform of
SAVE LiFe. It communicates with two clients, the architect manager and
the development monitor. The server is running independent of any
external actor. It is triggered by incoming data on one of the two
communication channels and responds in the intended way by either
publishing the compliance status or sending live feedback on
compliance. All three figures show the relevant ends of the
communication channels.

The thin client comprises only visualization for displaying the live
feedback and the extractor for determining the local modification scope,

Software Architecture Visualization and Evaluation with Live Feedback

 110

which is then sent to the compliance checker. The development
environment triggers the functionality automatically when predefined
events happen (e.g., saving a compilation unit). Typically, there are many
developers using many thin clients communicating with one central
server.

5.1.3 Distributed Communication Platform

The mechanism for enabling communication between the server and the
two clients is realized using Java remote method invocations (see [RMI
2009]). RMI as a multi-threaded technology allows writing distributed
applications, which allows the server to process client requests in
parallel.

RMI establishes a logical communication channel between clients and
servers. The data structures distributed objects can be created and called
from instances, running on different Java Virtual Machines (JVM), as if
they were local. It is irrelevant whether they are located on one machine
or on different machines connected via a network. The communication
interfaces are defined in interfaces shared by clients and server. The
methods of the server interface are implemented by classes in the server,
the ones of the client by classes located in the client plug-in.

Clients can connect to the server by registering themselves to the server.
The server listens to a defined Internet protocol (IP) address on a distinct
port. The clients can initiate communication by connecting to the
specified IP address and port. Clients identify themselves by their own IP
address, a callback port, and a name representing the current name of
the client.

The basic communication platform of SAVE LiFe establishes two logical,
bi-directional channels for data exchange between the server and the
clients. The remote data exchange allows either to transfer large amount
of data on a communication channel called model exchanger or smaller
bits of information using the communication channel called delta
exchanger.

5.1.4 Development Environment Integration

We decided to integrate SAVE LiFe into the Eclipse IDE (integrated
development environment) [Eclipse 2009]. Figure 47 sketches this
integration and lists the third-party plug-ins that are reused. SAVE LiFe
extends the regular Fraunhofer SAVE tool. The Eclipse Modeling
Framework (see [EMF 2009]), the Graphical Editing Framework (see [GEF
2009]), and the Graphical Modeling Framework (see [GMF 2009]) are
reused for data model management and visualization purposes. The

Software Architecture Visualization and Evaluation with Live Feedback

 111

Fraunhofer PuLSE Common Architecture acts as an abstraction layer on
top of these plug-ins.

Software Architecture Visualization and Evaluation with Live Feedback (SAVE LiFe)

Eclipse Platform

Eclipse Modeling
Framework

(EMF)

Fat ClientFat Client

Graphical Modeling
Framework

(GMF)

Graphical Editing
Framework

(GEF)

PuLSE
Common Architecture

Software Architecture
Visualization and Evaluation

(SAVE)

ServerServer Thin ClientThin Client

Software Architecture Visualization and Evaluation with Live Feedback (SAVE LiFe)

Eclipse PlatformEclipse Platform

Eclipse Modeling
Framework

(EMF)

Fat ClientFat Client

Graphical Modeling
Framework

(GMF)

Graphical Editing
Framework

(GEF)

PuLSE
Common Architecture

Software Architecture
Visualization and Evaluation

(SAVE)

ServerServer Thin ClientThin Client

Figure 47 SAVE LiFe: Eclipse Integration and Reused Plug-ins

5.2 SAVE LiFe Building Blocks

The building blocks of SAVE LiFe are presented in this section. Features
are distributed to either the server or one of the respective clients or to a
combination of both. We implemented the distribution of features as
presented here (however, it is possible to imagine selecting a different
distribution strategy).

5.2.1 Fat Client: Architecture Manager

The architecture manager is the tool for the architect to interact with the
compliance checker. It is realized as a fat client and comprises a lot of
functionality.

5.2.1.1 Feature: Formalize Model and Define Mapping

The architects use the fat client of SAVE LiFe. The responsibilities of the
architect are derived from the steps of the Reflexion model technique
(see Section 3):

� Structural Model Definition: The architect specifies the structural
model against which the implementations of the developers are
compared. There is exactly one structural model for which the
compliance checking is executed.

Software Architecture Visualization and Evaluation with Live Feedback

 112

� Source Code System Selection: The architect defines the source
code system to be monitored with SAVE LiFe and specifies the
respective locations in the configuration management system.

� Define Mapping Instructions: The structural model and the source
code model require mapping instructions that relate the architectural
elements to the source code elements. These mapping instruction are
based on the structural model and the source code model. In case
there is no model yet, the mapping remains void. The mapping can
be updated and changed at any time.

� Developer Assignment: The architect specifies the developers who
work on the realization of the software system.

5.2.1.2 Feature: Publish Architecture

Figure 48 depicts the data flow in the definition of the respective models
in a pipe-and-filter notation. The extraction of the structural model is
done either manually or automatically, depending on the architecture
documentation. The computation step prepares the mapping of the
structural model to the source code model. The repository management
then aggregates the models together with the user management and
stores all information in the SAVE repository. Then the architect manually
initiates the transfer of the configured SAVE repository from the client to
the server. The transfer sends the repository data via the repository
management interface as described above. This interface is bi-
directional, which means the architect can get the latest version from the
server at any time (or other architects can modify the SAVE repository
managed by the server to their fat clients and refine the structural
model, the mapping, the source code model, or the users’ information).

<<Repository Management>>

<<Extraction>>
Modeling
Structure

<<SERVER>>
Transfer

<<System Artifacts>>
Architecture

<<CLIENT>>
Transfer

<<SAVE Repository>>
Structural Model

Mapping
Source Code Model
Compliance Status

Legend:

Component Data Store Data flow

<<SAVE Repository>>
Structural Model

Mapping
Source Code Model
Compliance Status

Figure 48 Architect Manager: Pipe-and-Filter View for Model Definition

5.2.1.3 Feature: Analyze Snapshot

The Eclipse platform allows defining visual containers that combine a set
of views and editors within a predefined window – an Eclipse

Software Architecture Visualization and Evaluation with Live Feedback

 113

perspective. SAVE and its sibling – the architecture manager – share the
same perspective in Eclipse, which means that the SAVE-related views
are arranged in a predefined way. Figure 49 presents a screenshot of the
SAVE perspective in Eclipse and highlights the different building blocks
(each block is denoted with a capital letter in Figure 49):

� A – SAVE Model Browser: organizes the data of SAVE models in
projects and offers a hierarchical representation. All related artifacts
are presented (projects, models, views, etc.) and can be selected as
the target of actions in a context menu.

� B – Combined Visualization / Editor: The main part of the
perspective is the integrated visualization and editor. It has an engine
for the visualization of software architectures offering a large number
of graphical elements. One main feature is its configurability (i.e.,
enabling and/or disabling certain graphical elements), which allows
users to adapt the visualization of results to their needs.

� C – Legend: This view explains the meaning of the graphical
elements that are available in the current configuration. Due to the
configurability, it is important to denote the current meaning of the
graphical elements.

� D – Outline: A bird view on the whole model currently displayed in
the visualization / editor. While the visualization / editor allows
zooming and then only displays a small excerpt, the outline always
shows the whole model and additionally highlights the excerpt
currently in the editor visible with a transparent rectangle.

� E – Filter Management, Decoration Management: These views
can be used to filter the information displayed in the visualization.
Components and relations can be filtered according to several
properties (e.g., their type). Additionally, the decorations that are
shown to represent certain properties of components or relations can
be filtered out in order to simplify the visualization and reduce the
information to the amount needed in a specific situation.

� F – Properties: For the component or relation currently selected in
the visualization, the external properties are displayed and can be
modified (e.g., name).

� G – Detail View: For the component or relation currently selected in
the visualization, additional information can be provided (e.g., about
the internal hierarchical structure).

� Hidden – Information View: For any component or relation
currently selected in area B, additional information on aggregated
relations or the relation itself is provided (e.g., origin or destination
code elements).

Software Architecture Visualization and Evaluation with Live Feedback

 114

Figure 49 Architect Manager: Screenshot of User Interface

5.2.2 Server: Compliance Checker (Extensible Analysis and Communication
Platform)

The compliance checker is the central server that realizes the extensible
analysis and communication platform. It interacts with both the architect
and the developers.

5.2.2.1 Feature: Start Server

Figure 50 depicts a screenshot of the console that is part of the
compliance checker. The console outputs the events triggered for the
compliance checker (either by the architect or the developers) and
corresponding status including log messages on the arriving events and
the reaction by the compliance checker. The console allows starting and
stopping the server, the only two non-automated tasks.

Software Architecture Visualization and Evaluation with Live Feedback

 115

Figure 50 Compliance Checker: Screenshot of SAVE Server Console

5.2.2.2 Feature: Browse SAVE Repository

Figure 51 depicts an example of the definition of the SAVE LiFe models.
The repository defined by the architect monitors the Apache Tomcat
web server. It comprises a structural model called architecture, a source
code model called tomcat, and a mapping architecture – tomcat.
Furthermore, two developers (Dev1 and Dev2) have been specified to be
monitored by SAVE LiFe and the name of the respective source code
folder in the configuration management system (in this case Subversion)
is specified under the Projects node in the tree in Figure 51. Once this
information has been transferred to the SAVE LiFe server, live compliance
checking starts automatically and proceeds continuously.

Figure 51 Compliance Checker: Screenshot of SAVE Repository Browser

5.2.2.3 Compliance Checking

Compliance checking is executed on the server for every change the
developer clients made (see Figure 52 for the data flow depicted in a
pipe-and-filter view). The multi-threaded execution of the compliance
checking using the structural model defined by the architect, the
temporary source code models produced by the fact extraction, and the
mapping provided by the architects.

Software Architecture Visualization and Evaluation with Live Feedback

 116

Compliance checking has a limited scope. The computed results are only
transferred for the elements modified by the developers. The high
frequency for every change and the limitation in the scope (only the
delta of the source code has to be parsed) enable fast computation of
the compliance checking results, which are then presented to the
developers.

<<Presentation>>

<<CLIENT>>
Visualization

<<Computation>>
Compliance Checking

<<SERVER>>
Preparation

Legend:

Component Data Store Data flow

<<SAVE Repository>>
Structural Model

Mapping
Source Code Model
Compliance Status

Delta Model
Delta Compliance Status

Figure 52 Compliance Checker: Pipe-and-Filter View of Compliance Checking

5.2.3 Thin Client: Development Monitor

The development monitor is the tool for the developers to interact with
the compliance checker. It is realized as a thin client and comprises a
minimal set of functionality, but supports many users in parallel at the
same time.

5.2.3.1 Feature: Extract Delta Facts

The fact extraction in SAVE LiFe is depicted in Figure 53. The process is
initiated by each modification to the source code made by a client.
Hence, fact extraction is performed for every change made in the thin
client; in other words, any changes developers make to their source code
initiate the fact extraction, which eventually results in the presentation of
the compliance checking results.

The SAVE LiFe platform hooks into the build process of the Eclipse
platform for the respective source code language whenever the source
code is built. When the platform starts the builder, it iterates over the
elements in the developer's workspace (i.e., the workspace of the client)
and checks whether or not they have been modified.

Software Architecture Visualization and Evaluation with Live Feedback

 117

Determining whether or not a source code element has been modified is
dependent on its status extracted from the source code configuration
management system. The modified files are then transferred to the SAVE
LiFe server. The SAVE LiFe server then parses the modified source code
files and creates a temporary source code model. The temporary source
code model contains the delta to the original source code model (see
Section 2). The temporary copy of the source code model is based on an
identical copy of the source code model as stored on the server. This
server’s source code model is based on the latest commit to the
configuration management system. The temporary model integrates the
deltas based on the parsing of the source code elements (i.e., the
compilation units modified). The source code relationships of the
modified elements replace the relationships of the pre-existing elements.

This integration of the modified source code elements allows initiating
the execution of compliance checking on the temporary model. The
results of compliance checking take into account the locally modified
source code elements of each developer. Hence, the developers will
receive feedback on their local modifications.

<<Extraction>>

<<CLIENT>>
FiIe Transfer

<<Computation>>
Abstraction<<System Artifacts>>

Source Code

<<SERVER>>
Parsing <<System Artifacts>>

Source Code Model

Legend:

Component Data Store Data flow

Figure 53 Development Monitor: Pipe-and-Filter View of Fact Extraction

5.2.3.2 Feature: Display Results (Live Feedback)

The presentation of the results to the developers is integrated into the
development environment (see Figure 54 for two screenshots). On the
one hand, the results of compliance checking are available in a tabular
format listing the spots in the source code that cause violations (see
lower part of Figure 54). On the other hand, the presentation uses
Eclipse problem markers to indicate source code lines that cause a
structural violation (see the upper part of Figure 54). The “A” in front of
the source code statement indicates the structural violation. When the
mouse is moved over the architecture violation icon, additional
information about the structural decomposition is displayed (i.e., the
containing architectural elements of source and target of the violations
are listed). The usage of problem markers for highlighting structural
violations enables the Eclipse quick-fix functionality of the editor (e.g.,

Software Architecture Visualization and Evaluation with Live Feedback

 118

removing the violation with a mouse click, or triggering a move of the
enclosing source code element refactoring). The visualization of
compliance checking results notifies the developers about structural
violations in the source code they are currently editing. The presentation
of the results is calculated in the background in a non-intrusive way. As
soon as the results are available, the editor places the overlay icons for
the problem markers. Furthermore, the problem markers are placed in
the source code explorer of Eclipse, which allows top-down navigation
to the elements that cause violations.

Figure 54 Development Monitor: Screenshot Display of Compliance Checking Results

5.2.4 SAVE

In addition to live compliance checking, the Fraunhofer SAVE tool
realizes a set of compliance checking algorithms for structural or
behavioral views and for implementation variants. It operates on
implementation snapshots and mines the source code for relevant data
constituting the resulting source code model. Most relevant fact
extraction handles software systems implemented in Java (compatibility
Java 1.6 and earlier version), C/C++, Delphi, J2EE-specific Java extensions
(including JSP), several intermediate representations, and importers for
architectural models with XML-based file format. For detailed
information on SAVE, please refer to [Knodel 2009a].

Software Architecture Visualization and Evaluation with Live Feedback

 119

5.3 Realization of Live Compliance Checking Requirements

This section traces the principles of live compliance checking (see Section
1.3) and the essential requirements on the realization (see Table 4, as
well Section 1.3) to the solutions provided by SAVE LiFe.

Requirement Solution
Live
Feedback

The development monitor (SAVE LiFe thin client) receives
feedback from the server. The feedback is live because fact
extraction, lifting, and compliance checking are limited to the
local scope (i.e., the deltas) only.

Ease of Use The architecture violations are visualized with a special icon
using Eclipse problem markers. The violation marker is
annotated with context information on the violation.
Perceiving the violation and interpreting it is a simple, trivial
task. However, resolving the violation still might be
complicated.

High
Execution
Frequency

The constant and continuous sending of all deltas by each
developer results in high execution frequency. The central
server computes the compliance checking results and enables
sending live feedback to the developers.

Delta
Analysis

The development monitor sends deltas and receives live
feedback on their compliance. The feedback is always directed
at the originator.

Distributed
Team
Support

The client-server-client architecture allows scaling for arbitrary
team sizes. The communication channels operate logically
over the network, so the encapsulated technical protocols
managing the connections between clients and server can be
adapted on demand.

Smooth
Integration
into
Environment

SAVE LiFe is fully integrated into the Eclipse IDE. It takes
advantage of other third-party plug-ins and applies several
Eclipse best practices (e.g., the problem marker concept for
displaying violations). The display of compliance results allows
developers to perceive the feedback non-intrusively without
distracting them from their current implementation task.

Robustness Fact extraction in SAVE LiFe allows parsing of non-compiling
and incomplete source code, with the parser mining relevant
data to the largest extent possible but ignoring non-compiling
statements.

Commit
Control

SAVE LiFe allows committing source code still comprising
violations. We opted for loose control in order to have the
possibility of committing explicit violating exceptions to the
configuration management.

Separation
of Roles:
Architect
and
Developer

The two roles are clearly separated by the existence of two
distinct clients: the architecture manager for architects and
the development monitor for developers. Both communicate
with the central server.

Table 16 Realization of Essential Requirements on Live Compliance Checking

Software Architecture Visualization and Evaluation with Live Feedback

 120

5.4 Technical Solution

The technical solution comprises two clients – architecture manager and
development monitor – and one central server – the compliance checker.
The client-server-client communication transfers data from clients to
server and vice versa. To communicate SAVE LiFe requires distributed
data structures, which can be transferred from clients to server and vice
versa. In particular, SAVE LiFe uses the following distinct data models:

� Structural Model: The structural model captures the intended
decomposition specified by the architect (see Section 2.1).

� Source Code Model: The source code model captures the static
structure of a system at development time (see Section 2.2).

� Mapping Model: The mapping model (see Section 2.3) defines the
relation of architectural elements to source code elements and vice
versa.

� Delta Source Code Model: The delta source code model is an
instance of the source code model, which is created for the locally
modified delta of the developer. Thus, the meta-model of the source
code (see Section 2.2) also serves as meta-model for the delta model.

� Compliance Status Model: The compliance status model is an
annotated structural model, which discloses the architecture
violations of the system under evaluation. Thus, the meta-model of
the structural model (see Section 2.1) also serves as meta-model for
the compliance status. The compliance status annotates
convergences, divergences, and absences, as computed by the
compliance function (see Section 2.4).

� Delta Compliance Status Model: The delta compliance status
model is an instance of the source code model, which is created for
the locally modified delta of the developer annotated by the
compliance status drilled down to the source code model using the
mapping (see Section 2.3). Thus, the meta-model of the source code
(see Section 2.1) also serves as meta-model for the delta compliance
status. The same annotations – convergence, divergence, and
absence (as defined in Section 2.4) – hold for the delta compliance
status.

The data models are used in the mode of operation of the client-server-
client system, in particular the compliance checker. The steps correspond
to distinct methods described in Appendix D using pseudo code:

� Algorithms SAVE LiFe Fat Client – Architecture Manager: The
architect executes the methods publishArchitecture() and
requestComplianceStatus() on demand. Both methods are accessible
from the user interface of the architecture manager (see Appendix D,
Section D.1).

Software Architecture Visualization and Evaluation with Live Feedback

 121

� Algorithms SAVE LiFe Thin Client – Development Monitor: The
development monitor tracks the work of each developer in the
integrated development environment individually. The development
monitor hooks into the incremental project builder of the
development environment (e.g., for Eclipse
org.eclipse.core.internal.events). The builder is executed whenever
physical resources (i.e., files or folders) are changed and saved. When
executed, the method monitorCodeandSendDelta() of the
development monitor is invoked automatically. Hence, the method is
executed for any change made to the source code. The server – after
having computed the results – invokes receiveLiveFeedback() remotely
for the respective developer to transfer the results, which potentially
include violations (Appendix D, Section D.2).

� Algorithms SAVE LiFe Server – Compliance Checker: The
methods of the compliance checker are remotely triggered by the
respective client. The architecture manager invokes either
receivePublishedArchitecture() or publishComplianceStatus(), while
the development monitor invokes sendDelta(). After compliance
checking has been executed, the server invokes receiveLiveFeedback()
in the development monitor so developers become aware of the
violations – if present – promptly (Appendix D, Section D.3).

The algorithms as described in Appendix D realize the requirements for
live compliance checking as stated in Table 16.

5.5 Summary

SAVE LiFe realizes the idea of providing developers with live feedback on
architecture compliance – live compliance checking. It is a client-server-
client tool, which extends the snapshot analysis tool Fraunhofer SAVE.

On the one hand, SAVE LiFe provides a basic communication platform,
which allows running arbitrary analyses with live feedback. On the other
hand, it presents the first implementation of live compliance checking.
This live compliance checking implements an adapted version of the
Reflexion model technique.

SAVE LiFe extends the standalone SAVE tool towards a client-server-
client system consisting of the client architecture manager, the client
developer monitor, and the server compliance checker. Live compliance
checking has been enabled as an analyzer using the client-server
principle to support multiple developers working in distributed teams.
Architects can update the structural model at any time, which then
immediately serves as new input to live compliance checking.

Enabling other compliance checking techniques (e.g., dependency rules,
which are already a feature of SAVE) based on SAVE LiFe is easily

Software Architecture Visualization and Evaluation with Live Feedback

 122

possible due to extension mechanisms of the platform. The principles of
live feedback would then apply as well, as just the server-side
computation algorithm of the results would change. The SAVE LiFe
platform supports distributed development teams with multiple
developers. It is hence a tool that supports a whole development
organization in achieving compliance by construction.

Validation

 123

6 Validation

Live compliance checking as proposed in the previous sections of this
thesis aims at the direct goal of reducing structural violations in software
implementations. This reduction causes two effects: first it leads to
further effort savings in compliance achievement due to the learning
effect and the prompt removal effect, and second, it leads to improved
productivity in the lifecycle of the software system due to reliable
evolution management based on the architecture, where compliance
ensures the traceability between the two abstraction levels.

We validate on the one hand the positive effects of live compliance
checking (see Section 6.1). An experiment shows that live feedback
indeed reduces the number of structural violations in the
implementations. In this case, we compared six teams comprising a total
of 19 developers realizing components of similar size and spending
roughly the same average effort per developer. Three teams received
support by SAVE LiFe, while the other three teams – the control group –
applied an ordinary development approach (i.e., without SAVE LiFe).
Both groups developed a software system over a period of 35 days
encompassing the lifecycle phases implementation, integration, and
testing. The experiment showed that the group supported by SAVE LiFe
had 60% less architectural violations throughout than the control group.
Hence, the experiment provides evidence of the positive effects of SAVE
LiFe on compliance. The developers of the groups supported by the live
compliance checking feature spent roughly the same effort in all phases
as the developers in the control group.

If we imagine repairing the structural violations contained in the above-
mentioned components, we can see the advantages live compliance
checking has over its regular analytical sibling:

� The number of violations is reduced by 60%, which eventually would
mean 60% less items to repair. This results in a substantially lower
compliance achievement effort.

� Further, there is no need for workshops or meetings where the
architect explains the repair tasks to the developers. All developers
already know about the violations because they see the violations
plus context information highlighted in their own source code editor.

� The compliance feedback is directed and tailored to the originator or
local expert. Developers responsible for a set of compilation units
receive only feedback on their local modification scope. There is no

Validation

 124

need to first dismantle the bulk of violations to identify who would
be the responsible developer for carrying out the repair.

On the other hand, we have to show that compliance positively impacts
the evolution of software systems. Therefore, Section 6.2 revisits the
industrial case A (see Section 1.2.1), where the development
organization – after observing a downward trend in the degree of
compliance – decided to institutionalize compliance checking as a part of
their quality engineering strategy using Fraunhofer SAVE. The
organization invested a large amount of effort to restructure the
implementation in order to achieve compliance. It now applies analytical
compliance checking at relatively regular intervals. This restructuring
feedback (although not live) could raise the degree of compliance degree
by up to 98% over time.

In a second case, Fraunhofer IESE supported the architectural re-design
of an industrial system. The re-design imposed a completely different
structural decomposition and component hierarchy for the software
implementation. After adapting the source code towards this new
decomposition, there were initially about 46% violating dependencies.
Again, we gave regular compliance feedback (and again it was not live)
using Fraunhofer SAVE and could observe a compliance increase to 95%
over time.

We confirmed the sustained compliance in these two cases and could
also observe an increased productivity. The development organization
could produce and, evolve more systems at the same time with the same
effort as before. The industrial stakeholders confirmed in interviews that
compliance is at least one crucial factor (though not the only one) for
this productivity gain.

6.1 Feedback by Live Compliance Checking

Our research goal was to analyze the effects of live compliance checking
on the compliance of component implementations. Therefore, we
conducted an experiment monitoring the implementations of student
development teams during a practical course lasting five weeks (i.e., 35
days in total). The experiment aimed at verifying the implementation
(i.e., the system was built right, as intended) but not at validating the
architecture (i.e., the right system was built and could achieve all
requirements). In the experiment, we hence assumed that the
architecture was well-designed. A detailed description of the experiment
including the material can be found in [Knodel 2008d] and [Rost 2007];
the experiment material is listed in Appendix E.

Validation

 125

6.1.1 Setup Experiment GSE2007

6.1.1.1 Hypothesis

Our main assumption is that live compliance checking allows the prompt
removal of structural violations. The constant and live feedback raises the
developers’ awareness regarding the structural violations. It is raised
immediately, which enables the developers to remove the violations
promptly. Hence, our hypothesis is:

� HC0.1 – The null hypothesis is that live compliance checking with direct
feedback has no impact on the number of violations.

� HF1 – Live feedback on compliance reduces structural violations in
implementations. Live compliance checking causes components to
have less structural violations than if they had been developed in
regular development.

6.1.1.2 Operationalization H1

We measured a-posteriori the number of architectural violations for the
implemented system for each component development team. We
classified the teams into being part of either the support group or the
control group. We quantified the architectural violations by the number
of divergences in the source code of each component analyzed, applying
the Reflexion model technique to compute the divergences.

6.1.1.3 Subjects

The subjects of the experiment were Bachelor and Master students of
the Technical University of Kaiserslautern. A total of 19 students
participated in the SAVE LiFe experiment. The participants' level of
experience in software engineering and development projects varied
from having been involved in one or two development projects to more
than five. Their level of experience in the domain of the practical course
also varied, from low to very high, but was balanced throughout the
groups.

6.1.1.4 Context

The experiment was conducted in the context of a practical course at the
Technical University of Kaiserslautern. The course is attended by Bachelor
and Master students. The GSE 2007 course comprised, among other
phases, four weeks of architecture and component design, three weeks
of implementation and two weeks of test and integration. The domain
of the system developed in GSE 2007 was ambient intelligence. After the
completion of the course, the software system developed by the
students, consisted of 4377 lines of code, 90 classes, and 15 interfaces
in 25 packages.

Validation

 126

6.1.1.5 Experimental Materials

The students worked in a laboratory at the university, each on their own
computer. On every computer, two configurations of Eclipse were
installed, one with enabled support of the SAVE LiFe, the other one
without support. A SAVE LiFe server was installed on a separate
machine, continuously running and reachable over the local network.

6.1.1.6 Experimental Design

The students worked distributed in six component development teams of
the software system. Table 1 lists the components by name, the
development team size, and the teams that had support by live
compliance checking.

Component Name Number of Developers
Live Compliance

Checking Support
amiCAInteraction 3 yes
Synchronization 3 yes
Controller 5 yes
Persistence 2 no
LocationManager 2 no
UserInterface 4 no

Table 17 Live Feedback Experiment: Component Teams

6.1.1.7 Experimental Tasks

Within the GSE practical course, the students developed a system in the
ambient intelligence domain. Therefore, they executed a development
process, starting from requirements engineering via architecture and
component design and implementation to test and integration. The
experiment was started with the implementation phase and monitored
all subsequent phases (i.e., implementation, refactorings, testing, and
integration). Hence, the experimental task for each team was to
implement the respective component. The duration of the development
monitored was a total of five weeks (i.e., 35 days) and ended with the
deployment of the system.

6.1.1.8 Data Collection

The source code of all component teams was managed by a central
configuration management system – Subversion. The Subversion server
stored the history of the project development in the form of revisions.
This means that whenever a new change was committed to the server,
this change was assigned a revision number and allowed restoring the
state at a later point in time. Additionally, we enabled logging in the
SAVE LiFe server to log each live compliance checking execution. Besides
these, no other means of data collection were necessary during the

Validation

 127

project. To investigate how the students perceived the support by SAVE
LiFe, we asked them to fill out a questionnaire.

6.1.1.9 Data Analysis

We measured the number of architectural violations a-posteriori each
day for the last commit to the Subversion server. For this purpose, we
restored the respective system state for all six components. The specified
architecture was created during the design phase by the students
themselves.

6.1.2 Results

This section describes the results obtained from analyzing the collected
data and the questionnaire.

6.1.2.1 Structural Violations

To observe the evolution of the software architecture, one state per
development day was analyzed and the number of architecture
violations has been computed. Figure 2, Figure 3, and Figure 4 show the
resulting numbers of violations captured. In all three figures, the abscissa
shows the period of the project development in days (in total 35 days).
The ordinate shows the number of divergences – the architecture
violations.

Figure 55 depicts the number of violations per component. The
components amiCAInteraction, LocationManager, and Persistence are
mainly used by the other components. In the architecture, they are
rather utility or library components, which are self-contained and have
almost no outgoing relations. This is reflected in Figure 55 by showing 0
violations (except for the component amiCAInteraction during the last
days). The components Controller, UserInterface, and Synchronization
constitute the major part of the relations in the system. They also cause
almost all violations, as shown Figure 55. The divergences of the control
group are all produced by the component UserInterface component,
those of the supported group by the components Controller and
Synchronization.

Figure 56 aggregates the number of violations for both the control
group and the group supported by live compliance checking. In the
beginning of the implementation phase, the number of architecture
violations produced by the supported group as well as by the control
group increased. However, after 13 days of development, the number of
architecture violations was reduced by more than 50%, whereas the
value of the control group remained constant. Later there was only a
slight reduction for the control group; the value of the supported group

Validation

 128

is constantly about 60% lower than that of the control group. In the
end, there was a peak of the divergences of the supported group. We
assume that this peak results from the integration phase before the final
deployment of the system.

Next to the violations for both groups, Figure 57 depicts the total
number of dependencies in the system in order to visualize the growth
of the system. The major part of the dependencies were implemented in
the first 13 days and then stayed more or less on a constant level with a
peak at the end (the integration phase). We observed that when the
number of violations in the supported group decreased, the number of
overall relations also decreased (but less than the number of
divergences). As the number of divergences stayed almost constant for
the control group, we consider this to be an indicator that the supported
group refactored parts of the system, which made the components’
implementation more compliant.

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 12 14 16 20 22 26 28 30 35

Days

#A
rc

hi
te

ct
ur

e
Vi

ol
at

io
ns

amiCAInteraction
Controller
Synchronization
UserInterface
LocationManager
Persistence

Figure 55 Live Feedback Experiment: Architectural Violations per Component

Validation

 129

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 12 14 16 20 22 26 28 30 35

Days

Ar

ch
ite

ct
ur

e
Vi

ol
at

io
ns

Supported
Control

Figure 56 Live Feedback Experiment: Architectural Violations Aggregated by Supported and Control
Group

0

50

100

150

200

250

300

350

400

0 2 4 6 8 12 14 16 20 22 26 28 30 35

Days

Ar

ch
ite

ct
ur

e
Vi

ol
at

io
ns

Supported
Control
Relations Overall

Figure 57 Live Feedback Experiment: Architectural Violations and Total Relations

6.1.2.2 Debriefing Questionnaire

To measure transfer success (i.e., the acceptance of a newly introduced
technology or software), a survey was conducted, asking the participants
of the supported group 21 questions about their experiences of working
with SAVE LiFe. The questionnaire was designed to address the idea of
innovation transfer success factors as introduced by Green and Hevner
[Green 2000]. These factors are shown in Figure 58. Several sub-factors
are grouped into major categories (boxes), with influences on other

Validation

 130

major categories, indicated by the arrows (e.g., “Target Environment”
influences “Perceived Control”). All five categories directly or indirectly
influence the transfer success of an innovation – which in our case was
SAVE LiFe.

Transfer
Success

• Use

+ Satisfaction

Developer
Involvement

• Adoption

- Adaptation

Target
Environment

+ Degree of Novelty

• Champion Support

• Training

Perceived Control

• Choice

• Process

- Predictability

Perceived
Characteristics

• Ease of Use

- Usefulness

Perceived Impacts

- Quality

- Productivity

Transfer
Success

• Use

+ Satisfaction

Developer
Involvement

• Adoption

- Adaptation

Target
Environment

+ Degree of Novelty

• Champion Support

• Training

Developer
Involvement

• Adoption

- Adaptation

Target
Environment

+ Degree of Novelty

• Champion Support

• Training

Perceived Control

• Choice

• Process

- Predictability

Perceived
Characteristics

• Ease of Use

- Usefulness

Perceived Impacts

- Quality

- Productivity

 Figure 58 Live Feedback Experiment: Transfer Success Factors

The possible answers were organized in the form of a four point Likert
scale, with the alternatives “strong disagree”, “disagree”, “agree”, and
“strong agree”. To be able to calculate the trends, a scale from -2 to 2
was assigned to each alternative. The number of answers for each
alternative was then multiplied by the corresponding range number and
the average was calculated. We consider a value of lower than -0.5 as a
negative, and higher than 0.5 as a positive trend. The analysis of the
answers given by the students showed positive and negative trends in
different factors. Figure 58 depicts positive trends with a “+” (degree of
novelty, satisfaction) and negative trends with a “–“ (adaptation,
predictability, usefulness, quality, productivity). The other factors
(adoption, champion support, choice, process, ease of use, and use)
were rather balanced. The following list presents a discussion for these
trends:

� Adaptation: Adaptation is defined as the development and
installation of the IT innovation [Green 1999], which means the
familiarization of the user with the new technology. So the question
in this context was whether or not the developers used the
computation results provided by SAVE LiFe to improve compliance.
The answers given indicate that this was not the case, which might
possibly result from the reasons given for the factor predictability,
which may also have caused this negative trend.

Validation

 131

� Degree of Novelty: Degree of Novelty refers to the extent to which
the learning and use of the IT innovation represents a new experience
to the user [Green 1999]. The answers show a clear positive trend,
indicating that the developers were satisfied with the usage and user
interface of the SAVE LiFe.

� Predictability: The factor of Predictability is defined in [Green 1999]
as the predictability dimension of control. It refers to knowing what
event(s) will occur and when, and not necessarily to controlling the
event itself, meaning whether the students could anticipate the
results computed by SAVE LiFe. The analysis of the questionnaire
showed that the results were not predictable for the participants.
Since all groups were doing all the tasks of the development process,
but for their own components, including architecture design, the
students might not have had an idea of the target architecture as a
whole, making the evaluation results hardly predictable. This might
also have caused a feeling of dissatisfaction, possibly also causing the
negative trend in the adaptation trend.

� Usefulness: Perceived usefulness refers to how reasonable the
application of the new technology is seen, based on the provided
support. The participants thought that the compliance checking did
not help to improve the implementation. Hence, the compliance
checking results were considered as rather useless.

� Quality and Productivity: These factors refer to the perceived
impact of the introduction of the new technology. The questions
were whether SAVE LiFe helped to write architecture-compliant
source code and therefore led to an improved architecture, and
whether the results helped to save time in later refactorings. In these
factors, there a negative trend was also identified, which is probably
also based on the students not understanding the benefits of SAVE
LiFe. However, no negative impact for quality and productivity was
indicated, since there was no negative one in the adoption of SAVE
LiFe.

� Satisfaction: Although the overall trend was rather negative, the
transfer success shows a positive trend for the factor satisfaction. The
reason for this might be that the participants agreed with the
intended purpose and capabilities of SAVE LiFe, although they might
not have used the support for repairing all violations.

Validation

 132

6.1.3 Threats to Validity

The threats to validity cover three categories: internal, construct, and
external, as proposed in [Wohlin 2000].

6.1.3.1 Internal Validity

Internal validity is the degree to which independent variables have an
impact on dependent variables. The following threats to internal validity
were identified:

� Due to the design of the GSE practical course, there was no explicit
architect for designing the architecture and managing the realization.
The students themselves took the roles of the architect and the
developers as they designed the architecture and realized it.
Therefore it cannot be guaranteed that the target architecture was
correct with respect to the intended purpose and structure of the
system and, since nobody controlled the realization, it is not sure
whether the students perceived an incentive in being compliant to
the architecture.

� The number of participants in each component development team
was rather small, as was the developed system, which makes it
difficult to generalize the observed results for mid- or large-scale
projects with more developers involved.

� Due to the rules of the GSE practical course, the students were not
forced to work in the laboratory and were therefore not forced to
use SAVE LiFe. Although the server log files provided information
about the usage, the fact the use was not enforced might affect the
generalizability and thus, the validity of the analyzed results.

� The participants may have had different levels of experience of using
the Eclipse IDE for developing software projects, which might have
made it difficult for students having less experience with Eclipse to
use the live feedback results. This is also true for different levels of
experience and for understanding the idea of software architecture.
To reduce the effects of these threats, we explained the usage of
SAVE LiFe to the participants in form of a presentation and of a
tutorial.

6.1.3.2 Construct Validity

Construct validity is the degree to which the settings of the experiment
in terms of the dependent and independent variables reflect the goal of
the experiment. The following possible threats were identified:

� As the distribution of the development groups into experiment
groups was random, this might have resulted in an uneven
distribution of experience levels and might therefore have caused a

Validation

 133

bias of the analysis results because high architecture quality might
result from the participants’ experience level rather than from the
SAVE LiFe support. To mitigate this threat, the questionnaire asked
about the experiences of the students. The analysis of this data did
not reveal an experience advantage.

� The participants knew about the fact that there were two different
groups using different versions of Eclipse. This might have created a
bias for the students. Due to the design of the GSE course and the
environmental constraints, there was no way to separate the
members of the two groups for the duration of the experiment.

� It is not guaranteed that the questions asked in the debriefing
questionnaire are the right ones to make a statement about the
transfer success of SAVE LiFe. To mitigate this threat, the
questionnaire was designed according to the idea of transfer success
factors.

6.1.3.3 External Validity

External validity is the degree to which the results of the experiment can
be transferred to other people and to changed environmental settings.

� The participants might not be representative. Since all participants
were students, the results might not be representative for industrial
practice. To make a statement about the usage of SAVE LiFe in an
industrial context, the experiment might have to be replicated with
professional software developers as participants.

� The task might not be representative. On the one hand, the system
developed by the students belongs to a relatively new area of
domain, namely ambient intelligence, and therefore does not reflect
typical commercial software projects. On the other hand, the
students’ interest to in achieving an implementation in compliance
with the architecture might possibly have been low, as they did not
continue working on this project after the GSE course had finished.
To overcome these threats, we envision a replication of the
experiment in a real project.

� Green-field development happens rather seldom in industrial
practice; typically, systems are not developed from scratch but
evolved from existing reusable components, existing source code, or
from migration. This was not the case in the GSE practical course: a
completely new system was developed. To overcome this threat, a
replication of the experiment should be conducted in the context of
an evolving software project that is not being developed from
scratch.

Validation

 134

6.1.4 Conclusion

The experiment investigated the impact of live compliance checking on
the implementation of component teams. The analysis results showed
that the number of architecture violations were, after an initial peak,
almost 60% lower throughout in the group that was supported by SAVE
LiFe, compared to the control group. We observed a decrease in the
number of architecture violations. The violations in two complex
components of the supported teams were significantly lower than in
those of the control teams. We consider this as an indicator for the
positive impact of SAVE LiFe. The debriefing questionnaire showed
negative trends in several success factors, mostly caused by the weak
adaptation of the developers. This is most presumably grounded in the
nature of the project, which was part of a practical course, and we can
therefore assume that the main goal for the students was to get the
system running, and only minor interest existed in producing a high-
quality implementation that was compliant to the architecture.
Additionally, we think that the participants’ focus was not on the target
architecture, or that they did not have the basic concepts of their target
architecture in mind, or that there was a deficit in understanding
architecture violations, when they implemented the system, which was
shown in the questionnaire results where the students indicated the
results were not predictable.

Based on the aspects mentioned above and on the threats to validity, we
plan to replicate the experiment. We aim at getting deeper empirical
insights into the effects of live compliance checking. Ideally, such a
replication would include several modifications:

� The project should not be short term only. The developers should
have an interest in the future of the system (because they will have to
maintain it).

� Ideally, several component teams would implement the same
component as specified in the architecture.

� The number of component teams should be increased to obtain
statistically significant results.

� The participants should preferably be professional developers, with
almost the same level of experience with software architecture, or at
least the distribution into experiment groups should ensure that the
number of professionals and inexperienced participants is the same
for both experiment groups.

� The two experiment groups should not know of each other and
should develop the same product according to the same architecture.
Also, the development of the whole system should be monitored, not
only the components.

� A software architect (and not the developers themselves) should be
responsible for defining the architecture and track its realization.

Validation

 135

� SAVE LiFe support should be mandatory during the whole
experiment.

Although there is a clear need for replication, the experiment provided
initial evidence about the benefits of live compliance checking. The
results showed a reduction in the number of violations for the supported
development teams. All teams invested approximately the same
development effort for developing top-level components. The supported
teams caused less architectural violations, and, hence, when refactoring
the implementation of the system to achieve architecture compliance,
the supported teams would have about 60% fewer items to refactor.
The fewer refactoring items would eventually result in effort savings for
refactorings.

We claim that live architecture compliance checking has a positive effect
on the implementation of software systems. We think that prompt
removal of violations (as opposed to late removal when applying
analytical compliance checking) reduces the overhead effort. The results
of this experiment are a first data point to corroborate our claim.

6.2 Benefits of Regular Compliance Feedback

In two case studies, we gave regularly repeated (though not live)
feedback on the compliance of the software implementation and
observed the compliance status over time. The research question for the
two industrial case studies presented in this section was whether or not
a high degree of compliance feedback has a positive impact on the
overall evolution of the software systems. Hence, our hypothesis was:

� HF0.2 – The null hypothesis is that compliance has no impact on the
productivity of an organization.

� HF2 – Compliance increases the productivity of the development
organization.

6.2.1 Product Line of Climate and Flue Gas Measurement Devices

6.2.1.1 Context

In [Knodel 2008b], we reported on the continuation of case A as
presented in Section 1.2.1 with the product line of climate and flue gas
measurement devices developed by Testo. The development
organization decided to integrate analytical compliance checking into
their quality engineering strategy. The results were presented in joint
workshops at major project checkpoints. In the beginning, compliance
checking was offered by Fraunhofer IESE as a service and was conducted
offline. Currently, the Testo architects are conducting compliance

Validation

 136

checking independently and on demand by using the Fraunhofer SAVE
tool [Knodel 2009a].

Here we summarize the experiences with architecture compliance
checking at Testo. In total, 15 different instances of the product line (i.e.,
distinct Testo products delivered to the market) have been checked
regularly over a period of more than two years (as described in Section
5).

6.2.1.2 Compliance Status

The Testo reference architecture, like every product line, consists of two
parts: the application-specific implementation and the family-specific
implementation with generic components, in Testo’s case called
“framework (fw)”. Figure 59 depicts this principle, which holds for every
instance of the Testo product line of climate and flue gas measurement
devices. The arrow in Figure 59 indicates that the product-specific
implementation parts are allowed to use the framework. On average,
the Testo products achieve a reuse degree of about 40% (i.e., the
framework comprises approximately 40% of each product line instance).
The values have been measured with various size metrics like lines of
code (LoC), number of framework files used, number of framework
functions used. The size of the Testo measurement devices ranges from
10 KLoC to 600 KLoC; all products have been implemented in the C
programming language.

Figure 59 Structural Model: Framework Usage

Orthogonally to the framework, layering was established; however, no
strict layering was enforced. The layers crosscut both the framework and
the product-specific implementations, with one exception: the layer “ui”
is purely application-specific. Figure 60 shows the layering of the Testo
product line of climate and flue gas devices as initially specified. Figure
60 depicts the adaptations of the layered architecture. Subsystems and
components contained in layers have been filtered out with one
exception: For the component “Display” in the layer “hc”, it was
decided to make it visible in the layering, since all elements of the “ui”
layer are allowed to access this component, but no other elements in the
“hc” layer are. To compute the compliance checking results, we used

Validation

 137

the Fraunhofer SAVE tool. Figure 61 depicts sample compliance checking
results and shows the results using overlay icons (convergences as check
marks, divergences as exclamation marks, and absences as “X” icons).

Figure 60 Structural Model: Layering

Figure 61 Compliance Status: Visualization of Convergences, Divergences, and Absences

Table 18 shows the total number of convergences (# of conv.),
divergences, and the degree of compliance (% compliant) for the
products. Since absences mainly express dependencies not instantiated
for a variant of the product line, we excluded them from the table. Table
18 presents the detailed analysis results and lists the numbers of
convergences and divergences to the layering as depicted in Figure 60.
The number of the products roughly indicates the order of development
despite the fact that some products were developed concurrently. The
first column in Table 18 shows the evaluation date when compliance
checking was conducted. For each product evaluated at an evaluation
date, there are two rows: The first row lists the number of convergences
and the number of divergences (the sum is the total number of
dependencies within a product). The second row computes the degree
of violation: The number of divergent relations is divided by the total

Validation

 138

number of relations. Although the products are different regarding their
features, their size, and their developers, the ratio of divergences within
each product is comparable.

Compared to the first three products described in Section 1.2.1, we can
see that, except for product P1, all compliance degrees are higher (i.e.,
compliance was 95.7% for P1, 89.8% for P2, and 72.7% for P3). At the
evaluation date (2006-08), Fraunhofer IESE produced the compliance
checking results, this time for products P4 to P10. All these products
comprised a percentage of divergences of less than 5% (P9 is the only
exception with less than 10%). It can be observed that the total number
of divergences significantly decreased afterwards. For the evaluation
date 2006-10, compliance checking was repeated for products P4 to P10
and was newly conducted for P11. The percentage of divergences
decreased for all products evaluated, with the exception of P8 and P10,
where a slight increase was found. Especially the compliance of product
P11 is remarkable, since mainly new employees were involved in the
realization of this product. The last two evaluation dates (2007-03 and
2007-10) were conducted independently by the Testo architects and
discussed internally. However, the compliance checking results were
shared with Fraunhofer IESE. Updated evaluations of products P4, P5
and P11 have been made, and products P12 to P15 were newly
evaluated. It can be observed that the percentage of divergences did not
exceed 5%. The exception of product P4 (5.8% at evaluation date 2007-
03) was counteracted, as the results for the date 2007-10 show.

Date Status
Products

P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
2006-08 # of Conv.

of Div.
3824

83
1729

33
293

6
337

18
854

21
205

16
1990

92
n/a n/a n/a n/a n/a

 % compliant 97.9 98.1 98.0 94.9 97.6 92.8 94.6 n/a n/a n/a n/a n/a

2006-10 # of Conv.
of Div.

4571
76

1044
16

313
6

398
11

1105
45

285
20

1810
88

3968
107

n/a n/a n/a n/a

 % compliant 98.4 98.5 98.1 97.3 96.1 93.4 95.4 97.4 n/a n/a n/a n/a

2007-03 # of Conv.
of Div.

2307
21

505
31

n/a n/a n/a n/a n/a
5822
161

6120
44

6164
45

2103
13

2092
13

 % compliant 99.1 94.2 n/a n/a n/a n/a n/a 97.3 99.0 99.3 99.4 99.4

2007-10 # of Conv.
of Div.

n/a 2843
50

n/a n/a n/a n/a n/a n/a
3976

39 n/a
2975

33
2828

33

 % compliant n/a 98.3 n/a n/a n/a n/a n/a n/a 99.1 n/a 98.9 98.8

Table 18 Compliance Status: Checking Results Grouped per Product and Evaluation Date

For all evaluation dates, it can be said that the result enabled
controversial discussions among architects and developers. Together
with the rationales of the stakeholders involved, the compliance
checking results served as input to the decision-making process on
structural repairs.

Validation

 139

6.2.1.3 Summary

The main effect, as confirmed subjectively by the Testo architects and
objectively after evaluating 15 products, is that the development
organization obtains a great benefit from achieving compliance to a
large extent and from avoiding (and counteracting) architectural
degeneration. Although we cannot quantify the benefits of architecture
compliance checking as a distinct quality engineering instrument, we
observed certain factors that indicate its usefulness:

� Shortened compliance checking cycle: Fraunhofer IESE started
providing compliance checking activities as a service to Testo. The
point in time when the compliance checking was conducted was
usually late in product development. However, we were able to
observe that the cycles between two compliance checking workshops
became shorter over time (one evaluation in 2005, two evaluations in
2006, and two evaluations in 2007). At the moment, Testo plans to
further reduce the compliance checking cycle time and apply it early
in product development, even if only partial implementations are
available. This motivates the idea of live compliance checking, which
shortens compliance checking to the least minimum possible by
providing live feedback.

� Fewer violations over time: The results of the compliance checking
activities indicate that architectural knowledge in the minds of the
developers has been established successfully. For instance, when
comparing products P3, P4, P11, and P13 (all are mid-sized systems),
a significant and sustainable decline in the number of divergences
can be observed. We believe that the number of violations was
reduced due to the learning effect, which was achieved by developer
education in workshops and meetings.

� Refinement of the analysis scope: The initial applications of
compliance checking evaluated the framework usage and revealed
violations of the layered architecture. The latest analysis results
indicate by the low number of violations that these architectural
constraints are now in place to a large degree. The architects at Testo
plan to refine the analysis scope of compliance checking by
evaluating the detailed dependencies on the subsystem and/or
component level, too.

� Cope with evolution: Compliance checking has been able to cope
with the evolution of the Testo architecture and the implemented
products. Currently, the third generation of the reuse infrastructure
(i.e., the framework) is being developed and, as Table 18 shows,
more than a dozen products have been verified. The compliance
checking results provide input to the continuous refinement and
improvement of the reference architecture and thus, the resulting
products.

Validation

 140

� Input to decision-making: Compliance checking, as mentioned
above, provides input to the decision-making process regarding
modifications to the architecture and/or source code. Besides, due to
the product line context, it is one prerequisite for strategic discussions
(e.g., investment into reusable components, test strategy, planning
and design for reuse) affecting all members of the product line. In
architecture-centric development, it is fundamental that the product
implementations adhere to the architecture, since most decisions are
based upon the architecture.

� Raising architectural awareness: Architecture awareness among
developers requires that each developer has knowledge about the
architecture, especially in those parts that are related to the current
task assignments. The discussion on compliance has fostered the
awareness of the developers.

The key lessons learned are that the development organization at Testo
evolves its product line with a lot more instances at the same time now
than in the past. Ensured compliance is one of the factors that allows
managing and maintaining the family of systems at Testo. The
importance of compliance was confirmed by the architects. We consider
this productivity gain as a partial consequence of having compliance
achieved.

6.2.2 Remote Measurement Devices

6.2.2.1 Context

In [Beyer 2008], we report on our experiences in establishing an
architecture-centric approach at a small development organization –
Wikon GmbH. We applied product line engineering concepts to achieve
reuse on a higher level of abstraction than source code. Iteratively, we
evolved a development organization towards systematic reuse by
introducing an architecture-centric strategy for product development.
The Wikon measurement devices – called the XENON8 family – are
embedded systems that monitor technical facilities remotely. The
development organization for these devices comprises three people, two
developers and one person mainly responsible for quality assurance. The
systems are implemented in the C programming language.

Crucial for the success of architecture-centric development was the fact
that we ensured compliance of the software implementations. We
defined a target for the structural decomposition and started the
restructuring. In doing so, we monitored the gap between the intended
state, which was only 54% compliant with the new structural
decomposition, and the work in progress, which incrementally was
refactored to establish the new structure. Over a period of roughly two
years the implementation was reshaped towards the intended structure.

Validation

 141

6.2.2.2 Compliance Status

The first architecting activity we conducted was obviously to define the
target architecture of the XENON8 platform. To learn about the
variability, we analyzed two variants of the ancestor platform. For the
architecture definition, we applied the architecting module of the
Fraunhofer PuLSE methodology (Product Line Software and System
Engineering, please refer to [Bayer 1999] for details), which resulted in
four architectural views, namely conceptual view, structural view,
behavioral view, and implementation view. This initial documentation of
the intended architecture was partially reconstructed based on the
analysis of the ancestor platform. It enabled efficient discussions and
reasoning on the abstraction level of the software architecture. Hence,
the architectural views were used as a communication vehicle and served
as a foundation for making decisions on how to achieve the business
and development goals.

Legend:

Subsystem

Uses
Dependency

Legend:

Subsystem

Uses
Dependency

Figure 62 Structural Model: Subsystems and Dependencies

The structural view (see Figure 62) describes the functional
decomposition of the system and captures the static structure of a
system. It is relatively close to the later implementation because at
Wikon, the subsystem structure is reflected by directories in the file
system. It is therefore especially interesting for technical stakeholders like
developers.

We conducted static architecture compliance checking using Fraunhofer
SAVE to regularly measure the distance between the intended target
architecture and the implementation in progress. At the beginning, the
implementation had a compliance degree of 54% of all the
dependencies (i.e., includes, function calls, or variable accesses). During
the evolution, the implementations were continuously refactored to
match the intended architecture. The compliance status was reviewed
regularly and, based on the compliance feedback, we could educate the

Validation

 142

developers in advance on the consequences of the architectural decisions
made. Although architecting and architecture-centric development were
new disciplines at Wikon, the developers could achieve a compliance
degree of 95% over time. On their own, the Wikon engineer stated the
goal of achieving 98% in the near future.

6.2.2.3 Summary

Architecture-centric development can only be successful if the
counterparts in the implementation are realized as intended. Then, and
only then, can the architecture serve as a vehicle for decision-making on
evolution and maintenance and as an instrument to guide the
development. At Wikon, we were able to observe the positive impact of
architecture-compliant software implementations.

Compared to the previous product generation, the architecture-centric
development saved 12 person-months of development time (from 32 to
20 person-months) and 3 person-months for quality assurance (mainly
testing, from 8 to 5 person-months) for the first product generation
developed following the new strategy. Moreover, the number of variants
derived almost doubled during the same period of time, while quality
was kept on the same level (there were even slightly less issues due to
software-related problems in the field).

The regular feedback on compliance was one important factor to guide
the restructuring activities at Wikon into the right (i.e., the intended)
direction. The importance of compliance was confirmed by the Wikon
engineers. We claim that compliance played a major role in achieving the
productivity gain (doubled number of products, one third savings in
development effort, with no drop in quality).

6.3 Conclusion

We investigated the role of live feedback in one experiment and
compliance in industrial systems in two case studies. In summary, we
learned the following lessons:

� Live compliance checking can reduce the number of structural
violations. As we observed in the experiment with 60% fewer
violations, the number was significantly lower for the supported
group than for the control group.

� SAVE LiFe successfully realizes the idea of live compliance
checking. The basic communication and analysis platform performed
well in the experiment. Although we could collect a couple of minor
suggestions for improving the implementation, we could show that
the general principle of live feedback and quasi-constructive reverse

Validation

 143

engineering works. Live compliance checking as the first instance
provided conveying results.

� SAVE LiFe scales to development organizations. We were able to
run SAVE LiFe for the experiment with 19 developers for a period of
35 days. Although this experiment took place in an academic setting,
we are confident regarding potential roll-outs in industrial settings.
Other test applications have already shown the scalability towards
larger software-systems and larger distances between developers.

� It is feasible to achieve high compliance degrees in industrial
settings. We could observe in the two industrial case studies that in
the end, they had a compliance degree up to 99% for particular
products. This value shows that it is feasible to achieve compliant
implementation in industrial practice.

� Educating developers on the architecture can be achieved.
Giving developers advice on compliance, informing them about
violations and their architectural context (origin and target
architectural elements, type of violation, etc.) educates the
developers over time. We assume that the frequency of feedback
influences the time for learning. The faster the feedback is received,
the faster the learning is achieved. Therefore, live feedback as
realized by SAVE LiFe is appealing because it provides the results with
the least delay possible.

� Compliance as one key enabler for architecture-centric
development. We observed in both industrial studies that the
benefits of architecture could be harvested because of compliant
implementations. Productivity increased by ensured compliance of
implementations with the architecture.

In short, the experiment as well as the two industrial case studies
revealed the importance of compliance feedback. Sustaining compliance
by pointing out the structural violations in the implementation was
successful. The results are indications that compliance feedback educates
developers because the compliance could be sustained over a long
period of time. Furthermore, education leads to better performance
during the development. We therefore tend to accept the two
hypotheses HF1 and HF2 and believe that feedback successfully establishes
architecture knowledge in the minds of the developers. We further claim
a positive impact of live compliance checking.

Validation

 144

Analysis and Outlook

 145

7 Analysis and Outlook

This thesis introduced an approach for live compliance checking, which
sustains structure in software implementations right from the beginning
of the development. In other words, it achieves architecture compliance
by construction.

Technique
(Section 3)

Method:
Live

Compliance
Checking

Meta-Model
(Section 2)

Process
(Section 4)

Tool SAVE LiFe
(Section 5)

Empirical Motivation Validation
(Section 1) (Section 6)

Technique
(Section 3)

Method:
Live

Compliance
Checking

Meta-Model
(Section 2)

Process
(Section 4)

Tool SAVE LiFe
(Section 5)

Empirical Motivation Validation
(Section 1) (Section 6)

Figure 63 Method Overview: Live Compliance Checking

Figure 63 depicts the core parts of this thesis – the building blocks of the
live compliance checking approach:

� Section 2 introduces the underlying meta-models for the structural
view of the architecture, the source code model, and the mapping
between them.

� Section 3 continues by discussing the state of the art of compliance
checking techniques and presents base technologies from the area of
reverse engineering.

� The process for live compliance checking as part of the development
is explained in Section 4. Further, we elaborate on the impact of
high-frequency live compliance feedback on developers and derive
potential savings for the compliance achievement effort.

� The technical realization of SAVE LiFe (Software Architecture
Visualization and Evaluation with Live Feedback) is presented in
Section 5. SAVE LiFe is a client-server-client system providing a fat

Analysis and Outlook

 146

client (the architecture manager), a central server (the compliance
checker), and thin clients (the development monitor).

� The overall empirical motivation for the idea of live compliance
checking was already given in Section 1. We motivated the idea by a
survey on industrial cases, where the evolution and maintenance of
software systems was effort-intensive and time consuming. In all
cases, we could further observe that none of the examined systems
was compliant with its architecture. We confirmed in three
replications of a controlled experiment that lack of compliance is one
factor that affects the evolution negatively.

� Having developed the solution and realized tool support via SAVE
LiFe and its ancestor SAVE allowed us to investigate the effects of
compliance checking with live feedback and feedback at regular
intervals. Section 6 presents the results of this validation. Support by
SAVE LiFe with live feedback on compliance resulted in 60% fewer
violations. Further, we showed the positive effects of compliance in
industrial case studies: Increased productivity. Moreover, we could
observer that a degree of 99% compliance is feasible in an industrial
context.

The results and contributions of this thesis are summarized in Section 7.1
followed by an outlook on future work in Section 7.2. Section 7.3
concludes this thesis with final remarks.

7.1 Results and Contribution

There are three strategies for improving software productivity: working
faster, working smarter, or avoiding unnecessary work [Boehm 1999].
Live compliance checking achieves the latter, which promises the highest
payoff. Supported by SAVE LiFe, the effort for sustaining structure in
software implementations is significantly reduced. Further, developers
are educated on the architecture, which enables them to understand the
role of their local task in the overall system perspective and to actively
participate in architecting.

The pro-active prevention of structural decay is the underlying idea of
turning compliance checking from an analytical into a quasi-constructive
technique. The results and contributions are in detail:

� We defined a metric for architecture compliance, which can be used
to assess the compliance status of software implementations (see
Section 2.4).

� The metric takes advantage of the formal definition of the meta-
models for the structural view of the architecture and the source
code model (see Sections 2.1 to 2.3). Meta-models are required for
the execution of analytical compliance checking and live compliance
checking.

Analysis and Outlook

 147

� We characterized typical evolution scenarios for implemented systems
by using the compliance metric (see Section 2.5).

� We exemplified how the reverse engineering archetype is instantiated
by compliance checking techniques (see Section 3.3).

� We provided a review of the state of the art in compliance checking
(see Section 3.3). We showed the equivalence in expressiveness of
Reflexion models and dependency rules (see Section 3.3).

� We showed that Reflexion models provide better applicability for live
compliance checking than dependency rules (see Section 3.4).

� We explained the new paradigm of quasi-constructive reverse
engineering with live feedback, which generally aims at the
constructive use of analytical techniques (see Section 3.5).

� We introduced the process for live compliance checking, which
involves the roles of architect and developer (see Section 4.1). Their
process parts extend their regular development process through
interaction with compliance checking process parts. All three parts
together constitute the approach for live compliance checking.

� We explain how the high execution frequency leads to two effects in
the implementation of software systems: the learning effect for the
developers and the prompt removal effect for violations (see Section
4.2).

� We present a theoretical model on the savings for structural repairs
effort (i.e., the compliance achievement effort, see Section 4.3),
which predicts for weak effects savings of 67% compared to regular
development.

� Finally, Section 5 presents the tool support for live compliance
checking. The client-server-client system consists of the architecture
manager, the compliance checker on top of the analysis platform,
and the development monitor.

� The empirical contributions comprise a survey on industrial systems
distilling the problem of lack of compliance (see Sections 1.2.1), three
replications of a controlled experiment showing compliance benefits
(less than 50% effort for an evolutionary task (see Section 1.2.2), an
experiment showing the effect of live compliance checking supported
by SAVE LiFe (see Section 6.1), and two industrial case studies
reporting on the positive impact of compliance on the overall
productivity of a development organization (see Section 6.2). Figure 7
summarizes the empirical contributions (see Section 1.4).

In short, this thesis contributes to the field of software architecture by
providing a method that achieves compliance by construction. The
positive effects have been empirically validated. In addition to this
contribution, this thesis revealed open issues that provide many entry
points for future research.

Analysis and Outlook

 148

7.2 Future Work

This section delivers a sketch of potential future activities based on the
results provided by this thesis. The outlook is grouped into four areas:
experimentation (addressing the need for further validation), compliance
checking (raising issues in its application), quasi-constructive reverse
engineering (the new paradigm introduced by this thesis), and live
feedback platform (open issues with the underlying technical platform).

7.2.1 Experimentation

The empirical studies we provided in this thesis require further
experimentation and replications, if possible, with varying factors. We
can identify four cases that are particularly interesting:

� First, the examined cases in the state-of-the-practice survey (see
Sections 1.2.1) might not be representative. We therefore would like
to extend the survey and encourage further investigation on this
topic by other researchers. Although we have a strong belief that lack
of compliance is a recurring, practical problem, more data is required
to extend the ground of this assumption.

� Second, the three replications of the compliance experiment (see
Section 1.2.2) varied the groups of persons executing the
evolutionary task, but this was the sole factor that was different. We
challenge other researchers to vary the evolutionary task and the
system under analysis. We look forward to receiving more data on
this topic.

� Third, the experiment on live compliance checking (see Section 6.2)
provided a first data point on the impact of live feedback. However,
due to the environmental settings, we plan to replicate this
experiment. Ideally, we would have two groups of teams: all
implementing the same functionality based on the same architecture
over a long period of time (i.e., several weeks or month), one group
with SAVE LiFe support and the other one without. Only such a long-
term study can deliver well-grounded empirical facts on the long-
term applicability and effects of live compliance checking. We are
searching for such opportunities but know that this proposed
experimentation scenario is rather utopistic.

� Fourth, another open issue is to isolate the role of compliance for the
productivity gain as observed in the two case studies reported on in
Section 6.2. In both cases, the architects perceived compliance as an
important factor; however, we were not able to quantify it. It would
be interesting to have data that allows determining the exact impact
of compliance.

Analysis and Outlook

 149

In short, experimentation in future work requires more data points on
the effects of compliance, live feedback, and the role of compliance
throughout the entire lifecycle of the software system.

7.2.2 Compliance Checking

We gathered a lot of experiences on applying compliance checking
(analytical and quasi-constructive with live feedback) in the course of this
thesis. These experiences yield open issues for future research related to
the result presentation and the capability to analyze variants:

� The architects of a system have the responsibility to monitor and
track the compliance of the implementation. Due to the inherent
complexity of modern software systems, adequate means have to be
chosen to support the architects and this task. Visualization offers the
potential to easily see complex correlations in large data sets, which
are not obvious when just looking at the pure data in a textual or
tabular form. However, the visualization of compliance checking
results for either architects or developers has a strong impact on the
perception of the results. For instance, for the fat client of the
architecture, we could show a 63% gain in effectiveness for
architectural analysis tasks simply by changing the configuration of
the graphical elements of the visualization [Knodel 2008c]. Future
work should aim at finding an optimal configuration for the
architects and investigate different visualization options for the
developers, too.

� In compliance checking we are able to analyze exactly one variant
(snapshot-based or live during development) at a time. However,
many systems today rather exist in families, which means they
comprise a number of similar variants or are managed as a product
line (see [Weiss 1999] and [Clements 2001] with explicit variation
points. Compliance checking so far does not support the analysis of
several variants at the same time (i.e., in one run). The extension of
compliance checking might lead to effort savings when analyzing
large product families.

Compliance checking as such is rather mature, but we identified open
issues in the visualization of the results and the missing ability to analyze
several variants in one single run.

7.2.3 Quasi-Constructive Reverse Engineering

We introduced the paradigm shift towards quasi-constructive use of
reverse engineering techniques (see Section 3.5). An open research
question is how this paradigm will influence software development in
the long run:

Analysis and Outlook

 150

� First, there is a research need to analyze, which reverse engineering
techniques are adequate and appropriate candidates to be
transformed into a quasi-constructive technique. It is unknown at the
moment, if all or a limited set of techniques (and if so, which ones)
can produce useful results as a quasi-constructive technique.

� Second, the return on investment (ROI) has to be analyzed for the
techniques. Is the effort to integrate the technique into the
development process worthwhile? For live compliance checking, we
can say that there is clear pay-off, which was confirmed by the
theoretical model and the empirical data. But this question is
unanswered for other reverse engineering techniques.

� Third, the technical infrastructure and its capabilities to execute other
reverse engineering techniques in a quasi-constructive manner has to
be reviewed with respect to its performance, resource consumption,
and other issues.

To summarize, we think that the idea of quasi-constructive reverse
engineering [Knodel 2008a] is beneficial, at least for some techniques
like compliance checking. But there is a clear need for future research
before we can generalize our conclusion.

7.2.4 Live Feedback Platform

The technical live feedback platform (see Section 5) establishes a logical
communication channel between the server and either the thin clients or
the fat client. It further provides an extensible platform, which could
provide more analysis features:

� We can imagine realizing the live analysis for features like source
code metrics, bad smells, anti-patterns, etc. All analyses are based on
the meta-model of the source code. Hence, they potentially could be
integrated as another kind of analysis provided by SAVE LiFe.

� In addition to the light-weight live feedback for developers, we see as
future work the transfer of graphical results so that the developers
can use advanced visualization means for perceiving the results.

� Another major benefit would be an extension for the fat client of the
architect. Instead of just requesting the compliance status, it might
realize a live monitor that visualizes the whole development work of
the team live or in a flipbook-based manner. This feature would
empower the architect to have full control and total transparency of
the development organization currently ongoing work.

The live feedback platform is the first step towards supporting
development organizations in managing the source code in an
architecture-centric manner. We envision future work to extend this
platform towards live visualization of the whole ongoing development
with additional analysis features realized on the basis of the platform.

Analysis and Outlook

 151

These extensions could culminate in a software evolution environment
where everything is visualized live and every modification is immediately
processed, analyzed, and tracked. This software evolution environment
would enable new development practices and establish quasi-
constructive reverse engineering with live feedback as a paradigm, and,
last but least, fully integrate reverse engineering and forward
engineering. Due to the new approach to quality engineering, rework
and unnecessary work could be potentially saved.

7.3 Final Remarks

This thesis provides a classical example of applied research. We observed
a practical problem in industry. The assumption on the underlying root
cause was empirically validated – we found evidence that compliance
has a significant impact on the effort required for evolution. This
motivation then guided the development of the solution introduced by
this thesis – live compliance checking. To enable this basic idea, we
defined the method’s meta-models, the core technique, and the
surrounding process. Further, we developed the SAVE LiFe tool to
support and automate the process. Validating the solution then assured
that the solution developed actually tackles the problem observed. Our
studies to date confirm that this is the case. Feedback educates
developers and eventually leads to a higher degree of compliance.

Our approach achieves architecture compliance by construction. It
sustains structure in implementations and assures traceability between
architecture and source. However, only the future will allow judging the
real value of live compliance checking. The method and the tool are
ready to be rolled out for applications in industrial practice. And, of
course, we feel confident regarding the future and optimistically look
forward to live compliance checking applications.

Analysis and Outlook

 152

References

 153

8 References

[Aldrich 2002]
 Aldrich, J., Chambers, C., & Notkin, D. (2002). ArchJava: connecting

software architecture to implementation. Proceedings of the 22rd
International Conference on Software Engineering (ICSE 2002), Orlando,
Florida, USA.

[Allen 1997]
 Allen, R., & Garlan, D. (1997). A Formal Basis for Architectural

Connection. ACM Transactions on Software Engineering and
Methodology, 6(3), 213-249.

[Areces 1998]
 Areces, C., Felder, M., Hirsch, D., & Yankelevich, D. (1998). Modal logic

as a design notation. 9th International Workshop on Software
Specification and Design (IWSSD-9), Kyoto, Japan.

[Babar 2004]
 Babar, M. A., & Gorton, I. (2004). Comparison of Scenario-Based

Software Architecture Evaluation Methods. Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC'04) - Volume 00.

[Basili 1993]
 Basili, V. (1993). The Experimental Paradigm in Software Engineering.

Experimental Software Engineering Issues: Critical Assessment and
Future Directions, Lecture Notes in Computer Science #706.

[Basili 1994]
 Basili, V., Caldiera, G., & Rombach, H. D. (1994). The

Goal/Question/Metric Paradigm. Encyclopedia of Sofware Engineering
(Ed.: John Marciniak), John Wiley & Sons, vol. 1, 528-532.

[Batory 1997]
 Batory, D., & Geraci, B. J. (1997). Composition Validation and

Subjectivity in GenVoca Generators. IEEE Transactions on Software
Engineering, 23(2), 67-82.

[Bauhaus 2008]
 Bauhaus. (2008). Bauhaus. from http://www.axivion.com

References

 154

[Bayer 1999]
 Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., et al.

(1999). PuLSE: A Methodology to Develop Software Product Lines.
Proceedings of the Fifth Symposium on Software Reusability (SSR 1999),
Los Angeles, USA.

[Bayer 2004]
 Bayer, J., Forster, T., Ganesan, D., Girard, J.-F., John, I., Knodel, J., et al.

(2004). Definition of Reference Architectures based on Existing Systems.
Fraunhofer IESE, Kaiserslautern, Germany. IESE-Report 034.04/E.

[Beyer 2008]
 Beyer, H. J., Hein, D., Schitter, C., Knodel, J., Muthig, D., & Naab, M.

(2008). Introducing Architecture-Centric Reuse into a Small
Organization. 10th International Conference on Software Reuse (ICSR
2008).

[Boehm 1981]
 Boehm, B. W. (1981). Software Engineering Economics. Englewood

Cliffs, NJ : Prentice-Hall.

[Boehm 1995]
 Boehm, B. W. (1995). Engineering Context for Software Architecture.

First International Workshop on Architecture for Software Systems,
Seattle, Washington, USA.

[Boehm 1999]
 Boehm, B. W. (1999). Managing software productivity and reuse. IEEE

Computer, 32(9), 111–113.

[Bosch 2000]
 Bosch, J. (2000). Design and use of software architectures: adopting and

evolving a product-line approach. ACM Press/Addison-Wesley Publishing
Co.

[Bourquin 2007]
 Bourquin, F., & Keller, R. K. (2007). High-impact Refactoring Based on

Architecture Violations. 11th European Conference on Software
Maintenance and Reengineering, 2007. CSMR '07.

[Broehl 1995]
 Broehl, A.-P., & Droeschel, W. (1995). Das V-Modell. Der Standard fuer

die Softwareentwicklung mit Praxisleitfaden Oldenbourg Verlag, (2nd
edition).

References

 155

[Carmichael 1995]
 Carmichael, I., Tzerpos, V., & Holt, R. C. (1995). Design maintenance:

unexpected architectural interactions. Proceedings of the International
Conference on Software Maintenance (ICSM 1995), Opio (Nice), France.

[Chikofsky 1990]
 Chikofsky, E. J., & Cross II, J. H. (1990). Reverse Engineering and Design

Recovery: A Taxonomy (Vol. 7, pp. 13-17): IEEE Computer Society Press.

[Christl 2005]
 Christl, A., Koschke, R., & Storey, M.-A. D. (2005). Equipping the

Reflexion Method with Automated Clustering. Working Conference on
Reverse Engineering (WCRE), Pittsburgh, USA.

[Clements 2001]
 Clements, P., & Northrop, L. M. (2001). Software Product Lines: Practices

and Patterns. Addison-Wesley.

[Clements 2002a]
 Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., et al.

(2002a). Documenting Software Architectures: Views and Beyond.
Pearson Education.

[Clements 2002b]
 Clements, P., Kazman, R., & Klein, M. (2002b). Evaluating software

architectures: methods and case studies. Addison-Wesley Longman
Publishing Co., Inc.

[Clements 2003]
 Clements, P., & Kazman, R. (2003). Software Architecture in Practices.

Addison-Wesley Longman Publishing Co., Inc.

[Dashofy 2002]
 Dashofy, E. M., van der Hoek, A., & Taylor, R. N. (2002). An

Infrastructure for the Rapid Development of XML-Based Architecture
Description Languages. Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002).

[Davis 1997]
 Davis, M. J., & Williams, R. B. (1997). Software architecture

characterization. ACM SIGSOFT Software Engineering Notes, 22(3), 30-
38.

[Deming 1986]
 Deming, W. E. (1986). Out of the Crisis. MIT CAES Center for Advanced

Engineering Study. Cambridge, MA, USA.

References

 156

[Dennis 2003]
 Dennis, G. (2003). TSAFE: Building a Trusted Computing Base for Air

Traffic Control Software. Masters Thesis, Massachusetts Institute of
Technology (MIT), USA.

[Deursen 2004]
 Deursen, A. v., Hofmeister, C., Koschke, R., Moonen, L., & Riva, C.

(2004). Symphony: View-Driven Software Architecture Reconstruction.
Proceedings of the Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA'04) - Volume 00.

[Dijkstra 1982]
 Dijkstra, E. W. (1982). Selected writings on computing: a personal

perspective. Springer-Verlag New York, Inc.

[Dobrica 2002]
 Dobrica, L., & Niemelä, E. (2002). A survey on software architecture

analysis methods. IEEE Transactions on Software Engineering, 28 638-
653.

[Dueñas 2005]
 Dueñas, J. C., & Capilla, R. (2005). The Decision View of Software

Architecture. 2nd European Workshop on Software Architecture (EWSA
2005). Pisa, Italy.

[Ebert 2002]
 Ebert, J., Kullbach, B., Riediger, V., & Winter, A. (2002). Gupro - generic

understanding of programs. Electronic Notes in Theoretical Computer
Science, 72(2), 59–68.

[Eclipse 2009]
 Eclipse. (2009). Eclipse Platform. from http://www.eclipse.org

[Eichberg 2008]
 Eichberg, M., Kloppenburg, S., Klose, K., & Mezini, M. (2008). Defining

and continuous checking of structural program dependencies.
Proceedings of 30th International Conference on SoftwareEngineering
(ICSE 2008), Leipzig, Germany.

[Eick 2001]
 Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001).

Does Code Decay? Assessing the Evidence from Change Management
Data.

[EMF 2009]
 EMF. (2009). Eclipse Modeling Framework (EMF). from

http://eclipse.org/modeling/emf/

References

 157

[Endres 2003]
 Endres, A., & Rombach, H. D. (2003). A Handbook of Software and

Systems Engineering - Empirical Observations, Laws and Theories.
Addison-Wesley.

[Erzberger 2001]
 Erzberger, H. (2001). The automated airspace concept. 4th USA/Europe

Air Traffic Management R&D Seminar, Santa Fe, New Mexico, USA.

[Feijs 1998]
 Feijs, L., Krikhaar, R., & Van Ommering, R. (1998). A Relational Approach

to Support Software Architecture Analysis. Software Practice and
Experience, 28(4), 371-400.

[Fischer 2003]
 Fischer, M., Pinzger, M., & Gall, H. (2003). Analyzing and Relating Bug

Report Data for Feature Tracking. Proceedings of the 10th Working
Conference on Reverse Engineering, Victoria, Canada.

[Fjelstad 1983]
 Fjelstad, R. K., & Hamlen, W. T. (1983). Application program

maintenance study: report to our respondents. G. Parikh and N.
Zvegintzov, eds. Tutorial on Software Maintenance. Los Angeles, CA:
IEEE Computer Society Press, 11–27.

[Frakes 1992]
 Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval, Data

Structures and Algorithms. Prentice Hall.

[Frenzel 2007]
 Frenzel, P., Koschke, R., Breu, A., & Angstmann, K. (2007). Extending

the Reflexion Method for Consolidating Software Variants into Product
Lines. 14th Conference on Reverse Engineering (WCRE 2007),
Vancouver, Canada.

[Garlan 1995]
 Garlan, D. A., & Ockerbloom, J. R. (1995). Architectural mismatch: Why

reuse is so hard. IEEE Software, 12(6), 17–26.

[GEF 2009]
 GEF. (2009). Graphical Editing Framework (GEF). from

http://eclipse.org/gef/

[GMF 2009]
 GMF. (2009). Graphical Modeling Framework (GMF). from

http://eclipse.org/modeling/gmf/

References

 158

[Godfrey 2000]
 Godfrey, M. W., & Lee, E. H. S. (2000). Secrets from the monster:

Extracting Mozilla's software architecture. In Proc. of 2000 Intl.
Symposium on Constructing software engineering tools (CoSET 2000).

[Graphviz 2008]
 Graphviz. (2008). Graphviz - Graph Visualization Software. from

http://www.graphviz.org/

[Green 1999]
 Green, G., & Hevner, A. (1999). Perceived Control of Software

Developers and Its Impact on the Successful Diffusion of Information
Technology Special Report CMU/SEI-98-SR-013, Software Engineering
Institute, Carnegie Mellon University, USA.

[Green 2000]
 Green, G., & Hevner, A. (2000). Guidance for the Successful Diffusion of

Information Technology Innovations in Software Development
Organizations. IEEE Software, 17(6), 96-103.

[Gurp 2002]
 Gurp, J. v., & Bosch, J. (2002). Design erosion: problems and causes.

[Harris 1995]
 Harris, D. R., Reubenstein, H. B., & Yeh, A. S. (1995). Reverse

engineering to the architectural level. Proceedings of the 17th
International Conference on Software engineering (ICSE 1995), Seattle,
USA.

[Henry 1981]
 Henry, S., & Kafura, D. (1981). Software Structure Metrics Based on

Inforamtion Flow. IEEE Transactions on Software Engineering, SE-7(5).

[Herzum 2000]
 Herzum, P., & Sims, O. (2000). Business Components Factory: A

Comprehensive Overview of Component-Based Development for the
Enterprise. John Wiley & Sons, Inc.

[Hochstein 2005]
 Hochstein, L., & Lindvall, M. (2005). Combating architectural

degeneration: a survey. Information and Software Technology, In Press,
Corrected Proof.

[Hofmeister 2000]
 Hofmeister, C., Nord, R., & Soni, D. (2000). Applied software

architecture. Addison-Wesley Longman Publishing Co., Inc.

References

 159

[Holt 1996]
 Holt, R. C. (1996). Binary relational algebra applied to software

architecture. CSRI Technical Report 345, University of Toronto, Canada.

[Holt 1998]
 Holt, R. C. (1998). Structural manipulations of software architecture

using Tarski relation algebra Proceedings of 5th Working Conference on
Reverse Engineering (WCRE 1998), Honolulu, Hawaii, USA.

[Hou 2006]
 Hou, D., & Hoover, H. J. (2006). Using SCL to specify and check design

intent in source code. IEEE Transactions on Software Engineering, 32(6),
404-423.

[IEEE-Std-610.12 1990]
 IEEE-Std-610.12. (1990). IEEE standard glossary of software engineering

terminology. IEEE, New York, 1990.

[IEEE-Std.1471 2000]
 IEEE-Std.1471. (2000). ANSI/IEEE Std 1471-2000 - Recommended

Practice for Architectural Description of Software-Intensive Systems. IEEE,
New York, October 2000.

[Ionita 2002]
 Ionita, M. T., Obbink, H., & Hammer, D. (2002). Scenario-Based

Architecture Evaluation Methods: An Overview. Software Architecture
Review and Assessment Workshop Proceedings (SARA), at International
Conference on Software Engineering (ICSE'02).

[Jazayeri 2000]
 Jazayeri, M., Ran, A., & Linden, F. v. d. (2000). Software architecture for

product families: principles and practice. Addison-Wesley Longman
Publishing Co., Inc.

[jDepend 2008]
 jDepend. (2008). jDepend. from

http://www.clarkware.com/software/JDepend.html

[John 2003]
 John, I., & Dörr, J. (2003). Elicitation of Requirements from User

Documentation. Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality (Refsq '03),
Klagenfurt/Velden, Austria.

[jRMTool 2008]
 jRMTool. (2008). jRMTool. from http://www.cs.ubc.ca/~murphy/jRMTool

References

 160

[Klocwork 2008]
 Klocwork. (2008). from http://www.klocwork.com/

[Knodel 2002]
 Knodel, J. (2002). Process models for the reconstruction of software

architecture views. Diploma Thesis no. 1987, University of Stuttgart,
Germany.

[Knodel 2003]
 Knodel, J., & Pinzger, M. (2003). Improving Fact Extraction of

Framework-Based Software Systems. In 10th Working Conference on
Reverse Engineering. WCRE'2003 - Proceedings (pp. 186-195): IEEE
Computer Society, Los Alamitos.

[Knodel 2004]
 Knodel, J., & Girard, J.-F. (2004). Request-driven Reverse Engineering for

Product Lines. Reengineering Prozesse (RePro 2004) Workshop .
Fallstudien, Methoden, Vorgehen, Werkzeuge, Koblenz, Germany.

[Knodel 2005a]
 Knodel, J., John, I., Ganesan, D., Pinzger, M., Usero, F., Arciniegas, J. L.,

et al. (2005a). Asset Recovery and Their Incorporation into Product Lines.
12th Working Conference on Reverse Engineering (WCRE 2005),
Pittsburgh, USA.

[Knodel 2005b]
 Knodel, J., Lindvall, M., & Muthig, D. (2005b). Static Evaluation of

Software Architectures - A Short Summary. Fifth Working IEEE / IFIP
Conference on Software Architecture (WICSA 2005), Pittsburgh, USA.

[Knodel 2005c]
 Knodel, J., & Muthig, D. (2005c). Analyzing the Product Line Adequacy

of Existing Components. First International Workshop on Reengineering
towards Product Lines (R2PL 2005), Pittsburgh, USA.

[Knodel 2006a]
 Knodel, J., Kolb, R., Muthig, D., Leszak, M., Rauch, P., Meier, G., et al.

(2006a). Software Architecture Innovation Cycle - Development,
Documentation, and Compliance Checking. Fraunhofer IESE,
Kaiserslautern, Germany. IESE-Report 178.06/E.

[Knodel 2006b]
 Knodel, J., Koschke, R., & Mende, T. (2006b). Reverse Engineering in a

Reuse Context. Technical Report. Fraunhofer IESE, Kaiserslautern,
Germany. IESE-Report 177.06/E.

References

 161

[Knodel 2006c]
 Knodel, J., Muthig, D., Naab, M., & Lindvall, M. (2006c). Static

Evaluation of Software Architectures. Proceedings of the Conference on
Software Maintenance and Reengineering.

[Knodel 2006d]
 Knodel, J., Muthig, D., Naab, M., & Zeckzer, D. (2006d). Towards

Empirically Validated Software Architecture Visualization. ACM
Symposium on Software Visualization, SOFTVIS 06, Brighton, United
Kingdom.

[Knodel 2007]
 Knodel, J., & Popescu, D. (2007). A Comparison of Static Architecture

Compliance Checking Approaches. Sixth Working IEEE/IFIP Conference
on Software Architecture (WICSA 2007), Mumbai, India.

[Knodel 2008a]
 Knodel, J., & Muthig, D. (2008a). A Decade of Reverse Engineering at

Fraunhofer IESE - The Changing Role of Reverse Engineering in Applied
Research. 10th Workshop Software Reengineering (WSR 2008), Bad
Honnef, Germany.

[Knodel 2008b]
 Knodel, J., Muthig, D., Haury, U., & Meier, G. (2008b). Architecture

Compliance Checking - Experiences from Successful Technology Transfer
to Industry. 12th European Conference on Software Maintenance and
Reengineering (CSMR 2008), Athens, Greece.

[Knodel 2008c]
 Knodel, J., Muthig, D., & Naab, M. (2008c). An Experiment on the Role

of Graphical Elements in Architecture Visualization. Empirical Software
Engineering Journal (EMSE) 13 (6), 693-726.

[Knodel 2008d]
 Knodel, J., D. Muthig, & Rost, D. (2008d). Constructive Architecture

Compliance Checking — An Experiment on Support by Live Feedback.
International Conference on Software Maintenance (ICSM), Beijing,
China.

[Knodel 2009a]
 Knodel, J., Duszynski, S., & Lindvall, M. (2009a). SAVE: Software

Architecture Visualization and Evaluation. 13th European Conference on
Software Maintenance and Reengineering (CSMR 2009), Kaiserslautern,
Germany.

References

 162

[Knodel 2009b]
 Knodel, J., & Lindvall, M. (2009b). TSAFE Architecture Analyses -

Evaluation of the Quality Attribute Compliance. Technical Report. IESE-
Report 051.09/E, Kaiserslautern, Germany.

[Kolb 2006]
 Kolb, R., John, I., Knodel, J., Muthig, D., Haury, U., & Meier, G. (2006).

Experiences with Product Line Development of Embedded Systems at
Testo AG. In 10th International Software Product Line Conference, SPLC
2006 - Proceedings (pp. 172-181): IEEE Computer Society, Los Alamitos.

[Koschke 2003]
 Koschke, R., & Simon, D. (2003). Hierarchical Reflexion Models. 10th

Working Conference on Reverse Engineering (WCRE 2003), Victoria,
Canada.

[Koschke 2005]
 Koschke, R. (2005). Rekonstruktion von Software-Architekturen.

Informatik - Forschung und Entwicklung, 19(3), 127-140.

[Koschke 2008]
 Koschke, R. (2008). Zehn Jahre WSR - Zwölf Jahre Bauhaus. Proceedings

of 10th Workshop Software Reengineering (WSR 2008), Bad Honnef,
Germany.

[Krikhaar 1999]
 Krikhaar, R. (1999). Software Architecture Reconstruction. Ph.D. Thesis,

University of Amsterdam, The Netherlands.

[Kruchten 1995]
 Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software,

12(6), 42-50.

[Lam 2003]
 Lam, P., & Rinard, M. (2003). A Type System and Analysis for the

Automatic Extraction and Enforcement of Design Information.
Proceedings of the 17th European Conference on Object-Oriented
Programming.

[Lattix 2008]
 Lattix. (2008). Lattix Dependency Manager (LDM). from

http://www.lattix.com

[Lehman 1985]
 Lehman, M. M., & Belady, L. A. (1985). Program evolution: processes of

software change. Academic Press Professional, Inc.

References

 163

[Lindvall 2002]
 Lindvall, M., Tvedt, R. T., & Costa, P. (2002). Avoiding Architectural

Degeneration: An Evaluation Process for Software Architecture. 8th IEEE
International Software Metrics Symposium (METRICS 2002), Ottawa,
Canada.

[Lindvall 2003]
 Lindvall, M., Tvedt, R. T., & Costa, P. (2003). An Empirically-Based

Process for Software Architecture Evaluation. Empirical Software
Engineering, 8(1), 83-108.

[Lindvall 2005]
 Lindvall, M., Rus, I., Shull, F., Zelkowitz, M. V., Donzelli, P., Memon, A.,

et al. (2005). An Evolutionary Testbed for Software Technology
Evaluation. Innovations in Systems and Software Engineering - a NASA
Journal,, 1(1), 3-11.

[McCabe 1976]
 McCabe, T. J. (1976). A complexity measure. IEEE Transaction on

Software Engineering, 2(4).

[Medvidovic 1999]
 Medvidovic, N., Rosenblum, D. S., & Taylor, R. N. (1999). A Language

and Environment for Architecture-Based Software Development and
Evolution. Proceedings of the International Conference on Software
Engineering (ICSE 1999).

[Medvidovic 2000]
 Medvidovic, N., & Taylor, R. N. (2000). A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1), 70-93.

[Mendoca 1996]
 Mendoca, N. C., & Kramer, J. (1996). Requirements for an Effective

Architecture Recovery Framework. SIGSOFT 96 Workshop, San Francisco,
USA.

[Merriam-Webster 2009]
 Merriam-Webster. (2009). Compliance -- Merriam-Webster Dictionary.

from http://www.merriam-webster.com/dictionary/compliance

[Miller 2002]
 Miller, F. J. (2002). I = 0 (Information has no intrinsic meaning).

Electronic Journal on Information Research, 8(1), paper no. 140.

References

 164

[Miodonski 2004]
 Miodonski, P. (2004). Evaluation of Software Architectures with Eclipse.

Rombach, H. Dieter (Supervisor); Muthig, Dirk (Supervisor); Lindvall,
Mikael (Supervisor); Knodel, Jens (Supervisor); Forster, Thomas
(Supervisor). Diploma Thesis, TU Kaiserslautern, Germany.

[Moonen 2001]
 Moonen, L. (2001). Generating robust parsers using island grammars.

Working Conference on Reverse Engineering (WCRE), Stuttgart,
Germany.

[Moonen 2002]
 Moonen, L. (2002). Exploring Software Systems. PhD thesis, Faculty of

Natural, Sciences, Mathematics, and Computer Science, University of
Amsterdam.

[Müller 1994]
 Müller, H. A., Wong, K., & Tilley, S. R. (1994). Understanding software

systems using reverse engineering technology. The 62nd Congress of
L'Association Canadienne Francaise pour l'Avancement des Sciences
Proceedings (ACFAS).

[Murphy 1995]
 Murphy, G. C., Notkin, D., & Sullivan, K. J. (1995). Software Reflexion

Models: Bridging the Gap between Source and High-Level Models.
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of
Software Engineering Washington D.C., USA

[Murphy 1996]
 Murphy, G. C., & Notkin, D. (1996). Lightweight lexical source model

extraction. ACM Transactions on Software Engineering and
Methodology, 5(3), 262-292.

[Murphy 1997]
 Murphy, G. C., & Notkin, D. (1997). Reengineering with Reflexion

Models: A Case Study. IEEE Computer, 30(8), 29-36.

[Murphy 2001]
 Murphy, G. C., Notkin, D., & Sullivan, K. J. (2001). Software reflexion

models: bridging the gap between design and implementation. IEEE
Transactions on Software Engineering, 27(4), 364-380.

[Naur 1968]
 Naur, P., & Randell, B. (1968, 7-11 Oct). SOFTWARE ENGINEERING:

Report of a conference sponsored by the NATO Science Committee,
Garmisch, Germany.

References

 165

[OSGi 2009]
 OSGi. (2009). OSGi - Open Services Gateway initiative. from

http://www.osgi.org/

[Parnas 1972]
 Parnas, D. L. (1972). On the criteria to be used in decomposing systems

into modules (Vol. 15, pp. 1053-1058): ACM.

[Parnas 1994]
 Parnas, D. L. (1994). Software aging. Proceedings of the 16th

international conference on Software engineering.

[Perry 1992]
 Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software

architecture (Vol. 17, pp. 40-52): ACM.

[Pinzger 2002]
 Pinzger, M., Fischer, M., Gall, H., & Jazayeri, M. (2002). Revealer: A

Lexical Pattern Matcher for Architecture Recovery. Working Conference
on Reverse Engineering, Richmond, USA.

[Pinzger 2003]
 Pinzger, M., Gall, H., Girard, J.-F., Knodel, J., Riva, C., Pasman, W., et al.

(2003). Architecture Recovery for Product Families. Fifth International
Workshop on Product Family Engineering (PFE-5), Siena, Italy.

[Pollet 2007]
 Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cimpan, S., & Verjus, H.

(2007). Towards A Process-Oriented Software Architecture
Reconstruction Taxonomy. 11th European Conference on Software
Maintenance and Reengineering (CSMR'07)

[Postma 2003]
 Postma, A. (2003). A method for module architecture verification and its

application on a large component-based system. Information & Software
Technology, 45(4), 171-194.

[Pressman 2004]
 Pressman, R. S. (2004). Software Engineering: A Practitioner's Approach.

McGraw Hill, New York.

[Probst 1999]
 Probst, G. J. B., Raub, S., & Romhardt, K. (1999). Wissen managen: Wie

Unternehmen ihre wertvollste Ressource optimal nutzen. Wiesbaden. Dr.
Th. Gabler Verlag.

References

 166

[Raza 2006]
 Raza, A., Vogel, G., & Plödereder, E. (2006). Bauhaus - a tool suite for

program analysis and reverse engineering. 11th International Conference
on Reliable Software Technologies (Ada-Europe).

[Riva 2004]
 Riva, C. (2004). View-based Software Architecture Reconstruction. Ph.D.

Thesis, Vienna University of Technology, Austria.

[RMI 2009]
 RMI. (2009). Java Remote Method Invocation (Java RMI). from

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

[Rosik 2008]
 Rosik, J., Gear, A. L., Buckley, J., & Babar, M. A. (2008). An industrial

case study of architecture conformance. Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement.

[Rost 2007]
 Rost, D. (2007). Real-Time Tracking of Evolving Software Architectures.

Knauber, Peter (Supervisor). Knodel, Jens (Supervisor). Diploma Thesis,
Hochschule Mannheim, Germany.

[Rozanski 2005]
 Rozanski, N., & Woods, E. (2005). Software Systems Architecture:

Working With Stakeholders Using Viewpoints and Perspectives. Addison-
Wesley Professional.

[Rus 2002]
 Rus, I., & Lindvall, M. (2002). Guest Editors' Introduction: Knowledge

Management in Software Engineering (Vol. 19, pp. 26-38): IEEE
Computer Society Press.

[Sartipi 2006]
 Sartipi, K., Dezhkam, N., & Safyallah, H. (2006). An Orchestrated Multi-

view Software Architecture Reconstruction Environment. Proceedings of
the IEEE International Working Conference on Reverse Engineering
(WCRE 2006), Benevento, Italy.

[Schmid 2005]
 Schmid, K., John, I., Kolb, R., & Meier, G. (2005). Introducing the PuLSE

Approach to an Embedded System Population at Testo AG. Proceedings
of the International Conference on Software Engineering (ICSE’05).

References

 167

[Semmle 2008]
 Semmle. (2008). Semmle .QL - Source Code Query Language. from

http://www.semmle.com

[Shaw 1996]
 Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an

emerging discipline. Prentice-Hall, Inc.

[Sommerville 2001]
 Sommerville, I. (2001). Software engineering (6th ed.). Addison-Wesley

Longman Publishing Co., Inc.

[SonarJ 2008]
 SonarJ. (2008). SonarJ. from http://www.hello2morrow.com/

[Sotograph 2008]
 Sotograph. (2008). Software Tomography. from http://www.software-

tomography.com/

[SPEM 2008]
 SPEM. (2008). Software Process Engineering Metamodel (SPEM). from

http://www.omg.org/technology/documents/formal/spem.htm

[Structure101 2008]
 Structure101. (2008). Structure 101.

[Sveiby 1997]
 Sveiby, K.-E. (1997). The New Organizational Wealth: Managing and

Measuring Knowledge-Based Assets. San Francisco, CA, USA. Berrett-
Koehler Publishers.

[Tu 2001]
 Tu, Q., & Godfrey, M. W. (2001). The Build-Time Software Architecture

View. Proceedings of the IEEE International Conference on Software
Maintenance (ICSM'01).

[Tyree 2005]
 Tyree, J., & Akerman, A. (2005). Architecture Decisions: Demystifying

Architecture (Vol. 22, pp. 19-27): IEEE Computer Society Press.

[UML 2008]
 UML. (2008). Unified Modeling Language. from

http://www.omg.org/technology/documents/formal/spem.htm

References

 168

[van Ommering 2000]
 van Ommering, R., van der Linden, F., Kramer, J., & Magee, J. (2000).

The Koala Component Model for Consumer Electronics Software. IEEE
Computer, 33(3), 78-85.

[Wallnau 1996]
 Wallnau, K., Clements, P., Morris, E., & Krut, R. (1996). The Gadfly: An

Approach to Architectural-Level System Comprehension. Proceedings of
the 4th International Workshop on Program Comprehension (IWPC '96).

[Waters 1999]
 Waters, R., & Abowd, G. D. (1999). Architectural Synthesis: Integrating

Multiple Architectural Perspectives. Sixth Working Conference on
Reverse Engineering (WCRE 1999) Atlanta, Georgia, USA.

[Weggeman 1999]
 Weggeman, M. (1999). Wissensmanagement - Der richtige Umgang mit

der wichtigsten Unternehmens-Ressource. Bonn. mitp-Verlag.

[Weiss 1999]
 Weiss, D. M., & Lai, C. T. R. (1999). Software Product-Line Engineering.

A Family-Based Software Development Process. Addison-Wesley.

[Wikipedia 2008]
 Wikipedia. (2008). Knowledge --- Wikipedia, The Free Encyclopedia.

from
http://en.wikipedia.org/w/index.php?title=Knowledge&oldid=18623592
3

[Wohlin 2000]
 Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., &

Wesslen, A. (2000). Experimentation in software engineering: an
introduction. Kluwer Academic Publishers.

[Wright 1936]
 Wright, T. P. (1936). Learning Curve. Journal of the Aeronautical

Sciences.

[Zachman 1987]
 Zachman, J. A. (1987). A framework for information systems

architecture. IBM Systems Journal, 26(3), 276-292.

[Zimmermann 2005]
 Zimmermann, T., Weissgerber, P., Diehl , S., & Zeller, A. (2005). Mining

Version Histories to Guide Software Changes. IEEE Transactions on
Software Engineering, 31(6), 429-445.

Appendix

 169

9 Appendix

Appendix A - Architectural Views and Compliance Checking

 170

Appendix A - Architectural Views and Compliance Checking

 171

Appendix A Architectural Views and Compliance
Checking

A.1 Architectural Views and Viewpoint

The documentation of software architecture typically comprises a set of
architectural views that have an explicit meta-model – the architectural
viewpoint.

The architecture community has adopted the idea of view-based
architecture documentation. To apply it in practice, the set of views to
be used must be selected so that it is neither too large (resulting in
overhead) nor too small (missing important information). The selection of
relevant views is a non-trivial task because of the variety of available
views and stakeholder concerns to be addressed. Hence, it is common
practice to constitute the architecture documentation on top of a
standard set of architectural views and to tailor it towards system-
project-, or organization-specific needs and, if necessary, extend the set
with customized views.

A number of architectural view sets has been proposed by different
researchers. The most commonly used ones are presented in
chronological order:

� Kruchten: As one of the most important contributions to view-based
documentation of software architectures, [Kruchten 1995] proposed
a system of four interrelated views (logical, process, development,
and physical view) augmented with a fifth redundant view (scenarios)
that abstracts from requirements and shows how the architectural
views work together to satisfy the requirements.

� Davis: [Davis 1997] proposed a set of four views (domain,
component, platform, and interface view) augmented with a fifth
view, the context view, to capture the dynamic behavior and quality
characteristics of the software system.

� Hofmeister: Based on the analysis of the software architectures of
large industrial systems, [Hofmeister 2000] proposed a set of four
distinct views (conceptual, module, code, and execution view) each
describing particular aspects of the system.

� Herzum: [Herzum 2000] introduced another set of four views
(technical, application, project management, and functional view).

� Clements: [Clements 2002a] describes a set of three so-called view
types and extends it by the description of commonly occurring forms

Appendix A - Architectural Views and Compliance Checking

 172

and variations called styles (module view type: decomposition, uses,
generalization, and layer style; component-and-connector view type:
pipe-and-filter, shared-data, publish-subscribe, client-server, peer-to-
peer, and communicating-process style; and allocation view type:
deployment, implementation, and work assignment style).

� Rozanksi: [Rozanski 2005] presents a catalog of six core views
(functional, information, concurrency, development, deployment, and
operational view) and applies architectural perspectives for
considerations crosscutting the architectural views.

� Fraunhofer IESE: The architectural view set defined at Fraunhofer
IESE comprises a standard set of four architectural views (conceptual,
structural, behavioral, and implementation view), which is optionally
extended with four additional views (data, hardware, execution, and
organizational view). [Bayer 2004] and [Knodel 2006a] present a
detailed description of the Fraunhofer IESE view set, which is used
throughout this thesis unless otherwise mentioned.

Table 19 present a comparison of the different view sets as presented
above. The views in Table 19 differ in terms of names and definition, and
although the concerns they address are sometimes not clearly separated,
the views can roughly be mapped onto each other. In the event there is
no direct correspondence, Table 19 depicts a “–“ in the respective table
cell. Sometimes two views correspond to one of the other view sets.

Table 19 is not complete since other view models have been proposed,
and single views have been motivated in literature, for instance, the
built-time view [Tu 2001] or the decision view [Dueñas 2005]. However,
one observation can be made in Table 19: All of the view sets compared
propose the structural and the implementation view, and, with one
exception, the behavioral view (or something named alike).

� Structural view: The structural view describes the functional
decomposition of the system and captures the static structure of a
system in terms of layers, subsystems, and components, the
interfaces provided by them, and the relationships between the
various elements.

� Implementation view: The implementation view describes how the
software implementing a system is organized in the development
environment. It captures how architectural elements defined in the
structural view are organized in the development, integration, or
configuration management environments.

� Behavioral view: The behavioral view illustrates how the architectural
elements defined in the structural view interact with each other for a
number of typical usage scenarios. The behavioral view shows which
elements of the architecture interact, which operations are invoked
by an element, and which messages and events are passed between
elements.

Appendix A - Architectural Views and Compliance Checking

 173

Kruchten Davis Hof-
meister

Herzum Clements Rozanski Fraun-hofer
IESE

Use Cases Context View – – Scenarios Scenarios
Perspectives

Scenarios

Logical View Domain View Conceptual
View

Application

– – Conceptual View

Development
View

Interface View Module View Technical Module Functional Structural View

Process View Context View Execution
View

– Component
and
Connector

Concurrency Behavioral View

Development
View

Component
and Interface
View

Code View Technical Allocation
(Implementati
on)

Development Implementation
View

– – – – – Information Data View
Physical View Platform View Execution

View
– Allocation

(Deployment)
Deployment Hardware View

Process and
Physical View

Platform View Execution
View

– Allocation
(Deployment)

Operational Execution View

– – – Project
Management
View

Allocation
(Work
Assignment)

– Organizational
View

Table 19 Comparison of Architectural View Sets

A.2 Architecture Compliance Checking and Violations

Table 20 gives an overview of architecture compliance checking by
relating the input view and the software system counterpart to each
other. Hence, it illustrates which architectural views can be compared
against which system artifacts. Please note that only the most popular
architectural views (structural, behavioral, and implementation view; see
Table 19) have been listed in Table 20 and that the conceptual view has
not been included in the table since it is the most abstract view providing
only a brief overview of a system.

Table 20 further classifies the types of violations that can be detected
and presents the application phase (covering the categories design,
implementation, integration, and execution) in which the compliance
checking activity is typically executed.

Appendix A - Architectural Views and Compliance Checking

 174

Input View System
Artifact

Violations Application
Phase

Structural View Component
design models

Design violations:
unspecified architectural
elements and unspecified
static inter-element
relationships

Design

Source code Structural violations:
unspecified architectural
elements and unspecified
static inter-element
relationships implemented
in the source code

Integration

Run-time
traces

Structural violations:
unspecified architectural
elements and unspecified
dynamic inter-element
relationships implemented
in the source code

Execution

Behavioral View Component
design models

Design violations:
unspecified architectural
elements and unspecified
dynamic inter-element
relationships

Integration

Run-time
traces

Protocol violations:
unspecified dynamic inter-
element relationships

Execution

Implementation
View

Source code Decomposition
violations:
unspecified decomposition
of architectural elements in
the file system

Integration

Logging of
configuration
management
transactions

Ownership violations:
unspecified code ownership
(unauthorized access or
modifications) of
architectural elements

Integration

Regression test
suite

Test violations:
unspecified omission of
architectural elements in
regression test

Execution

Table 20 Overview of Architecture Compliance Checking

Appendix B - Experiment Compliance

 175

Appendix B Experiment Compliance

This section presents the material used for the experiment on the impact
of compliance as described in Section 1.2.2.

Appendix B - Experiment Compliance

 176

B.1 Experiment Procedures

TSAFE Experiment Procedures

First of all, thank you for participating in the TSAFE experiment! Please note that the
evaluation of this exercise will be done anonymously.

A) Preparation
� Note preparation start time here:

 _______________ (e.g. 10:44)
� Read this document and fill in the briefing questionnaire
� Run TSAFE and run the TSAFE system test to ensure that the system is

working correctly
� Note preparation stop time here: _______________ (e.g.

11:24)
� Ask your experimenter to acknowledge the test case pass and ask your

experimenter for the task description

B) Execution
� Note execution start time (in minutes) here:

 _______________ (e.g. 11:26)
� Read the task description and do the task (you can run the TSAFE

system test at any time to ensure the system is working correctly)
� Note execution stop time (in minutes) here:

 _______________ (e.g. 13:26)
� Fill out debriefing questionnaire and submit your source code to your

experimenter

Figure 64: Experiment Compliance: Experiment Procedures

Appendix B - Experiment Compliance

 177

B.2 Experiment Object Description

Tactical Separation Assisted Flight Environment (TSAFE)

The experiment investigates how the quality of an architecture is affected by refactorings.
Refactoring here means changing the decomposition of the source code (creating, moving,
merging or splitting of methods, classes, packages or other source code elements) without
altering the external behavior of the system. Hence, refactoring aims at improving the internal
structure of the source code.

We will ask you to perform a refactoring of the TSAFE system. We will evaluate the quality of
the restructured source code. High quality is achieved when the architecture is decomposed into
components that have high internal cohesion and low coupling to external components. After
the experiment, we will analyze how well your restructured source code matches the reference
solution created by several TSAFE experts.

Please read this document carefully and contact your experimenter in case you have any
problems in running TSAFE. Typically, the preparation takes about 15 – 30 minutes.

Please try to perform the task as fast as possible but aim at achieving a high quality. The
maximal allotted time for the executing task is 2 hours. Please note that it took the experts
between 0.25 hours to 2 hours to complete the refactoring task.

Appendix B - Experiment Compliance

 178

B.3 Briefing Questionnaire

Figure 65: Experiment Compliance: Briefing Questionnaire

Appendix B - Experiment Compliance

 179

B.4 Task Description

Task Description – Refactoring Task
The Tactical Separation Assisted Flight Environment, or TSAFE, is a tool to aid air traffic
controllers in detecting and resolving short-term conflicts between aircraft.
Goal: To support distributed development and outsourcing, TSAFE has to be refactored into
distinct components. Each TSAFE components has to be realized in a separate Java project,
which then can be managed and evolved by an independent development group.
Your task is in detail:

� Create the Java projects for the TSAFE components
� Refactor TSAFE into the seven distinct components as specified

below
� Ensure that TSAFE is working correctly: no compilation errors, pass of

TSAFE system test (please note that you can run the test at any time to
ensure the system is working correctly)

� Ask your experimenter to acknowledge the pass of the TSAFE test

TSAFE Architectural Components
Components Responsibilities

TSAFE The TSAFE Main starts the client and the server.

ClientServer The Server is responsible for reading and parsing radar data, storing flight information,
and providing computations based on flight information.

The Client is responsible for communicating with the Server and the User and for
displaying flight information.

FeedParser The Parser is responsible for parsing the radar feed and extracting flight information
that is provided in the form of flight messages

Database The Database is responsible for storing the flight information (flight position and flight
plan) and providing it upon request

Computation The Computation component is responsible for all computations needed.

The Trajectory Synthesis component calculates the trajectory (i.e. expected flight
position) for a certain user defined time.

The Conformance Monitoring determines whether or not a flight is conforming to its
flight plan based on a certain user defined set of thresholds

Calculation The Calculation calculates distances, angles etc.

CommonDatastructures The common data structures comprise Trajectory (4-dimensional points (Latitude,
Longitude, Altitude, Time)), Route (2-dimensional series of
fixes), Flight (ID, flight track, flight plan), FlightPlan (aircraft
data, speed, altitude, flight route), FlightTrack (actual position,
speed, and heading information), PointXY, Point2D, Point4D
(data structures representing positions).

Table 1 – TSAFE Components

Figure 66: Experiment Compliance: Task Description

Appendix B - Experiment Compliance

 180

B.5 Debriefing Questionnaire

Figure 67: Experiment Compliance: Debriefing Questionnaire

Appendix B - Experiment Compliance

 181

Appendix B - Experiment Compliance

 182

B.6 Experiment Results

ID = Group_Type_Number: A = Group A TSAFE1, B = Group B TSAFE2

P = Pilot Students, F = Maryland Students, I = Industrial (ArQuE),
K = Kaiserslautern Students (GSE 2008)

B.6.1 Results Subject Performance

ID Group Type Performance
B.1 B.2

ID Preparation time Execution time
Correctness
Achieved

A_P_01 A P 15 54 64
B_P_01 B P 20 60 100
A_F_01 A F 36 78 79
A_F_02 A F 46 150 43
B_F_01 B F 16 47 100
B_F_02 B F 25 53 100
A_I_01 A I 15 45 86
A_I_02 A I 18 83 64
A_I_03 A I 20 135 86
A_I_04 A I 52 150 28
B_I_01 B I 27 54 100
B_I_02 B I 23 63 100
B_I_03 B I 45 115 100
B_I_04 B I 25 120 100
A_K_01 A K 23 133 79
A_K_02 A K 14 145 79
A_K_03 A K 13 136 35
A_K_04 A K 29 159 0
A_K_05 A K 10 105 100
A_K_06 A K 11 108 86
A_K_07 A K 11 85 86
A_K_08 A K 11 57 100
A_K_09 A K 14 118 93
B_K_01 B K 29 54 100
B_K_02 B K 32 29 100
B_K_03 B K 25 40 93
B_K_04 B K 29 44 100
B_K_05 B K 29 36 100
B_K_06 B K 15 35 100
B_K_07 B K 30 26 100

Figure 68: Experiment Compliance: Results Subject Performance

Appendix B - Experiment Compliance

 183

B.6.2 Results Briefing Questionnaire: Subject Background

ID Group Type BACKGROUND
A.1 A.2 A.3 A.4 A.5

ID Semester
experience in
Java

experience in
Eclipse

experience in
Refactoring

experience in
Architecting

A_P_01 A P 7 4 4 4 1
B_P_01 B P 6 4 4 4 4
A_F_01 A F 9 3 3 1 2
A_F_02 A F 6 2 2 1 2
B_F_01 B F 6 3 4 4 4
B_F_02 B F 6 3 3 1 2
A_I_01 A I 20 4 4 2 4
A_I_02 A I 40 3 3 2 2
A_I_03 A I 15 4 4 2 2
A_I_04 A I 40 1 2 1 2
B_I_01 B I 74 2 2 1 4
B_I_02 B I 70 3 2 1 2
B_I_03 B I 30 1 3 1 4
B_I_04 B I 15 1 1 1 2
A_K_01 A K 6 2 2 1 2
A_K_02 A K 6 3 2 1 2
A_K_03 A K 9 2 1 1 2
A_K_04 A K 7 2 1 1 1
A_K_05 A K 5 2 2 1 2
A_K_06 A K 5 3 3 2 2
A_K_07 A K 5 3 3 1 2
A_K_08 A K 5 3 3 1 2
A_K_09 A K 5 2 2 2 2
B_K_01 B K 7 2 2 1 2
B_K_02 B K 5 2 2 2 2
B_K_03 B K 8 2 2 1 1
B_K_04 B K 6 2 2 1 2
B_K_05 B K 6 3 2 1 2
B_K_06 B K 6 2 2 2 1
B_K_07 B K 6 3 3 1 2

Figure 69: Experiment Compliance: Results Briefing Questionnaire

Appendix B - Experiment Compliance

 184

B.6.3 Results Debriefing Questionnaire: Task Related Questions

ID Group Type Task-
B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11

ID

understa
nding of
the task

usage of
Eclipse
refactori
ng

manual
changes
to the
source

decomp
osition
clear

sytem
test after
all
refactori

system
test after
every
single

more
time
spend to
improve

high
decomp
osition
quallity

imporve
ment by
refactori
ng

A_P_01 A P 3
B_P_01 B P 5
A_F_01 A F 3 6 1 4 6 2 5 4 4
A_F_02 A F 4 4 6 2 1 1 3 5 1
B_F_01 B F 4 5 2 5 5 4 5 6 5
B_F_02 B F 5 4 4 2 6 2 3 5 3
A_I_01 A I 4 6 1 5 6 4 5 4 5
A_I_02 A I 3 5 1 5 5 3 2 4 2
A_I_03 A I 5 5 4 4 5 4 4 5 4
A_I_04 A I 5 5 1 2 1 1 1 3 1
B_I_01 B I 2 6 1 4 6 1 6 1 6
B_I_02 B I 4 5 1 3 5 1 4 2 4
B_I_03 B I 4 4 4 3 1 2 4 4 4
B_I_04 B I 4 2 4 4 5 2 6 3 3
A_K_01 A K 5 6 4 4 5 1 4 4 3
A_K_02 A K 5 5 2 5 6 1 6 2 4
A_K_03 A K 4 2 2 2 4 3 1 3 3
A_K_04 A K 5 6 1 6 6 1 6 5 5
A_K_05 A K 5 6 4 5 6 2 2 5 4
A_K_06 A K 6 6 1 5 6 1 2 5 5
A_K_07 A K 5 6 1 4 6 2 2 3 5
A_K_08 A K 5 6 2 5 6 1 4 2 5
A_K_09 A K 5 5 2 4 6 1 3 3 4
B_K_01 B K 5 6 1 4 6 1 4 4 4
B_K_02 B K 6 6 2 6 6 2 3 6 6
B_K_03 B K 5 6 1 5 6 1 1 1 6
B_K_04 B K 5 6 1 5 6 6 4 4 4
B_K_05 B K 6 6 1 4 6 1 3 2 4
B_K_06 B K 5 6 1 5 6 2 2 5 4
B_K_07 B K 6 6 1 6 6 1 2 6 4

Figure 70: Experiment Compliance: Results Debriefing Questionnaire: Task Related Questions

Appendix B - Experiment Compliance

 185

B.6.4 Results Debriefing Questionnaire: Questions with Respect to Material

ID Group Type Material
C.1 C.2 C.3 C.4

ID

description of
architectural
components

task description
clear

application of
Eclipse
refactorings realistic task

A_P_01 A P 3 5 6 5
B_P_01 B P 6 6 6 6
A_F_01 A F 3 4 4 4
A_F_02 A F 4 5 4 5
B_F_01 B F 2 5 5 5
B_F_02 B F 5 5 4 4
A_I_01 A I 4 4 5 4
A_I_02 A I 5 4 4 2
A_I_03 A I 4 5 5 5
A_I_04 A I 4 3 2 3
B_I_01 B I 6 4 5 3
B_I_02 B I 4 3 3 5
B_I_03 B I 5 5 5 4
B_I_04 B I 5 4 4 4
A_K_01 A K 4 5 5 5
A_K_02 A K 3 5 2 5
A_K_03 A K 5 5 2 4
A_K_04 A K 6 6 6 6
A_K_05 A K 6 5 4 5
A_K_06 A K 4 6 5 5
A_K_07 A K 5 5 4 6
A_K_08 A K 4 5 6 4
A_K_09 A K 5 5 4 3
B_K_01 B K 5 5 5 5
B_K_02 B K 5 5 5 5
B_K_03 B K 5 6 5 4
B_K_04 B K 5 5 5 5
B_K_05 B K 5 5 6 4
B_K_06 B K 5 5 6 6
B_K_07 B K 6 5 5 3

Figure 71: Experiment Compliance: Results Debriefing Questionnaire: Questions with Respect to Material

Appendix B - Experiment Compliance

 186

Appendix C - Example Source Code DRVFaçade

 187

Appendix C Example Source Code DRVFaçade

This appendix section lists the source of the example used in the
introduction (see Section 3.2 and 3.3).

The method “doit()” shows the architecture-compliant implementation
of this example, while the method “doitWrong()” causes a structural
violation.

C.1 Class BusinessLogic.java

package businesslogic;

import driver.*;

public class BusinessLogic {

 public void doit(){
 DriverFacade.activate();
 }

 public void doitWrong(){
 HardwareDriver.activate();

//EmulationDriver.activate();
 }

 public static void main(String args[]) {
 BusinessLogic myLogic = new BusinessLogic();
 DriverFacade.mode = DriverFacade.HARDWARE;
 myLogic.doit();
 myLogic.doitwrong();
 }
}

Appendix C - Example Source Code DRVFaçade

 188

C.2 Class DriverFacade.java

C.3 Class HardwareDriver.java

C.4 Class EmulationDriver.java

package driver;

public class EmulationDriver {

 public static void activate() {
 doit();
 }

 private static void doit() {
 System.out.println("Emulation executed.");
 }
}

package driver;

public class HardwareDriver {

 public static void activate() {
 doit();
 }

 private static void doit() {
 System.out.println("Hardware executed.");
 }
}

package driver;

public class DriverFacade {
 public static int mode;
 public static final int EMULATION = 0;
 public static final int HARDWARE = 1;

 public static void activate(){
 switch (mode){
 case EMULATION:
 EmulationDriver.activate();
 break;
 case HARDWARE:
 HardwareDriver.activate();
 break;
 }
 }
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 189

Appendix D Algorithms SAVE LiFe in Pseudo Code

D.1 Algorithms Architecture Manager: SAVE LiFe Fat Client

The architect executes the methods publishArchitecture() and
requestComplianceStatus() on demand. Both methods are accessible
from the user interface of the Architecture Manager.

D.1.1 Method: publishArchitecture

// method publishArchitecture
public int publishArchitecture() {

// get client connected to server (auto-connect if not yet connected)
ArchitectureManager client = ArchitectureManagerClient.getClient();
ComplianceChecker server = ArchitectureManagerClient.getServer();

// transferData = local data models managed by architect: (1) structural
// model and (2) mapping, the data models to be transferred are encoded
// as String arrays, the client ArchitectureManager always manages the
// latest version of structural model and mapping
StructuralModel structure = client.getStructuralModel();
MappingModel mapping = client.getMapping();
TransferData transferData =

client.buildTransferData(structure, mapping);

// remote call to server to transfer structural model and mapping model
// as part of trasferData
boolean Ok = server.receivePublishedArchitecture(transferData);

// structural model and mapping have been transferred successfully to
// server (i.e., compliance checker)
if (Ok) { return; }
// show error information
else { displayErrorMSG(); }

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 190

D.1.2 Method: requestComplianceStatus

// method requestComplianceStatus
public int requestComplianceStatus() {

// get client connected to server (auto-connect if not yet connected)
ArchitectureManager client =
 ArchitectureManagerClient.getClient();
ComplianceChecker server =
 ArchitectureManagerClient.getServer();

// remote call to server to request the transfer compliance status model
// from compliance checker, the compliance status model comprises the
// current overall compliance status of the whole system under
development
TransferData transferData = server.publishComplianceStatus();
ComplianceStatusModel complianceStatus =

 transferData.retrieveComplianceStatusModel();
 client.setComplianceStatus(compliance)

// visualize the compliance status model using a graphical diagram,
// which enables the architect to reason on the compliance of the
// overall system

 client.visualizeComplianceStatus()
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 191

D.2 Algorithms Development Monitor: SAVE LiFe Thin Client

The development monitor tracks the work of each developer in the
integrated development environment individually. The development
monitor hooks into the incremental project builder of the development
environment (e.g., for Eclipse org.eclipse.core.internal.events). The
builder is executed whenever physical resources (i.e., files or folders) are
changed and saved. When executed the method
monitorCodeandSendDelta() of the development monitor is invoked
automatically. Hence, the method is executed for any change made to
the source code.

When the server has computed the results, it invokes
receiveLiveFeedback() remotely to transfer the results, potentially
including the violation.

D.2.1 Method: monitorCodeAndSendDelta

// method monitorCodeandSendDelta
public void monitorCodeandSendDelta() {

// get client connected to server (auto-connect if not yet connected)
DevelopmentMonitor client = DevelopmentMonitorClient.getClient();
ComplianceChecker server = DevelopmentMonitorClient.getServer();

// determine modified files in projects currently edited
Files[] modifiedFiles = determineLocalDelta(ResourcesPlugin.

getWorkspace().getRoot().getProjects();

// remote call to send delta (i.e., modified files) to server
TransferData transferData = client.buildTransferData(modifiedFiles);
Boolean Ok = server.receiveDelta(transferData);
// delta (i.e., modified files) hasstructural model and mapping have
// been transferred successfully to server (i.e., compliance checker)
if (Ok) { return; }
// show error information
else { displayErrorMSG(); }

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 192

D.2.2 Method: determineLocalDelta

// method determineLocalDelta
public Files[] determineLocalDelta (IProject[] projects) {

foreach project in projects {
 foreach file in project {

// check file currently edited for modifications
Status status = ConfigurationManagementAdapter

.getFileStatus.getResource(file);

 if (status == Status.MODIFIED) {

//determine local delta of modifications, the
resulting delta comprises a model of the file
modifiedFiles[].add(file)

 }
}

}
// the delta comprises the source code files with modification made by
// the developer, each developers
return modifiedFiles[];

}

D.2.3 Method: receiveLiveFeedback

// method receiveLiveFeedback remote called by server
public void receiveLiveFeedback(TransferData transferData) {

// get client connected to server (auto-connect if not yet connected)
DevelopmentMonitor client = DevelopmentMonitorClient.getClient();
ComplianceChecker server = DevelopmentMonitorClient.getServer();

// remotely called by server to transfer the results of the compliance
// checking for the last delta sent to server
DeltaResultModel deltaResults =

transferData.retrieveComplianceStatusModel();
client.setDeltaResults(deltaResults)

// displayDeltaResult
client.displayDeltaResults();

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 193

D.2.4 Method displayDeltaResult

// method determineLocalDelta
public void displayDeltaResutl() {

DevelopmentMonitor client = DevelopmentMonitorClient.getClient();
// get list of DeltaResults to display the single deltaResult, which
// represent the architecture violations computed by the server
DeltaResultModel deltaResults = client.getDeltaResults();

foeach deltaResult in deltaResults {
 // resolve corresponding element in editor
 String projectName = deltaResult.getProjectName();
 IPath path = deltaResult.getPath();

IWorkspaceRoot root = ResourcesPlugin.getWorkspace().getRoot();
 IProject project = root.getProject(projectName);

 ICompilationUnit unit = project
.findElement(deltaResult.getCompilationUnit());

// clear existing marker, and create new ones for current
// violations, and show them to developer

 unit.clearMarker();
 unit.createMarkers(deltaResult.getViolation());

 unit.showMarkers();
}

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 194

D.3 Algorithms Compliance Checker: SAVE LiFe Server

The methods of the Compliance Checker are remotely triggered by the
respective client. The ArchitectureManager invokes either
receivePublishedArchitecture() or publishComplianceStatus(), while the
DevelopmentMonitor invokes sendDelta().

After compliance checking has been executed, the server invokes
receiveLiveFeedback() in the DevelopmentMonitor so developers become
aware of the violations – if present – promptly.

D.3.1 Method: receivePublishedArchitecture

// method receivePublishedArchitecture remote called by client
public void receivePublishedArchitecture(TransferData transferData) {

// get client connected to server (auto-connect if not yet connected)
ArchitectureManager client =
 ComplianceCheckerServer.getArchitectureClient();
ComplianceChecker server = ComplianceCheckerServer.getServer();

//update the data models of server
client.updateStructuralModel(transferData);
client.updateMapping(transferData);

}

D.3.2 Method: updateStructuralModel

// method updateStructuralModel
public void updateStructuralModel (TransferData transferData) {

// updating existing structural model with new structural model sent by
// client
StructuralModel structure = transferData.retrieveStructure();
server.setStructure(structure)

}

D.3.3 Method: updateMapping

// method updateMapping
public void updateMapping(TransferData transferData) {

// updating existing mapping with new mapping sent by client
MappingModel mapping = transferData.retrieveStructure();

 server.setMapping(mapping)
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 195

D.3.4 Method: publishComplianceStatus

// method publishComplianceStatus, remotely called by client
public void publishComplianceStatus() {

// get client connected to server (auto-connect if not yet connected)
ArchitectureManager client =

 ComplianceCheckerServer. getArchitectureClient();
ComplianceChecker server = ComplianceCheckerServer.getServer();

// remote call to server to request the transfer compliance status model
// from compliance checker, the compliance status model comprises the
// current overall compliance status of the whole system under
// development
TransferData transferData = server.publishComplianceStatus();
ComplianceStatusModel complianceStatus
=transferData.retrieveComplianceStatusModel();
 client.setComplianceStatus(compliance)

}

D.3.5 Method: receiveDelta

// method receiveDelta remotely called by client
public void receiveDelta(TransferData transferData) {

// get client connected to server (auto-connect if not yet connected)
DevelopmentMonitor client =

ComplianceCheckerServer.getDevelopmentClient();
ComplianceChecker server = ComplianceCheckerServer.getServer();

// get modified files and create empty delta source code model
Files[] modifiedFiles = transferData.retrieveModifiedFiles();
DeltaModel deltaModel = new DeltaModel();

// process each file locally modified by a developer and extract facts,
// the delta model represents all locally modified files
foreach file in modifiedFiles {
 //cast file to compilation unit and extract delta facts
 ICompilationUnit unit = file.getCompilationUnit();

DeltaModel deltaModel.add(
server.extractDeltaFacts(unit, deltaModel));

}
// update the source code model and keep information on history
server.updateSourceCodeModel(deltaModel);

// check compliance for the delta modified by a developer and distill
// the violations (note: convergences and absences are filtered), the
// delta violations are the spots causing violations (i.e., source code
// comprising violating statements)
DeltaComplianceStatus deltaCompliance =

server.checkCompliance(deltaModel);
deltaCompliance = server.distillDeltaViolations(deltaCompliance);

// remote call to client to transfer the delta violations, the model
// comprising the list of violations, this information raises the
// awareness of each developer on client-side on violations caused by
// him or currently present in the files modified, thus, develop can
// correct the code and remove the code.
TransferData transferData = client.buildTransferData(deltaCompliance);
client.sendLiveFeedback(tranferData);

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 196

D.3.6 Method: extractDeltaFacts

// method extractDeltaFacts
public DeltaSourceCodeModel extractDeltaFacts(ICompilationUnit unit,

 DeltaSourceCodeModel deltaModel) {
//parse the compilation unit with a programming language-specific parser
and extract all dependencies caused by the file to other files or
compilation units

 CompilationUnitHandler handler = new CompilationUnitHandler();
DeltaSourceCodeModel deltaModel =

 handler.parseCompilationUnit(unit)
return deltaModel;

}

D.3.7 Method: parseCompilationUnit

// method parseCompilationUnit
private DeltaSourceCodeModel parseCompilationUnit(ICompilationUnit unit,

DeltaSourceCodeModel deltaModel) {
// the ASTParser extract all dependencies caused by the compilation unit
to other compilation units, hence the results are the delta facts

 ASTParser parser = ASTParser.newParser().setSource(unit);
CompilationUnit rootCU = (CompilationUnit)
parser.createAST(null);

 if (rootCU != null) {
 rootCU.accept(new ASTVisitor(unit, deltaModel);
 }
 return deltaModel;
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 197

D.3.8 Method: updateSourceCodeModel

// method updateSourceCodeModel
public void updateSourceCodeModel(DeltaSourceCodeModel deltaModel) {

// get current date to mark point in time of modifications made
GregorianCalendar date = new GregorianCalendar();

// get the source code model
SourceCodeModel sourceModel = server.getSourceCodeModel();

// iterate over the elements of the deltaModel and update the source
// code model respectively, because all modification are sent to the
// server, the source code model managed by the central server is always
// up-to-date
foreach modelElement in deltaModel {

// element exists already, update point in time and investigate
// dependencies

 if (sourceModel.exists(modelElement) == true) {
 sourceModel.updateState(modelElement, date);

// iterate over the dependencies of the model elements of
// the deltaModel and update the source code model
foreach modelDependency of modelElement {

// dependency exists already, update modification
// point in time

 if (modelDependency.existsInSourceCodeModel()
== true) {

sourceModel.updateState(modelElement,
 modelDependency, date);

} else {
// dependency does not exist, create
// dependency in source code model with
modification point in time
sourceModel.add(modelElement,

modelDependency, date);
}

}
} else {
// dependency does not exist, create model element and its
// dependencies in source code model with modification point in
// time

 sourceModel.addModelElementWithDependencies(modelElement,
state);

 }

foreach modelDependency of modelElement {
 if (modelDependency.getModificationDate < date) {

// source code model is cleaned, in case a
// dependency no longer was removed

 sourceModel.deleteDependency(modelDependency,
 date);

}
}

}
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 198

D.3.9 Method checkCompliance

// method checkCompliance
public DeltaComplianceStatus checkCompliance(DeltaSourceCodeModel deltaModel) {
 // get computational models required for compliance checking
 StructuralModel structure = server.getStructuralModel();
 MappingModel mapping = server.getMapping();

// the lifting operator resolves the mapping and results in the
// liftedCodeModel, which is a representation of the source code model
// on the abstraction level of the structural model, hence, both models
// can be compared

 StructuralModel liftedCodeModel = server.lift(mapping, deltaModel);

// create empty result container to store the compliance checking
// results

 DeltaComplianceStatus deltaCompliance = new DeltaComplianceStatus();

// check presence if planned dependencies of structure to identify
// absences

 foreach plannedDependency in structure {
 plannedSourceElement = plannedDepdency.getSourceElement();
 plannedTargetElement = plannedDepdency.getTargetElement();

 foreach actualDependency in liftedCodeModel {
 if (actualDependency.qetSourceElement()

.equals(plannedSourceElement)) {
 // plan matches actual, dependency is CONVERGENCE
 deltaCompliance.add(plannedDependency,

 CONVERGENCE);
 break;
 }
 }

 // plan did not match actual, dependency is ABSENCE
 deltaCompliance.add(plannedDependency, ABSENCE);
 }

// check if actual dependencies are planned in structure to identify
// divergences (i.e., violation dependencies)

 foreach actualDependency in liftedCodeModel {
 actualSourceElement = actualDepdency.getSourceElement();
 actualTargetElement = actualDepdency.getTargetElement();

 foreach plannedDependency in structure{
 if (actualDependency.qetSourceElement()

.equals(actualSourceElement)) {
 // actual matches plan, dependency is CONVERGENCE

deltaCompliance.add(actualDependency,
 CONVERGENCE);

 break;
 }
 }

 // actual did not match plan, dependency is DIVERGENCE
 deltaCompliance.add(actualDependency, DIVERGENCE);
 }

// return compliance checking results (deltaCompliance), the totality of
// CONVERGENCEs, ABSENCEs, and DIVERGENCEs

 return deltaCompliance;
}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 199

D.3.10 Method: distillViolations

// method distillViolations
public DeltaComplianceStatus distillViolations(DeltaComplianceStatus
 deltaCompliance) {

// filter for compliance status for divergences only
 foreach dependency in deltaCompliance {
 if (dependency.getStatus() == CONVERGENCE) {

deltaCompliance.remove(dependency);
}

 if (dependency.getStatus() == ABSENCE) {
deltaCompliance.remove(dependency);

}
}
return deltaCompliance;

}

Appendix D - Algorithms SAVE LiFe in Pseudo Code

 200

Appendix E - Experiment Live Feedback

 201

Appendix E Experiment Live Feedback

This section presents the material used for the experiment on live
compliance checking with SAVE LiFe as described in Section 6.1.

Appendix E - Experiment Live Feedback

 202

E.1 Briefing Questionnaire

Figure 72: Experiment Live Feedback: Briefing Questionnaire

Appendix E - Experiment Live Feedback

 203

E.2 Debriefing Questionnaire

Figure 73: Experiment Live Feedback: Debriefing Questionnaire

Appendix E - Experiment Live Feedback

 204

Appendix E - Experiment Live Feedback

 205

E.3 Results Briefing and Debriefing Questionnaire

Questions Factor strong agree agree disagree strong disagree
I used the evolution monitor on a regular basis during the
implementation.

Developer
Involvement - 1 5 3 2

I used the the results of the evolution monitor to check the
architecture compliance of my source code.

Developer
Involvement - 1 2 6 2

It was hard to get familiar with the handling of the evolution
monitor.

Target Environment -
Degree of Novelty 0 1 6 4

I would have needed more support from an expert to use the
evolution monitor.

Target Environment -
Champion Support 0 6 3 2

I would have needed a better tutorial or a training to use the
evolution monitor.

Target Environment -
Training 1 6 1 3

I had the choice whether to use the evolution monitor or not. Perceived Control - 3 1 5 2
The evolution monitor improved the connection between
architectural work and implementation.

Perceived Control -
Process 1 6 3 1

The evolution monitor results were predictable.
Perceived Control -
Predictability 0 2 8 1

I had no problems in using the evolution monitor.
Perceived
Characteristics - 2 4 3 2

The evolution monitor helped me to avoid architecture violations.
Perceived
Characteristics - 1 3 6 1

The evolution monitor helped me to avoid conflicting code
between me and my team members.

Perceived
Characteristics - 0 3 6 2

The evolution monitor helped me to reveal the architectural
context of the elements I worked on.

Perceived
Characteristics - 0 4 5 2

The evolution monitor led to an improved architecture. Perceived Impacts - 0 3 5 2
The evolution monitor helped me to write code that is compliant
to the planned architecture.

Perceived Impacts -
Quality 2 4 4 1

The evolution monitor helped to improve the overall quality of
the system.

Perceived Impacts -
Quality 0 4 5 2

The evolution monitor saved me time to merge mine and my
team members’ code.

Perceived Impacts -
Productivity 0 2 6 3

The evolution monitor saved me time of later refactorings due to
architecture violations.

Perceived Impacts -
Productivity 0 4 6 1

In my next project I would like to use the evolution monitor
again.

Transfer Success -
Use 1 4 3 2

As an architect/project manager I would recommend my
developers to use the evolution monitor.

Transfer Success -
Use 1 6 1 2

I liked working with the evolution monitor.
Transfer Success -
Satisfaction 1 4 2 2

I think the evolution monitor is cool tool.
Transfer Success -
Satisfaction 3 4 1 2

Figure 74: Experiment Live Feedback: Results Briefing and Debriefing Questionnaire

Appendix E - Experiment Live Feedback

 206

Lebenslauf

 207

Lebenslauf

Name Jens Knodel

Wohnort Friedrichstr. 73
 67655 Kaiserslautern

Geburtsdatum 15.11.1976

Geburtsort Gifhorn

Familienstand verheiratet

Staatsangehörigkeit Deutsch

Schulbildung 1983 – 1987 Grundschule Bückeburg
 1987 – 1989 Orientierungstufe Bückeburg
 1989 – 1996 Gymnasium Adolfinum, Bückeburg

Abschluss: Abitur

Studium 1996 – 1997 Fachhochschule Furtwangen

Studiengang: Kommunikationsingenieurwesen
 1997 – 2002 Universität Stuttgart

Studiengang: Softwaretechnik
Abschluss: Diplom

Berufstätigkeit seit 2002 Wissenschaftlicher Mitarbeiter am

Fraunhofer-Institut für Experimentelles Software
Engineering (IESE), Kaiserslautern

Kaiserslautern, den 17. November 2009

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Software Engineering has become one of the major foci of
Computer Science research in Kaiserslautern, Germany. Both the
University of Kaiserslautern‘s Computer Science Department and the
Fraunhofer Institute for Experimental Software Engineering (IESE)
conduct research that subscribes to the development of complex
software applications based on engineering principles. This requires
system and process models for managing complexity, methods and
techniques for ensuring product and process quality, and scalable
formal methods for modeling and simulating system behavior. To
understand the potential and limitations of these technologies, expe-
riments need to be conducted for quantitative and qualitative evalu-
ation and improvement. This line of software engineering research,
which is based on the experimental scientific paradigm, is referred to
as ‘Experimental Software Engineering‘.
In this series, we publish PhD theses from the Fraunhofer Institute
for Experimental Software Engineering (IESE) and from the Software
Engineering Research Groups of the Computer Science Department
at the University of Kaiserslautern. PhD theses that originate else-
where can be included, if accepted by the Editorial Board.

Editor-in-Chief: Prof. Dr. Dieter Rombach
Executive Director of Fraunhofer IESE and Head of the AGSE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Peter Liggesmeyer
Scientific Director of Fraunhofer IESE and Head of the AGDE Group
of the Computer Science Department, University of Kaiserslautern

Editorial Board Member: Prof. Dr. Frank Bomarius
Deputy Director of Fraunhofer IESE and Professor for Computer
Science at the Department of Engineering, University of Applied
Sciences, Kaiserslautern

AG Software Engineering Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

ISBN 978-3-8396-0233-1

9 7 8 3 8 3 9 6 0 2 3 3 1

