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Abstract 

Software architecture – besides other aspects – outlines the structure of 
software systems prescribing the intended decomposition into 
components and dependencies among them. Developers then translate 
the abstract building blocks of the system into source code. Architecture 
compliance captures the degree to which required or requested 
demands on the structure in the implementation of a software system 
have been met. Analyzing the actual decomposition reveals a dilemma of 
today’s software development organizations: Almost all implementations 
exhibit significant structural violations. We could observe this practical 
problem across various application domains such as embedded systems 
and information systems, as well as for academic systems. 

We first investigated the impact of this lack of compliance on the 
development effort in three replications of a controlled experiment. We 
compared the effort for a sample system evolution task on two 
functionally equivalent implementation variants of the same system – 
one with significant structural violations and the other one realized in 
compliance with the architecture. The results showed that the effort 
required was, on average, more than double (204%) for the 
implementation with structural violations. The empirical results provide 
evidence that the evolution of a system becomes effort-intensive when 
lacking compliance, which imposes maintenance risks for the 
development organization. The architecture as a management vehicle for 
stakeholders turns out to be unreliable, delusive, and almost useless. To 
counteract these threats, the development organization would have to 
invest significant effort to reshape the system towards the 
decomposition as specified by the architecture. 

The primary contribution of this thesis is live architecture compliance 
checking, which sustains the structure in software implementations. This 
new compliance checking technique verifies any source code 
modifications made. Any delta – source code locally modified by a 
developer – is first mined for relevant information and then checked for 
compliance. Developers receive live feedback on the compliance 
checking results and are immediately made aware of drifts between 
architecture and implementation. Live compliance checking supports 
distributed teams of developers – starting from day one of the 
development. The entire source code is constantly monitored, analyzed, 
and checked continuously. This live detection allows developers 
correcting violations promptly: It further acts as pro-active training for 
developers regarding the intended structural decomposition.  
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Live compliance checking detects architecture violations at the earliest 
point in time possible – right after their insertion. The fast response time 
for feedback enables developers to repair the structure with minimal 
effort and, thus, to sustain the intended decomposition over time.  

The idea of live compliance checking has been realized as an extension 
of the Fraunhofer SAVE tool (Software Architecture Visualization and 
Evaluation). This variant – called SAVE LiFe (Live Feedback) – is a client-
server-client system, which enables live feedback on compliance for 
distributed development teams. One central server performs compliance 
checking for the modification made by multiple distributed developers 
while the architects’ client tracks the overall compliance status. The 
application of SAVE LiFe over a period of 35 days in an experiment 
provided empirical evidence for its usefulness. The developers supported 
by the live compliance checking caused about 60% less structural 
violations throughout than the developers of the control group. Based 
on this result, we can conclude that live compliance checking potentially 
leads to less rework and to effort savings due to the reduced number of 
structural violations. 

In short, this thesis presents live architecture compliance checking – an 
empirically validated, tool-supported approach for sustaining structure in 
software implementations. It enables development organizations to 
successfully rely on their software architecture as the instrument for 
guiding the evolution of the software system. 

 



 vii 

Acknowledgements 

I would like to express my sincere gratitude to the people who supported 
me, accompanied me, and empowered me in the journey of my PhD. 

First of all, I would like to thank Dieter Rombach for supervising my 
thesis and his guidance along the way. I appreciate working at 
Fraunhofer IESE, especially the opportunities I had and the lessons  
I learned here. Secondly, I would like to thank Jürgen Ebert for agreeing 
to review this thesis. My thanks go also to Jens Schmitt for steering the 
dissertation committee. 

I would like to thank my friends and colleagues at Fraunhofer IESE for 
many fruitful discussions about my work, software architectures, and 
other topics. I appreciated your comments on my ideas, on early drafts 
of this thesis, or at the rehearsal of my PhD defense. Here I want to 
specifically mention Michalis Anastasopoulos, Joachim Bayer, Martin 
Becker, Ralf Carbon, Christian Denger, Slawomir Duszynski, Jörg Dörr, 
Thomas Forster, Mikael Lindvall, Dirk Muthig, Thorsten Keuler, Matthias 
Naab, Daniel Pech, Dominik Rost, Marcus Trapp, Christian Webel, 
Balthasar Weitzel. I am grateful that I had the opportunity to get to 
know you and to work with you. I also thank Sonnhild Namingha for 
proofreading this thesis. 

Furthermore, I would like to express my sincere thanks to all members of 
the SAVE team. What started as a proof-of-concept turns out to become 
market-ready product these days. I would like to take this opportunity to 
thank everyone who was and still is involved in evolution of SAVE.  
I enjoyed working with you and appreciate all your contributions made 
to SAVE and SAVE LiFe.  

I would like to thank the people who helped me realizing the 
experiments of my thesis as well as all participants of the experiments. 
Moreover, I would like to thank the many people from our industrial 
partners who allowed me applying my ideas. 

Last but far from least, I want to thank my wife Catalina and my parents 
Martina and Hubert who have supported me in every possible way. I am 
eternally grateful for their constant love. 

 

Kaiserslautern, May 2010  
Jens Knodel 



 viii 

 

 

 



Table of Contents 

 ix 

Table of Contents 

Abstract ................................................................................................. v 
Acknowledgements .............................................................................. vii 
Table of Contents .................................................................................. ix 
List of Figures .......................................................................................xiii 
List of Tables ....................................................................................... xvii 
List of Definitions..................................................................................xix 

1 Introduction ....................................................................................1 
1.1 Compliance Checking ................................................................8 
1.2 Effects of Architecture Compliance ..........................................12 

1.2.1 Survey on Industrial Software Systems ...........................13 
1.2.2 Evidence of Compliance Benefits ...................................17 
1.2.3 Summary .......................................................................21 

1.3 Principles of Live Compliance Checking ....................................22 
1.4 Contribution ............................................................................26 

1.4.1 Research Method ...........................................................27 
1.4.2 Proposed Solution ..........................................................28 

1.5 Outline .....................................................................................31 

2 Measuring Architecture Compliance ..........................................33 
2.1 Meta-Model of the Structural View ..........................................33 
2.2 Meta-Model of the Source Code ..............................................36 
2.3 Meta-Model of the Mapping ....................................................38 
2.4 Compliance Metric ...................................................................40 

2.4.1 Basic Formulae ...............................................................41 
2.4.2 Formalization of Metric Input .........................................42 
2.4.3 Lifting and Mapping Operator .......................................43 
2.4.4 Compliance Function .....................................................44 
2.4.5 Internal Composition .....................................................45 
2.4.6 External Dependencies ...................................................46 
2.4.7 Summary .......................................................................47 

2.5 Metric Examples .......................................................................48 
2.5.1 Scenario: Beginning of Implementation .........................49 
2.5.2 Scenario: Composition Flaw ...........................................49 
2.5.3 Scenario: Integration Flaw ..............................................50 
2.5.4 Scenario: Unplanned Growth .........................................51 
2.5.5 Scenario: Unplanned Interdependencies ........................51 
2.5.6 Scenario: Architecture-Compliant System ......................52 

2.6 Conclusions .............................................................................53 

3 Compliance Checking Techniques ...............................................55 
3.1 Reverse Engineering .................................................................56 



Table of Contents 

   x 

3.2 Applying the Reverse Engineering Archetype ........................... 59 
3.2.1 Context – System Artifacts ............................................ 59 
3.2.2 Extraction ...................................................................... 61 
3.2.3 Abstraction ................................................................... 61 
3.2.4 Presentation .................................................................. 62 
3.2.5 Interpretation ................................................................ 62 

3.3 State Of The Art in Compliance Checking ............................... 64 
3.3.1 Commonalities in Structural Compliance Checking ....... 64 
3.3.2 Reflexion Models .......................................................... 66 
3.3.3 Dependency Rules ......................................................... 69 
3.3.4 Equivalence of Expressiveness ....................................... 72 
3.3.5 Tools for Compliance Checking..................................... 73 
3.3.6 State Of The Art beyond Compliance Checking ............ 74 

3.4 Applicability of Compliance Checking Techniques ................... 75 
3.4.1 Dimensions ................................................................... 75 
3.4.2 Comparison .................................................................. 78 
3.4.3 Summary ...................................................................... 82 

3.5 Paradigm Shift towards Live Compliance Checking ................. 82 

4 Live Compliance Checking Approach ......................................... 85 
4.1 Process Overview ..................................................................... 86 

4.1.1 Architecting Process Part ............................................... 88 
4.1.2 Coding Process Part ...................................................... 90 
4.1.3 Compliance Checking Process Part ................................ 91 
4.1.4 Summary ...................................................................... 94 

4.2 High Execution Frequency ....................................................... 94 
4.2.1 Learning Effect .............................................................. 95 
4.2.2 Prompt Removal Effect .................................................. 96 
4.2.3 Summary ...................................................................... 97 

4.3 Theoretical Model on Effort Savings ........................................ 97 
4.3.1 Assumptions ................................................................. 97 
4.3.2 Effort Savings ................................................................ 98 
4.3.3 Compliance Impact on Evolution ................................. 100 

5 Software Architecture Visualization and Evaluation with Live 
Feedback ......................................................................................... 103 

5.1 Solution Overview ................................................................. 104 
5.1.1 Conceptual view ......................................................... 105 
5.1.2 Client-Server-Client Deployment ................................. 107 
5.1.3 Distributed Communication Platform .......................... 110 
5.1.4 Development Environment Integration ........................ 110 

5.2 SAVE LiFe Building Blocks ...................................................... 111 
5.2.1 Fat Client: Architecture Manager ................................ 111 
5.2.2 Server: Compliance Checker (Extensible Analysis and 

Communication Platform) ........................................... 114 
5.2.3 Thin Client: Development Monitor .............................. 116 
5.2.4 SAVE ........................................................................... 118 

5.3 Realization of Live Compliance Checking Requirements ........ 119 



Table of Contents 

 xi 

5.4 Technical Solution ................................................................. 120 
5.5 Summary .............................................................................. 121 

6 Validation ................................................................................... 123 
6.1 Feedback by Live Compliance Checking ................................ 124 

6.1.1 Setup Experiment GSE2007 ........................................ 125 
6.1.2 Results ........................................................................ 127 
6.1.3 Threats to Validity ....................................................... 132 
6.1.4 Conclusion .................................................................. 134 

6.2 Benefits of Regular Compliance Feedback ............................. 135 
6.2.1 Product Line of Climate and Flue Gas Measurement 

Devices ....................................................................... 135 
6.2.2 Remote Measurement Devices .................................... 140 

6.3 Conclusion ............................................................................ 142 

7 Analysis and Outlook ................................................................ 145 
7.1 Results and Contribution ....................................................... 146 
7.2 Future Work .......................................................................... 148 

7.2.1 Experimentation .......................................................... 148 
7.2.2 Compliance Checking ................................................. 149 
7.2.3 Quasi-Constructive Reverse Engineering ..................... 149 
7.2.4 Live Feedback Platform ............................................... 150 

7.3 Final Remarks ........................................................................ 151 

8 References .................................................................................. 153 

9 Appendix .................................................................................... 169 

Appendix A Architectural Views and Compliance Checking ... 171 
A.1 Architectural Views and Viewpoint ........................................ 171 
A.2 Architecture Compliance Checking and Violations ................ 173 

Appendix B Experiment Compliance ......................................... 175 
B.1 Experiment Procedures .......................................................... 176 
B.2 Experiment Object Description .............................................. 177 
B.3 Briefing Questionnaire ........................................................... 178 
B.4 Task Description .................................................................... 179 
B.5 Debriefing Questionnaire ...................................................... 180 
B.6 Experiment Results ................................................................ 182 

B.6.1 Results Subject Performance ....................................... 182 
B.6.2 Results Briefing Questionnaire: Subject Background .... 183 
B.6.3 Results Debriefing Questionnaire: Task Related Questions

 ................................................................................... 184 
B.6.4 Results Debriefing Questionnaire: Questions with Respect 

to Material .................................................................. 185 

Appendix C Example Source Code DRVFaçade ......................... 187 
C.1 Class BusinessLogic.java ........................................................ 187 



Table of Contents 

   xii 

C.2 Class DriverFacade.java ......................................................... 188 
C.3 Class HardwareDriver.java ..................................................... 188 
C.4 Class EmulationDriver.java ..................................................... 188 

Appendix D Algorithms SAVE LiFe in Pseudo Code ................. 189 
D.1 Algorithms Architecture Manager: SAVE LiFe Fat Client ......... 189 

D.1.1 Method: publishArchitecture ....................................... 189 
D.1.2 Method: requestComplianceStatus ............................. 190 

D.2 Algorithms Development Monitor: SAVE LiFe Thin Client ...... 191 
D.2.1 Method: monitorCodeAndSendDelta .......................... 191 
D.2.2 Method: determineLocalDelta ..................................... 192 
D.2.3 Method: receiveLiveFeedback ...................................... 192 
D.2.4 Method displayDeltaResult .......................................... 193 

D.3 Algorithms Compliance Checker: SAVE LiFe Server ................ 194 
D.3.1 Method: receivePublishedArchitecture ........................ 194 
D.3.2 Method: updateStructuralModel ................................. 194 
D.3.3 Method: updateMapping ............................................ 194 
D.3.4 Method: publishComplianceStatus .............................. 195 
D.3.5 Method: receiveDelta .................................................. 195 
D.3.6 Method: extractDeltaFacts .......................................... 196 
D.3.7 Method: parseCompilationUnit ................................... 196 
D.3.8 Method: updateSourceCodeModel ............................. 197 
D.3.9 Method checkCompliance .......................................... 198 
D.3.10 Method: distillViolations ......................................... 199 

Appendix E Experiment Live Feedback ...................................... 201 
E.1 Briefing Questionnaire ........................................................... 202 
E.2 Debriefing Questionnaire ...................................................... 203 
E.3 Results Briefing and Debriefing Questionnaire ....................... 205 

Lebenslauf ....................................................................................... 207 

 

 

 

 



List of Figures 

 xiii 

List of Figures 

Figure 1 Simplified Development Process .............................................. 9 
Figure 2 Example: Structural View (left) with Strict Layering and Sample 

Implementation (right) ......................................................... 13 
Figure 3 Compliance Experiment – Box Plot Effort Data ...................... 19 
Figure 4 Compliance Experiment – Box Plot Correctness ..................... 20 
Figure 5 Analytical Compliance Checking of System Snapshots .......... 23 
Figure 6 Live Compliance Checking .................................................... 24 
Figure 7 Experimental Software Engineering Paradigm: Characterization 

of Problem, Solution, and  Benefits ...................................... 28 
Figure 8 Overview Proposed Solution – Scientific (left) and Engineering 

(right) Building Blocks .......................................................... 30 
Figure 9 Solution – SAVE LiFe: Server, Fat Client, and Thin Clients ...... 30 
Figure 10 Simplified Meta-Model of Software Architecture ................... 34 
Figure 11 Meta-Model of the Structural View ....................................... 34 
Figure 12 Meta-Model of the Source Code ........................................... 36 
Figure 13 Meta-Model of the Mapping ................................................. 40 
Figure 14 Illustration Lifting Operator ................................................... 44 
Figure 15 Compliance Metric ................................................................ 48 
Figure 16 Structural View Specifying Three Layers Enforcing Strict 

Layering ............................................................................... 49 
Figure 17 Scenario: Beginning of Implementation ................................. 49 
Figure 18 Scenario: Composition Flaw .................................................. 50 
Figure 19 Scenario: Integration Flaw ..................................................... 50 
Figure 20 Scenario: Unplanned Growth ................................................ 51 
Figure 21 Scenario: Unplanned Interdependencies ................................ 52 
Figure 22 Scenario: Architecture-Compliant System .............................. 52 
Figure 23 Archetype of Reverse Engineering ......................................... 57 
Figure 24 DRVFaçade: Source Code in Java Package Explorer ............... 60 
Figure 25 DRVFaçade: Source Code Model ........................................... 60 
Figure 26 DRVFaçade: Structural Model ................................................ 61 
Figure 27 DRVFaçade: Visualized Structural Model in SAVE .................. 62 
Figure 28 Source Code of Methods doit() and doitWrong() ................... 63 
Figure 29 Principle of Structural Compliance Checking ......................... 65 
Figure 30 Reflexion Model Example: Structural Model (left), Source Code 

Model (middle), and Compliance Checking Results (right) .... 67 
Figure 31 DRVFaçade: Specified Structural Model ................................. 68 



List of Figures 

   xiv 

Figure 32 DRVFaçade: Compliance Checking Results with Reflexion 
Models ................................................................................. 68 

Figure 33 DRVFaçade: Compliance Checking Results with Dependency 
Rules .................................................................................... 72 

Figure 34 Deming Cycle for Analytical Quality Engineering ................... 83 
Figure 35 Deming Cycle for Quasi-Constructive Quality Engineering ..... 84 
Figure 36 Live Compliance Checking: Process Overview ........................ 88 
Figure 37 Live Compliance Checking: Architecting Process Part ............ 89 
Figure 38 Live Compliance Checking: Coding Process Part .................... 90 
Figure 39 Live Compliance Checking: Compliance Checking Process Part92 
Figure 40 Effort Saving Learning Effect (left) and Prompt Removal Effect 

(right) ................................................................................. 100 
Figure 41 Effort Saving Combined Effects ........................................... 100 
Figure 42 SAVE LiFe: Conceptual Building Blocks ................................ 105 
Figure 43 SAVE LiFe and SAVE: Conceptual View ............................... 105 
Figure 44 SAVE LiFe: Fat Client: Architecture Manager ....................... 108 
Figure 45 SAVE LiFe: Server: Compliance Checker (Extensible Analysis 

and Communication Platform) ........................................... 108 
Figure 46 SAVE LiFe: Thin Client: Development monitor ..................... 109 
Figure 47 SAVE LiFe: Eclipse Integration and Reused Plug-ins .............. 111 
Figure 48 Architect Manager: Pipe-and-Filter View for Model Definition112 
Figure 49 Architect Manager: Screenshot of User Interface ................. 114 
Figure 50 Compliance Checker: Screenshot of SAVE Server Console ... 115 
Figure 51 Compliance Checker: Screenshot of SAVE Repository Browser115 
Figure 52 Compliance Checker: Pipe-and-Filter View of Compliance 

Checking ........................................................................... 116 
Figure 53 Development Monitor: Pipe-and-Filter View of Fact Extraction117 
Figure 54 Development Monitor: Screenshot Display of Compliance 

Checking Results ................................................................ 118 
Figure 55 Live Feedback Experiment: Architectural Violations per 

Component ....................................................................... 128 
Figure 56 Live Feedback Experiment: Architectural Violations Aggregated 

by Supported and Control Group ....................................... 129 
Figure 57 Live Feedback Experiment: Architectural Violations and Total 

Relations ............................................................................ 129 
Figure 58 Live Feedback Experiment: Transfer Success Factors ............ 130 
Figure 59 Structural Model: Framework Usage ................................... 136 
Figure 60 Structural Model: Layering .................................................. 137 
Figure 61 Compliance Status: Visualization of Convergences, 

Divergences, and Absences ................................................ 137 
Figure 62 Structural Model: Subsystems and Dependencies ................ 141 
Figure 63 Method Overview: Live Compliance Checking ..................... 145 



List of Figures 

 xv 

Figure 64: Experiment Compliance: Experiment Procedures ................ 176 
Figure 65: Experiment Compliance: Briefing Questionnaire ................. 178 
Figure 66: Experiment Compliance: Task Description .......................... 179 
Figure 67: Experiment Compliance: Debriefing Questionnaire ............ 180 
Figure 68: Experiment Compliance: Results Subject Performance ........ 182 
Figure 69: Experiment Compliance: Results Briefing Questionnaire ..... 183 
Figure 70: Experiment Compliance: Results Debriefing Questionnaire: 

Task Related Questions ...................................................... 184 
Figure 71: Experiment Compliance: Results Debriefing Questionnaire: 

Questions with Respect to Material .................................... 185 
Figure 72: Experiment Live Feedback: Briefing Questionnaire .............. 202 
Figure 73: Experiment Live Feedback: Debriefing Questionnaire ......... 203 
Figure 74: Experiment Live Feedback: Results Briefing and Debriefing 

Questionnaire .................................................................... 205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 

   xvi 

 

 



List of Tables 

 xvii 

List of Tables 

Table 1 Compliance Survey on Industrial Software Systems ............... 16 
Table 2 Compliance Experiment – Replication Overview .................... 18 
Table 3 Compliance Experiment – Results .......................................... 19 
Table 4 Essential Requirements on Live Compliance Checking ........... 25 
Table 5 Elements of the Structural View Meta-Model ........................ 35 
Table 6 Elements of the Source Code Meta-Model ............................ 37 
Table 7 Assignment of Programming Language Construct to Source 

Code Model Elements .......................................................... 38 
Table 8 Elements of the Mapping Meta-Model .................................. 40 
Table 9 DRVFaçade: Specified Rules ................................................... 71 
Table 10 GQM Goals ........................................................................... 76 
Table 11 Compliance Technique Comparison ...................................... 79 
Table 12 Impact Factors on Compliance Achievement Effort ............... 99 
Table 13 Compliance Side-Effect on Architecture-Centric Evolution... 101 
Table 14 SAVE LiFe: Conceptual Components ................................... 107 
Table 15 SAVE LiFe: Data Stores ........................................................ 107 
Table 16 Realization of Essential Requirements on Live Compliance 

Checking ........................................................................... 119 
Table 17 Live Feedback Experiment: Component Teams .................... 126 
Table 18 Compliance Status: Checking Results Grouped per Product and 

Evaluation Date .................................................................. 138 
Table 19 Comparison of Architectural View Sets ............................... 173 
Table 20 Overview of Architecture Compliance Checking .................. 174 

 

 

 

 

 

 

 

 



List of Tables 

   xviii 

 

 



List of Definitions 

 xix 

List of Definitions 

Definition 1 Software Engineering ...................................................... 8 
Definition 2 Quality Engineering.......................................................... 8 
Definition 3 Analytical Quality Engineering .......................................... 9 
Definition 4 Constructive Quality Engineering ..................................... 9 
Definition 5 Verification .................................................................... 10 
Definition 6 Validation ...................................................................... 10 
Definition 7 Software Architecture .................................................... 10 
Definition 8 Implementation ............................................................. 10 
Definition 9 Integration ..................................................................... 10 
Definition 10 Architecture Compliance Checking .............................. 11 
Definition 11 Structural Violation ....................................................... 11 
Definition 12 Compliance .................................................................. 12 
Definition 13 Architecture Compliance .............................................. 12 
Definition 14 Precision ....................................................................... 41 
Definition 15 Recall ........................................................................... 41 
Definition 16 F-Measure .................................................................... 41 
Definition 17 Formalization of Software System ................................ 42 
Definition 18 Formalization of Architecture ....................................... 42 
Definition 19 Formalization of Implementation .................................. 42 
Definition 20 Lifting Operator ............................................................ 43 
Definition 21 Formalization of Mapping ............................................ 43 
Definition 22 Lifting Operator Application ......................................... 44 
Definition 23 Architecture Compliance Function ................................ 44 
Definition 24 Element Compliance Function ...................................... 45 
Definition 25 Internal Composition .................................................... 46 
Definition 26 External Dependencies ................................................. 47 
Definition 27 Knowledge ................................................................... 56 
Definition 28 Information .................................................................. 56 
Definition 29 Data ............................................................................. 56 
Definition 30 Reverse Engineering ..................................................... 56 
Definition 31 Equivalence of Sets ....................................................... 72 
Definition 32 Compliance Achievement Effort ................................... 98 

 

 



List of Definitions 

   xx 

 

 

 



Introduction 

 1 

1 Introduction 

The key assets for every software development organization are the 
implementations of its respective software systems. The implementation 
is the result of a planned application of software engineering principles, 
techniques, methods, and tools following a predefined development 
process (see [Naur 1968]). The implementation determines the overall 
success of the organization – delivering a software system with the 
requested functionality while meeting effort, quality, and time 
constraints is crucial. Because of these essential demands on every 
commercial software product, development organizations need to 
efficiently manage the implementations they produce. This need is an 
even more pressing issue in the evolution of the implementation, due to 
the laws of continuing change and of increasing complexity (these laws 
were stated by [Lehman 1985] and repeated by [Sommerville 2001]). 

Producing the implementation is a coding process executed by several 
(teams of) developers. The developers write source code statements in 
order to translate solution ideas into algorithms and data structures. The 
implementation typically consists of many source code entities, which are 
the distinct building blocks of the system (e.g., up to hundreds and 
thousands of files or classes in procedural or object-oriented 
programming languages, which are distributed over many folders or 
packages). Due to the size and complexity of software systems, however, 
it is obviously not feasible to manage software development efficiently 
on the source code level. Abstractions are needed to handle the sum of 
source code entities and to manage the software system as a whole 
from a global perspective. Such abstractions enable efficient 
development and allow accomplishing the essential demands mentioned 
above. Software architectures – introduced as an auxiliary construct into 
the software lifecycle – promise to provide these abstractions. 

The notion of software architectures was first introduced by [Zachman 
1987]). Software architecture is the conceptual tool for efficiently 
managing and evolving software systems. They define the fundamental 
decomposition of a software system [IEEE-Std.1471 2000] and are based 
on the principles of “divide and conquer” [Endres 2003] and “separation 
of concerns” [Parnas 1972], [Dijkstra 1982]). The applicability, the 
usefulness, and the benefits of software architectures have been widely 
accepted in both research and industrial practice (e.g., see [Bosch 2000], 
[Clements 2003], [Hofmeister 2000], [Jazayeri 2000], [Perry 1992], 
[Rozanski 2005], [Shaw 1996], or [Tyree 2005]).  
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Consequently, in the 1990s, architecting became an integral part of any 
modern software engineering approach. This is, amongst others, 
reflected in [Boehm 1995], who states that “if a project has not achieved 
a system architecture, including its rationale, the project should not 
proceed”. The software architecture is typically defined before any 
implementation activities start – in fact, it is the first solution-oriented 
artifact (in contrast to previous lifecycle activities, which constitute 
problem-oriented views). As soon as there is a first draft of the 
architecture, it is possible to predict whether or not the final system will 
meet the needs and concerns of the stakeholders. The abstractions 
provided by the software architecture enable effective communication 
among stakeholders and thus, allow sound decision making, which 
iteratively refines the architecture. Eventually, the abstract solutions 
designed in the architecture are transformed into their concrete 
counterparts in the source code – the implementation. To cover all the 
different stakeholder concerns and still provide simple, expressive 
documentation, several perspectives must be taken to describe the 
architecture. Such documentations comprise multiple architectural views 
on the software system (e.g., see [Kruchten 1995], [Davis 1997], 
[Hofmeister 2000], [Herzum 2000], [Clements 2002a], [Rozanski 2005], 
[Bayer 2004], or [Knodel 2006a] for examples of architectural view sets). 
When comparing the most commonly used view sets, all comprise the 
structural view (or something named similarly). The structural view 
describes the decomposition of the software system. It captures the 
static structure of a system in terms of layers, subsystems, components, 
and connectors, the interfaces provided by them, as well as the 
relationships and dependencies between the various elements and to the 
environment [Knodel 2006a].  

The structural view is the most important architectural view for 
developers. Developers – being the stakeholders who realize the 
software system – receive task assignments on the basis of the 
information provided in structural views. They execute the assignment 
and, ideally, the developers would comply with all the decisions made by 
the architects. However, in practice, most development organizations fail 
to meet this challenge. Hence, what sounds like a straightforward task is 
hampered by the following reasons (this list is based on the work by 
[Eick 2001], [Gurp 2002], [Hochstein 2005], [Parnas 1994]):  

� Developers have to bridge the abstraction gap between architecture 
and source code. The solutions sketched out by the architecture are 
documented on an abstract level. Developers, transforming and 
refining these abstract solutions into concrete implementations, have 
to translate abstract concepts into working solutions. However, the 
developers may fail at interpreting the documentations or may lack a 
clear understanding of the motivation behind the abstract solution.  
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� The primary goal of the developers is to get the system running. 
Developers work under tight time schedules and have constant effort 
pressure; they are typically overloaded with feature requests, 
development tasks, and so on. Their primary goal is to implement, 
solve the problem, and get a running version that fulfills the 
acceptance criteria of testing. For this reason, developers might use 
shortcuts or workarounds and may ignore the architecture. 

� Developers have to switch the development context for each task 
assignment. When developers work on one development task (e.g., 
changing one component), a certain set of architectural decisions 
applies. When switching the context (i.e., working on another 
component), a different set of decisions might be valid. Nevertheless, 
developers may neglect the switch and continue working with a 
different context in mind.  

� Developers work with a local, limited scope, while the architecture is 
balanced from a global viewpoint. They focus on a concrete problem 
only. However, the architecture might prescribe that developers 
implement locally sub-optimal solutions in order to satisfy global 
constraints. The developers may ignore these constraints by 
optimizing their local implementation. 

All these arguments provide explanations for one dilemma of modern 
software development organizations: Almost all implementations exhibit 
significant structural violations. The coding process produces an output – 
the implementation – that diverges from its input – the structural view of 
the software architecture. In other words, the implementation lacks 
compliance1, whereby structural violations denote the items where the 
realization (i.e., the actual or implemented system) deviates from its 
respective counterpart – the specification (i.e., the planned or intended 
system). 

An analysis of industrial practice covering various software systems 
distributed across diverse application domains such as embedded 
systems or information systems revealed that there was not even a single 
system that the developers implemented in full compliance with the 
architecture. On the contrary, all systems analyzed featured substantial 
structural violations [Knodel 2006c]. Other researchers confirm that the 
lack of compliance is a practical problem in industrial practice (for 
instance, see [Murphy 2001], [Bourquin 2007], or [Rosik 2008]). But not 
only industrial software systems lack compliance: open source software 
systems face the same problem. The most prominent example here is 
probably the Mozilla web browser, where [Godfrey 2000] observed 

                                                      
1 Please note that in this thesis, we refer to compliance as the compliance of structural 

views with the respective counterparts in the implementation. Thus, (unless stated 
otherwise) compliance means structural compliance, violation means structural 
violation, etc. Please refer to Appendix A for an overview of views and compliance 
checking. 
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significant architecture decay within a relatively short lifetime – the 
browser was still under development after a complete redesign from 
scratch. Another prominent study is reported in [Garlan 1995], where 
architectural mismatches resulted in a number of issues (e.g., excessive 
code, poor performance, need to modify external packages, need to 
reinvent existing functionality, unnecessarily complicated tools), which 
eventually hampered successful reuse of components. 

The lack of compliance bears an inherent risk for the overall success of 
the development organization: The architecture as a communication, 
management, and decision vehicle for stakeholders becomes unreliable, 
delusive, and useless. Decisions made on the basis of the architecture are 
risky, because it is unclear to which degree these abstractions are 
actually still valid in the source code. Hence, structural violations seriously 
undermine the value of the architecture. It is unclear whether or not the 
development organization will meet the essential demands of the 
requested functionality delivered while meeting effort, quality, and time 
constraints for the software system under development. Even worse is 
the long-term perspective during maintenance and evolution, which was 
already observed by [Lehman 1985] stating that “an evolving program 
changes, its structure tends to become more complex”. The source code 
surpasses innovations designed in terms of the architecture and can 
prevent their introduction. Because all decisions made to obtain the 
goals were derived from the architecture, the imperative need for 
architecture compliance becomes apparent. 

The discipline of architecture compliance checking emerged from this 
need. Since compliance is always measured relative to distinct aspects, 
the inputs of compliance checking are always twofold: the architectural 
view as the planned specification and the system artifact as the actual 
realization, while the output is a collection of violations. Hence, 
structural compliance checking requires the structural view and the 
source code as input in order to reveal the structural violations. All 
structural compliance checking techniques are based on the same 
principles:  

� First, the structural view of the architecture is processed in order to 
create a structural model comprising the architectural entities and the 
dependencies among them. 

� Second, a snapshot of the source code is processed using some kind 
of reverse engineering technology [Chikofsky 1990]. The processing 
creates a source code model comprising the source code entities and 
the dependencies among them. 

� Third, the structural model and the source code model are aligned on 
the same level of abstraction (e.g., lifting the source code model onto 
the level of the structural model). The alignment exploits expert 
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knowledge, architecture documentation, or implementation 
guidelines to bridge the abstraction gap. 

� Fourth, the two models (now on the same level of abstraction) are 
compared against each other. The differences between the two 
models are detected and marked as structural violations. Backward 
traceability to the models allows locating the violations in the 
structural model or in the source code model for further analysis or 
processing.  

As an analytic quality engineering technique, structural compliance 
checking can only be performed when all input is available. The 
developers have to first execute the coding process and thus, deliver the 
source code before compliance checking is possible. It is typically applied 
late in the software lifecycle [Lindvall 2003], which means that structural 
violations are only detected late in the development process. Structural 
compliance checking has been proven as a sound analytic quality 
engineering technique adopted by industry (e.g., see [Feijs 1998], 
[Krikhaar 1999], [Murphy 2001] [Postma 2003], [Riva 2004], [Knodel 
2006c], [Kolb 2006] or [Bourquin 2007]). 

To put it another way, structural compliance checking reveals the 
dilemma of development organizations: their implementations lack 
compliance with the architecture. However, structural compliance does 
not contribute to solving this problem. Knowing about violations does 
not remove them from the source code2. The late interception due to the 
late application of compliance checking leaves the development 
organization to decide between two fundamental options. None of them 
is really appealing to the development organization because they have 
substantial drawbacks: 

� React: On the one hand, the development organization has the 
opportunity to react to structural violations and invest effort to 
remove them.  

� Prompt reaction: The short-term removal of structural 
violations causes an overhead effort in the ongoing project 
– at a late point in time. The overhead effort is spent on 
conducting workshops and meetings to discuss the 
compliance checking results and find appropriate remedies. 
The actual removal is a special kind of refactoring – 
changing the source code without changing the external 
behavior. These refactoring activities require a  
re-understanding of the source code causing structural 
violations and then implementing the change to achieve 
structural compliance. To avoid unwanted side-effects 

                                                      
2 Please note that unless stated otherwise, we consider that the architecture takes 

over the implementation, which means we assume that the structural violation is 
caused by improper implementation and not by inadequate architectural design. 
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introduced by the modifications made, all quality 
engineering activities have to be repeated (e.g., regression 
testing), including compliance checking, which, of course, 
may reveal newly introduced or forgotten violations. 

� Deferred reaction: Because of tight schedules or 
resources, the development organization may decide to plan 
for a special refactoring project that tackles only the 
structural violations. However, such a project has to be 
justified by higher management. To convince higher 
management to promote such a project is not trivial 
because neither added value nor innovation is visible to the 
users of the system. And a gradually growing risk is best 
expressed by the popular saying: “The later something is 
done, the more effort is required to do it”. 

� Ignore: On the other hand, the development organization may 
decide to ignore the structural violations (or, if the organization does 
not apply compliance checking at all, it faces the same problems 
without even knowing about it). 

� Disregard in the short term: Traceability between 
architecture and source code is not given anymore. The 
architecture as a communication and decision vehicle is no 
longer reliable and useful. The lack of up-to-date, 
consistent, and traceable architecture documentation causes 
a maintenance problem. Changing the system becomes 
error-prone due to unknown side-effects. The return-on-
investment of software as a valuable asset decreases and, 
eventually, the evolution becomes unnecessarily time-
consuming and effort-intensive. 

� Disregard in the long term: Detached from their 
architectures, the implementations evolve uncontrolled, 
disorderly and chaotically; in short, all benefits produced by 
well-defined architectures are lost. Over time, the 
implementation degenerates more and more. Eventually, 
this will cause the need for the documentation of the 
architecture to be reconstructed. Numerous approaches, 
methods, techniques, and tools for architecture 
reconstruction (sometimes also called architecture recovery) 
have been developed (the works by [Chikofsky 1990], 
[Deursen 2004], [Koschke 2005], [Knodel 2006b] and [Pollet 
2007] present overviews on this research field). Architecture 
reconstruction, however, addresses only the symptoms of a 
lost architecture. But as stated in [Wallnau 1996], “although 
source code is often the most reliable arbiter of what a 
system does, it does not reflect all of the attributes of an 
application necessary to develop a true system-level 
understanding”. Development organizations have to invest 
immense effort and resources in order to be successful in 
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the reconstruction – research in this broad field over the 
past twenty years shows that many development 
organizations suffer from the reconstruction burden and, 
more often than not, fail to meet this challenge.  

Whatever the development organization decides to do along these 
alternatives, it will result in the essential demands of functionality, time, 
effort, and quality not being met – either due to a short term reaction 
creating overhead effort or in the long term, by affecting all demands 
negatively. To tackle this problem, this thesis proposes a new approach 
that turns analytical compliance checking into a quasi-constructive 
quality engineering technique. The primary contribution of this approach 
– called live architecture compliance checking – pro-actively detects the 
introduction of structural violations into the source code.  

Live compliance checking pursues two primary goals: first, to achieve 
structural compliance during construction and second, to sustain 
compliance during the course of the evolution. It is executed 
continuously and constantly from day one of the implementation. Any 
modification made by any developer is analyzed immediately and, if 
necessary (i.e., if a violation was detected), live feedback is given straight 
to the developer originating the violation. This instant notification allows 
prompt removal of these violations. The constant repetition of this 
feedback whenever the same or another developer touches the same 
source code file (no matter at what point in time) spreads the 
information about the violation among the team of developers. 
Awareness for structural violations is raised early (i.e., almost in real time) 
and forwarded to its creator and all other developers working with the 
same source code elements – as long as the violations remain in the 
source code. The assistance provided by live compliance checking 
educates developers regarding the intended structural decomposition by 
constantly reminding them. Potentially, this education reduces the total 
number of violations introduced in the first place. In all cases, it prevents 
the drift between the structural view and the implementation. The high 
frequency (i.e., continuous live feedback) of compliance checking 
executions with fast response times turns the analytical technique into a 
quasi-constructive quality engineering technique.  

In other words, live compliance checking sustains the upfront investment 
the development organization made into architecting. It raises the 
awareness of developers regarding structural violations, just after they 
have been introduced. Developers can react immediately and remove the 
violation by refactoring – as soon as it has been introduced and while 
they still have context information in mind. The mean time for structural 
repair – the time from inserting a violation until its removal – is reduced 
to almost zero (of course, only if developers pay attention to the live 
feedback provided by live compliance checking). Thus, development 
organizations can rely on the software architecture as an instrument for 
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the successful and efficient development and evolution of software 
systems – a demand that is gradually gaining more and more importance 
and, at the same time, a challenge that currently most development 
organizations fail to meet.  

The remainder of this introduction continues with a discussion of the 
role of compliance checking in the software development process (see 
Section 1.1) and pinpoints the effects of compliance on effort (see 
Section 1.2). The characterization and empirical evidence for the benefits 
of evolving a system with structural compliance – three replications of a 
controlled experiment providing evidence that compliance allows 
evolution with savings in effort, at least for the experimental task 
executed by the participants – motivate the proposed approach of this 
thesis: prevention of structural violations by live compliance checking. 
Section 1.3 introduces this new approach to achieving compliance by 
construction and sketches its essential requirements. Then Section 1.4 
discusses the primary contribution. Finally, this introduction concludes 
with the outline in Section 1.5, which gives an overview of the structure 
and content of the remaining sections of this thesis. 

1.1 Compliance Checking 

The discipline that provides principles, techniques, methods, and tools 
for systematically developing and maintaining software systems is called 
software engineering.  

Definition 1 Software Engineering 

Software engineering is the application of a systematic, disciplined, 
quantifiable approach to the development, operation, and 
maintenance of software; that is, the application of engineering to 
software [IEEE-Std-610.12 1990]. 

Software engineering applies a defined development process to produce 
a software system that achieves certain functionality and certain quality 
goals. As an example, Figure 1 depicts the phases of a simplified 
development process based on the V-Model [Broehl 1995]. The V-Model 
comprises a set of artifacts that capture information about the system 
under development. Most modern development processes include the 
artifacts as depicted in Figure 1. The information flows step by step from 
left to right, passing all artifacts (i.e., from requirements to the accepted 
system in use). Each artifact allows the development organization to 
apply quality engineering activities. 

Definition 2 Quality Engineering 

Quality engineering subsumes all activities in an organization that 
contribute to the quality of end products. Methods and techniques 
enabling the achievement of a certain level of quality can be 
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distinguished into two categories: constructive and analytic quality 
engineering techniques (the latter are also called quality assurance 
techniques).  

Definition 3 Analytical Quality Engineering 

Analytic quality engineering is performed after the creation of the 
objects under examination to assess, verify, or validate them with 
respect to a certain quality.  

Definition 4 Constructive Quality Engineering 

Constructive quality engineering is performed while the object under 
examination is created and aims at proactive, a priori, preventive 
minimization of quality decay in the first place. Hence, they aim at 
achieving a certain quality by construction. 
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Figure 1 Simplified Development Process  

On the one hand, constructive quality engineering techniques aim at 
building quality into the artifacts, which means minimizing defects 
during the construction of products (e.g., systems, components, 
documents). They prevent defects from being introduced. The 
construction activities aim at producing artifacts (i.e., in Figure 1, first 
requirements, then architecture and components, and finally yielding the 
implementation) with the desired quality. Each artifact refines the 
previous one by lowering the abstraction level towards the source code.  

On the other hand, analytic techniques focus on artifacts in a stable state 
(i.e., after construction). They detect defects that need to be corrected 
afterwards. Analytical activities on the artifacts (i.e., in Figure 1, 
assembled components, integrated system, and eventually the accepted 
system in use) make sure that the resulting systems really exhibit the 
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desired quality. Analytical quality engineering techniques are further 
decomposed into verification and validation (V&V) activities: 

Definition 5 Verification 

The process of evaluating a system or component to determine 
whether the products of a given development phase satisfy the 
conditions imposed at the start of that phase [IEEE-Std-610.12 1990]. 

Definition 6 Validation 

The process of evaluating a system or component during or at the 
end of the development process to determine whether it satisfies 
specified requirements [IEEE-Std-610.12 1990]. 

In short, V&V evaluates whether the product is being built right 
(verification) and that the right product is being built (validation). 
Applying these definitions means that structural compliance checking is 
a verification technique ensuring that the implementation realizes the 
architecture right (i.e., that structural compliance is achieved). However, 
it does not guarantee that the right implementation is produced (i.e., 
that the implementation satisfies the requirements). Hence, validation of 
architectures is not in the scope of this thesis3. 

As depicted in Figure 1, two artifacts are inputs to compliance checking: 
the architecture and the implementation. Because the architecture 
prescribes the fundamental decomposition, compliance checking – as an 
analytical technique – can be executed as soon as an integrated system is 
available.  

Definition 7 Software Architecture 

Software architecture is the fundamental organization of a system 
embodied in its components, their relationships to each other and to 
the environment and the principles guiding its design and evolution 
[IEEE-Std.1471 2000]. 

Definition 8 Implementation 

Implementation is the result of the process of translating a design 
into hardware components, software components, or both [IEEE-Std-
610.12 1990]. 

Definition 9 Integration 

Integration is the process of combining software components, 
hardware components, or both into an overall system [IEEE-Std-
610.12 1990]. 

                                                      
3 Techniques for validating an architecture range from approaches that use 

questioning, structured interview, checklist, measuring, simulation (e.g., [Bosch 
2000]), to scenario-based (e.g., [Clements 2002b]) techniques. Most popular are 
scenario-based evaluations. [Ionita 2002] and [Babar 2004] provide a comparison of 
selected scenario-based approaches. 
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The architecture is then input to component engineering and 
implementation. Based on a well-defined architecture documentation, 
developers refine the abstract concepts and models prescribed by the 
architecture. They implement the abstract solutions specified in the 
architecture. Architectural elements are realized as a set of source code 
files; architectural inter-element relationships are codified as usage 
dependencies using the capabilities provided by the respective 
programming language. They write code and codify algorithms and data 
structures to satisfy the requirements on a software system. The resulting 
concrete solutions are implemented source code. 

When the writing of the source code has been completed, verification of 
the implementation is possible. The analytic quality engineering 
technique for verifying that the system’s implementation was built right 
is called architecture compliance checking. 

Definition 10 Architecture Compliance Checking 

Architecture compliance checking is a technique that verifies to 
which degree the realized architecture A’ complies with the specified 
architecture A. The inputs to architecture compliance checking are an 
architectural view and the respective counterparts in the software 
system; the outputs are a set of architectural violations. 

The goal of architecture compliance checking is to reveal where the 
traceability between architectural views and the resulting software 
system is no longer given. This thesis analyzes structural architecture 
compliance checking. Structural compliance checking reveals violations 
introduced during the implementation phase.  

Definition 11 Structural Violation 

A structural violation is an architectural component or a relationship 
between components that has a counterpart in the source code, 
which is not realized as specified. 

By its nature, compliance checking is a quality engineering instrument 
(see Definition 2). The application of compliance checking as an 
analytical quality engineering technique produces results late in the 
development process – at integration time. Analytic techniques focus on 
artifacts in a stable state (i.e., after construction). They detect defects 
that need to be corrected afterwards. Consequently, structural violations 
cause an overhead effort due to their late detection in the development 
process. 

Applying live compliance checking as a quasi-constructive quality 
engineering technique aims at minimizing defects during the 
construction of products (i.e., the implementation). The early detection 
of structural violations right after their insertion allows their prompt 
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removal. The fast response times for live feedback can reduce the mean 
time needed for structural repairs to the absolute minimum.  

The next two sections investigate the architecture in more detail. While 
Section 1.2 delivers evidence for the overhead effort caused by lack of 
compliance and its late detection, Section 1.3 explains the principles of 
live compliance checking – the novel approach introduced by this thesis.  

1.2 Effects of Architecture Compliance 

In general, compliance means that certain characteristics articulated by 
stakeholders are, in fact, fulfilled by the actual product, typically realized 
by different stakeholders. 

Definition 12 Compliance 

Compliance is the act or process of complying with a desire, demand, 
proposal, or regimen. Complying means to conform, submit, or adapt 
(as to a regulation or to another's wishes) as required or requested 
[Merriam-Webster 2009]. 

Compliance is always measured relative to two distinct aspects: on the 
one hand the intention, plan, or specification and on the other hand the 
facts, actual, or realization. Consequently, the translation of the 
compliance definition into the field of software architecture yields the 
following definition. 

Definition 13 Architecture Compliance 

Architecture compliance captures the degree of having accomplished 
required or requested demands realized in the implementations of 
software systems. Architecture compliance means that the specified 
architecture Aspec is equivalent to implemented architecture Aimpl , 
hence Aspec ↔ Aimpl.  

Here, the architects define the required or requested demands, while the 
developers carry out their realization in terms of the source code in the 
implementation. If they code the structure as prescribed by the 
architecture, structural compliance is achieved. Of course, it is possible to 
define other types of compliance (e.g., see Appendix A for an overview), 
but these other types are outside the scope of this thesis. Having 
compliance between structural view and implementations thus means 
the absence of structural decay in the system. Traceability from the 
abstract elements of the structural architectural view to its concrete 
counterparts in the implementation is ensured and vice versa. Typically, 
traceability enables a one-to-many mapping, which means that one 
architectural element is realized by many source code elements. Figure 2 
depicts an example structure comprising three abstract layers (left) and 
the corresponding implementation (right) in Java. Each layer is realized 
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by a distinct package, and traceability is given by the respective 
numbering of layers and packages. This simple example illustrates the 
abstraction gap between architecture and implementation.  
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Figure 2 Example: Structural View (left) with Strict Layering and Sample Implementation (right) 

To motivate live compliance feedback for sustaining structure in the 
implementation – the contribution of this thesis – we conducted several 
empirical studies. First, a survey of industrial systems exemplifies that lack 
of compliance causes an overhead effort for structural repairs or 
reconstruction. Second, a controlled experiment replicated three times 
provides evidence about the benefits of compliance in terms of effort 
savings in the further evolution of the system. 

1.2.1 Survey on Industrial Software Systems 

This section analyzes in Table 1 the impact of lack of compliance for 
several industrial software systems4. In several case studies, we 
investigated the following research question: “What is the impact of 
architecture compliance in the lifecycle of a software system?”.  

In particular, our survey aimed at answering two questions: Do 
implementations of software development organizations lack compliance 
and if so, does this really cause an overhead effort for the development 
organization? This leads to the following null hypothesis H0 to be tested 
and the alternative hypothesis H1 – describing what is expected to 
happen: 

� HL0: The null hypothesis is that architectural compliance has no effect 
on the development or maintenance effort for a software system. 

                                                      
4 Please note that the names of the software system, products, or architectural 

elements have been anonymized partly due to confidentiality reasons. 
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� HL1: Lack of compliance creates an overhead effort for the 
development organization.  

All cases described in Table 1 were elicited by informal interview with the 
stakeholders of the development organization (i.e., the architects, 
developers, or project managers) of the respective case. The author of 
this thesis assessed the compliance status using the Fraunhofer SAVE 
tool [Knodel 2009a], but was neither involved in development nor in 
maintenance activities at the development organization. Table 1 
describes each case following a template: The context gives general 
information about the development organization and the system or 
product line under examination, compliance status reports on the degree 
of compliance (please refer to Section 2 for details on measuring 
compliance), and impact discusses the overhead caused or problems 
experienced due to the lack of compliance.  

Case Description 
Case A –  
Embedded 
System 

Context: Testo AG is developing a product line of climate and 
flue gas measurement devices. The software part of these 
measurement devices is developed by about 35 developers. They 
are responsible for maintaining and evolving the existing products 
and, of course, for developing new products. All measurement 
devices share the same reference architecture [Schmid 2005] and 
a common core of reusable components, called framework. After 
release to the market, the first three products were analyzed with 
respect to their compliance.  
Compliance Status: Compliance checking measured the 
following degrees of compliance: product P1 was 95.7% 
compliant, P2 89.8 %, and P3 only 72.7%. Quantified, the 
number of structural violations was in the range of 4-digit levels, 
especially P3 had more than 2000 distinct violations. Several 
reusable core components had dependencies on product-specific 
parts, which basically ruined their reusability (see [Kolb 2006] for 
more details). 
Impact: The compliance status resulted in a dedicated but 
unplanned restructuring project aimed at removing structural 
violations. The restructuring project bound significant resources of 
the development organization; workshops for communicating the 
compliance status alone consumed more than 10 person-days of 
effort (2-day workshop with more than 5 attendees on average, 
neither counting preparation nor time for solution finding and any 
structural repairs). The structural violations negatively affected 
reusability and imposed a major threat for the future evolution of 
the product line. The architects and developers invested 
significant effort in a dedicated restructuring project to tackle the 
structural violations (unfortunately, no effort data was tracked for 
this project).  
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Case Description 
Case B –  
Multi-
Media 
System 

Context: The development of a multimedia system was adapted 
to new hardware technology including a graphics component 
(implemented in C++, comprising approximately 180 kilo lines of 
code). At the time of the analysis, the component was still under 
development. To ensure adequacy of the graphics component, 
the architects were interested in the compliance status of the 
component. 
Compliance Status: The compliance status of the component 
was analyzed twofold. First, compliance with the intended 
decomposition into the three layers was analyzed. Second, the 
layer internals of the component were analyzed. Although the 
implementation was still in progress, minor violations had already 
made their way into the component. Only few – less than 1% – 
dependencies violated the top-level layering, but by that time, 
only two out of three layers had been realized (the third layer only 
existed in stubs). The detailed analysis of the layers detected 
further minor compliance issues (see [Knodel 2005c] for more 
details). 
Impact: Due to the fact that the implementation was still in 
progress the developers’ attention was called to the structural 
violations. However, it is remarkable that there already was a lack 
of compliance, although there was not even a first release of the 
graphics component yet. Moreover, additional effort was spent 
on running a workshop to communicate the compliance checking 
results. 

Case C –  
Information 
System 

Context: The development organization is producing software for 
the management of stock market data. The case study analyzed a 
high-end asset management system (large-scale system 
programmed in Delphi, 2-tier client-server architecture, developed 
for more than 10 years). To address new market requirements 
only a subset of the current product functionality was needed, 
hence it was decided to extract one core component and reuse it 
in the new products.  
Compliance Status: By the time of the analysis, the core 
component existed only on paper. It was not possible to draw 
clear line between the component and other parts of the system. 
The component was heavily coupled to user interface, database 
access, and business logic and included a large number of 
dependencies on certain initialization and global variables. The 
core component was not encapsulated with clearly defined, 
explicit dependencies; it was rather an integral part of the system. 
Impact: The lack of compliance led to a decision (i.e., reusing the 
component), which could not be executed due to its blurred 
boundaries. Instead, resources had to be devoted to a 
reconstruction project, which analyzed reuse feasibility, identified 
potential risks, and redocumented the interface of the 
component. The negative findings of the reconstruction project 
revealed the technical pitfalls regarding potential reuse of the 
component, and the development organization decided to strive 
for an alternative solution (see [Knodel 2004] for details). In short, 
reuse failed because the implementation lacked compliance. 
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Case Description 
Case D –  
Information 
System  

Context: Because of exceeded time and budget constraints, 
unreliable functionality, and an overall unclear status, the 
customer of a development project asked Fraunhofer IESE to 
conduct an independent architecture assessment for a software 
system developed by an external contractor (implemented in Java, 
comprising several million lines of code).  
Compliance Status: The compliance checking of the system 
addressed several structural viewpoints. All of them revealed 
substantial structural violations between intention and actual 
implementation (the percentage of violations was considerably 
higher than 5%). Most noteworthy was the analysis of the 
layering, where almost 33% (quantified: nearly 50000) of the 
dependencies were violations.  
Impact: The mismatch between architecture and implementation 
was so severe that the customer lost confidence in the abilities of 
the contractor to repair the structural violations. Eventually, the 
development project was canceled by the customer. Hence, the 
previous investments into this project were made in vain. 

Case E –  
Testbed for 
Avionics 

Context: TSAFE is a prototype of the Tactical Separation Assisted 
Flight Environment specified by NASA Ames Research Center 
[Erzberger 2001] and implemented at MIT [Dennis 2003]. 
Fraunhofer Center Maryland (CESE) turned TSAFE into a testbed 
to be used for software technology experimentation 
(implemented in Java, comprising 20 kilo lines of code). One of 
the technologies experimented with was architecture compliance 
checking (see [Lindvall 2005] for details of the study).  
Compliance Status: The TSAFE testbed was seeded with six 
detectable structural violations, which were then presented to the 
subject (a senior person skilled in applying compliance checking). 
The subject also had the architecture documentation at hand and 
was asked to inspect the issues. 
Impact: In this special setting, detailed data could be collected for 
the analysis of the structural violations. In total, six violations were 
detected by the compliance checking technique. The subject 
spent four hours just on inspecting the violations, judging their 
potential impact, and reporting on them. The effort data collected 
for this rather simple testbed is a good indicator for the potential 
overhead effort caused by lack of compliance and follow-up 
structural repairs. 

Table 1 Compliance Survey on Industrial Software Systems 

The findings of Table 1 show that lack of compliance is, in fact, a 
recurring, practical problem in industry, which many software 
development organizations face. Actually, we could not observe a single 
case where there were no violations at all. The list of cases in Table 1 is 
far from complete; we present more cases in [Knodel 2006c], and other 
researchers also report on the lack of compliance (e.g., see [Murphy 
2001], [Koschke 2003], [Bourquin 2007], [Rosik 2008]).  
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For all cases in Table 1, we could observer an overhead effort caused by 
a lack of compliance. These are hints to accept the hypotheses HL1 – lack 
of compliance creates an overhead effort in software development 
organizations. This negative impact motivates the pro-active prevention 
of structural violations. However, so far, we have not shown yet that 
compliance really allows effort-efficient evolution. The next subsection 
will investigate this topic in detail. 

1.2.2 Evidence of Compliance Benefits  

In the research community, it is assumed that architecture compliance 
has a positive effect on the evolution of a software system. Changes 
(either modifications of existing parts or extensions) can be realized 
efficiently because the developers can rely on the information provided 
by the software architecture documentation. Hence, in order to motivate 
a new compliance checking technique – as we do with live compliance 
checking – we have to provide evidence that lack of compliance is one of 
the root causes for effort-intensive and time-consuming evolution.  

Therefore, we designed a controlled experiment that addresses this 
claim. Our research goal was to understand the benefits of compliance 
in the evolution of a software system. We compared the effort for an 
evolutionary task on two functionally equivalent implementation variants 
of the same system – one with significant structural violations and the 
other one realized in compliance with the architecture. As a side-effect, 
we could observe whether or not the structure of the respective system 
was kept in place.  

In total, we conducted three replications of the experiment. The first run 
took place at the Fraunhofer-Center for Experimental Software 
Engineering, Maryland, USA (CESE). The subjects were students working 
as interns at CESE. The second replication was performed as part of the 
project ArQuE (Architecture-Centric Quality Engineering, which is a 
German research project partially funded by the German Ministry of 
Education and Research (BMBF)). And the last run took place at the 
Technical University of Kaiserslautern, Germany, as part of the practical 
lecture “Grundlagen Software Engineering (GSE 2008)”. Table 2 gives 
an overview of the three replications. Preceding the three runs, we 
conducted a pilot with two students to test the experiment materials and 
the solvability of the task. Both were able to accomplish the task 
successfully. Based on their feedback, we changed minor wordings in 
the material.  

The group name encodes the context (first letter) and the group 
membership (second letter). Group A worked with the implementation 
containing structural violations, while Group B had the compliant 
implementation. Each time the participants of the experiment were 
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randomly assigned to one group. All participants received the same 
material (except for the implementation variant) and had to solve the 
same evolutionary task.  

Context Group Subjects Subject Type  

Pilot 
P_A 1 computer science students, average 

experience: 6 semesters P_B 1 

CESE 
F_A 2 computer science students, average 

experience: 7 semesters F_B 2 

ArQuE 
I_A 4 professional software engineers, average 

more than 10 years of industry 
experience 

I_B 4 

GSE2008 
K_A 9 computer science students, average 

experience: 6 semesters K_B 7 
Table 2 Compliance Experiment – Replication Overview 

The hypotheses were also the same in all three replications. The first 
hypothesis captures the comparison of the effort required, while the 
other one addresses the correctness of the task: 

� HC0.1 – The null hypothesis is that compliance has no effect on the 
effort required to accomplish the evolutionary task.  

� HC1 – The evolutionary task can be realized with less effort for the 
architecture-compliant implementation. 

 

� HC0.2 – The null hypothesis is that compliance has no effect on the 
correctness of the evolutionary task.  

� HC2 – Compliance supports the subjects in accomplishing the correct 
solution (i.e., correctness here means being compliant to the 
reference solutions provided by an independent expert beforehand). 

To operationalize the hypotheses, we used two already existing 
functionally equivalent implementation variants of the TSAFE testbed5 
[Lindvall 2005], which were implemented based on the same reference 
architecture. Variant A actually was a predecessor of variant B, which 
underwent major restructuring.  

The experimental task was stated as follows: “To support distributed 
development and outsourcing, TSAFE has to be refactored into distinct 
components. Each TSAFE component has to be realized in a separate 
Eclipse project, which can then be managed and evolved by an 
independent development group. After the refactoring, ensure that 
TSAFE is working correctly: no compilation errors, and pass of system 
test.” As support all subjects received the architecture documentation 

                                                      
5 Please note that the two variants are different from the variants discussed in case E 

in Section 1.2.1. 



Introduction 

 19 

and technical material on Eclipse and its task-relevant features. Then the 
subjects conducted the task independently. 

We collected effort data in person-hours and measured the correctness 
of the task a-posteriori (i.e., we compared the individual solutions to the 
expert reference and measured the matching degree).  

The average results of the three replicated runs for the different groups 
are listed in Table 3, while the box plots in Figure 3 and Figure 4 detail 
results depicting the corresponding effort data and task correctness of all 
subjects (excluding the pilot) per group. 

Run Group Effort (in minutes) Correctness (in %) 

CESE 
AVG(F_A) 114,00 61,00 
AVG(F_B) 50,00 100,00 

ArQuE 
AVG(I_A) 103,25 66,00 
AVG(I_B) 88,00 100,00 

GSE2008 
AVG(K_A) 116,22 73,11 
AVG(K_B) 37,71 99,00 

Total 
AVG(A) 112,47 69,60 
AVG(B) 55,08 99,46 

Table 3 Compliance Experiment – Results 

 

Figure 3 Compliance Experiment – Box Plot Effort Data 
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Figure 4 Compliance Experiment – Box Plot Correctness 

Overall, we can make the following observations for the effort data (see 
Figure 3): 

� The box plot shows good separation for the effort data. 

� On average, subjects in group B (working with the architecture-
compliant implementation variant) required less effort to solve the 
task. This is true for all three replications.  

� In group A (the implementation variant lacking compliance), there are 
larger deviations from the average effort data than in group B. 

� The best participant of group A (45 minutes) required almost the 
same effort as the median of group B (47 minutes), whereas the 
worst participant of group B (120 minutes) required almost the same 
effort as the median of group A (118 minutes). 

With respect to correctness (see Figure 4), the following observations can 
be made: 

� The box plot shows good separation for correctness. All but one 
participant of group B (working with the architecture-compliant 
implementation variant) accomplished 100% correctness for the 
evolutionary task. 

� In group A (the implementation variant lacking compliance), there are 
larger deviations from the average correctness than in group B. 

� The best participant of group A accomplished 100% correctness. The 
worst participant of group B (93% corrected) outscored more than 
75% participants of group A. 
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The briefing questionnaire analyzed the background of the participants. 
Answers could be given on an ordinal scale with five values ranging from 
1 (“none at all”) to 5 (“professional”). The average experience of the 
participants in both group was very similar (Java: A=2.60 vs. B=2.23; 
Eclipse: A=2.47 vs. B=2.31; Refactoring: A=1.33 vs. B=1.38). 

Debriefing questionnaires revealed further interesting findings. Answers 
could be given on an ordinal scale with six values ranging from 1 (“don’t 
agree at all”) to 6 (“totally agree”).  

� The participants further understood the task well (A=4.60 vs. 4.69) 
and were comfortable in applying the Eclipse refactoring (A=5.27 vs. 
B=5.23). 

� The participants agreed that the goal of the task (A=4.13 vs. B=4.31), 
the task description (A=4.80 vs. B=4.77), and the architecture 
description including the component (A=4.40 vs. B=4.85) were clear.  

� The participants agreed that the task was realistic (A=4.40 vs. 
B=4.38). 

The results show that compliance of the implementation – as the only 
varying factor between the two groups – allows effort-efficient evolution 
of software systems. The lack of compliance caused, on average, an 
effort twice as high, or 204% (average of group A/average of group B). 
Moreover, all but one participant of group B solved the task 100% 
correctly, while group A had only an average of 69.60%. For a detailed 
discussion of the experiment and its threats to validity, please refer to 
[Knodel 2009b]. 

1.2.3 Summary 

In short, we presented a discussion of many industrial cases where 
structural repair due to lack of compliance consumed substantial, 
unplanned effort in the lifecycle of the software system. The three 
replications of the controlled experiment could isolate compliance as one 
of the root causes for high maintenance and evolution effort.  

Based on this empirical evidence, we claim that sustaining compliance is 
a worthwhile research theme. The solution proposed by this thesis is a 
new approach: We turn compliance checking into a quasi-constructive 
quality engineering activity that pro-actively enables developers to 
adhere to the intended structure – while changing the implementation, 
they receive live compliance feedback on all changes made. Hence, 
investments into architecture – made in advance – pay off while the 
system evolves. Compliance grants traceability between architecture and 
code and the structural decomposition is sustained.  
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1.3 Principles of Live Compliance Checking 

To harvest the fruits (i.e., the effort saving) promised by compliance, we 
had to define an approach that is able to prevent structural decay and 
sustains architectural structures over time. The main underlying idea of 
this approach is to transform compliance checking into a quasi-
constructive quality engineering technique. This section outlines the key 
principles of live compliance checking (to be detailed in the remainder of 
the thesis).  

To understand the requirements and constraints imposed by the live 
feedback approach, we delineate it from the regular analytical approach, 
where the compliance of single system snapshots is checked offline. 
Snapshots here represent one distinct version of source code of the 
system at a certain point in time. Figure 5 depicts the five conceptual 
phases of analytical compliance checking – abstracted from concrete 
techniques.  

� Architecture: The architect models the intended structural 
decomposition of the system in terms of components and relations 
among them. This description of the to-be plan is the input for the 
developers to start the implementation. Besides, the structural model 
serves as input for the compliance check in the analysis phase. 

� Implementation: Developers translate the abstract solution into 
source code (i.e., algorithms and data structures) adhering to the 
plan. By refining the abstract, coarse-grained entities, they implement 
many fine-grained, concrete code elements. Typically, teams of 
developers concurrently produce the source code or modify and 
extend existing code. Eventually, the source code is stored in a 
repository. The repository allows analyzing a distinct snapshot of the 
software system. 

� Analysis: The analysis processes the predefined structural model and 
one distinct snapshot of the source code to run the compliance 
check. It is possible to apply model-based or rule-based compliance 
checking techniques (see Section 3 for a comparison). However, 
independent of the technique chosen, the results are equivalent. The 
checking results distinguish between compliance and violations. 

� Communication: The architect reviews the checking results and 
defines structural repair tasks for the respective developers. The same 
developers causing the violations would be the ideal candidates for 
correcting it.  

� Correction: The correction phase then realizes the structural repairs. 
Again, teams of developers concurrently refactor violating code parts. 
Correction leads to another implementation phase, which means 
iterating again over all phases to avoid unwanted side-effects and 
verify the corrected violations. 
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Figure 5 Analytical Compliance Checking of System Snapshots 

Figure 6 shows how live architecture compliance checking works. In 
contrast to Figure 5 and contrary to regular analytical compliance 
checking, we have only two phases, architecture and implementation: 

� Architecture: The architecture phase is the same as for analytical 
compliance checking – the structural model is the input for the 
follow-up phase. 

� Implementation (enriched with Live Analysis and Direct 
Communication): As for analytical compliance checking, developers, 
of course, produce source code on the basis of the structural model. 
But in contrast to it, the implementation phase is enriched by live 
analysis of all deltas (i.e., the code just written) and direct 
communication about violations to the developers causing it (i.e., live 
feedback to the originators of violations). Because they receive 
instant feedback, developers are enabled to react promptly. Their 
minds are still in the current context (i.e., they are still working on the 
same task, they just wrote the violating source code lines). Thus, they 
can immediately repair the structure with minimal, close-to-zero 
effort. In other words, the compliance check and the correction 
happen while the developers are implementing. Thus, the developers 
are constantly trained and educated regarding the architecture. 
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Figure 6 Live Compliance Checking 

The points in time for analytical compliance checking can be formulated 
as follows: t Architecture << t Implementation << t Analysis < t Communication << t Correction. 
Except between analysis and communication, there is a considerable 
delay (i.e., several days, weeks, or months) between the stages. Live 
compliance checking executes the four phases (i.e., implementation, 
analysis, communication, and correction) at the same time. The high 
execution frequency with live feedback justifies the classification as a 
quasi-constructive quality engineering approach, which leads to  
t Architecture << (t Implementation = t Analysis = t Communication = t Correction). While there is 
still a delay between the architecture and the follow-up phases, all other 
phases are performed concurrently.  

To be considered as quasi-constructive, compliance checking has to 
satisfy these timing constraints – and thus has to be executed live. Based 
on these characteristics and the concepts shown in Figure 6, we can 
deduce a set of essential requirements for live compliance checking as 
listed in Table 4. 

Requirement Description 
Live 
Feedback 

To empower developers to promptly remove structural 
violations with minimal or zero effort, they need to be made 
aware of the violations as soon as possible. The least delay 
obviously has immediate feedback: just after the source code 
has been written, developers receive live instant feedback on 
compliance. 

Ease of Use Any developer shall be able to interpret the live feedback. 
There should not be any extra effort to understand the 
feedback; further, there should not be a need for special 
training or support. 
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Requirement Description 
High 
Execution 
Frequency 

The high execution frequency of compliance checking requires 
computer-aided, tool-supported automation. The results have 
to be computed without humans being involved in the regular 
execution. Of course, for initialization and major changes 
(e.g., adaptation of the structural model, new developers), the 
architect has to manually manage the configuration of live 
compliance checking. 

Delta 
Analysis 

The analysis of local deltas defines the limited scope for 
compliance checking. Each developer only receives feedback 
on violations that are within the respective modification scope 
(i.e., the file currently being edited). The delta analysis allows 
direct feedback directed to the originator or to the developers 
currently changing the source code files causing violations.  

Distributed 
Team 
Support 

Organizations typically produce software systems with many 
distributed teams of developers. In order to be successful live 
compliance checking has to support this distribution. Further, 
it has to scale to the number of developers implementing the 
system and to the size of the software system. 

Smooth 
Integration 
into 
Environment 

One characteristic of live compliance checking is the 
avoidance of unnecessary context changes. We consider the 
integration as smooth if developers are not required to switch 
to another context (i.e., by opening a web site or another 
tool). Hence, in order to not distract developers from their 
current task, the feedback results have to be presented in a 
non-intrusive manner. Ideally, the feedback presentation is 
presented as part of the source code editor of the integrated 
development environment (IDE) that the developers use to 
write code.  

Robustness Live compliance checking starts on the first day of 
development. It is executed all the time and while the system 
is still being written. Compliance checking has to be robust 
towards incomplete source code and compilation errors. 

Commit 
Control 

Source code commits to the repository (i.e., the configuration 
management system) should be under commit control. The 
architects have the option to apply either strict control (no 
commit possible for source code files containing violations) or 
loose control (violations can be committed). 

Separation 
of Roles: 
Architect 
and 
Developer 

The two roles of compliance checking – architect and 
developers – have to be acknowledged in live compliance 
checking, too.  
Architects define and manage the structural view. They are 
the only ones in control of changing the view and updating it, 
if necessary. Furthermore, the architects are interested in a 
global view on the whole system. They have to analyze the 
full picture, spanning over local changes made by the 
developers. They require architecture visualization and in-
depth analysis capabilities to reveal architectural flaws.  
In contrast to the architect, developers have a local viewpoint; 
they only need to see the impact of their local modifications. 
Hence, they can ignore structural violations in other parts.  

Table 4 Essential Requirements on Live Compliance Checking 
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A solution meeting the requirements stated in Table 4 leads to a tool-
supported approach for live compliance checking. Such a solution would 
empower developers to sustain structure during the evolution of the 
software implementation. Sustainable structures in implementations 
yield less time-consuming and less effort-intensive evolution because the 
benefits promised by architectures are valid over time. The effort savings 
are achieved due to the following characteristics achieved by live 
compliance checking: 

� Live Compliance Checking Characteristic (LCCC) 1: Live 
compliance checking continuously educates and trains 
developers on the architecture: The constant live feedback 
educates developers and trains them on the structural decomposition 
as specified by the architect. The continuous feedback produces a 
learning effect: Over time, less structural violations are introduced. 

� Live Compliance Checking Characteristic (LCCC) 2: Live 
compliance checking allows the prompt removal of structural 
violations: The developers’ awareness is raised immediately after the 
violations have been introduced. This enables developers to remove 
the violations with minimal effort because they are still in the 
problem context and no effort for re-understanding the source code 
is required.  

In short, live compliance checking promises sustainable structure, which 
yields effort savings for the development organization. This thesis 
introduces such an approach to achieving architecture compliance by 
construction. The next section sketches the contribution and 
characterizes it threefold: The scientific, engineering, and empirical 
building blocks of this thesis are summarized (and detailed in the 
remainder of the thesis).  

1.4 Contribution  

The research questions addressed in this thesis are centered on 
architecture compliance. In particular, we investigate the following 
questions:  

� What is the impact of architecture compliance on software 
implementations? 

� How can we achieve the construction of a software system with 
compliance? How can we sustain compliance in the evolution of a 
software system? 

� Is it possible to turn analytical compliance checking into a quasi-
constructive quality engineering technique? What are the effects of 
live compliance checking? Is this technique adequate for achieving 
compliance in the construction of software implementations? Does it 
sustain structures over time? 
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� How can we support live compliance checking with tools? What are 
the requirements to enable live analysis and instant feedback? Can 
such a technology be successfully transferred to a development 
organization? 

� Does live compliance checking educate developers on the 
architecture? Does it cause a learning effect? And will developers 
eventually use the live feedback to remove structural violations?  

1.4.1 Research Method 

To examine these research questions, we applied the principles of the 
experimental software engineering paradigm [Basili 1993]. Figure 7 
summarizes the stages of the experimental software engineering 
paradigm (the boxes from left to right map to the respective steps and 
list the respective section in this thesis relevant to the step).  

� First, we observed industrial software development organizations in 
order to identify a practical problem. In our survey covering various 
application domains, we were able to show that the evolution of 
software implementations is time-consuming and effort-intensive. A 
common factor shared by all software implementations analyzed was 
the lack of compliance – causing substantial overhead effort for the 
development organization in reaching its development objectives and 
for applying refactoring or restructuring projects to repair the 
implementation. 

� Second, context factors influencing the problems were analyzed to 
identify the underlying scientific problem and to investigate it in 
detail. We conducted three replications of a controlled experiment 
with compliance as the only varying factor. Solving a sample 
evolutionary task for the variant comprising structural violations led 
to effort data twice as high (204%) than solving the same task for 
the compliant variant. The results constitute the research questions 
tackled in this thesis: How can we successfully sustain structure in 
software implementations over time? 

� Third, an innovative solution was defined and introduced – live 
compliance checking. This new approach continuously monitors 
source code modifications, pro-actively detects structural violations, 
immediately provides developers with live feedback, and enables 
developers to react promptly. Hence, compliance is sustained, which 
avoids decay in software implementations. 

� Fourth, we performed empirical evaluation to prove that the solution 
actually addresses the problem (i.e., that there is a scientific benefit). 
For this purpose, we conducted an experiment where 19 students 
developed a system over a period of 35 days. The students were 
assigned to two groups, both applying a regular development 
approach – one group with live feedback on compliance, the other 
one without. The experiment provided evidence about the positive 
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effects of live compliance checking – resulting in 60% less structural 
violations for the supported group. 

� Fifth, we further empirically evaluated the effects to show the desired 
benefits in industry. In two case studies, we observed that 
compliance degrees of up to 99% are feasible – after investing effort 
for structural repair and with regular feedback on compliance 
(though not live). The sustained compliance increased the 
productivity of the development organization. While spending the 
same effort as before, the development organization could produce, 
evolve, and maintain more systems at the same time. Though 
compliance might not be the sole factor responsible for this fact, the 
industrial stakeholders confirmed in interviews that it is at least one 
of the crucial factors. 

Industrial Problem:
Effort-Intensive Evolution
(Section 1.2.1)

Scientific Problem:
Lack of Compliance
(Section 1.2.2)

Solution:
Live Compliance Checking
(Section 2, 3, 4, 5)

Scientific Benefit:
Sustained Compliance
(Section 6.1)

Industrial Benefit:
Increased Productivity 
(Section 1.2.2, 6.2)

Industrial Problem:
Effort-Intensive Evolution
(Section 1.2.1)

Scientific Problem:
Lack of Compliance
(Section 1.2.2)

Solution:
Live Compliance Checking
(Section 2, 3, 4, 5)

Scientific Benefit:
Sustained Compliance
(Section 6.1)

Industrial Benefit:
Increased Productivity 
(Section 1.2.2, 6.2)

 

Figure 7 Experimental Software Engineering Paradigm: Characterization of Problem, Solution, and 
 Benefits 

1.4.2 Proposed Solution  

The empirical building block of this thesis distinguishes between the 
eligibility of compliance as a worthwhile research theme on the one 
hand and the validation of live compliance checking on the other hand. 
In the empirical part, in particular, we provide evidence for the following 
hypotheses – the first two addressing compliance in general, the latter 
two addressing regular (or live) feedback: 

� HC1 – Evolution consumes less effort for implementations that are 
architecture-compliant. 

� HC2 – Compliance supports structure in remaining compliant over 
time. 

� HF1 – Live feedback on compliance reduces structural violations in 
implementations.  

� HF2 – Compliance increases the productivity of the development 
organization.  

As depicted in Figure 7, the empirical motivation for this thesis is given in 
Sections 1.2.1 (addressing HC1) and 1.2.2 (addressing HC2), while 
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evidence for the positive impact of live compliance checking and regular 
feedback is reported in Sections 6.1 (addressing HF1) and 6.2 (addressing 
HF2). Further, the effort reduction shown in the three replications of the 
experiment reported in 1.2.2 is another hint for the increased 
productivity in an industrial context.  

The solution introduced by this thesis is split into two distinct building 
blocks – scientific and engineering (see Figure 8). The scientific building 
block comprises three parts:  

� The measuring compliance part (see Section 2) presents a formal 
definition of the meta-models for the structural view, the source code 
model, and the mapping required between them. Based on these 
models, the compliance metric as frequently applied throughout this 
thesis is defined. The compliance metric is a relative measure that 
captures the percentage to which a software implementation 
accomplishes the structure specified.  

� The techniques part (see Section 3) characterizes first the base 
technologies underlying any compliance checking technique: reverse 
engineering and its discipline fact extraction, which mines the source 
code for relevant information. Then the survey on the state of the art 
in analytical compliance checking reveals the equivalence in 
expressiveness of the two most prominent (and practically the only 
relevant) techniques – Reflexion models and dependency rules. The 
comparison of the two techniques shows that the Reflexion model 
technique outscores dependency rules in terms of applicability, 
explicitness, and ease of use with respect to live compliance 
checking. 

� The approach part (see Section 4) finally introduces how the concepts 
of live compliance checking have been composed into a well-defined 
solution. This new approach defines adapted processes for architect 
and developer. Further, we discuss the positive effects of how the 
high frequency of live feedback can reduce the overall development 
effort.  

Besides the scientific contribution, the engineering building block (see 
Section 5) presents the tool support for live compliance checking. To 
systematically counteract the drift between architecture and 
implementation, the compliance checking tool has to be fully 
automated, integrated with the development environment, and scale for 
the whole development organization.  

As part of the thesis, we developed the SAVE LiFe tool – Software 
Architecture Visualization and Evaluation with Live Feedback (see Figure 
9). SAVE LiFe is a client-server variant built on top of the Fraunhofer 
SAVE tool [Knodel 2009a]. 
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Figure 8 Overview Proposed Solution – Scientific (left) and Engineering (right) Building Blocks 
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Figure 9 Solution – SAVE LiFe: Server, Fat Client, and Thin Clients 

Fraunhofer SAVE is an Eclipse plug-in for goal-oriented analysis, 
compliance checking, and optimization of implemented software 
architectures. SAVE is a joint development of Fraunhofer IESE (Institute 
for Experimental Software Engineering IESE in Kaiserslautern, Germany) 
and the Fraunhofer Center Maryland (Center for Experimental Software 
Engineering in College Park, Maryland, USA). It realizes analytical 
compliance checking for implementation snapshots. SAVE comprises a 
set of extractors, analyzers, and generators that extract information from 
system artifacts, perform an arbitrary kind of computation, visualize the 
results, or generate system artifacts.  
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The engineering contribution differentiates SAVE LiFe – the client-server 
variant – from its ancestor SAVE – the snapshot analysis tool. Moreover, 
Section 5 introduces how SAVE LiFe meets the essential requirements 
listed in Table 4. We further discuss the architecture of SAVE LiFe, 
including its deployment to a central server, to a fat client for architects, 
and to thin clients for developers. SAVE LiFe is a client-server variant as 
depicted in Figure 9. The server manages a centralized repository that 
stores the information needed to execute the compliance checking and 
provides the computational logic for executing the analysis. The fat client 
allows the architect to manage the structural architectural view and to 
define the structure that the implementation shall comply with. The 
developers’ thin client enables the execution of compliance checking in 
real time and visualizes live feedback in the source code editor. 
Modifications made by the developers are sent to the server and the 
server corresponds with live feedback on the compliance of the 
modifications made. The clients perceive the feedback as live because of 
low response times due the analysis scope being limited to the local 
delta of the respective developer. Both clients (fat and thin) and server 
are fully integrated into the Eclipse [Eclipse 2009] development 
environment. 

In short, SAVE LiFe enables automated live architecture compliance 
checking and empowers developers to counteract structural violations. 
Thus, it is an instrument for realizing software implementations with 
sustainable structures – provided that developers have pay attention to 
the live feedback they receive.  

1.5 Outline 

The introduction (i.e., this section) presented the primary idea and 
motivation of this thesis. We stated the research questions, derived 
hypotheses from it, and sketched the proposed solution. The remainder 
of this thesis is structured as follows.  

Section 2 continues with the presentation of meta-models relevant for 
compliance checking. Based on these models, we define a generally 
applicable metric for compliance. Then Section 3 summarizes the state of 
the art of analytical compliance checking techniques, compares them, 
and shows their equivalence in terms of expressiveness. Section 4 
discusses the necessary adaptations and new concepts enabling live 
compliance checking. Further, a theoretical model for effort savings due 
to live compliance checking is introduced. Then Section 5 presents the 
tool support for live compliance checking – SAVE LiFe (which is the 
acronym for Software Architecture Visualization and Evaluation with Life 
Feedback).  
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Section 6 presents the validation of the effects of feedback on 
compliance checking in one experiment and two industrial case studies. 
Finally, Section 7 concludes this thesis by summarizing the results 
achieved. We further discuss the limitations, open questions, and 
sketches for future work. This thesis ends with final remarks in 
retrospective. 
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2 Measuring Architecture Compliance 

The scope of this thesis is to investigate the impact of the compliance of 
a software implementation with the structural view of the software 
architecture on the lifecycle. Therefore, we aim at making statements on 
the effects of compliance on the development effort. For this purpose, it 
is necessary to quantify compliance. In this section we define a metric 
that determines the degree to which the state of having accomplished 
required structural demands is realized in the software implementation.  

The compliance metric (see Section 2.4) measures two factors: the 
internal composition (i.e., the degree to which a component is realized 
by the right set of compilation units) and external dependencies (i.e., the 
degree to which specified dependencies are realized by the compilation 
units of the implementation) of each individual components. Hence, the 
compliance of the overall implementation aggregates the single 
component values.  

The metric definition builds on top of the meta-models of the two 
distinct aspects between which compliance is measured. Hence, we first 
introduce the meta-model of the structural view (see Section 2.1) and 
followed by a generic source code model (see Section 2.2). The generic 
source code model abstracts the compliance metric from concrete 
programming languages. While the structural model represents abstract 
architectural concepts, the source code model captures concrete 
implementations. To bridge the gap between these two models, we 
introduce the concept of mapping (see Section 2.3), which defines  
1-to-many relations and links elements of one meta-model to the other. 
Hence, this mapping allows identification of the respective counterparts 
on each level. 

To see the metric in action, we present several simple examples 
combining different architectures and their implementations and 
illustrating the measurement of compliance (see Section 2.5).  

2.1 Meta-Model of the Structural View 

The software architecture aggregates a set of architectural views to 
describe the fundamental organization of a system. Figure 10 (using the 
UML notation [UML 2008]) depicts a simplified meta-model of a 
software architecture. It presents the subset of elements of the IEEE 
standard 1471 “Recommended Practice for Describing Software 
Architecture” [IEEE-Std.1471 2000] related to architectural views.  
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Architecture

View Viewpoint1

*<<aggregates>> <<is instance of>>  

Figure 10 Simplified Meta-Model of Software Architecture  

The structural view captures the static structure of a system in terms of 
layers, subsystems, and components, the interfaces provided by them, 
and the relationships between the various elements. The structural view 
only describes the static structure of a system and therefore does not 
provide any information about dynamic aspects and behavior.  

The structural view (see Figure 11 for the meta-model) is represented 
using several structural models that decompose the system into 
architectural elements. Architectural elements have distinct 
responsibilities and encapsulate certain functionalities. To achieve their 
objective, architectural elements interact with other elements. These 
inter-element relationships enable the interplay of the architectural 
elements needed to eventually realize the functional and quality 
requirements of the system.  

Figure 11 depicts the meta-model of the structural view using the UML 
notation [UML 2008]. An architectural element is a hierarchical entity 
that can contain other architectural elements. The architectural element 
is a generalization of concrete elements (e.g., layers, subsystems, 
components, or clusters; please note that Figure 11 only depicts the 
most commonly used elements). All architectural elements can act as 
containers and may contain other elements. Each architectural element 
can aggregate a set of inter-element relationships (e.g., dependency 
rules, connectors). An inter-element relationship links two architectural 
elements together. Table 5 explains the model elements of Figure 11 in 
more detail. 

<<aggregates>>

<<depends on>>

Architectural
Element

Layer Subsystem Component Cluster

Inter-Element
Relationship

1 *

1

*<<contains>>

1 1

ConnectorDependency  

Figure 11 Meta-Model of the Structural View 
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Model Element Description 
Architectural 
Element 

An architectural element is an abstract hierarchical 
container that can be instantiated by concrete 
elements. 

Layer Layering decomposes the structural view into several 
horizontal abstraction levels. A layer encapsulates 
functionality on different levels of abstraction (e.g., user 
interface, business logic, service, and hardware 
abstraction layer). Layering allows only top-down inter-
element relationships. Strict layering enforces a strict 
hierarchy so that each layer is only allowed to use the 
layer directly below it. 

Subsystem A subsystem is a grouping element, which ideally has 
high cohesion and low coupling to other subsystems. A 
subsystem can contain either other subsystems or 
components. 

Component Components are the building blocks of a software 
system. Components have a predefined interface that 
encapsulates their internals. The internals of 
components realize the functionality the component 
provides. Single components comprise many source 
code elements, which implement the functional and 
quality requirement specified for the component. 

Cluster Clustering decomposes the structural view into several 
vertical clusters. Clustering allows elements in one 
cluster to only access other elements in the same cluster 
or non-clustered elements. Strict clustering enforces 
access only within a cluster. Clustering and layering are 
often used jointly to achieve vertical and horizontal 
decomposition.  

Inter-Element 
Relationship 

An inter-element relationship is an abstract, direct 
dependency from one architectural element to another 
that can be instantiated by concrete inter-element 
relationships.  

Dependency  A dependency specifies how one architectural element 
may depend on another. It defines the type of access 
allowed (e.g., include directives, method invocations or 
function calls, read or write accesses to variables, 
inheritance, etc.). Dependencies may use regular 
expressions or patterns to define criteria matching a set 
of architectural elements.  

Connector A connector is an abstract mechanism that mediates 
communication, coordination, or cooperation among 
components (e.g., shared representations, remote 
procedure calls, message-passing protocols, and data 
streams).  

Table 5 Elements of the Structural View Meta-Model 

The structural view of the architectures may have more than just one 
structural model, but all are an instantiation of the same meta-model. 
Having several structural models separates the different concerns of 
stakeholders: not all information is relevant to everyone. Furthermore, 
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having only a single structural model yields one complex and 
complicated structural view of the architecture, without any 
encapsulation. To optimize clarity, readability ease of use, and 
maintenance, decomposition into several structural models is an 
appealing and preferable option. In practice, several but consistent 
structural models comprise the structural view of the system’s software 
architecture. 

2.2 Meta-Model of the Source Code 

The source code of a software system consists of the written statements 
implemented by the developers. The source code is written in a specific 
programming language prescribing the constructs that developers can 
use to realize solutions for algorithms, data structures, and so on. Figure 
12 (using the UML notation [UML 2008]) depicts the  generic source 
code meta-model. 

The source code model captures the static structure of a system at 
development time. In contrast to the structural view, the source code 
model comprises a number of elements that is entire orders of 
magnitude higher. These source code elements are the key of the 
generic source code model. Through their genericity, they represent 
corresponding code elements spanning many different programming 
languages. Hence, any programming language requires interpretation in 
order to assign the programming language constructs to the elements of 
the generic source code model.  
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1 1
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Figure 12 Meta-Model of the Source Code 

Source code elements are interconnected by source code relationships. A 
source code relationship is a directed connection from one concrete 
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code element to another. Again, the concrete dependencies 
implementable by programming language constructs have to be 
assigned to the generic source code relationship.  Table 6 explains the 
model elements of Figure 12 in more detail.  

Model Element Description 
Source Code 
Element  

A source code element is an abstract representation 
that can be instantiated by concrete elements. 

Folder A folder represents either a grouping element that is 
visible in the file system (i.e., a directory) or the 
constructs of the programming language (e.g., 
packages in Java). Folders are hierarchical elements that 
can contain other folders, compilation units, or both. 

Compilation Unit Compilation units are the source code elements that 
are written by the developers. Compilation units are 
distinct elements that are processed individually by the 
compiler. Compilation units represent classes or files. 
They contain routines or variables. 

Routines Routines are closed fragments of source code within 
compilation units, which perform specific tasks and 
have a predefined signature (i.e., routines can have 
parameters and return values). Dependent on the 
programming language, routines are often referred to 
as subroutines, functions, methods, procedures, or 
subprograms. Routines are executed (i.e., called by or 
invoked by) by other routines. 

Variables Variables represent identifiers in the source code. They 
are symbolic representations used to bind a variable to 
a memory location. The variable stores values of a data 
object in that location so that the object can be 
accessed and manipulated at a later point in time. 

Source Code 
Relationship 

A source code relationship represents a dependency 
from one concrete source code element (e.g., see 
above) to another. The type of relationship depends on 
the capabilities of the programming language (e.g., in 
Java, it is possible to implement imports, method 
invocations, variables accesses, inheritance, etc.). 
Source code relationships are directed, which means 
they have an origin and a target.  

Table 6 Elements of the Source Code Meta-Model  

Due to its genericity, the source model is instantiated for specific 
programming languages. Such an instantiation may involve the addition 
of further concrete and programming language-specific elements; 
however, the meta-model depicted in Figure 12 has been sufficient 
when analyzing software systems implemented in programming 
languages like Java, C/C++, or Delphi. Table 7 presents the assignment 
of programming language constructs to the generic source code model. 
Here, we chose two representatives, Java for object-oriented and C for 
procedural languages. As Table 7 shows, all relevant language constructs 
can be assigned to the meta-model. However, it is possible to filter the 
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source code model and focus only on a limited set of elements (e.g., not 
delving into details and having all source code relationships go out from 
folders or compilation units). 

Model 
Element 

Language Constructs 
in Java 

Language Constructs 
in C 

Folder Java Package Files System Directory 
Compilation 
Unit 

Java Class C Implementation File (.c) 
C Header File (.h) 

Routines Class Method Function  
Variables Class Instances 

Global Variables 
Local Variables 

Global Variables 
Local Variables 

Source Code 
Relationships 

Class Import  
Class Inheritance 
Class Instance Access 
Method invocation 
Variable Access 
Interface Implementation 

Header Include 
Function Implementation 
Function Call 
Variable Access 

Table 7 Assignment of Programming Language Construct to Source Code Model Elements 

2.3 Meta-Model of the Mapping  

Architectures do not prescribe the structure in full detail; they rather 
provide a sketch and the rules that define how the architectural 
elements and their inter-element relationships should be translated into 
source code. Hence, the structural view captures the decomposition 
from a global system perspective. However, local decisions (i.e., details 
on the source code level) are still made by the developers. So it is not 
surprising that functionally equivalent systems realized based on the 
same architecture but coded by two different developers most likely yield 
two different implementations. 

To confine the diversity in implementation, there are typically mapping 
instructions for developers. Such instructions prescribe how to name the 
source code elements and hierarchically structure them. Ideally, the 
structural models would be clearly reproduced by the hierarchy of folders 
and compilation units. Due to the abstraction gap, many source code 
elements represent one architectural element, respectively the same 
holds for relationships. In forward engineering [Chikofsky 1990], the 
developers create and name source code elements based on these 
mapping instructions – and create the internal composition of 
architectural elements. Examples of mapping instructions are naming 
conventions like prefixes for all compilation units that encode the 
component name, representations of each subsystem as a distinct folder 
in the file system, or distinctive mapping models designing and detailing 
an arbitrary decomposition of architectural elements. One of the 
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responsibilities of an architect is to provide developers with these 
mapping instructions.  

In cases where the mapping instructions are outdated, obsolete, or 
unknown, remedy comes from the field of reverse engineering 
[Chikofsky 1990]. The mapping instructions – often the whole 
architecture documentation, too – have to be extracted from the source 
code because the documentation was lost, underwent significant 
changes so it is no longer possible to match the mapping instructions 
with the implementation, or the documentation never existed at all. The 
analysis of existing software systems with the aim of recovering 
architecture-relevant information from artifacts is broad field of research 
– mostly referred to as architecture reconstruction (please refer to  
[Koschke 2005], [Knodel 2006b] and [Pollet 2007] for an overview).  

By implementing architectural elements such as components, the source 
code is produced. Developers write many new source code files and 
modify existing ones; in other words, they fill an initial skeleton 
implementation with content. In doing this, developers use other source 
code files; hence, they create directed dependencies among the 
compilation units. The location of origin and target compilation unit 
classifies the relationship either as an internal or as an external 
dependency. Internal dependencies remain within a component, while 
external dependencies realize a relationship between two architecture 
elements such as components (of course, there might be many concrete 
instances for the relationship on the code level). 

Documenting how to bridge the gap between structural view and source 
code is the purpose of the mapping. Mapping (see Figure 13 for the 
meta-model using the UML notation [UML 2008]) defines the 
relationship between architectural elements and source code elements 
and vice versa. The same holds for architectural inter-element 
relationships and source code relationships. Typically, one entity of the 
architectural level is represented by numerous entities on the source 
code level. The mapping has been defined as a distinct meta-model to 
achieve a clear separation of the two abstraction levels – the structural 
model and the source code model remain independent of each other, 
and there are no direct dependencies from one model to the other.  

The mapping comprises all information needed to bridge the abstraction 
level gap from architecture to source code. Information about the 
respective counterparts can be extracted from the references of the 
element mapping and the relation mapping. Element mapping links 
architectural elements to source code elements. The extraction of 
corresponding counterparts is possible for both directions. The relation 
mapping provides the same link between architectural inter-element 
relationships and source code relationships. Table 8 explains the model 
elements of Figure 13 in more detail.  
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Figure 13 Meta-Model of the Mapping 

 

Model Element Description 
Mapping The mapping is a container for all mapping, 

either element mappings or relationship 
mappings. Mapping is the root to bridge the 
abstraction gap mapping between the 
architecture and the source code. 

Element Mapping The element connection links one architectural 
element to one source code element.  

Architectural Element See description above. 
Source Code Element See description above. 
Relation Mapping The relation mapping links one architectural 

element to one source code element. 
Inter-Element Relationship See description above. 
Source Code Relationship See description above. 

Table 8 Elements of the Mapping Meta-Model  

Having defined the meta-models for structural views, source code, and 
their mapping allows specifying the compliance metric. This metric 
measures compliance for concrete instances of the respective meta-
models. 

2.4 Compliance Metric 

The compliance metric is a measure that is relative to exactly one set of 
one instance each of structural model, source code model, and mapping, 
respectively.  

The compliance metric compares the architecture specified with the 
implementation realized by developers. This section first introduces basic 
formulas, and then continues with the formalization of inputs and the 
definition of operators. Finally, we define the compliance function, 
which aggregates measures from individual architectural elements. 
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2.4.1 Basic Formulae 

Because we compare given classifications of an item (i.e., the realization 
of source code elements and source code relationships) with desired 
correct classifications (i.e., the specification of architectural elements and 
inter-element relationships), we can apply two measures from statistical 
classification. In this context, the comparison results in assignment to 
one of the following categories: 

� True positives: specification equals realization 

� False positives: realized but not specified 

� True negatives: specified but not realized 

To obtain a single measure representing the comparison results, we can 
compute the harmonic mean of precision and recall for the specification 
and realization, which is defined as their F-Measure [Frakes 1992]. 

Definition 14 Precision 

Precision measures the degree of correctly realized elements among 
all realized elements. 

fptp
tpprecision
�

�  

where tp stands for true positive, and fp for false positive. 

Definition 15 Recall 

Recall measures the degree of correctly realized elements among all 
specified elements. 

tntp
tprecall
�

�  

where tp stands for true positive, and tn for true negatives. 

Definition 16 F-Measure 

The F-Measure is the standard combination of precision and recall, 
defined as their harmonic mean. 

recallprecision
*recall*precisionMeasureF
�

��
2
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2.4.2 Formalization of Metric Input 

Software systems comprise the architecture and the implementation. 

Definition 17 Formalization of Software System 

Let the software system be a tuple of the architecture, the 
implementation, and the function fmap, which enables traceability 
between the abstract architecture and the concrete implementation 
and defines the relationship between architectural elements and 
source code elements.  

) (A, I, fSYS map�  

where SYS stands for the software system, A for architecture, I for 
implementation, and fmap for the mapping function. Note that we 
explicitly ignore other system artifacts produced in the lifecycle of the 
software system. 

The structural model (representing the architecture), source code model 
(representing the implementation) are mandatory inputs required to 
measure compliance. 

Definition 18 Formalization of Architecture 

Let the structural model of the architecture be a set of architectural 
elements with a set of inter-element relationships among them. 

AEIERIERAE S) with S, S (SA ��  

where A stands for the architecture, SAE for the set of all architecture 
elements with SAE = {AE1, …, AEi , AEj ,…, AEn}, where AE stands for 
architectural element, SIER for the set of all inter-element relationships, 
with SIER = {IER, IERij}, where IER stands for an inter-element 
relationship between two architectural elements AEi and AEj. 

Definition 19 Formalization of Implementation 

Let the source code model of the implementation be a set of source 
code elements with a set of source code relationships among them. 

SCESCRSCRSCE S) with S, S (SI ��  

where I stands for the implementation, SSCE for the set of all source 
code elements with SSCE = {SCE1, …, SCEi , SCEj ,…, SCEn}, SCE for a 
source code element, SSCR for the set of all source code relationships 
with SSCR = {SCR, SCRij}, where SCR stands for an source code 
relationship between two source code SCEi and SCEj.  
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2.4.3 Lifting and Mapping Operator 

Because the structural model and the source code model are on different 
levels of abstraction, we have to define a lifting operator and a mapping 
operator in order to bring the two models to the same level of 
abstraction. Hence, lifting and mapping are the tools for bridging the 
gap. They operationalize lifting source code model elements and 
relationship to the level of the architecture and vice versa.  

Definition 20 Lifting Operator 

The lifting operator flift lifts a given implementation to the abstraction 
level of the architecture using the mapping. The lifting operator can 
be executed for source code elements and source code relationships.  

SCRSCRiftl

AESCElift

SCRIER

SCEAE
lift

IERAESCRSCElift

S  Sf
S   Sf

  or
S bS
S bS

bf

 withSS  SSf

�
�

�
�
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;
;
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where flift stands for the lifting operator, which defines the 
relationship between source code elements and architectural 
elements, and relationships respectively.  

Definition 21 Formalization of Mapping 

Let the mapping be an is-part-of relation between source code 
elements and architectural elements. 

1�� liftmap  ff  

where fmap stands for the mapping function, which defines the 
relationship between architectural elements and source code 
elements, and relationships respectively. 

Figure 14 illustrates the mode of operation of the lifting operator. The 
implemented architectural elements aggregate many concrete source 
code elements. This aggregation is depicted by the shadow of the 
architectural elements, which covers the source code elements resolved 
from the mapping. Further, the inter-element relationships aggregate 
the concrete source code relationships. Of course, relationships within 
one architectural element are possible, too.  

Applying the lifting operator to the source code of an implementation 
Iimpl produces one model – the implemented or realized architecture Aimpl. 
This model is now on the same level of abstraction as the structural 
model – the specified architecture Aspec. 
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Definition 22 Lifting Operator Application 

Applying the lifting operator flift to a given implementation I yields the 
implemented architecture. 
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where Aimpl stands for one specific implemented architecture, and Iimpl 
for one specific implementation. 
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Figure 14 Illustration Lifting Operator 

2.4.4 Compliance Function  

The aim of the compliance function is to compare the specification with 
the realization.  

Definition 23 Architecture Compliance Function 

The architecture compliance metric is a function that computes a 
value between 0% (zero compliance) and 100% (full compliance) for 
a given specification and a given realization. The compliance function 
is the normalized arithmetic mean of the element compliance 
function, which computes the compliance for one architectural 
element. 

� �
)(

1
implspeci

n

i
i

size
i

implspecAC

 AA with AE   * ECw

  , AA fAC

�
�

�

�
�

 

where AC stands for architecture compliance, Aspec for one specific 
specified architecture, Aimpl for one specific implemented architecture, 
EC for element compliance, and wsize is a weighting factor based on 
the size of an architectural element. 
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The architectural compliance metric is an aggregate of the individual 
measures for each individual architectural element – this measure we call 
the element compliance. The single architectural elements are 
normalized by means of a weighting factor wsize, which allows assigning 
a relative weighting based on an arbitrary size metric. The weighting 
factor can either be computed using code metrics (e.g., lines of code, 
number of routines, number of compilation units), complexity metrics 
(e.g., cyclomatic complexity [McCabe 1976], component complexity 
[Henry 1981]), or be assigned by the architect according to the subjective 
importance of the element. The sum of all weights combined has to be 
equal to one (hence, the default weighting factor 1/n expresses equal 
weighting among the elements). 

Definition 24 Element Compliance Function 

The element compliance metric is a function that computes a value 
between 0% (zero compliance) and 100% (full compliance) for a 
given specification and a given realization of an architectural element 
(i.e., the implementation). The element compliance is the product of 
the internal composition IC (i.e., it captures to which degree the 
planned decomposition structure matches the actual one) and the 
external dependencies ED (i.e., it captures to which degree the 
planned dependencies match the actual ones). 

� �
� � � � IERIER * ED , AEAEIC       

    IER,, IER, AEAE fEC

implspecimplspec

implspecimplspecEC

,�

�
 

where AEspec stands for a specified architectural element, AEimpl for an 
implemented architecture element, IERspec for a specified inter-
element relationship, IERimpl for an implemented inter-element 
relationship, for IC for internal composition and ED for external 
dependencies. 

The element compliance function is the product of two factors: the 
internal composition and the external dependencies.  

2.4.5 Internal Composition 

The internal composition of architectural elements captures the degree 
to which the mapping instructions for the source code elements (i.e., the 
counterparts as specified by the architect) have been implemented 
correctly by the developers. There are three categories for internal 
composition: 

� Correct composition (true positives): The implemented 
architectural element has been composed as specified by the 
architect (i.e., AEspec is equivalent to AEimpl). There are only correctly 
placed source code elements in the implementation of the 
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architectural elements and the containment hierarchy of the source 
code element reflects the mapping instructions. 

� False composition (false positives): The implemented architectural 
element violates the specification. Source code elements have been 
misplaced in the implementation of the architectural element (e.g., 
code elements belonging to a different architectural elements) or the 
decomposition structure does not adhere to the mapping instructions 
(e.g., naming convention violated).  

� Missing composition (true negatives): There were no 
implemented architectural elements (i.e., no source code elements 
could be lifted) for the specified architectural elements.  

The definition of true positives, false positives, and true negatives allows 
calculating the F-Measure for the internal composition.   

Definition 25 Internal Composition 

The internal composition IC captures the degree to which the 
planned decomposition structure matches the actual one. 

� � � �

 recallprecision 
lon * recal * precisi

,AEAE   F-Measure ,AEAEIC implspecimplspec

�
�

�

2
 

where IC stands for the harmonic mean of precision and recall of the 
comparison of the specified structure with the realized structure. 

The architect has to decide whether or not architectural elements are 
well-composed. Hence, subjective expert ratings are required to identify 
flaws in the source code model containment (i.e., logically misplaced 
elements or poorly structured decomposition).  

2.4.6 External Dependencies 

The external dependencies of architectural elements capture the degree 
to which the specified architectural inter-element relationships have 
been realized by the developers. There are three categories for external 
dependencies [Murphy 2001]: 

� Convergent dependency (true positives): a relationship between 
two architectural elements that was implemented as specified (i.e., 
IERspec is equivalent to IERimpl).  

� Divergent dependency (false positives): a relationship between 
two architectural elements that was implemented but not specified. 

� Absent dependency (true negatives): a relationship between two 
architectural elements that was specified but not implemented.  
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The definition of true positives, false positives, and true negatives allows 
calculating the F-Measure for the external dependencies.  

Definition 26 External Dependencies 

The external dependencies ED capture the degree to which the 
planned dependencies match the actual ones. 

� � � �

 recallprecision 
lon * recal * precisi
,IERIER   F-Measure  ,IERIERED implspecimplspec

�
�

�

2
 

where ED stands for the harmonic mean of precision and recall of the 
comparison of the specified dependencies with the realized 
dependencies. 

By lifting source code elements to the level of the software architecture 
using the mapping, the external dependencies are lifted as well. Hence, 
objective, automated measurement is possible.  

2.4.7 Summary 

We defined the compliance metric as a composed measure comprising 
several aspects. Figure 15 summarizes the compliance metric graphically. 
Architecture compliance is the weighted average element compliance of 
all elements the system is built of. The individual elements’ compliance 
investigates the internal composition on the one hand and the external 
dependencies on the other hand.  

Both are computed by using the harmonic mean of precision and recall. 
Precision measures the degree to which correctly implemented elements 
or dependencies are found in the implementation, while recall measures 
the degree to which correctly implemented elements or dependencies 
are specified. For internal composition, precision computes the degree of 
correctly composed elements among all present elements (i.e., correctly 
and falsely placed elements) and recall the degree of correctly composed 
elements among all required elements (i.e., correct and missing 
elements). For external dependencies, precision computes the degree of 
convergent dependencies among all existing dependencies (i.e., 
convergences plus divergences) and recall the degree of convergences 
among all specified relationships (i.e., convergences plus absences). 
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Architecture Compliance (Architecture, Implementation) =
weighted arithmetic mean of architectural elements

AEspec vs. AEimpl AEspec vs. AEimpl AEspec vs. AEimplAEspec vs. AEimpl …….

Internal Composition:
Harmonic Mean AE 

Precision 
= tp / (tp + fp)
= correct / (correct + false)

Recall 
= tp / (tp + tn) 
= correct / (correct + missing)

Precision 
= tp / (tp + fp)
= conv / (conv + div)

Recall 
= tp / (tp + tn) 
= conv / (conv + abs)

External Dependencies:
Harmonic Mean IER

product of
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Figure 15 Compliance Metric 

After defining the compliance metric, we now illustrate the metric in 
action. For this purpose, we use a simple example system where we vary 
architecture and implementation.  

2.5 Metric Examples 

This section presents several typical scenarios of a small hypothetical 
system with variations. For each variation, we calculate its architecture 
compliance.  

All examples are based on the same structural view – a three-layered 
architecture (see Figure 16). The layering is strict meaning that each layer 
is only allowed to use and access the layer directly below (i.e., Layer-1 
can use Layer-2, Layer-2 can use Layer-3; all other relationships are 
forbidden). The architect further defined mapping instructions that all 
source code elements have to encode the layering information. The 
example implementations should reflect this layering through a 
corresponding decomposition structure. The example implementations 
were created in the Java programming language. 
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Figure 16 Structural View Specifying Three Layers Enforcing Strict Layering 

2.5.1 Scenario: Beginning of Implementation 

At the beginning of the implementation, as depicted in Figure 17, source 
code does not exist yet. For this reason, the internal composition and 
external dependency values for the architectural elements are both zero. 
Hence, the overall architecture compliance is 0%. 

 

Figure 17 Scenario: Beginning of Implementation 

2.5.2 Scenario: Composition Flaw 

Figure 18 shows one implementation variant where all source code files 
have been composed into the same default Java package. The 
composition of source code elements does not reveal any structure, 
which indicates that the developers ignored the mapping instructions 
formulated by the architect. Hence, the overall architecture 
compliance is 0%, too. 

Because none of the source code elements has been composed correctly 
according to the mapping instructions, the internal composition of each 
architectural element is zero. This example might be exaggerating but 
misplacements or poorly structured source code element hierarchies can 
be observed in practice, as the discussion of the case studies has shown. 
Furthermore, according to [Lehman 1985], initially well-structured 
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implementations degenerate over time if no counteractive measures 
(e.g., refactoring or restructuring) are taken to prevent the structural 
decay.  

 

Figure 18 Scenario: Composition Flaw 

2.5.3 Scenario: Integration Flaw 

The integration flaw scenario illustrates in Figure 19 a well-structured 
system where the internal composition is clear. Each layer has been 
realized in a distinct package, where the number of the package 
indicates the layer the package is representing. The internal composition 
for this implementation variant is 1 for all architectural elements. 
However, there is an integration flaw, which Figure 19 captures by 
showing only layer-internal dependencies as convergences and the 
required external dependencies as absences. 
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Figure 19 Scenario: Integration Flaw 
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Computing the element compliance for all three layers now results in the 
following degrees of compliance: Layer-1 = 66%, Layer-2 = 66%, and 
Layer-3 = 100%. Note that we considered the internal dependencies 
within a layer as convergent true positives resulting in a precision of 1 
and a recall of 0.5 for the layers Layer-1 and Layer-2. Hence, for this 
implementation variant, the overall architecture compliance is 77%. 

2.5.4 Scenario: Unplanned Growth 

This scenario captures the case when the system is growing in an 
unplanned way. New architectural elements outdate the architecture 
documentation and cause a drop in compliance. Figure 20 depicts an 
example where the architectural element Layer-4 is part of the 
implementation but is not specified in the structural view (see Figure 16). 
The internal composition of all three specified layers equals 1, which 
holds as well for the external dependencies of Layer-1 and Layer-2. The 
element compliance for both Layer-1 and Layer-2 is 1.0. However, Layer-
3 comprises a violating use of Layer-4, which causes an external 
dependency value of 0.66 resulting in a element compliance of 0.66 as 
well. Layer-4 as an unspecified element scores zero in its element 
compliance. Aggregating the values for the four architectural elements 
using the arithmetic mean results in an overall architecture compliance 
of 66%. 
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Figure 20 Scenario: Unplanned Growth 

2.5.5 Scenario: Unplanned Interdependencies 

The scenario with unplanned interdependencies is one of the most 
typical scenarios we observed in industrial practice. Although the internal 
composition of each architectural element has been realized correctly (IC 
is 1 for all elements), the elements are heavily coupled (as depicted in 
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Figure 21). There are a lot more actual dependencies among the 
architectural elements than originally planned. The values for external 
dependencies are 0.8 for Layer-1 and Layer-2, where in both cases 
precision is 0.66 (2 convergences and 1 divergence) and recall is 1.0. In 
contrast, Layer-3 has a value of 0.4 (1 convergence but 2 divergences). 
Aggregating the individual element compliance results yields an overall 
architecture compliance of 66%. 
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Figure 21 Scenario: Unplanned Interdependencies  

2.5.6 Scenario: Architecture-Compliant System 

Figure 22 shows the rare case of an implementation that fully complies 
with its architecture. All architectural elements and the inter-element 
relationships have been realized as intended by the architect and hence, 
the overall architecture compliance is 100%. 
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Figure 22 Scenario: Architecture-Compliant System
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2.6 Conclusions 

This section introduced the metric for measuring architecture compliance 
based on the meta-model of the structural view, the source code, and 
the mapping. The example with the structural view comprising strict 
layering and the different implementations illustrates how the 
architecture compliance metric works (assuming equal weighting). 

The architecture compliance metric allows quantifying the degree to 
which the implementation of the system has been realized as specified. 
Obviously, full architecture compliance (i.e., compliance equaling 100%) 
is the optimal case. In practice, however, this optimal case is rarely 
achieved. Our experience with industrial partners shows that when 
compliance measurement is institutionalized and communicated as a 
clear development goal, compliance of up 98-99% can be achieved 
(e.g., see [Knodel 2008b]). 

Experiences with compliance checking projects at Fraunhofer IESE has 
consolidated a rule of thumb: Compliance lower than 95% calls for 
special attention. It constitutes a major threat for the development 
organization. The 95% threshold is an indicator of systemic problems 
that may eventually affect the entire system. This status requires special 
activities, which include in-depth analyses of root causes or explicit 
planning and effort investments for refactoring activities to repair the 
implementation. Often, a compliance drop below the 95% threshold 
leads to even further structural degeneration (i.e., more and more 
violations over time). Development organizations have to identify the 
root cause for the lack of compliance (e.g., inadequate architectural 
solution, inadequate documentation of solution, lack of quality 
assurance, or insufficient education of software developers). However, to 
date, there is no empirical confirmation for this 5% threshold yet and so 
this rule of thumb has to be considered with caution. 

Measuring compliance verifies only that the specified plan of the system 
matches the implemented facts. Note that the verification of compliance 
does not allow any other statements about the appropriateness of the 
architecture as a whole with respect to the envisioned development 
goals, functional requirements or quality requirements. 
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3 Compliance Checking Techniques 

Analytical compliance checking techniques detect structural violations in 
the source code. They aim at verifying that the structural decomposition 
is in place and point to the violating source code statements.  

This section shows that the most popular compliance checking 
techniques – the Reflexion model and dependency rules – are equivalent 
in expressiveness (see Section 3.3). Thus, independent of the concrete 
technique applied, compliance checking produces the same results 
because dependencies rules can be transformed into Reflexion models 
and vice versa (although the transformation may become a tedious task).  

So in general, both techniques offer themselves as candidates for 
adaptation and usage as base technology in live compliance checking. 
For this reason, we investigated the applicability of these two techniques 
in several dimensions determined by the envisioned usage goal as a 
quasi-constructive quality engineering technique (see Section 3.4). A 
thorough analysis of advantages and drawbacks reveals that Reflexion 
models outscore dependency rules in their suitability for the intended 
use. In particular, the characteristics explicitness, ease of use, ease of 
learning, and low probability of false positives are clear advantages of 
Reflexion models. They make it possible to educate developers on the 
intended structure of the software implementation. 

We continue with the derivation of the key principle of live compliance 
checking (see Section 3.5). Using the Deming cycle [Deming 1986], we 
distinguish the new live approach from its analytical siblings for system 
snapshots. The paradigm shift executes the checking not at distinct 
points in time but continuously and quasi-constructively while developers 
are writing the code. 

The explanation of the underlying concepts and the mode of operation 
of both Reflexion models and dependency rules first introduces the 
generic reverse engineering archetype – extraction, abstraction, and 
presentation – to gain knowledge from existing artifacts (see Section 
3.1).  

We further discuss how the reverse engineering discipline fact extraction 
is applied in compliance checking (see Section 3.2). Fact extraction mines 
the source code for relevant information, which is then used by the 
checking technique to derive statement about the compliance.  
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3.1 Reverse Engineering 

The ultimate goal of reverse engineering is to gain knowledge from 
existing artifacts. Knowledge is the dynamic capacity that enables a 
stakeholder to perform a task and to solve problems: “Knowledge 
means the confident understanding of a subject with the ability to use it 
for a specific purpose“ [Wikipedia 2008]. Knowledge is always bound to 
individuals [Probst 1999] and is based on information, which in turn is 
based on data [Rus 2002].  

Definition 27 Knowledge 

Knowledge is the result of a learning process and can be seen as a 
function of (task-related) information, experience, skills and attitude 
at a given moment in time [Weggeman 1999]. 

Definition 28 Information 

Information is data that is organized to make it useful for end users 
who perform tasks and make decisions [Rus 2002]. 

Definition 29 Data 

Data consists of discrete, objective facts about events and entities but 
nothing about its own importance or relevance; it is raw material for 
creating information [Rus 2002]. 

Individuals create knowledge dynamically by interpreting the provided 
information units based on their own context, background, and 
experience. Therefore, knowledge is dependent on the individual and is 
tacit. Information on the other hand is independent of the individual and 
can be explicitly documented and thus, is easy to duplicate (see [Miller 
2002] and [Sveiby 1997]). Stakeholders typically have the need to gain 
knowledge about a software system as a whole or about one specific 
aspect of the system to guide their decision-making. In particular, they 
require knowledge because they would like to resolve uncertainties, 
clarify unknown characteristics, or increase their level of confidence.  

The basis for gaining knowledge is information on the subject – the 
software system. Reverse engineering supports this stakeholder goal by 
providing information – representations or abstractions (or both 
combined).  

Definition 30 Reverse Engineering 

Reverse engineering is the process of analyzing a subject system to 
identify the system’s components and their interrelationships and 
create representations of the system in another form or at a higher 
level of abstraction [Chikofsky 1990]. 

The reverse engineering archetype describes the typical steps of most 
reverse engineering processes (e.g., see [Müller 1994], [Mendoca 1996], 
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[Ebert 2002]). The activities performed are named extraction, 
abstraction, and presentation – typically executed in iterative cycles, 
repeated and refined, if appropriate, until the intended goal has been 
obtained. Figure 23 depicts this reverse engineering archetype including 
the concluding activity – interpretation which illustrates how 
stakeholders use the results.  
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Figure 23 Archetype of Reverse Engineering 

� Extraction: Extraction processes the raw data contained in system 
artifacts – these pieces of data are often called facts. A fact 
represents one basic piece of information about a software system 
(e.g., the source code comprises classes A and B, class A has a 
method A1, and method A1 calls method B1). Fact extraction spans 
manual inspection [Moonen 2002], lexical analysis (e.g., [Murphy 
1996]) pattern matching (e.g., [Pinzger 2002], [Knodel 2003]), island 
grammars [Moonen 2001], configuration management systems (e.g., 
[Zimmermann 2005]), defect management system (e.g., [Fischer 
2003]), and document analysis [John 2003]). Most popular, however, 
are static analyses [IEEE-Std-610.12 1990] based on source code or 
dynamic analyses [IEEE-Std-610.12 1990] based on run-time traces 
generated from instrumented system executions. Finally, all facts are 
aggregated in a repository, which is the foundation of all further 
analyses.  

� Abstraction: Abstraction processes the raw data generated in the 
extraction and turns it into information. The repository allows 
performing queries, filtering particular data sets of interests, and, of 
course, storing new results produced during the abstraction. Single 
analysis techniques are applied (e.g., see the overviews in [Koschke 
2005], [Knodel 2006b], [Pollet 2007]), but more often than not, an 
arbitrary combination of analysis techniques is applied (e.g., [Waters 
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1999], [Pinzger 2003], [Knodel 2005a], [Sartipi 2006]). Abstraction 
identifies the facts relevant to a given request and then abstracts 
these facts to the level of abstraction appropriate for their intended 
users, which can then be presented to the users. For each 
abstraction, concrete goals have to be defined in order to perform 
the respective reverse engineering analysis in an efficient way. In 
abstraction, we explicitly distinguish between basic and detailed 
analysis [Knodel 2004]. On the on hand, basic analyses are 
predefined, parameterized, repeatable analyses that can be applied 
with reasonable usage of available resources. These analyses can be 
regarded as a standard catalog that can be executed directly with 
only slight adaptation necessary. In our opinion, it pays off to have 
predefined, reusable basic analyses collected in a catalog to be 
executed by the reverse engineer on demand. Examples of such basic 
analyses are context analysis of code entities, reconstruction of class 
and inheritance hierarchies, call graphs, standard data flow analysis, 
design pattern recognition, and architecture compliance checking. 
On the other hand, detailed analyses, in contrast to basic analyses, 
may require significant additional effort for their application, for 
extending the analysis infrastructure, for fact extraction, and often 
require several iterations and calibrations until they produce adequate 
results. They aim at getting a deeper understanding of specific system 
aspects, and therefore, more effort is required. Also, the involvement 
of human experts is increased.  

� Presentation: The presentation shows the information produced in 
abstraction to the stakeholders. The result reports may consist of text, 
tables, or visualized information. Visualization is a sound means to 
facilitate the understanding of complex correlations and offers a 
broad variety of concepts. The visualization of data offers human 
beings the potential to easily see complex correlations, which are not 
obvious by just looking at the pure data in a textual or tabular form 
[Knodel 2006d]. These abstractions are packaged into views on the 
system that the intended stakeholders interpret based on their 
knowledge of the system. 

� Interpretation: Eventually, stakeholders interpret the information 
produced by reverse engineering. Interpretation follows one of three 
interaction cases – either refinement of reverse engineering analyses, 
derivation of action items, or keeping the status quo:  

� Refinement of reverse engineering analyses: The results 
produced by reverse engineering were either not sufficient, 
raised further questions about the system under 
investigation, or did not address the stakeholders’ requests 
appropriately. The reverse engineering analyses have to be 
refined or different analysis techniques have to be selected. 

� Derivation of action items: Based on the reverse 
engineering results, stakeholders perceive potential root 
causes of problems, determine explicit threats, or have 
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confidence in the probabilities of certain risks. Hence, the 
stakeholders trigger counteractive measures that eventually 
lead to changes in the system artifacts. Once conducted, the 
same analyses can be repeated to evaluate if the changes 
had the envisioned impact on the system artifacts. 

� Keeping the status quo: The reverse engineering results 
indicated the wanted or envisioned state and require no 
further action, but stakeholders’ confidence in keeping the 
status quo has been confirmed. 

3.2 Applying the Reverse Engineering Archetype 

The discipline of reverse engineering, which processes existing artifacts 
and mines them for relevant information, is called fact extraction. 
Compliance checking uses fact extraction to distill the source code 
model from the implementation of the software system. The source code 
model is generic and abstracts from concrete programming languages. 
Because manually populating the source code model is not possible due 
to the size of modern software systems, fact extraction applies source 
code parsing or pattern matching to generate the facts about the system 
under investigation. Parsing and pattern matching are specific to one 
programming language but can be applied to all systems implemented in 
this language. They process certain language constructs and populate 
the fact base (or a repository) with selected, relevant pieces of data. All 
fact base entries are made according to a predefined format, which 
allows querying the fact base afterwards. 

In this section, we present how fact extraction works for one toy 
example system called DRVFaçade implemented in the Java 
programming language. Appendix C lists the complete source code for 
this example. The example exemplifies the distinct steps according to the 
reverse engineering archetype (i.e., extraction, abstraction, presentation, 
interpretation) and uses the Fraunhofer SAVE tool [Knodel 2009a] for 
visualization purposes.  

3.2.1 Context – System Artifacts  

Figure 24 depicts the small toy example DRVFaçade in the Java package 
explorer of the Eclipse development environment. We can see that the 
Java project comprises two packages, one called business and the other 
one called driver. Both packages contain further Java files, which contain 
the source code realizing the functionality of the system. 

The DRVFaçade system comprises two variants, one operating on 
hardware and the other emulating the hardware. Depending on the 
mode, the system class DriverFaçade determines which actual driver has 
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to be executed by the class BusinessLogic. The package driver comprises 
the façade for encapsulating the HardwareDriver and the 
EmulationDriver classes.  

 

Figure 24 DRVFaçade: Source Code in Java Package Explorer 

 

Figure 25 DRVFaçade: Source Code Model 
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3.2.2 Extraction 

In the extraction, each source code file is processed and mined for 
relevant information about structure and relationships to other source 
code files. Figure 25 depicts the source code model of the example 
DRVFaçade. The structural elements of the Java packages, files, and 
classes have been extracted and are now represented as hierarchical 
nodes of the source code model. Further, the model comprises methods 
and the dependencies caused by them. Here we show the CallRelation, 
which stands for a directed method invocation from one method to 
another, and the AccessRelation, which represents the access to a class 
instance.  

3.2.3 Abstraction 

In order to visualize the example system, we created a structural model 
according to simple mapping instructions. Java packages and classes are 
mapped one-to-one onto architectural elements (i.e., packages are 
abstracted to subsystems, classes to components). Figure 26 depicts the 
structural model for this simple abstraction. It shows six architectural 
elements, with the elements business and driver representing the Java 
packages of the source code model, and the others representing the 
respective classes. The relationships among the source code elements 
have been lifted to the level of architectural elements.  

 

Figure 26 DRVFaçade: Structural Model 
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3.2.4 Presentation 

Figure 27 shows the structural model of the system DRVFaçade using the 
Fraunhofer SAVE tool. It displays the relationships between the 
subsystems and components as arrows. We can see that the 
BusinessLogic accesses the driver subsystem twice, once the DriverFaçade 
and the other time the HardwareDriver. 
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Figure 27 DRVFaçade: Visualized Structural Model in SAVE 

3.2.5 Interpretation 

We now use the example to exemplify how a severe maintenance 
problem is created by just introducing a single structural violation.  

As already stated, the BusinessLogic is responsible for setting the mode 
for the driver execution – either emulation or the real hardware. The 
DriverFaçade determines which actual driver is currently set and 
eventually executes the right driver. The package driver comprises the 
DriverFaçade for encapsulating the HardwareDriver and the 
EmulationDriver classes. The architect intended this façade to be the only 
interface to the package driver. No other accesses are allowed. 

Figure 27 shows the visualized structural model based on the 
implemented source code. As we can see, there are two invocations 
from BusinessLogic to the subsystem driver. Figure 28 lists the respective 
source code for two BusinessLogic methods – doit() and doitwrong() – 
implementing these dependencies. 
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public void doit(){

DriverFacade.activate();

}

public void doitWrong(){

HardwareDriver.activate();

//EmulationDriver.activate();

}

public void doit(){

DriverFacade.activate();

}

public void doitWrong(){

HardwareDriver.activate();

//EmulationDriver.activate();

}  

Figure 28 Source Code of Methods doit() and doitWrong() 

While doit() implements the access using the DriverFaçade as intended 
by the architects, doitwrong() directly invokes the HardwareDriver. This 
invocation is the cause of a structural violation. The developer of the 
method doitWrong() was either not aware of the façade as specified by 
the architect or ignored it.  

Due to this structural violation, potential maintenance problems may 
arise: 

� The concept of separation of concerns is broken: Replacing the 
HardwareDriver with a new implementation will cause the need to 
modify not only the DriverFaçade but the BusinessLogic as well.  

� The concept of localization of changes is violated: Changes to 
the DriverFaçade (e.g., the introduction of logging or security 
functionality in one central place) are not reflected by the method 
doitWrong().  

� Running the system might produce unwanted system 
behavior: Using doitwrong() might activate the HardwareDriver, 
although the rest of the system is running in emulation mode.  

� Evolution becomes effort-intensive: Introducing a new driver 
mode in the DriverFaçade requires not only implementing the new 
driver, but also reviewing and adapting all usages of the driver 
subsystem. 

Compliance checking detects these structural violations, provided that 
the structural view has been documented. However, structural repairs by 
refactoring the implementation consume time and effort. The developers 
who are responsible might have introduced the violations months 
before. They might have been busy with other development tasks (or 
worse, they might even have left the development organization or 
worked in different projects). To remove the violations, the developers 
have to re-understand what they did and have to comprehend the 
architectural concept (in this case the façade) in order to implement an 
adequate, architecture-compliant solution. 
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3.3 State Of The Art in Compliance Checking 

This section introduces the two main techniques for structural 
compliance checking – model-based and rule-based checking. Most 
prominent for model-based techniques are Reflexion models, while 
dependency rules are most typical for rule-based techniques. Both 
techniques share the same principles and instantiate the reverse 
engineering archetype. We first introduce the commonalities before 
delving into the specialties of each technique. Last but not least, we 
show the equivalence of expressiveness of these two techniques. 

3.3.1 Commonalities in Structural Compliance Checking 

Both techniques share common steps as depicted in Figure 29 using the 
[SPEM 2008] notations. Common to both techniques are the 
stakeholders involved: the architect and the developers as the roles 
providing input to compliance checking, and the reverse engineer (or 
quality engineer) who is responsible for conducting the compliance 
check. As an instantiation of the reverse engineering archetype, we can 
map the compliance checking activities to the fundamental reverse 
engineering activities.  

Extraction from system artifacts encompasses the preparation of 
compliance checking, the inspection or parsing of the architecture 
documentation, and fact extraction from source code by applying 
parsing technology. In case of the architecture, parsers can analyze the 
repository or data files of the architecting tools used to manage and 
evolve its documentation. In case of the source code model, parsers 
analyze one distinct snapshot of the implementation. Hence, extraction 
produces the structural model (see Section 2.1) and the source code 
model (see Section 2.2).  

Abstraction embraces two different activities – mapping and 
comparison. The names of the two activities already denote the key 
distinguishing mark of the two techniques. While Reflexion models 
compare two instances of models on the same level of abstraction, 
dependency rules resolve and evaluate textual rules defined to be valid 
for the architecture. The mapping is responsible for matching the 
specification with the implemented realization. Then the comparison 
does the actual verification. It verifies whether or not there are structural 
violations. And if so, it provides information on the specific location of 
each violation in the source code. Hence, abstraction processes the 
mapping instruction (see Section 2.3) to execute the compliance check. 

Presentation continues with the visualization of the output – the 
resulting list of structural violations – which is then displayed for 
interaction with the stakeholders – the architect and the developers. 
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Visualization can use graphical elements for display diagrams or tabular 
lists or a combination of both. Configuration of the visualization (i.e., of 
the graphical elements it is composed of) is crucial for the perception of 
results [Knodel 2008c]. 

Interpretation then allows the stakeholders to take actions. Based on the 
information presented, they derive decisions on either applying 
counteractive measures, keeping the status quo, refining the results, or 
repeating the compliance check. 
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Figure 29 Principle of Structural Compliance Checking 

The next sub-sections present a detailed description of each technique 
using the example compliance checking presented in Section 3.2. We 
discuss Reflexion models and dependency rules by giving an overview of 
the techniques, explaining how the techniques work, and giving an 
example application. 
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3.3.2 Reflexion Models 

Reflexion models compare two models of a software system against 
each other: the structural model specified by the architect and a source 
code model implemented by the developers. 

3.3.2.1 Overview 

In [Murphy 1995], [Murphy 1997], and [Murphy 2001], Murphy et al. 
introduce the Reflexion models. Initially, the technique was proposed to 
“help an engineer use a high-level model of the structure of an existing 
system as a lens through which to see a model of that system’s source 
code”. It was applied in cases where no or limited information existed 
about the software system and its architecture. For instance, a developer 
of Microsoft with more than 10 years experience applied the Reflexion 
model technique on Microsoft Excel to reconstruct where it was 
necessary to identify and extract components from the source code. This 
developer specified and computed an initial Reflexion model (containing 
15 components with 19 connections) of Excel in one day and then spent 
about four weeks interactively refining it [Murphy 1997]. We performed 
another further reconstruction-driven case study at Agilent Technologies 
on the firmware used to test integrated circuits – an embedded system 
of approx. 1.5 MLOC – [Knodel 2002]. The case study revealed the need 
for hierarchies within the structural models, which eventually led to an 
extension of the Reflexion model to overcome this shortcoming [Koschke 
2003].  

Knodel et al. [Knodel 2005b] and [Lindvall 2002] started to shift the 
application of the Reflexion model technique from reconstruction 
towards analytic quality assurance. We integrated the Reflexion model 
into architecting and first coined the term architecture compliance 
checking. In [Knodel 2006c], we reported on our experiences from 
conducting nine industrial and academic case studies. Our adaptations 
aim at counteracting the drift caused by structural violations – and 
hence, they propose using the Reflexion model technique as an analytic 
quality engineering technique for the verification of architectures.  

Recent work by [Christl 2005] proposes a new mapping approach, which 
derives semi-automatic mappings based on similarity clustering of source 
code files and aims at reducing the expert effort in the mapping step. 
[Frenzel 2007] describes an extension that uses clone detection 
techniques and similarity metrics to transfer mappings from one variant 
to another within a product line context. 

3.3.2.2 Mode of Operation  

The Reflexion model requires a mapping between the two models to be 
compared, which is a human-based task. The structural model (see left 
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side of Figure 30) specifies three architectural elements, namely 
components hlm1, hlm2, and hlm3. The arrows between the 
components indicate the prescribed inter-element relationships. Parsing 
the implementation produces the source code model (see center of 
Figure 30), which also comprises three elements, namely scm1, scm2, 
and scm3. The arrows in the source code model represent the source 
code relationships. 

The results of compliance checking (see right side of Figure 30) – 
regardless of which concrete technique is applied – reveal that the 
developers have two flaws in the implementation: The inter-element 
relationship from hlm3 to hlm1 has not been realized (indicated by the 
X), and one additional dependency from hlm2 to hlm3 has been 
implemented (see exclamation mark). Only the inter-element relationship 
from hlm1 to hlm2 has been implemented as specified. 

Structural Model Source Code Model Compliance Checking ResultsStructural Model Source Code Model Compliance Checking ResultsStructural Model Source Code Model Compliance Checking Results

 

Figure 30 Reflexion Model Example: Structural Model (left), Source Code Model (middle), and 
Compliance Checking Results (right) 

The mapping lifts the source code models to the abstraction level of the 
structural view. For the example given in Figure 30, the mapping defines 
how the architectural elements of the structural model are mapped to 
the elements of the source code model. For the example, this is a rather 
simple straightforward activity resulting in the following mapping: hlm1 
is implemented by scm1, hlm2 by scm2, and hlm3 by scm3. For both 
the specification and the realization, it is possible to describe the model 
as a set of inter-element relationships. The specification comprises the 
tuples A = {(hlm3, hlm1), (hlm1, hlm2)}, while the realization 
implements A’ = {(hlm1, hlm2), (hlm2, hlm3)}. 

Having the mapping lift both models to the same level of abstraction 
allows the comparison, the actual computation of the results. The 
computation of the Reflexion model assigns one of three types to each 
inter-element relationship, which can be expressed as set operations: 
convergence (i.e., Convergences = A � A’), divergence (i.e., 
divergences = A’ \ A), or absence (i.e., absences = A \ A’). 
Visualization dependent on the result type of the computation then 
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shows the compliance checking results as depicted on the right side of 
Figure 30. 

3.3.2.3 Application to DRVFaçade Example 

Revisiting the example DRVFaçade as discussed above for Reflexion 
models requires formulating the architect’s intentions as a structural 
model. Figure 31 depicts the layering as intended by the architect. The 
layer Business Logic uses only the layer Abstraction Layer to access the 
layer Drivers. 
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Figure 31 DRVFaçade: Specified Structural Model 

We map the source code elements BusinessLogic to the architectural 
layer Business Logic, the element DriverFaçade to the layer Abstraction 
Layer, and the source code elements HardwareDriver and 
EmulationDriver to the layer Drivers. Using this mapping, we can execute 
the comparison and produce the compliance checking results depicted in 
Figure 32. The structural violation is highlighted by the exclamation mark 
icon. It represents the direct invocation of the method doitwrong() to the 
HardwareDriver.  
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Figure 32 DRVFaçade: Compliance Checking Results with Reflexion Models 
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3.3.3 Dependency Rules  

Dependency rules – sometimes also called relation rules – allow 
specifying allowed or forbidden inter-element relationships between two 
architectural elements. 

3.3.3.1 Overview 

Dependency rules specify the constraints for the interaction of 
architectural elements. The constraints allow, forbid, or enforce certain 
relationships among the architectural entities. In contrast to the 
Reflexion model technique, dependency rules do not require an explicit 
structural model as input. They rather allow textual statements on 
allowed and forbidden relationships among architectural elements or 
their counterparts in the source code. Hierarchies of architectural 
elements are not specified by the rules (i.e., inter-element relationships 
among leaf architectural elements can be checked without defining the 
super- architectural elements containing them) and one dependency rule 
can cover multiple inter-element relationships among different 
architectural elements. 

First ideas for the verification of structural views with dependency rules 
have been envisioned [Harris 1995]. One of the first applications of rules 
for detecting structural violations is reported by [Carmichael 1995]. They 
manually evaluated how the components of an implemented system 
match the original design. To overcome the effort-intensive manual 
inspection, few automated approaches have been proposed, for instance 
[Areces 1998] using modal logic, directed colored graphs and relational 
algebra [Holt 1996], [Holt 1998], or relation partitioning algebra (RPA) 
[Feijs 1998]. Rules have been successfully applied to verify the 
architecture of large-scale software systems (e.g., [Bourquin 2007], 
[Postma 2003]). 

Component rules are a special type of dependency (or relation) rules. 
They are defined for each single component and do not assume any 
knowledge about the rest of the software system. Component rules 
allow specifying simple ports for components that other components are 
allowed to call. These rules help to increase the information hiding of 
components on a level that might not be supported by the 
implementation language itself.  

In Java, for example, declaring methods as public within a component is 
necessary for invoking such methods from other classes and packages 
located in the same component. All these public methods are also 
accessible from other components, although typically not all of them 
were intended to serve as an interface or a port of the component to the 
outside. The implementation language does not guarantee that entities 
outside the component boundary do not call the public methods within 
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a component. Thus, component rules encapsulate components and 
allow opening only certain ports for component interaction. While 
dependency rules specify a relation between two components, a 
component rule defines which parts of it are accessible by other 
components.  

Component rules are typically a natural language statement about the 
architectural elements. These statements have to be formalized into 
concrete rules specifying to which parts of the component access is 
granted and to which not. Specifying further by whom the access is 
granted or not turns the component rules into regular dependency rules. 
Typically, regular expressions are applied to match the names of 
component internals. Component rules are inspired by ports in 
architecture description languages (ADL) [Medvidovic 2000] and 
exported packages in OSGi [OSGi 2009]. In [Knodel 2007], we report on 
a first application of such component rules.  

3.3.3.2 Mode of Operation  

Dependency rules allow specifying allowed or forbidden relationships 
between two components. Such a rule is typically a natural language 
statement about the inter-element relationships of architectural 
elements. The statements can then be formalized into concrete rules, 
which consist of a rule type (allowed, forbidden, enforced), a source 
component, a target component, and a relation type (the type of inter-
element relationship). For both the source and the target components of 
the rule, a regular expression may be defined for matching the names of 
components.  

Dependency rules can detect similar defects as Reflexion models, but the 
mapping is done automatically for each conformance check by resolving 
the specified rules and regular expressions. In contrast to the Reflexion 
models, leaf-level relations of models can be checked without defining 
the super-components of a leaf component. One dependency rule can 
cover multiple relations of different components. Additionally, 
dependency can be used to specify allowed or forbidden connections to 
the context of an analyzed system, such as third-party libraries. 

For the example given in Figure 30, applying the rules requires the 
mapping and concretization of rules. The rule types required are for 
allowed dependencies may_use, for enforced dependencies must_use 
(which, of course, implies may_use), for forbidden dependencies 
must_not_use, and for actually implemented dependencies uses. This 
classification is based on the approach by [Postma 2003] proposing 
may_use, must_not_use, uses. Depending on the architect’s intention, 
the inter-element relationships in the structural model of Figure 30 can 
be assigned to be allowed (i.e., may_use = {(hlm3, hlm1), (hlm1,hlm2)}),  
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enforced (i.e., must_use = {(hlm3, hlm1), (hlm1,hlm2)}), and forbidden 
(i.e., must_not_use = {(hlm1, hlm2)}). Hence, the specification is the 
unification of all three sets: A = may_use � must_use � must_not_use. 
The realization implements relationships, which are lifted by applying the 
same mapping again: hlm1 is implemented by scm1, hlm2 by scm2, 
and hlm3 by scm3. So the lifted source code model presents the actual 
dependencies (i.e., uses = {(hlm1, hlm2), (hlm2, hlm3)}).  

The computation of the rules assigns one of three types to each inter-
element relationship, which can be expressed as set operations:  

� convergences = may_use � uses 
� divergence = uses \ may_use  
� absences = must_use \ uses  

Visualization dependent on the result type of the computation again 
results in the compliance checking results as depicted on the right side of 
Figure 30. 

3.3.3.3 Application to DRVFaçade Example 

Revisiting the example DRVFaçade as discussed above for dependency 
rules requires formulating the architect’s intentions as rules. Table 9 lists 
the rules and their mappings to regular expressions. 

Rule Description Regular Expression 
R1 Any architectural element may use the 

Abstraction Layer. 
.* may_use   
 DriverFaçade  

R2 It is forbidden for the Business Logic 
to use the layer Drivers  directly.  

BusinessLogic must_not_use   
Driver 

R3 The DriverFaçade has to use all 
elements within the layer Drivers.  

DriverFaçade must_use 
.*Driver.java 

Table 9 DRVFaçade: Specified Rules  

For rule R1, we map all source code elements of BusinessLogic as 
allowed origin of the rules, while the allowed target is the element 
DriverFaçade. However, this dependency is not enforced. For rule R2, we 
map the source code elements HardwareDriver and EmulationDriver to 
the layer Drivers and the source code elements of BusinessLogic to the 
layer Business Logic. Using this mapping, we can execute the comparison 
and produce the compliance checking results depicted in Figure 33. The 
results show the structural violation highlighted by the exclamation mark 
icon. It represents the direct invocation of the method doitwrong() to the 
class HardwareDriver. In the same way, we translate rule R3. 
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Figure 33 DRVFaçade: Compliance Checking Results with Dependency Rules 

3.3.4 Equivalence of Expressiveness  

The two architecture compliance checking techniques Reflexion models 
and dependency rules are equivalent in their expressiveness.  

Definition 31 Equivalence of Sets 

Let A and B be two sets: A and B are equivalent if: 

� �AaBaAaBA
ABBABA


�
�
��
�����

 

Applying this definition to the sets produced by the different architecture 
compliance techniques shows the equality of the following sets:  

� convergencesreflexion = A � A’= may_use � uses = convergencesrules.  

� divergencesreflexion = A’ \ A = uses \ may_use = divergencesrules  
� absencesreflexion = A \ A’= must_use \ uses = absencesrules.  

By this, we can conclude that both the dependency rules and the 
Reflexion model produce the same results, and hence, they have the 
same expressiveness. The conclusion was already indicated by the 
application of the two techniques to the example system. 

Thus, independent of the concrete technique applied, compliance 
checking produces the same results. However, there are certain 
differences in the applicability of each technique, which will be discussed 
in the next section, where the focus is rather on the qualitative 
assessment of the applicability of the technique as a basis for live 
compliance checking.  
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3.3.5 Tools for Compliance Checking 

There are several architecture and source code analysis tools that allow 
checking compliance analytically (though they do not support live 
architecture compliance checking). The following list gives an overview 
of representative, mature, and industrial-strength tools6: 

� Bauhaus: Bauhaus [Bauhaus 2008] is a reverse engineering tool 
suite, which supports the computation of hierarchical Reflexion 
models. In addition to the commercial tool, an academic sibling is a 
research tool for source code analysis and reverse engineering 
features (see [Raza 2006] and [Koschke 2008]). 

� jDepend: The [jDepend 2008] tool analyzes the source code to 
measure the quality. The package dependencies (i.e., the coupling) 
can be used to control the structure of the software system. 

� jRMTool: The [jRMTool 2008] is the original tool for applying 
Reflexion models technique [Murphy 2001]. The main drawback of 
this tool is the lack of support for hierarchies. The results can be 
visualized using Graphviz [Graphviz 2008], which is a graph drawing 
tool offering hierarchical layouts of trees as well as directed acyclic 
graphs and virtual physical layouts of undirected graphs.  

� Klocwork Insight: [Klocwork 2008] is a reverse engineering tool, 
which main focus is on computing source code metrics and checking 
the code for security holes. Next to these main features, rules on an 
architectural level can be verified, too. 

� Lattix: [Lattix 2008] is a tool that visualizes software systems in the 
form of a dependency matrix, which is a simple square matrix where 
both rows and columns denote compilation units of the system and 
dependencies are indicated by values in the respective cells of the 
matrix. Rules can be specified to define may_use and must_not_use. 

� Semmle .QL: The source code query language proposed by [Semmle 
2008] uses an SQL-like syntax to define and check architectural 
constraints. .QL relies on standard relational database systems to 
store facts about the software system under investigation. 

� SonarJ: [SonarJ 2008] supports the analysis of Java source code. 
Similar to SAVE, compliance checking for dependency rules is 
possible.  

� Sotograph: The Software Tomograph [Sotograph 2008] analyzes the 
software system and stores the information in a software repository, 
which allows formulating architectural rules as queries and thus 
checking the compliance of the system. The results can be visualized 
using graphs. 

                                                      
6 Please note that the list of architecture compliance tools does not aim at 

completeness; we present only a subset of tools, which we believe to be most 
popular in industry. 
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� Structure101: This tool [Structure101 2008] lets the user define 
structural models in terms of layers and allowed relations among 
them, which can then be checked for compliance with the source 
code. 

� SAVE: Last but not least, SAVE and its extension SAVE LiFe (see 
Section 5 and [Knodel 2009a]) are introduced in this thesis and are 
especially designed to enable live compliance checking and meet the 
essential requirements as stated in Table 4.   

3.3.6 State Of The Art beyond Compliance Checking 

Compliance is one crucial internal quality characteristic of the 
architecture of a software system. In addition to compliance checking, 
other quality engineering techniques for software architectures have 
emerged, namely architectural encoding in source code, scenario-based 
architecture evaluations, and architecture description languages. 

3.3.6.1 Architectural Encodings in Source Code 

A promising approach for avoiding architectural decay caused by 
structural violations is to directly encode architectural elements into the 
source code using specially defined constructs of the implementation 
language (e.g., [Aldrich 2002], [Lam 2003]). If programming languages 
provide mechanisms for denoting architectural elements like 
components or connectors, they can be more easily kept consistent with 
the code, and since the mechanisms are part of the code, changes in the 
code result in changed architectural elements. For example, a design 
may call for several components to belong to a certain layer of a layered 
architecture, which will be stated directly in the source code. 

However, the most popular programming languages (e.g., C/C++, Java) 
do not support such mechanisms. So typically developers are not 
explicitly made aware of architectural decisions while implementing the 
solutions. Thus, changes or implementation decisions that affect the 
planned architecture might not be recorded appropriately. 

3.3.6.2 Scenario-based Architecture Evaluation 

Architecture evaluation aims at assessing whether or not a system to be 
constructed will meet its quality requirements. This kind of evaluation 
can be applied as soon as there is a first idea about the software 
architecture (either explicit or as a shared mental model). Two surveys 
give an overview of architecture evaluation (see [Dobrica 2002] and 
[Babar 2004]). The most prominent ones are scenario-based techniques. 
The software architecture analysis method (SAAM [Clements 2002b]) 
evaluates the modifiability of software architectures with respect to a set 
of representative change scenarios. The architecture trade-off analysis 
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method (ATAM [Clements 2002b]) is also a scenario-based method, 
which extends SAAM to address other quality attributes. Its goal is to 
analyze whether the software architecture satisfies given quality 
requirements and how the satisfaction of these quality requirements 
trades off against each other. In [Bosch 2000], Bosch presents four 
architecture assessment techniques: scenario-, simulation-, mathematical 
model-, and experience-based assessments. These techniques also aim at 
the evaluating whether a system fulfils its quality requirements or not. 

3.3.6.3 Architecture Description Languages 

Architecture description languages (ADL) [Medvidovic 2000] provide 
formal notations for defining the architecture of a software system. The 
formal definition of the architecture enables the processing of the 
models specified by various tools for parsing, analysis, simulation, and 
code generation. Several ADLs have been proposed, for instance see 
[Allen 1997], [Batory 1997], [Medvidovic 1999], [van Ommering 2000] , 
or [Dashofy 2002]. Architecture constraint languages, a specialization of 
all-purpose ADLs, define formal notations for formulating constraints for 
the static structure of a system. Examples are the Structural Constraint 
Language (SCL) [Hou 2006] and LogEn [Eichberg 2008]. Due to their 
constructive nature, architecture description languages can typically not 
be adopted for existing systems. 

3.4 Applicability of Compliance Checking Techniques 

The main goal of architecture compliance checking is to detect spots in 
the source code that cause structural violations in the architecture. As 
mentioned above, the detection of such source code spots is 
independent of the selected compliance checking technique. This section 
compares Reflexion models and dependency rules by assessing their 
potential applicability as base techniques for live compliance checking. 
The comparison is an update of our previous work in [Knodel 2007]. 

3.4.1 Dimensions 

Inspired by the Goal-Question-Metrics (GQM) approach [Basili 1994] (see 
Table 10 for the GQM goals) we derived several dimensions to determine 
the criteria for the comparison of the two compliance checking 
techniques. 
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GQM Description 
Object Structural compliance checking techniques: 

– Reflexion models 
– Dependency rules 

Purpose Evaluation of their potential use as base technology for live 
compliance checking (i.e., as a quasi-constructive quality 
engineering technique) 

Quality Aspect Applicability 
Viewpoint Developer: user of the live compliance checking feedback 

Architect: defines, maintains, and evolves the architecture, 
which is input to live compliance checking 

Context Software architecture, software implementation, software 
evolution, quality engineering, and compliance checking 

Table 10 GQM Goals  

The dimensions were proposed by the author, but underwent 
refinements when two other members of the architecture group at 
Fraunhofer IESE thoroughly reviewed the dimensions. In total, we 
defined 16 dimensions:  

� Input: The dimension input lists the system artifacts that are 
necessary in order to apply the compliance checking technique. 

� Involved Stakeholders: The stakeholders are those persons, groups, 
or roles who are involved in the compliance checking activity. This 
dimension lists the stakeholders involved. 

� Automation: This dimension lists the automated, tool-supported 
activities of the compliance checking technique.  

� Manual Activities: The manual activities capture the interaction 
with the stakeholders for producing compliance checking results. The 
main activities must be carried out by the analyst with the involved 
stakeholders but they are not (semi)-automated by tools. The 
automated tasks, such as fact extraction or computation of the 
results, are ignored here, since all are automated by the SAVE tool. 

� Performance: The verification performance captures the time 
required to compute the compliance checking results. For comparison 
purposes, a lab environment for both techniques was set up and 
compliance checking was executed for the same source code and the 
same structural view.  

� Scalability: Scalability captures the degree to which the approach 
scales up for handling large-scale software systems. Scalability ranges 
from small via medium to large-scale systems; the rating is done 
based on project experiences and publications in the literature. 

� Violation Types: The primary violation types dimension classifies the 
distinct groups of defects the compliance checking technique detects. 
In particular, we consider the following distinct groups: violating 
architectural elements, missing architectural elements, violating 
dependencies, and missing dependencies. 
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� Explicitness: Explicitness captures the degree to which the models 
used in compliance checking technique can be expressed without 
vagueness, implication, or ambiguity (i.e., the degree of leaving no 
question as to meaning or intent). The explicitness dimension 
captures the potential degrees to which developers can learn about 
the structural decomposition from the results provided by the 
compliance checking technique. Explicitness is measured on an 
ordinal scale with the values low (low education potential due to 
unclear, ambiguous results), medium, and high (high education 
potential due to clarity and unambiguity of the results).   

� Ease of Use: Ease of use captures our subjective experiences 
regarding the intuitiveness of the compliance checking technique. 
We rate intuitiveness (how easily and intuitively an analyst can apply 
the approach) on an ordinal scale with the values low, medium, and 
high.  

� Ease of Learning: Ease of learning captures our subjective 
experiences regarding how much training is needed for a new analyst 
to be able to conduct compliance checking and to produce useful 
results. This dimension ranges from high (few iterations and training 
required) to low (many iterations and a lot of training required).  

� Probability of False Positives: The probability dimension captures 
the likelihood of false positives in the analysis results measured on an 
ordinal scale with the values low, medium, and high. 

� Maintainability: The maintainability dimension captures the 
robustness of the architecture compliance checking approach with 
respect to code evolution. In particular, we consider the addition, 
modification, or removal of either architectural or source code 
elements.  

� Transferability: The transferability dimension describes how the 
work products created in the compliance checking approach can be 
reused when evaluating another version of the system, a distinct 
variant of the system, or a different system. The first two are closely 
related to the system (i.e., mostly the same components, the same 
architecture), while the third is a completely different system with 
limited reuse. 

� Multiple Views: Typically, there is not only one view of the static 
structure of the system; the architects often have different views, 
sometimes overlapping or even conflicting. This dimension captures 
how the approach is able to handle such multiple views and how 
easy it is to find out about the commonalities and variabilities in the 
created work products. 

� What-If Scenarios: Restructuring scenarios captures the exploration 
of what-if analyses of the actual system. It aims at answering how 
the architecture compliance would change for different structural 
decompositions. 
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� Validation Support: This dimension captures how the architecture 
compliance checking approach supports the validation of the 
architecture, decision-making, trade-off analyses or scenario-specific 
analyses when reasoning about architectural or non-functional 
qualities. This dimension ranges from almost no, limited, medium, to 
high support. 

3.4.2 Comparison 

Table 11 shows the comparison results for the criteria defined above for 
the two major architecture compliance checking approaches – Reflexion 
models and dependency rules. Rows with only one entry for the two 
approaches indicate a commonality between them. The table assumes 
the general case of the application of the compliance checking 
technique, however, in special cases, there might be exceptions where 
cells of the table might be different. We derived the table based on our 
consolidated practical experiences gained in several industrial and 
academic applications. 

The main inputs for the two approaches are obviously the source code 
and the structural view of the architecture, either as a model or 
formulated as rules. This information is usually obtained from the 
architecture documentation. The main stakeholders involved are the 
architect and the developers. The automation and the manual 
activities were already been discussed in the previous sections, where 
the two techniques were introduced and their mode of operation was 
exemplified. Except for the manual activities, all of the above-mentioned 
dimensions are common for both techniques. 

Comparison 
Criterion 

Reflexion  
Models 

Dependency 
Rules 

Input - structural architectural view 
- source code 

Involved 
Stakeholders 

- architect 
- developers 

Automation  - parsing of structural view 
- parsing of source code 
- computation of verification results 
- results presentation (e.g., tabular lists or visualization) 

Manual 
Activities 

- formalization of models  
- decision-making  

- formalization of rules  
- decision-making  

Performance equivalent, results produced fast 
Scalability equivalent, applicable to large-scale software systems 
Violation Types - violating architectural 

elements 
- missing architectural 
elements  
- violating dependencies 
- missing dependencies 

- violating dependencies 
- missing dependencies 
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Comparison 
Criterion 

Reflexion  
Models 

Dependency 
Rules 

Explicitness high low 
Ease of 
Application 

high intuitiveness medium intuitiveness 

Ease of 
Learning 

high medium 

Probability of 
False Positives 

low  high 

Maintainability - architectural elements: 
update structural model 
and mapping 
 
- source code elements: 
review mapping, 
refinements might be 
necessary 

- architectural elements: 
update structural model 
and rules 
 
- source code elements: 
review rules, refinements 
might be necessary 
 

Transferability - version: no consequences 
for structural model and  
mapping 
 
- variant: adaptations to 
structural model and 
mapping  
 
- different system: no reuse 
possible 

- version: no consequences 
for structural model and 
rules 
 
- variant: adaptations to 
rules 
 
 
- different system: no reuse 
possible 

Multiple Views  yes yes 
What-If 
Scenarios 

direct support with 
tracking 

no direct support but 
tracking possible 

Validation 
Support 

limited 

Table 11 Compliance Technique Comparison 

The performance in terms of computing the verification results is 
obviously dependent on the implementation and on the number of 
elements and dependencies that have to be checked. We conducted a 
series of evaluations with different systems (up to 500 KLoC) and varying 
configurations (mappings, number of rules, etc.) on a typical computer 
(processor 1,2 GHz, 1 GB RAM, Microsoft  Windows XP Professional). 
The two approaches were realized in the same architecture analysis tool 
using the same fact extraction and visualization capabilities. The time 
required to compute the compliance checking results for the two 
approaches was less than 5 minutes for all configurations; other steps in 
the analysis like fact extraction and visualization of results took 
significantly more time. Thus, we consider the two approaches as 
equivalent in this dimension.  

The compliance checking techniques themselves are more affected by 
the capabilities architecture analysis tools to parse and visualize large-
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scale software systems. Thus, we consider the scalability of the 
techniques as equal. The literature reports also on successful application 
to large industrial systems for both techniques.  

The violation types of the two approaches have already been explained 
in the previous sections. Reflexion models can detect missing or violating 
architectural elements when performing the mapping step. 

The explicitness of the two techniques is different. While the Reflexion 
models explicitly assign the source code elements to architectural 
elements, the resolution of the rules might create overlaps. One rule 
might assign a convergence to source code relationships, while they are 
divergent for another rule.  

Ease of use is a subjective measure based on our experience. We rated 
the intuitiveness of Reflexion models as high since both can be applied 
straight forward without requiring any special training: The mapping can 
be done easily without any special training based on given 
documentation. In contrast, natural language rules can mostly be 
formalized but require in-depth knowledge of regular expressions. 
Further, the expression might become complicated depending on the 
elegance with which regular expressions can be formulated. For this 
reason we rated them as medium. 

The ease of learning also differentiates the two techniques. Both the 
Reflexion models and the dependency rules support incremental 
refinements. They also allow trial-and-error refinements. Both can start 
with basic mappings or rules for parts where confidence is high. The left-
out parts of the system can be expanded over time. We rated the 
dependency rules as medium due to the higher effort in order to apply 
regular expressions. 

The probability of false positives (e.g., a computed divergence that is 
actually a convergence or vice versa) for Reflexion models is low, because 
the resolution of mappings can be reviewed and adjusted by the 
architect before the compliance checking is executed. It is high for the 
dependency rules because compliance checking is only based on regular 
expressions, which are only resolved at checking time.  

The maintainability dimension addresses the ability of the compliance 
checking approach to evolve with the source code. We distinguish 
between two levels of evolution: changes resulting in addition, 
modification, or removal of architectural elements and changes affecting 
source code elements in the same way. Dependency rules are only 
affected by the addition of new components, because they might have a 
different naming convention not yet taken into account by the rules. 
Obviously, when adding new components, new rules are required and 
thus, have to be defined. When modifying components, the component 
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rules have to be reviewed with respect to potential refinements. 
Changes to components imply for Reflexion models that both the 
structural model and the mapping have to be at least reviewed, if not 
updated. Changes in source code elements affected neither the 
Reflexion models nor the dependency rules. 

The transferability differs between the compliance checking 
approaches: Reflexion models require at least rework of the mapping. 
Even for variants the architectural model might need a refinement, and it 
is not possible to transfer work products from Reflexion models when 
evaluating a different system. Dependency rules allow or forbid certain 
kinds of relationships. The rules can be applied organization-wide if 
naming conventions are applied consistently. However, their applicability 
has to be reviewed with respect to their usefulness in the context of 
different systems. 

Reflexion models provide good support for multiple views. For 
example, consider a system with a layered architecture composed 
partially of reusable components distributed across the layers. The 
architects would be interested in the compliance of the layering on the 
one hand and in whether or not the reusable components have 
dependencies on the system-specific parts on the other hand. With 
Reflexion models, this is easily checked by creating two distinct structural 
models and mapping pairs, each capturing one of the two compliance 
checking scenarios. Dependency rules are able to reflect different views 
through different rules sets but the rule sets are all dependent on the 
decomposition hierarchy. Thus, views that crosscut hierarchies are 
difficult to define with dependency rules. 

What-if scenarios for hypothesizing potential restructurings are 
supported by Reflexion models in two different ways: by creating 
artificial components as part of the architectural model and by defining a 
target architecture towards the implementation of the systems should be 
refactored to. Evaluating the implementation at constant intervals 
enables monitoring and tracking the progress made towards reaching 
the restructuring goals. Since dependency rules just operate on one 
model, they do not support what-if analyses. However, once the target 
architecture has been established, a new set of dependency rules can be 
created to check the compliance of the implementation regarding the 
target and thus, monitoring and tracking are supported. 

The validation support offered by each technique itself is rather 
limited. The reasoning of the architects is dependent on their 
interpretation and decisions are not derived by the evaluation results 
only but use a significant amount of additional context information and 
rationales. Furthermore, there is no guidance on how to address 
architectural violations that have been detected. 
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3.4.3 Summary 

The Reflexion models and the architectural rules share the same 
expressiveness, but the applicability of each technique has different 
benefits and advantages as the comparison of the two techniques has 
shown. Common to all approaches are criteria input, stakeholders, 
verification performance scalability, and validation support. We did not 
expect any major difference in these dimensions. 

Although the two techniques are based on the same principle of 
compliance checking, the techniques differ in many ways. The main 
differences concern the dimensions maintainability, transferability, 
multiple view support, and what-if scenarios. Due to these differences, 
the architects have to decide which alternative fits better to their goals 
and the application context for architecture compliance checking. 

Our goal – applying compliance checking as a quasi-constructive quality 
engineering technique – favors the high education potentials due to the 
explicitness of Reflexion models. Further, their ease of use and ease of 
learning make them an appealing choice in technology transfer projects 
because the overhead due to the new technology is limited. Moreover, 
the probability of false positives is lower than for dependency rules. 

In short, goal-driven selection of the compliance checking technique is 
crucial. This section elaborated on our decision to choose Reflexion 
models as the base technology for live compliance checking. 

3.5 Paradigm Shift towards Live Compliance Checking  

In order for compliance checking to be applicable as a quasi-constructive 
compliance checking technique, a paradigm shift is required. We 
illustrate this paradigm shift by using the general approach for the 
achievement of a certain quality as proposed by Deming [Deming 1986]. 
This so-called Deming cycle consists of four consecutive steps: Plan, Do, 
Check, and Act (PDCA).  

Using these four steps to describe the technique as the approach to 
achieving the quality compliance yields the following steps: 

� Plan: The plan establishes the objectives that the resulting software 
system has to fulfill. In order to verify that the implementation is built 
right, the architect defines the plan – the specification of the 
structural decomposition. This decomposition prescribes the structure 
of the system in terms of architectural elements and inter-element 
relationships. 

� Do: The developers do their work, which means they write source 
code. This step realizes the software system according to the plan. 
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The developers create the solution using algorithms and data 
structures using the basic constructs offered by the programming 
language. In other words, they implement the system from scratch or 
modify an existing system.  

� Check: The check evaluates the results against the objectives and 
specifications and reports the outcome, which is exactly what the 
comparison does in architecture compliance checking. It compares 
the specification defined by the architects with the realization 
implemented by the developers. The compliance checking results are 
the outcomes. 

� Act: In case deviations from the plan have been detected during the 
check step, the act step decides about counteractive measures for 
necessary improvement and creates a new plan to be realized by the 
developers.  

Compliance checking and correction aim at shaping the implementation 
towards the plan. This means eventually iterating over all steps (Plan, Do, 
Check, Act) again and again until architecture compliance is finally 
achieved. Figure 34 depicts the Deming cycle, illustrating the consecutive 
execution of the steps at distinct points in time. Executing compliance 
checking now as a live analysis technique with direct feedback to 
developers requires major adaptations to these steps. In contrast, live 
compliance checking executes the latter three of the four steps of the 
Deming cycle concurrently (see Figure 35). Still, the plan step is the 
same; the architect is responsible for defining the decomposition that 
the implementation should adhere to. But the steps Check and Act are 
executed while the developers are executing the Do step (i.e., while they 
are writing the source code). The Check step is conducted continuously 
and constantly from day one of the implementation phase. Hence, for 
every single modification made by developers in the Do step, compliance 
checking is executed and provides immediate live feedback. The live 
feedback on compliance – just after the modification was made – allows 
prompt and direct reaction. The developers receive information on 
where the source code is not compliant, and can immediately remove 
the structural violation just introduced. Hence, this quick, high-frequency 
cycle of executing Do, Check, and Act concurrently for every source code 
modification reduces the mean time for structural repairs. 

Plan Check ActDo

Timet1 t2 t3 t4

Plan Check ActDo

Timet1 t2 t3 t4
 

Figure 34 Deming Cycle for Analytical Quality Engineering 
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Figure 35 Deming Cycle for Quasi-Constructive Quality Engineering 

Furthermore, the constantly repeated feedback presents a live education 
for the developers. They are trained over time and become aware of the 
intentions the architect had in mind with the structural decomposition. 
Eventually, this knowledge created by quasi-constructive compliance 
checking will lead to avoiding structural violations in the first place. 
Hence, developers will create realizations that do not require any or 
require significantly less refactorings due to structural violations. 

To enable architecture compliance checking as a quasi-constructive 
quality engineering technique, the existing techniques must be modified. 
The adaptation towards their application in a forward engineering 
environment supporting distributed development teams yields the 
essential requirements introduced in Table 4 (see Section 1.3). Section 4 
shows how these essential requirements and thus the idea of live 
compliance checking have been accomplished. 
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4 Live Compliance Checking Approach 

The live compliance checking approach executes compliance checking 
with high frequency and delivers fast responses, which enables both a 
learning effect (i.e., developers are continuously trained on the 
architecture) and a prompt removal effect (i.e., the immediate detection 
of structural violations allows their immediate removal). Both effects 
combined cause the ultimate goal of this thesis to become a reality: the 
construction of architecture-compliant implementation with sustainable 
structures. In Section 4.2, we explain our line of argumentation: Live 
compliance checking acts like a just-in-time architectural compiler. Let us 
draw an analogy to regular compilers: Compilers process source code 
based on a predefined grammar and are able to detect syntax errors 
caused by statements of the developers that are mal-written. Similarly, 
the architectural compiler (as realized by live compliance checking) 
detects structural violations caused by source code statements mal-
written the developers. In contrast to regular compilers, live compliance 
checking operates on a higher level of abstraction – that of the software 
architecture. 

To institutionalize live compliance checking within a development 
organization, process adaptations are required. Section 4.1 introduces 
these adaptations, which comprise three different but interacting 
process parts. The overall process instantiates and is aligned to Figure 6 
(see Section 1.3) – the conceptual view on live compliance checking. 
Each process part describes the activities from the viewpoint of the roles 
involved – architect, developer, and compliance checker. While the first 
two represent engineers of the development organization, the latter 
represents an automated system. Architects and developers interact with 
the compliance checker while doing their daily work – architecting and 
implementing. All three process parts are executed continuously (i.e., all 
the time, while development is ongoing) and constantly (i.e., every time 
a change is made, either to the architecture or to the source code). 
However, while the architect’s interaction with the compliance checker is 
rather seldom, developers very frequently receive live feedback. 

Due to the high execution frequency, developers learn about the 
architecture every time they cause a structural violation. We assume a 
learning effect over time, resulting in less violations created and a 
prompt removal effect for any violations actually created. Based on these 
assumptions we derive a simple theoretical model quantifying the 
hypothetical benefits of live compliance checking (see Section 4.3). 
Development organizations have to spend an average effort x for fixing 
one single structural violation, hence the effort n*x is required to remove 
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n structural violations. For live compliance checking, we have the 
conservative assumption that the number of structural violations is 
halved (due to the learning effect) and the effort to remove them 
requires only two-thirds (due to the prompt removal effect). Hence, we 
can conclude that the overall effort required to achieve compliance for a 
given implementation is (2*x*n)/2*3 = (x*n)/3. In other words, live 
compliance checking – hypothetically – reduces the overhead effort by 
67%. Additionally, compliance allows reaping the fruits of the 
investments made into architecting. 

4.1 Process Overview 

The process for achieving architecture-compliant implementations of 
software systems is depicted in Figure 36. It comprises three process 
parts: architecting, coding, and compliance checking. Architecting and 
coding are executed by architects and developers, respectively, while 
compliance checking is a system that is triggered by either one of the 
other two process parts and then runs a sequence of fully automated 
activities.  

The process realizing the principles of live compliance checking consists 
of two loosely-coupled loops. The first loop is executed by the (typically 
few) architects, while the second loop is executed by typically many (or 
several teams of) developers. The loose coupling is due to the fact that 
the architecture managed by architects is input for the coding carried 
out by the developers. Both loops are executed continuously (i.e., all the 
time, while development is ongoing) and constantly (i.e., every time a 
change is made, either to the architecture or the source code). 
Consequently, the process part for compliance checking is also triggered 
continuously and constantly. 

The loop of the architect iterates over four activities: 

� A.1. architect: Architects, by nature, of course design the 
architecture of the software system. They define, document, and 
evolve the fundamental organization of the software system. The 
abstractions provided by the architecture enable the efficient 
evolution of the software system. Once a first draft of the 
architecture has been completed and consolidated, the architecture is 
ready to be communicated. However, architecting never really stops. 
Due to new or changing requirements, business goals, or 
organizational objectives, the architecture evolves as long as the 
system is alive. 

� A.2. communicate Architecture: Architects communicate the 
architecture to developers, either verbally or via documentation. The 
developers use the architecture (and additional information sources 
like requirements) to start the coding process. 
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� A.3. publish Architecture: Architects publish the latest state of the 
architecture (in particular its structural view) to the compliance 
checker. From that point on, compliance checking is active and can 
support developers with constructive, live feedback. 

� A.4. publish Compliance Status: The compliance checker publishes 
the compliance status on demand. Architects can track compliance as 
a crucial quality and can access the overall compliance status of the 
system. The compliance checker allows publishing the compliance 
status. The overall compliance status of the system comprises the 
evaluation of the latest state of the complete source code. The 
architect may use advanced graphical visualization concepts to 
analyze the status from a global system perspective and navigate the 
compliance checking results. If necessary, the architect plans and 
makes refinements due to recurring compliance problems. 
Integrating such refinements starts another cycle of architecting, 
which eventually results in an update of the published architecture. 
Hence, the developers always execute the coding process against the 
latest published release of the architecture. 

The loop of the developer also iterates over four activities. In contrast to 
the coarse-grained activities of the architect, the developers’ activities are 
fine-grained and executed by each individual developer on his/her own.  

� D.1. code: Developers code the source code files of the 
implementation. They write statements using the constructs offered 
by the programming language, which transforms solution ideas into 
algorithms and data structures. All source code combined eventually 
realizes the software system as specified (if everything works out 
fine). The input to the coding process is the architecture, which 
prescribes the intended structural decomposition into components 
and the relationships among them. 

� D.2. send Deltas: Developers send the delta to the compliance 
checker. Any modification made by any developers is forwarded to 
the compliance checker, but instead of sending all the source code, 
only the locally changed delta of the developer is propagated; other 
unchanged source code is ignored. The sending of changed deltas is 
triggered and performed automatically (i.e., without direct 
involvement the developer) based on events within the integrated 
development environment. 

� D.3. send Live Feedback: Developers receive live feedback sent by 
the compliance checker on the violations that are contained in the 
delta forwarded. If there are no violations, the developers can 
continue without interruption. Otherwise, the violations are 
highlighted smoothly in the source code editor. The feedback is 
tailored to the individual developers and focuses only on their local 
scope (i.e., it is directed at those developers who just submitted the 
changed deltas). The fast response time delivers the results while the 
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developers are editing the same source code fragments. Their minds 
are still in context, allowing prompt correction of the violations. 

� D.4. correct: Developers correct the structural violations, which is 
equivalent to writing source code. Hence, the statements just written 
or modified automatically constitute the next delta to be forwarded 
to the compliance checker. Potential side-effects of the correction 
causing new structural violations are detected immediately, because 
the compliance checker processes the modifications instantly. In 
other words, the correction is equivalent to writing source, but with 
the purpose of achieving compliance, which thus starts another cycle 
of the coding process part.  

The next subsections detail the process parts architecting, coding, and 
compliance checking. As depicted in Figure 36, the name of the message 
exchanged between compliance checking and architecting or coding 
indicates its size. While publish stands for long messages transferring full 
models, send represents rather short messages.  

A.4. publish Compliance Status D.3. send Live Feedback
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Figure 36 Live Compliance Checking: Process Overview 

4.1.1 Architecting Process Part 

The architecting process part comprises the cycle of activities conducted 
by the architect only (see Figure 37). All activities operate only on 
architecture-related work products and are obviously performed by the 
architect. For the sake of simplicity, we have ignored other lifecycle 
phases (e.g., requirements engineering). 
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Figure 37 Live Compliance Checking: Architecting Process Part 

Figure 37 list seven activities performed by the architect. While the first 
two activities (i.e., architect and communicate architecture) represent the 
regular workflow of architects, all other activities are extensions 
especially introduced as enablers for live compliance checking: 

� 1: architect Architecture: see description above. 

� 2: communicate Architecture: see description above. 

� 3: formalize Structural Model: To enable compliance checking, the 
architect formalizes the architecture, resulting in the structural model. 
If executed for the first time, the model is created, whereas later 
(optional) executions of this activity yield only minor refinements. 

� 4: define Mapping: The architect defines the mapping, which links 
the structural model to the source code. If executed for the first time, 
the architect has to define the mapping completely. Therefore, the 
architect requires knowledge about the source code model. Later 
executions of this activity are optional and typically result in 
refinements due to changes in the hierarchy of the source code 
model or new source code elements. Once the system is maturing, 
this activity is rather optional. 
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� 5: publish Architecture: The architecture (i.e., the structural model 
and the mapping) are published; see above description.  

� 6: request Compliance Status: The architect requests the overall 
status from the compliance checker. The compliance status contains 
the collection of all deltas made since the start of development (i.e., 
the latest state of the source code). The published compliance status 
is made available to the architect on demand. 

� 7: review Compliance Status: The architect then reviews the 
compliance status. Depending on the status, the architect either 
continues with the next architecting cycle or requests an update of 
the compliance status at a later point in time. 

4.1.2 Coding Process Part 

The architecting process part comprises the cycle of activities conducted 
by the architect only (see Figure 38). All activities operate only on source 
code-related work products. The only exception is the architecture, 
which acts as the overall input to any coding activities. The coding 
process part is performed by any developer writing source code. For the 
sake of simplicity, we have ignored other lifecycle phases (e.g., testing). 
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Figure 38 Live Compliance Checking: Coding Process Part 
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Figure 38 lists six activities performed by the developers. While the first 
activity (i.e., architect and communicate architecture) represents the 
regular workflow of architects, all other activities are extensions 
especially introduced as enablers for live compliance checking: 

� 1: code Source Code: see description above. 

� 2: determine Local Delta: The developer writes source code; the 
local modification scope is determined automatically. The 
modification scope comprises the locally changed compilation units – 
the delta or the addition in terms of source code just created by the 
developer. The determination uses features of the integrated 
development environment to monitor and track locally changed 
compilation units. At certain distinct events (e.g., saving a 
compilation unit, committing to the configuration management 
system) the delta determination is triggered automatically (i.e., 
without direct involvement the developer). 

� 3: send Delta: see description above. 

� 4: receive Live Feedback: The developers receive live compliance 
feedback on their individual modification by the compliance checker. 
The feedback is considered live because of the fast response time. In 
contrast to the analytical technique, live compliance checking delivers 
the results magnitudes faster because of limiting fact extraction, 
lifting, and checking to the delta only. The live feedback is received 
automatically by the integrated development environment and has 
no interaction with the developers. The results received include the 
set of violations relevant for the delta sent (i.e., the locally modified 
compilation units). 

� 5: display Delta Results: The live feedback provides the developers 
with the results of the compliance check. The integrated 
development environment displays the violations in the source code 
editor in a smooth way (i.e., non-intrusive, non-distracting but 
nevertheless appropriate). The presentation of results allows the 
developers to perceive the structural violations and their context (i.e., 
which statement causes the violations, what kind of violation it is, 
and what the architectural context is, such as origin and target 
component). Perceiving the results raises the awareness of the 
developers and empowers them to achieve architecture-compliant 
implementation by correcting the violations. 

� 6: correct: see description above. 

4.1.3 Compliance Checking Process Part 

Figure 39 depicts the compliance checking process part, which is fully 
automated. The compliance checking has two distinct entry points: one 
triggered by architecting and the other one triggered by coding. While 
the entry point used by architecting is a singleton (i.e., the architecture is 
managed in a central place), the entry point used by the developers can 
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activate many compliance checking parts concurrently and execute them 
in parallel. 
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Figure 39 Live Compliance Checking: Compliance Checking Process Part 

We now describe the compliance checking process part by its entry 
points. The entry point used by architects is the counterpart of the 
activity “publish Architecture” (process part “architecting”, activities 5, 
see Section 4.1.1). Figure 39 depicts the activities on the right side: 

� A.1: receive Published Architecture: see description above. 

� A.2: update Structural Model: The structural model is updated 
based on the information published by the architect. The previous 
version of the model is replaced with the one published newly. At 
any update, the architect may have modified or refined the structural 
decomposition with which the developers should comply. As a side-
effect, dependencies that were compliant before may change into 
violations when an update of the architecture is published and vice 
versa. This advantage propagates decisions on the structure directly 
to all developers concerned by the revised decision.  

� A.3: update Mapping: In addition to the structural model, the 
architect may also update the mapping. Again, the previous version 
of the mapping is replaced with the one published newly and 
decisions are propagated immediately, too. 
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� A.4: publish Compliance Status: At any time, the architect can 
request the compliance status. This request is triggered on demand 
and activates the compliance checker to publish the current status, 
which comprises the overall result of compliance checking based on 
the latest state of the source code model (i.e., the aggregate of all 
deltas). The published compliance status is then the basis for in-depth 
analyses or review by the architect. 

The entry point used by the developers is the counterpart of the activity 
“send Delta” (process part “coding”, activities 3, see Section 4.1.2). 
Figure 39 depicts the activities on the left side: 

� D.1: receive Delta: The compliance checker receives the delta sent 
by the developer. For every delta sent, a new cycle of the compliance 
checker handles the processing of the delta. Consequently, many 
deltas can be processed concurrently and compliance checking 
support is provided for many different developers. 

� D.2: extract Delta Facts: The delta (i.e., the compilation unit 
comprising changes) undergoes fact extraction, which mines the 
delta for relevant information.  

� D.3: update Source Code Model: The compliance checker updates 
the source code so that it comprises the latest source code state. The 
history of the model is kept, allowing browsing each state in a flip-
book manner. 

� D.4: distill Delta Violations: To prepare the response, the 
compliance distills the violations caused by the delta received by the 
developers. The set of delta violations is then sent back to the 
originator. The respective developer can now react to the live 
feedback and correct the source code in order to achieve architecture 
compliance. 

� D.5: send Live Feedback: see description above.  

The primary and most crucial activity of live compliance checking is – of 
course – to check the compliance. It is central to both entry points and 
most important for the process (see Figure 39). It computes the actual 
results based on the Reflexion model technique. The activity comprises 
six steps: 

� C.1: lift Delta: The delta model as part of the source code model is 
lifted using the mapping; as a result, both models are on the same 
abstraction level as the structural model. 

� C.2: compare Models: Model comparison updates the compliance 
status based on the structural model, the source code model, and the 
delta model. With the models of specified structure and the 
implemented system at hand, the comparison can be performed. The 
compliance status is updated in terms of added, modified, or deleted 
model elements, while unchanged elements retain their status. 
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� C.3: compute Convergences: The compliance checker computes 
convergences: dependencies implemented as intended by the 
architect. 

� C.4: compute Divergences: The compliance checker computes 
divergences: unwanted dependencies comprised by the delta caused 
by developers. 

� C.5: compute Absences: The compliance checker computes 
absences: dependencies intended but not (yet) implemented. 

4.1.4 Summary 

Executing all three process parts concurrently enables the overall process 
for live compliance checking. The process is integrated into the regular 
workflow of both roles, extended by new activities that are specialties of 
the new approach. The extensions for the architects enable them to 
track compliance from day one of the development, during 
implementation, and throughout the evolution. Modifications to the 
architecture are propagated to compliance checking and hence, the 
developers receive information on changing plans for the structure. They 
always implement against the latest published state of the architecture.  

The extensions for developers are non-intrusive, automated, and 
integrated with the development environment. The source code editor 
displays the violations within the current modification scope (i.e., the 
deltas). The feedback is received live, while they are still editing the same 
or nearby statements. Developers “just” have to perceive the violations: 
Displaying them in the editor raises the developers’ awareness without 
distracting them from their current task. And once they are aware of the 
violations, the developers can remove them promptly. In other words, 
live compliance checking sustains the intended structure during 
implementation and ensures traceability between architecture and 
source code. 

4.2 High Execution Frequency 

The high execution frequency with constant live feedback turns 
compliance checking into a quasi-constructive quality engineering 
technique. It acts like a just-in-time architectural compiler for structural 
flaws in the implementation. The continuous application educates 
developers and trains them over time.  

Over time, we assume that live compliance checking constitute two 
effects: a learning effect over time resulting in less violations created in 
the first place on the one hand, and a prompt removal effect for any 
violations actually created on the other hand. The following two sections 
investigate both effects – the live compliance checking characteristics. 
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4.2.1 Learning Effect   

The learning effect (LCCC1) acknowledges the feedback on compliance. 
The approach of providing live feedback promises to educate and train 
developers about the decisions the architect has made regarding the 
structural decomposition of the software system. The learning curve 
effect [Wright 1936] states that the more times a task has been 
performed, the less time will be required on each subsequent iteration. 
Repetition of the same operation results in less time or effort expended 
on that operation.  

Because it is likely that the developers mainly work in one part of the 
system (i.e., they specialize in one subsystem or component according to 
the principles of separation of concerns or divide and conquer), they will 
get experienced on the architectural constraints of those parts they are 
mainly working on. We believe that the same principle of this learning 
effect is applicable to structural violations. Each time a structural 
violation is detected, the developers are notified and gain more 
experience on the architecture. The developers receive the information 
about the structural decomposition already while they are in the process 
of writing code. They can immediately react to the feedback in order to 
make the solution of their current task compliant to the architecture.  

Furthermore, the architect has the chance to identify recurring patterns 
of such violations. Analyzing these patterns enables an experience gain 
for both the architect and the developers. The architects can improve the 
architecture documentation with respect to the parts needing more 
explanation or improvements. Because of the experience gain, the 
likelihood that they will introduce the same or a similar structural 
violation again decreases over time.  

In addition, the continuous monitoring of compliance makes it an explicit 
organizational goal. By giving regular feedback, the developers learn that 
it is important to be compliant to the architecture. This explicitness 
creates a peer pressure within the development organization, which 
further promotes the learning effect. When we imagine the live 
compliance checking as an architectural compiler, it is likely that the 
number of structural violations will be close to zero in the long run, 
especially when compliance has been stated as an explicit organizational 
goal by management. 

Hence, we claim that there will be a learning effect in being architecture-
compliant. 
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4.2.2 Prompt Removal Effect   

The prompt removal effect (LCCC2) acknowledges the fact that the later 
in the project defects are found, the more effort is required to remove 
these defects. Structural violations are another type of defects that have 
no direct visibility to the end-user of the software system. They rather 
have an indirect impact on the software development process by making 
the architecture unreliable as a communication and steering vehicle and 
causing projects to not meet their goals with respect to time, effort, and 
quality. The removal of structural violations can cause an overhead effort 
when detected late in the project.  

In contrast, live compliance checking detects structural defects with fast 
response time. This fast detection allows reducing the mean time for 
identification to seconds instead of several weeks or months (depending 
on the frequency in which analytical compliance checking is applied). 
According to the general law of software engineering (see [Boehm 
1981], [Endres 2003]and [Pressman 2004]), the later risks are identified 
and solved, the higher the total effort for fixing them (it is commonly 
agreed that the effort increases; however, the factor by which the effort 
is increased differs and depends on the detection time). The same holds 
for structural violations: The refactoring effort for repairing the structure 
increases the later the violations are detected. However, if they just have 
been introduced, they can be removed easily and the required solution 
can be achieved differently. If they reside in the implementation for a 
long time the risk is that an integral part is being built wrong. Thus, the 
refactoring of this part becomes complicated and effort-intensive. When 
such structural violations are removed, significant effort must be spent 
on understanding the source code causing the violations.  

An adequate solution removes the violations without creating new ones. 
Because of this, structural repairs are a non-trivial task. The developers 
have to understand the source code, the context, and the architecture 
decomposition. A study by [Fjelstad 1983] revealed that up to 50% of 
the effort for maintenance tasks is required just to re-understand the 
software to be changed. The live feedback providing the compliance 
checking results instantly removes the additional effort for re-
understanding the context. The minds of the developer are focused on 
the problems because they are already working on solving them. The 
quick identification of violations reduces the overall time for structural 
repairs and the assumption that prompt removal requires less effort has 
been confirmed by various researchers in the literature.  

Because this is acting like an architectural compiler, it is likely that the 
effort for repairing the structure virtually disappears because it is part of 
the task to be carried out anyway, whereby making the solution 
compliant is only a minor factor in creating the solution. 
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Hence, we claim the effort reduction for structural repairs because live 
compliance checking integrates these directly into the daily work and 
problem-solving activities (i.e., writing source code) of the developers.  

4.2.3 Summary 

Combining the above lines of argument indicate that we can accept that 
live compliance checking achieves the envisioned learning effect and the 
prompt removal effect.  

We claim live compliance checking leads to fewer instances of structural 
violations, and at the same, that the effort required for their removal is 
reduced. The live compliance checking characteristics form the 
foundations for the theoretical model on effort savings. 

4.3 Theoretical Model on Effort Savings 

In order to be useful but simple, the theoretical model for achieving 
architecture compliance has to make certain assumptions. Section 4.3.1 
presents these assumptions and explains in detail why they are made 
and how they might affect the theoretical model. Then a theoretical 
model is introduced, which captures the overhead effort caused by the 
removal structural violations. Finally, Section 4.3.3 discusses the overall 
impact of an implementation that is compliant to the architecture 
specified on the subsequent development and evolution. The validation 
in Chapter 6 analyzes the validity of the theoretical model by conducting 
a case study and experiments. The aim of the validation is to give 
evidence on the validity of the model and to confirm the assumptions 
made. 

4.3.1 Assumptions  

In order to be applicable, the theoretical model has to be simple and 
easy. Therefore, we make several assumptions that have to be 
considered when applying the model: 

� The architecture is well-defined and correct. It overrides the 
implementation. If a structural violation is detected, we assume that 
the structural violation is caused by the source code (and it is not an 
architectural flaw).  

� The architecture does not change. While developers are in the 
process of repairing, the architecture remains untouched, and no 
modifications are caused due to changes in the architecture.  

� All structural violations are to be repaired in the implementations. In 
practice, there might be a few exceptions due to technical constraints 
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or a remaining set of violations may be ignored due to time and 
effort restrictions. 

� All structural violations are distinct instances. There is no recurring 
pattern. It is not possible to implement one complex correction fixing 
many violations at the same time. 

� Structural repairs do not re-introduce other violations as a side-effect. 
Although this might happen in practice (i.e., removing one violation 
but creating another one as a result of the correction), we assume 
that each developer will find an appropriate solution for structural 
repairs. 

� Structural repairs are an atomic task. We assume that the atomic task 
of removing one violation consumes, on average, the same amount 
of effort independent of the developer carrying out the task. 

� Structural repairs are conducted sequentially. One violation after the 
other is removed without interference or distraction by other tasks.  

� Structural repairs do not require any communication between 
architect and developer. The tasks for removing the violations are 
clear and unambiguous.  

4.3.2 Effort Savings 

Compliance promises that the architecture is a reliable instrument for 
decision-making and communication. Achieving architecture compliance 
is an investment into the future. The effort for achieving compliance is 
the effort for structural repair (i.e., the effort spent to correct all 
violations): 

Definition 32 Compliance Achievement Effort 

The compliance achievement effort is the total investment to repair 
all structural violations in the implementation of a software system 
(i.e., to remove them from the source code).  

x*nE tAchievemen Compliance �  

where ECompliance_Achievement denotes the compliance achievement effort, 
n stands for the number of violations, and x for the effort to repair 
one structural violation. 

Based on the lines of argumentation on the consequences of high 
execution frequency (see Section 4.2), we can assume the impacts listed 
in Table 12 on the total number of violations n and the time x required 
to repair one single violation. Table 12 summarizes the effects in the 
description and lists the impacts for weak, medium, and strong impact. 

We derive three scenarios for the learning impact. Compared to regular 
development without any compliance checking support at all, a weak 
learning effect halves the number of violations, with a strong learning 



Live Compliance Checking Approach 

 99 

effect resulting in the square root of the total number of violations. For 
the prompt removal effect, we base the weak effect on the data by 
[Fjelstad 1983], which quantifies the effort for re-understanding at 50% 
(i.e., not required due to live feedback). The zero value for the strong 
prompt removal effect assumes that removing violations is a (close to) 
zero factor in creating the solution at all. 

Effect Description Impact 
Learning 
Effect 

Due to live feedback received constantly 
and continuously developers are educated 
and trained. Developers learn about the 
intended architecture over time. The impact 
of the learning effect is a decrease in the 
total number of violations.  
We claim on the learning effect according 
to our discussion in Section 4.2.1.  

weak effect: 
n/2 

medium effect: 
n/3 

strong effect: 
√n 

Prompt 
Removal 
Effect 

Due to the live feedback received 
developers become immediately aware of 
violations.. The developers can repair the 
structure promptly as part of their daily 
work.  
We claim on the prompt removal effect 
according to our discussion in Section 4.2.2 

weak effect: 
x/2 

medium effect: 
x/4 

strong effect: 
x*0 

Table 12 Impact Factors on Compliance Achievement Effort 

Figure 40 depicts the impact for both effects graphically, while Figure 41 
shows the overall graphs for a combination of the two effects, both 
times assuming weak effects.  

The theoretical model shows in Figure 41 the substantial effort savings, 
which – hypothetically – can be achieved due to live compliance 
checking.  Even if we only assume weak effects for learning and prompt 
removal, we can see that the compliance achievement effort is reduced 
to (n*x)/4 compared to analytical compliance checking, which does not 
even take into account the overhead effort for workshops, meetings, 
and communication required to propagate the compliance checking 
results in the analytical application case. Assuming the effects to be 
medium active, we would have a compliance achievement effort of 
(n*x)/12, which reduces the effect even more. And if developers 
automatically react to feedback on violations and repair them as part of 
their daily work –with virtually no overhead – we can assume strong 
learning and prompt removal effects. The compliance achievement effort 
in this case would be (√n*x*0)=0, hence the overall effort for making 
implementations compliant is close to or even equal to zero. This is just a 
barely discernible factor of the effort spent for regular development. 

Of course, we speculated as to the quantification of the learning effect 
and the prompt removal effect. However, as we have discussed above, 
there are reasonable arguments for these numbers. In addition to the 
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concrete savings in terms of compliance achievement effort, we expect 
side effects on the evolution due to increased compliance. 
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Figure 40 Effort Saving Learning Effect (left) and Prompt Removal Effect (right) 
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Figure 41 Effort Saving Combined Effects 

4.3.3 Compliance Impact on Evolution 

Live compliance checking reduces the overhead effort as described. At 
the same time, of course, it leads to higher architecture compliance of 
the software implementation, which sustains the investments made for 
architecting. Table 13 characterizes these side-effects and their impact 
on the architecture-centric evolution. The architecture is the conceptual 
instrument for dealing with the inherent complexity that software 
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systems have. By providing critical abstractions, the architecture makes it 
possible to manage the development activities. If implementation is 
compliant to the architecture, the envisioned benefits of well-defined 
architectures can be achieved (although there is no guarantee). In 
contrast, the lack of compliance almost guarantees that the benefits 
promised by high-quality architectures will not be obtained. 

Table 13 discusses the side-effects of compliance on the key 
responsibilities of software architectures. These responsibilities have been 
compiled from key publications in the field of software architecture (e.g., 
see [Bosch 2000], [Clements 2003], [Hofmeister 2000], [Jazayeri 2000], 
[Perry 1992], [Rozanski 2005], [Shaw 1996], or [Tyree 2005]).  

Architecture  
Responsibility 

Side-effects of Compliance on Evolutions 

The architecture 
serves as a 
mediator for 
stakeholder 
communication.  

Architecting enables stakeholders to reason about the 
software system. However, this reasoning becomes 
(partially) void when the implementation lacks 
compliance. It is unclear whether or not the abstraction 
imposed by the architecture is still valid, which jeopardizes 
the overall success of the development project.  

The architecture 
serves as vehicle 
for efficient 
project planning, 
management, 
and controlling. 

The decomposition provided by the architecture allows 
defining, handling, distributing, and progress tracking of 
work assignment for developers. Lacking compliance, the 
task assignments are made in vain. Developers write 
source code in a disorganized manner, which potentially 
worsens the lack of compliance. Furthermore, controlling 
progress becomes difficult. 

The architecture 
serves as vehicle 
for the efficient 
maintenance of 
software systems. 

The [IEEE-Std-610.12 1990] defines maintenance as the 
process of modifying a software system after delivery to 
correct faults, improve its attributes, or to adapt it to a 
changed environment. To perform maintenance tasks 
efficiently (and typically these tasks face tight time 
pressure), the architecture is required as a map of the 
system. To locate the points of modification, to learn 
about risks and understand potential side-effects, and to 
plan the change, the architecture is crucial. When lacking 
compliance, maintenance becomes risky and consumes 
more effort than planned to first reconstruct the map (i.e., 
the architecture). 

The architecture 
serves as an 
instrument for the 
successful and 
controlled 
evolution of 
software systems. 

Software systems continuously change to correspond to 
the frequent and increasing requests for new features, 
new functionality, or customer-specific customizations. 
The architecture is the means to plan for future 
modifications, prepare envisioned extensions, and define 
placeholders on how to integrate new components or 
variants. The consequence of implementations lacking 
compliance is that the plans are not reliable. The 
architecture no longer serves as a means to cope with the 
inherent complexity of the system. 

Table 13 Compliance Side-Effect on Architecture-Centric Evolution  
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To conclude, the architecture is responsible for achieving the overall 
success in software development. Consequently, the success of 
architecting stands or falls with the compliance of the resulting 
implementation. 
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5 Software Architecture Visualization and 
Evaluation with Live Feedback 

To be applicable, to justify the name “live”, and to enable direct and fast 
feedback to developers, compliance checking needs to be tool-
supported to automate the necessary activities. The tool realizes the 
requirements stated for live compliance checking and supports the 
process introduced in the previous section.  

The tool is called SAVE LiFe – Software Architecture Visualization and 
Evaluation with Life Feedback (see Section 5.1). It consists of three parts 
– the fat client for architects, the central server, and the thin client for 
developers. This deployment into client-server-client reflects the roles 
defined in the process for live compliance checking (see Section 4) and is 
based on the meta-models defined for compliance (see Section 2). The 
key functionality of the tool is, of course, the compliance check based on 
Reflexion models (see Section 3). 

Underlying the logic functionality of checking compliance is a basic 
communication platform that enables logical, bi-directional channels for 
data exchange between the server and the clients. On the one hand the 
communication platform establishes one channel for transferring models 
back and forth, which allows publishing and receiving large amounts of 
data. We call this channel model exchanger. On the other hand, a 
second channel is used for sending and receiving small data packages. 
This channel is called delta exchanger. While the first channel consumes 
network bandwidth and considerable time for the data transfer, the 
latter enables fast response and live feedback. Correspondingly, the 
architects publish the architecture and receive the compliance status 
using the large channel, while developers send the deltas and receive live 
feedback on compliance using the fast communication channel. 

The communication platform is extensible towards different kinds of 
analysis, where live compliance checking is the first instance that uses its 
features. We discuss in Section 5.3 how SAVE LiFe addresses the 
essential requirements on live compliance checking listed in Table 4 (see 
Section 1.3). In addition, we envision extending the platform towards 
other reverse engineering techniques and their quasi-constructive 
application [Knodel 2008a], which would enrich the analysis capabilities 
of SAVE LiFe. 

Technically, all three building blocks of SAVE LiFe (see Section 5.2) are 
implemented in Java and built on top of the Eclipse platform. Eclipse is 



Software Architecture Visualization and Evaluation with Live Feedback 

 104 

an open-source platform that provides an Integrated Development 
Environment (IDE) for developers. The platform is generic but highly 
extensible, which is exactly what SAVE LiFe does: it specializes the Eclipse 
platform for its own purpose – live compliance checking with clients and 
server constituting three different, individually deployable specializations.  

SAVE LiFe extends its ancestor SAVE – the snapshot analysis tool – by the 
live feedback communication platform, the client-server architecture, the 
delta analysis, and the ability to execute analytical analysis techniques in 
a quasi-constructive manner. SAVE is a snapshot analysis tool for 
analyzing and optimizing the architecture of implemented software 
systems. It extracts information from system artifacts, performs an 
arbitrary kind of computation, visualizes the results, or generates system 
artifacts. SAVE is a joint development of Fraunhofer IESE (Institute for 
Experimental Software Engineering IESE in Kaiserslautern, Germany) and 
the Fraunhofer Center Maryland (Center for Experimental Software 
Engineering in College Park, Maryland, USA). The work on SAVE as an 
architecture analysis tool – with live compliance checking as the driving 
vision in mind – started in 2004 [Miodonski 2004]. The initial idea of live 
compliance checking evolved towards SAVE LiFe – a scalable and mature 
research prototype providing a live analysis platform on a central server 
supporting developers and architect as clients. 

5.1 Solution Overview 

SAVE LiFe consists of three distinct, logical building blocks, which are 
depicted in Figure 42. The architecture manager is responsible for 
realizing the process part as defined for the architect (see Section 4.1.1), 
and the development monitor for the coding process part (see Section 
4.1.2). Both communicate with the compliance checker (see Section 
4.1.3), which realizes the remaining process part. Accordingly, the roles 
are represented by the actors architect and developer. 

The next subsections introduce the conceptual view and its instantiations 
for the different building blocks. We then continue with a discussion of 
the distributed communication platform and finally show the 
development environment integration of SAVE LiFe. 
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SAVE LiFe – Software Architecture Visualization and Evaluation with Life Feedback
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Figure 42 SAVE LiFe: Conceptual Building Blocks 

5.1.1 Conceptual view 

The conceptual view is the most abstract architectural view used for 
capturing the application domain by mapping the functionality of the 
system to conceptual components and showing data stores, external 
interfaces, and hardware devices. It also depicts the relationships among 
the conceptual elements. 

Figure 43 depicts the conceptual view on the SAVE product line 
architecture, which is instantiated (partially or completely) for every SAVE 
analyzer, while Table 14 and Table 15 describe the conceptual 
components and data stores. 
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Figure 43 SAVE LiFe and SAVE: Conceptual View 
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The conceptual view separates the abstract, logical concepts realized by 
SAVE LiFe. In fact, this conceptual view is also shared by SAVE, the 
ancestor for analyzing system snapshots. 

The actor user interacts with SAVE LiFe using the visualization or the user 
interfaces of conceptual components. Clients (remotely or locally) directly 
access the logic of the conceptual components. The conceptual 
components are independent from each other. This characteristic allows 
having many different extractors, analyzers, or generators in parallel 
within one SAVE LiFe or SAVE configuration. Integral for the different 
interactions is the repository management, which enables coupling on 
the data level (i.e., one analyzer can operate on data provided by one 
extractor). Table 14 details the description of the conceptual 
components, while Table 15 explains the roles of the data stores. 

Conceptual 
Component 

Responsibility 

Visualization The conceptual component Visualization is responsible for the 
visualization of information stored in the SAVE Repository. The 
information visualized in models comprising entities and 
relations is produced by the conceptual components Extractor 
or Analyzer. The visualized information may be displayed in 
graphical, charting, tabular, or textual form. The actor User is 
able to interactively navigate, browse, filter, and manipulate 
the information presented in order to gain knowledge from 
the information.  

Extractor The conceptual component Extractor analyzes existing system 
artifacts by applying fact extraction functionality (e.g., parsing, 
pattern matching, filtering, or data importing) to gather 
information about the System Artifacts processed. 

Generator The conceptual component Generation is responsible for 
producing System Artifacts that are generated based on the 
information stored in the SAVE Repository. System Artifacts 
can be created newly or existing ones can be modified. 

Analyzer The conceptual component Analyzer provides analysis 
functionality for abstracting, aggregating, comparing, 
transforming, or enriching a SAVE model.  
All computation functionality processes information from at 
least one existing model in the SAVE Repository and either 
modifies it, or creates a new model(s), which is (are) stored in 
the SAVE Repository, too. The information extracted by the 
conceptual component Extractor is typically processed by the 
Analyzer to mine it for relevant and crucial information in the 
SAVE Repository. 
Analyzers are either initiated by the actor User or executed 
(semi-) automatically by an external Client. If necessary, the 
actor User or the actor Client provides input or decides about 
the parameters and configuration for one specific execution of 
an Analyzer. 
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Conceptual 
Component 

Responsibility 

Repository 
Management 

The conceptual component Repository Management is 
responsible for creating, accessing, managing, loading and 
storing the SAVE Repository, the internal data model of SAVE. 
All accesses to a SAVE Repository have to use Repository 
Management; no direct access is allowed. 

Table 14 SAVE LiFe: Conceptual Components  

Data  
Stores 

Responsibilities 

System 
Artifacts 

The data store System Artifacts comprises all artifacts of the 
system. The most commonly analyzed artifact is the source 
code; however Extractors are not limited to it. System Artifacts 
comprise data from configuration management systems (e.g., 
CVS, SVN), instrumented run-time traces, intermediate 
representations (e.g., GXL, RSF, CSV), CASE tools (e.g., 
Rational Modeler), defect databases (e.g., BugZilla, JIRA), third-
party metrics tools (e.g., Understand, JHawk), build scripts 
(e.g., Makefiles, Antfiles), and other available artifacts. 

SAVE 
Repository 

The SAVE Repository is the central data store of SAVE. By its 
nature, it stores all data produced by one of the Extractors, or 
Analyzers, and is the basis for the output produced by the 
Generators. 

Table 15 SAVE LiFe: Data Stores  

5.1.2 Client-Server-Client Deployment 

The three building blocks – architect manager, compliance checker as 
application on top of the extensible analysis and communication 
platform, and development monitor – are depicted in Figure 44, Figure 
45, and Figure 46, respectively. 
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SAVE LiFe: Fat Client: Architecture Manager
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Figure 44 SAVE LiFe: Fat Client: Architecture Manager  

SAVE LiFe: Server: Compliance Checker
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Figure 45 SAVE LiFe: Server: Compliance Checker (Extensible Analysis and Communication Platform) 
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SAVE LiFe: Thin Client: Development Monitor
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Figure 46 SAVE LiFe: Thin Client: Development monitor 

By preserving the layout and positioning for the same elements 
throughout the figures (i.e., Figure 44 to Figure 46), we can illustrate the 
differences between thin client, fat client, and server.  

The fat client instantiates the conceptual view completely. We 
highlighted the expanded repository management, which contains the 
model exchanger. The model exchanger is responsible for publishing the 
architecture and receiving the latest compliance status. The compliance 
status allows browsing, navigating, and delving into details. The fat 
client is very similar to the stand-alone version of SAVE. It allows 
analyzing one snapshot of the system, which, in this case, is always the 
latest state of the development. Using the history feature of SAVE, the 
architect can navigate back in time using a flip-book kind of browsing, 
which visualizes the changes that have occurred at distinct points in 
time.   

The server realizes the basic communication and analysis platform of 
SAVE LiFe. It communicates with two clients, the architect manager and 
the development monitor. The server is running independent of any 
external actor. It is triggered by incoming data on one of the two 
communication channels and responds in the intended way by either 
publishing the compliance status or sending live feedback on 
compliance. All three figures show the relevant ends of the 
communication channels.  

The thin client comprises only visualization for displaying the live 
feedback and the extractor for determining the local modification scope, 



Software Architecture Visualization and Evaluation with Live Feedback 

 110 

which is then sent to the compliance checker. The development 
environment triggers the functionality automatically when predefined 
events happen (e.g., saving a compilation unit). Typically, there are many 
developers using many thin clients communicating with one central 
server.  

5.1.3 Distributed Communication Platform 

The mechanism for enabling communication between the server and the 
two clients is realized using Java remote method invocations (see [RMI 
2009]). RMI as a multi-threaded technology allows writing distributed 
applications, which allows the server to process client requests in 
parallel. 

RMI establishes a logical communication channel between clients and 
servers. The data structures distributed objects can be created and called 
from instances, running on different Java Virtual Machines (JVM), as if 
they were local. It is irrelevant whether they are located on one machine 
or on different machines connected via a network. The communication 
interfaces are defined in interfaces shared by clients and server. The 
methods of the server interface are implemented by classes in the server, 
the ones of the client by classes located in the client plug-in.  

Clients can connect to the server by registering themselves to the server.  
The server listens to a defined Internet protocol (IP) address on a distinct 
port. The clients can initiate communication by connecting to the 
specified IP address and port. Clients identify themselves by their own IP 
address, a callback port, and a name representing the current name of 
the client. 

The basic communication platform of SAVE LiFe establishes two logical, 
bi-directional channels for data exchange between the server and the 
clients. The remote data exchange allows either to transfer large amount 
of data on a communication channel called model exchanger or smaller 
bits of information using the communication channel called delta 
exchanger. 

5.1.4 Development Environment Integration 

We decided to integrate SAVE LiFe into the Eclipse IDE (integrated 
development environment) [Eclipse 2009]. Figure 47 sketches this 
integration and lists the third-party plug-ins that are reused. SAVE LiFe 
extends the regular Fraunhofer SAVE tool. The Eclipse Modeling 
Framework (see [EMF 2009]), the Graphical Editing Framework (see [GEF 
2009]), and the Graphical Modeling Framework (see [GMF 2009]) are 
reused for data model management and visualization purposes. The 
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Fraunhofer PuLSE Common Architecture acts as an abstraction layer on 
top of these plug-ins. 
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Figure 47 SAVE LiFe: Eclipse Integration and Reused Plug-ins 

5.2 SAVE LiFe Building Blocks 

The building blocks of SAVE LiFe are presented in this section. Features 
are distributed to either the server or one of the respective clients or to a 
combination of both. We implemented the distribution of features as 
presented here (however, it is possible to imagine selecting a different 
distribution strategy). 

5.2.1 Fat Client: Architecture Manager 

The architecture manager is the tool for the architect to interact with the 
compliance checker. It is realized as a fat client and comprises a lot of 
functionality. 

5.2.1.1 Feature: Formalize Model and Define Mapping 

The architects use the fat client of SAVE LiFe. The responsibilities of the 
architect are derived from the steps of the Reflexion model technique 
(see Section 3): 

� Structural Model Definition: The architect specifies the structural 
model against which the implementations of the developers are 
compared. There is exactly one structural model for which the 
compliance checking is executed. 
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� Source Code System Selection: The architect defines the source 
code system to be monitored with SAVE LiFe and specifies the 
respective locations in the configuration management system. 

� Define Mapping Instructions: The structural model and the source 
code model require mapping instructions that relate the architectural 
elements to the source code elements. These mapping instruction are 
based on the structural model and the source code model. In case 
there is no model yet, the mapping remains void. The mapping can 
be updated and changed at any time.  

� Developer Assignment: The architect specifies the developers who 
work on the realization of the software system. 

5.2.1.2 Feature: Publish Architecture 

Figure 48 depicts the data flow in the definition of the respective models 
in a pipe-and-filter notation. The extraction of the structural model is 
done either manually or automatically, depending on the architecture 
documentation. The computation step prepares the mapping of the 
structural model to the source code model. The repository management 
then aggregates the models together with the user management and 
stores all information in the SAVE repository. Then the architect manually 
initiates the transfer of the configured SAVE repository from the client to 
the server. The transfer sends the repository data via the repository 
management interface as described above. This interface is bi-
directional, which means the architect can get the latest version from the 
server at any time (or other architects can modify the SAVE repository 
managed by the server to their fat clients and refine the structural 
model, the mapping, the source code model, or the users’ information). 
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Figure 48 Architect Manager: Pipe-and-Filter View for Model Definition 

5.2.1.3 Feature: Analyze Snapshot 

The Eclipse platform allows defining visual containers that combine a set 
of views and editors within a predefined window – an Eclipse 
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perspective. SAVE and its sibling – the architecture manager – share the 
same perspective in Eclipse, which means that the SAVE-related views 
are arranged in a predefined way. Figure 49 presents a screenshot of the 
SAVE perspective in Eclipse and highlights the different building blocks 
(each block is denoted with a capital letter in Figure 49): 

� A – SAVE Model Browser:  organizes the data of SAVE models in 
projects and offers a hierarchical representation. All related artifacts 
are presented (projects, models, views, etc.) and can be selected as 
the target of actions in a context menu. 

� B – Combined Visualization / Editor: The main part of the 
perspective is the integrated visualization and editor. It has an engine 
for the visualization of software architectures offering a large number 
of graphical elements. One main feature is its configurability (i.e., 
enabling and/or disabling certain graphical elements), which allows 
users to adapt the visualization of results to their needs. 

� C – Legend: This view explains the meaning of the graphical 
elements that are available in the current configuration. Due to the 
configurability, it is important to denote the current meaning of the 
graphical elements. 

� D – Outline: A bird view on the whole model currently displayed in 
the visualization / editor. While the visualization / editor allows 
zooming and then only displays a small excerpt, the outline always 
shows the whole model and additionally highlights the excerpt 
currently in the editor visible with a transparent rectangle. 

� E – Filter Management, Decoration Management: These views 
can be used to filter the information displayed in the visualization. 
Components and relations can be filtered according to several 
properties (e.g., their type). Additionally, the decorations that are 
shown to represent certain properties of components or relations can 
be filtered out in order to simplify the visualization and reduce the 
information to the amount needed in a specific situation.  

� F – Properties: For the component or relation currently selected in 
the visualization, the external properties are displayed and can be 
modified (e.g., name). 

� G – Detail View: For the component or relation currently selected in 
the visualization, additional information can be provided (e.g., about 
the internal hierarchical structure). 

� Hidden – Information View: For any component or relation 
currently selected in area B, additional information on aggregated 
relations or the relation itself is provided (e.g., origin or destination 
code elements). 
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Figure 49 Architect Manager: Screenshot of User Interface 

5.2.2 Server: Compliance Checker (Extensible Analysis and Communication 
Platform) 

The compliance checker is the central server that realizes the extensible 
analysis and communication platform. It interacts with both the architect 
and the developers. 

5.2.2.1 Feature: Start Server 

Figure 50 depicts a screenshot of the console that is part of the 
compliance checker. The console outputs the events triggered for the 
compliance checker (either by the architect or the developers) and 
corresponding status including log messages on the arriving events and 
the reaction by the compliance checker. The console allows starting and 
stopping the server, the only two non-automated tasks. 
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Figure 50 Compliance Checker: Screenshot of SAVE Server Console 

5.2.2.2 Feature: Browse SAVE Repository 

Figure 51 depicts an example of the definition of the SAVE LiFe models. 
The repository defined by the architect monitors the Apache Tomcat 
web server. It comprises a structural model called architecture, a source 
code model called tomcat, and a mapping architecture – tomcat. 
Furthermore, two developers (Dev1 and Dev2) have been specified to be 
monitored by SAVE LiFe and the name of the respective source code 
folder in the configuration management system (in this case Subversion) 
is specified under the Projects node in the tree in Figure 51. Once this 
information has been transferred to the SAVE LiFe server, live compliance 
checking starts automatically and proceeds continuously. 

 

Figure 51 Compliance Checker: Screenshot of SAVE Repository Browser 

5.2.2.3 Compliance Checking 

Compliance checking is executed on the server for every change the 
developer clients made (see Figure 52 for the data flow depicted in a 
pipe-and-filter view). The multi-threaded execution of the compliance 
checking using the structural model defined by the architect, the 
temporary source code models produced by the fact extraction, and the 
mapping provided by the architects. 
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Compliance checking has a limited scope. The computed results are only 
transferred for the elements modified by the developers. The high 
frequency for every change and the limitation in the scope (only the 
delta of the source code has to be parsed) enable fast computation of 
the compliance checking results, which are then presented to the 
developers. 
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Figure 52 Compliance Checker: Pipe-and-Filter View of Compliance Checking 

5.2.3 Thin Client: Development Monitor 

The development monitor is the tool for the developers to interact with 
the compliance checker. It is realized as a thin client and comprises a 
minimal set of functionality, but supports many users in parallel at the 
same time.  

5.2.3.1 Feature: Extract Delta Facts  

The fact extraction in SAVE LiFe is depicted in Figure 53. The process is 
initiated by each modification to the source code made by a client. 
Hence, fact extraction is performed for every change made in the thin 
client; in other words, any changes developers make to their source code 
initiate the fact extraction, which eventually results in the presentation of 
the compliance checking results. 

The SAVE LiFe platform hooks into the build process of the Eclipse 
platform for the respective source code language whenever the source 
code is built. When the platform starts the builder, it iterates over the 
elements in the developer's workspace (i.e., the workspace of the client) 
and checks whether or not they have been modified. 
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Determining whether or not a source code element has been modified is 
dependent on its status extracted from the source code configuration 
management system. The modified files are then transferred to the SAVE 
LiFe server. The SAVE LiFe server then parses the modified source code 
files and creates a temporary source code model. The temporary source 
code model contains the delta to the original source code model (see 
Section 2). The temporary copy of the source code model is based on an 
identical copy of the source code model as stored on the server. This 
server’s source code model is based on the latest commit to the 
configuration management system. The temporary model integrates the 
deltas based on the parsing of the source code elements (i.e., the 
compilation units modified). The source code relationships of the 
modified elements replace the relationships of the pre-existing elements.  

This integration of the modified source code elements allows initiating 
the execution of compliance checking on the temporary model. The 
results of compliance checking take into account the locally modified 
source code elements of each developer. Hence, the developers will 
receive feedback on their local modifications. 
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Figure 53 Development Monitor: Pipe-and-Filter View of Fact Extraction 

5.2.3.2 Feature: Display Results (Live Feedback)  

The presentation of the results to the developers is integrated into the 
development environment (see Figure 54 for two screenshots). On the 
one hand, the results of compliance checking are available in a tabular 
format listing the spots in the source code that cause violations (see 
lower part of Figure 54). On the other hand, the presentation uses 
Eclipse problem markers to indicate source code lines that cause a 
structural violation (see the upper part of Figure 54). The “A” in front of 
the source code statement indicates the structural violation. When the 
mouse is moved over the architecture violation icon, additional 
information about the structural decomposition is displayed (i.e., the 
containing architectural elements of source and target of the violations 
are listed). The usage of problem markers for highlighting structural 
violations enables the Eclipse quick-fix functionality of the editor (e.g., 
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removing the violation with a mouse click, or triggering a move of the 
enclosing source code element refactoring). The visualization of 
compliance checking results notifies the developers about structural 
violations in the source code they are currently editing. The presentation 
of the results is calculated in the background in a non-intrusive way. As 
soon as the results are available, the editor places the overlay icons for 
the problem markers. Furthermore, the problem markers are placed in 
the source code explorer of Eclipse, which allows top-down navigation 
to the elements that cause violations. 

 

Figure 54 Development Monitor: Screenshot Display of Compliance Checking Results 

5.2.4 SAVE 

In addition to live compliance checking, the Fraunhofer SAVE tool 
realizes a set of compliance checking algorithms for structural or 
behavioral views and for implementation variants. It operates on 
implementation snapshots and mines the source code for relevant data 
constituting the resulting source code model. Most relevant fact 
extraction handles software systems implemented in Java (compatibility 
Java 1.6 and earlier version), C/C++, Delphi, J2EE-specific Java extensions 
(including JSP), several intermediate representations, and importers for 
architectural models with XML-based file format. For detailed 
information on SAVE, please refer to [Knodel 2009a]. 
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5.3 Realization of Live Compliance Checking Requirements 

This section traces the principles of live compliance checking (see Section 
1.3) and the essential requirements on the realization (see Table 4, as 
well Section 1.3) to the solutions provided by SAVE LiFe. 

Requirement Solution 
Live 
Feedback 

The development monitor (SAVE LiFe thin client) receives 
feedback from the server. The feedback is live because fact 
extraction, lifting, and compliance checking are limited to the 
local scope (i.e., the deltas) only.  

Ease of Use The architecture violations are visualized with a special icon 
using Eclipse problem markers. The violation marker is 
annotated with context information on the violation. 
Perceiving the violation and interpreting it is a simple, trivial 
task. However, resolving the violation still might be 
complicated. 

High 
Execution 
Frequency 

The constant and continuous sending of all deltas by each 
developer results in high execution frequency. The central 
server computes the compliance checking results and enables 
sending live feedback to the developers.  

Delta 
Analysis 

The development monitor sends deltas and receives live 
feedback on their compliance. The feedback is always directed 
at the originator.  

Distributed 
Team 
Support 

The client-server-client architecture allows scaling for arbitrary 
team sizes. The communication channels operate logically 
over the network, so the encapsulated technical protocols 
managing the connections between clients and server can be 
adapted on demand. 

Smooth 
Integration 
into 
Environment 

SAVE LiFe is fully integrated into the Eclipse IDE. It takes 
advantage of other third-party plug-ins and applies several 
Eclipse best practices (e.g., the problem marker concept for 
displaying violations). The display of compliance results allows 
developers to perceive the feedback non-intrusively without 
distracting them from their current implementation task. 

Robustness Fact extraction in SAVE LiFe allows parsing of non-compiling 
and incomplete source code, with the parser mining relevant 
data to the largest extent possible but ignoring non-compiling 
statements.  

Commit 
Control 

SAVE LiFe allows committing source code still comprising 
violations. We opted for loose control in order to have the 
possibility of committing explicit violating exceptions to the 
configuration management. 

Separation 
of Roles: 
Architect 
and 
Developer 

The two roles are clearly separated by the existence of two 
distinct clients: the architecture manager for architects and 
the development monitor for developers. Both communicate 
with the central server. 

Table 16 Realization of Essential Requirements on Live Compliance Checking 



Software Architecture Visualization and Evaluation with Live Feedback 

 120 

5.4 Technical Solution 

The technical solution comprises two clients – architecture manager and 
development monitor – and one central server – the compliance checker. 
The client-server-client communication transfers data from clients to 
server and vice versa. To communicate SAVE LiFe requires distributed 
data structures, which can be transferred from clients to server and vice 
versa. In particular, SAVE LiFe uses the following distinct data models: 

� Structural Model: The structural model captures the intended 
decomposition specified by the architect (see Section 2.1). 

� Source Code Model: The source code model captures the static 
structure of a system at development time (see Section 2.2). 

� Mapping Model:  The mapping model (see Section 2.3) defines the 
relation of architectural elements to source code elements and vice 
versa.  

� Delta Source Code Model: The delta source code model is an 
instance of the source code model, which is created for the locally 
modified delta of the developer. Thus, the meta-model of the source 
code (see Section 2.2) also serves as meta-model for the delta model.  

� Compliance Status Model: The compliance status model is an 
annotated structural model, which discloses the architecture 
violations of the system under evaluation. Thus, the meta-model of 
the structural model (see Section 2.1) also serves as meta-model for 
the compliance status. The compliance status annotates 
convergences, divergences, and absences, as computed by the 
compliance function (see Section 2.4). 

� Delta Compliance Status Model: The delta compliance status 
model is an instance of the source code model, which is created for 
the locally modified delta of the developer annotated by the 
compliance status drilled down to the source code model using the 
mapping (see Section 2.3). Thus, the meta-model of the source code 
(see Section 2.1) also serves as meta-model for the delta compliance 
status. The same annotations – convergence, divergence, and 
absence (as defined in Section 2.4) – hold for the delta compliance 
status.  

The data models are used in the mode of operation of the client-server-
client system, in particular the compliance checker. The steps correspond 
to distinct methods described in Appendix D using pseudo code: 

� Algorithms SAVE LiFe Fat Client – Architecture Manager: The 
architect executes the methods publishArchitecture() and 
requestComplianceStatus() on demand. Both methods are accessible 
from the user interface of the architecture manager (see Appendix D, 
Section D.1). 
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� Algorithms SAVE LiFe Thin Client – Development Monitor: The 
development monitor tracks the work of each developer in the 
integrated development environment individually. The development 
monitor hooks into the incremental project builder of the 
development environment (e.g., for Eclipse 
org.eclipse.core.internal.events). The builder is executed whenever 
physical resources (i.e., files or folders) are changed and saved. When 
executed, the method monitorCodeandSendDelta() of the 
development monitor is invoked automatically. Hence, the method is 
executed for any change made to the source code. The server – after 
having computed the results – invokes receiveLiveFeedback() remotely 
for the respective developer to transfer the results, which potentially 
include violations (Appendix D, Section D.2). 

� Algorithms SAVE LiFe Server – Compliance Checker: The 
methods of the compliance checker are remotely triggered by the 
respective client. The architecture manager invokes either 
receivePublishedArchitecture() or publishComplianceStatus(), while 
the development monitor invokes sendDelta(). After compliance 
checking has been executed, the server invokes receiveLiveFeedback() 
in the development monitor so developers become aware of the 
violations – if present – promptly (Appendix D, Section D.3). 

The algorithms as described in Appendix D realize the requirements for 
live compliance checking as stated in Table 16. 

5.5 Summary 

SAVE LiFe realizes the idea of providing developers with live feedback on 
architecture compliance – live compliance checking. It is a client-server-
client tool, which extends the snapshot analysis tool Fraunhofer SAVE.  

On the one hand, SAVE LiFe provides a basic communication platform, 
which allows running arbitrary analyses with live feedback. On the other 
hand, it presents the first implementation of live compliance checking. 
This live compliance checking implements an adapted version of the 
Reflexion model technique. 

SAVE LiFe extends the standalone SAVE tool towards a client-server-
client system consisting of the client architecture manager, the client 
developer monitor, and the server compliance checker. Live compliance 
checking has been enabled as an analyzer using the client-server 
principle to support multiple developers working in distributed teams. 
Architects can update the structural model at any time, which then 
immediately serves as new input to live compliance checking.  

Enabling other compliance checking techniques (e.g., dependency rules, 
which are already a feature of SAVE) based on SAVE LiFe is easily 
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possible due to extension mechanisms of the platform. The principles of 
live feedback would then apply as well, as just the server-side 
computation algorithm of the results would change. The SAVE LiFe 
platform supports distributed development teams with multiple 
developers. It is hence a tool that supports a whole development 
organization in achieving compliance by construction.  
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6 Validation  

Live compliance checking as proposed in the previous sections of this 
thesis aims at the direct goal of reducing structural violations in software 
implementations. This reduction causes two effects: first it leads to 
further effort savings in compliance achievement due to the learning 
effect and the prompt removal effect, and second, it leads to improved 
productivity in the lifecycle of the software system due to reliable 
evolution management based on the architecture, where compliance 
ensures the traceability between the two abstraction levels.  

We validate on the one hand the positive effects of live compliance 
checking (see Section 6.1). An experiment shows that live feedback 
indeed reduces the number of structural violations in the 
implementations. In this case, we compared six teams comprising a total 
of 19 developers realizing components of similar size and spending 
roughly the same average effort per developer. Three teams received 
support by SAVE LiFe, while the other three teams – the control group – 
applied an ordinary development approach (i.e., without SAVE LiFe). 
Both groups developed a software system over a period of 35 days 
encompassing the lifecycle phases implementation, integration, and 
testing. The experiment showed that the group supported by SAVE LiFe 
had 60% less architectural violations throughout than the control group. 
Hence, the experiment provides evidence of the positive effects of SAVE 
LiFe on compliance. The developers of the groups supported by the live 
compliance checking feature spent roughly the same effort in all phases 
as the developers in the control group.  

If we imagine repairing the structural violations contained in the above-
mentioned components, we can see the advantages live compliance 
checking has over its regular analytical sibling: 

� The number of violations is reduced by 60%, which eventually would 
mean 60% less items to repair. This results in a substantially lower 
compliance achievement effort. 

� Further, there is no need for workshops or meetings where the 
architect explains the repair tasks to the developers. All developers 
already know about the violations because they see the violations 
plus context information highlighted in their own source code editor.  

� The compliance feedback is directed and tailored to the originator or 
local expert. Developers responsible for a set of compilation units 
receive only feedback on their local modification scope. There is no 
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need to first dismantle the bulk of violations to identify who would 
be the responsible developer for carrying out the repair. 

On the other hand, we have to show that compliance positively impacts 
the evolution of software systems. Therefore, Section 6.2 revisits the 
industrial case A (see Section 1.2.1), where the development 
organization – after observing a downward trend in the degree of 
compliance – decided to institutionalize compliance checking as a part of 
their quality engineering strategy using Fraunhofer SAVE. The 
organization invested a large amount of effort to restructure the 
implementation in order to achieve compliance. It now applies analytical 
compliance checking at relatively regular intervals. This restructuring 
feedback (although not live) could raise the degree of compliance degree 
by up to 98% over time. 

In a second case, Fraunhofer IESE supported the architectural re-design 
of an industrial system. The re-design imposed a completely different 
structural decomposition and component hierarchy for the software 
implementation. After adapting the source code towards this new 
decomposition, there were initially about 46% violating dependencies. 
Again, we gave regular compliance feedback (and again it was not live) 
using Fraunhofer SAVE and could observe a compliance increase to 95% 
over time. 

We confirmed the sustained compliance in these two cases and could 
also observe an increased productivity. The development organization 
could produce and, evolve more systems at the same time with the same 
effort as before. The industrial stakeholders confirmed in interviews that 
compliance is at least one crucial factor (though not the only one) for 
this productivity gain.  

6.1 Feedback by Live Compliance Checking 

Our research goal was to analyze the effects of live compliance checking 
on the compliance of component implementations. Therefore, we 
conducted an experiment monitoring the implementations of student 
development teams during a practical course lasting five weeks (i.e., 35 
days in total). The experiment aimed at verifying the implementation 
(i.e., the system was built right, as intended) but not at validating the 
architecture (i.e., the right system was built and could achieve all 
requirements). In the experiment, we hence assumed that the 
architecture was well-designed. A detailed description of the experiment 
including the material can be found in [Knodel 2008d] and [Rost 2007]; 
the experiment material is listed in Appendix E. 
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6.1.1 Setup Experiment GSE2007 

6.1.1.1 Hypothesis 

Our main assumption is that live compliance checking allows the prompt 
removal of structural violations. The constant and live feedback raises the 
developers’ awareness regarding the structural violations. It is raised 
immediately, which enables the developers to remove the violations 
promptly. Hence, our hypothesis is: 

� HC0.1 – The null hypothesis is that live compliance checking with direct 
feedback has no impact on the number of violations.  

� HF1 – Live feedback on compliance reduces structural violations in 
implementations. Live compliance checking causes components to 
have less structural violations than if they had been developed in 
regular development. 

6.1.1.2 Operationalization H1 

We measured a-posteriori the number of architectural violations for the 
implemented system for each component development team. We 
classified the teams into being part of either the support group or the 
control group. We quantified the architectural violations by the number 
of divergences in the source code of each component analyzed, applying 
the Reflexion model technique to compute the divergences. 

6.1.1.3 Subjects 

The subjects of the experiment were Bachelor and Master students of 
the Technical University of Kaiserslautern. A total of 19 students 
participated in the SAVE LiFe experiment. The participants' level of 
experience in software engineering and development projects varied 
from having been involved in one or two development projects to more 
than five. Their level of experience in the domain of the practical course 
also varied, from low to very high, but was balanced throughout the 
groups.  

6.1.1.4 Context 

The experiment was conducted in the context of a practical course at the 
Technical University of Kaiserslautern. The course is attended by Bachelor 
and Master students. The GSE 2007 course comprised, among other 
phases, four weeks of architecture and component design, three weeks 
of implementation and two weeks of test and integration. The domain 
of the system developed in GSE 2007 was ambient intelligence. After the 
completion of the course, the software system developed by the 
students, consisted of 4377 lines of code, 90 classes, and 15 interfaces 
in 25 packages. 
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6.1.1.5 Experimental Materials 

The students worked in a laboratory at the university, each on their own 
computer. On every computer, two configurations of Eclipse were 
installed, one with enabled support of the SAVE LiFe, the other one 
without support. A SAVE LiFe server was installed on a separate 
machine, continuously running and reachable over the local network. 

6.1.1.6 Experimental Design 

The students worked distributed in six component development teams of 
the software system. Table 1 lists the components by name, the 
development team size, and the teams that had support by live 
compliance checking. 

Component Name Number of Developers 
Live Compliance 

Checking Support 
amiCAInteraction 3 yes 
Synchronization 3 yes 
Controller 5 yes 
Persistence 2 no 
LocationManager 2 no 
UserInterface 4 no 

Table 17 Live Feedback Experiment: Component Teams  

6.1.1.7 Experimental Tasks 

Within the GSE practical course, the students developed a system in the 
ambient intelligence domain. Therefore, they executed a development 
process, starting from requirements engineering via architecture and 
component design and implementation to test and integration. The 
experiment was started with the implementation phase and monitored 
all subsequent phases (i.e., implementation, refactorings, testing, and 
integration). Hence, the experimental task for each team was to 
implement the respective component. The duration of the development 
monitored was a total of five weeks (i.e., 35 days) and ended with the 
deployment of the system.  

6.1.1.8 Data Collection 

The source code of all component teams was managed by a central 
configuration management system – Subversion. The Subversion server 
stored the history of the project development in the form of revisions. 
This means that whenever a new change was committed to the server, 
this change was assigned a revision number and allowed restoring the 
state at a later point in time. Additionally, we enabled logging in the 
SAVE LiFe server to log each live compliance checking execution. Besides 
these, no other means of data collection were necessary during the 
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project. To investigate how the students perceived the support by SAVE 
LiFe, we asked them to fill out a questionnaire. 

6.1.1.9 Data Analysis 

We measured the number of architectural violations a-posteriori each 
day for the last commit to the Subversion server. For this purpose, we 
restored the respective system state for all six components. The specified 
architecture was created during the design phase by the students 
themselves. 

6.1.2 Results 

This section describes the results obtained from analyzing the collected 
data and the questionnaire.  

6.1.2.1 Structural Violations 

To observe the evolution of the software architecture, one state per 
development day was analyzed and the number of architecture 
violations has been computed. Figure 2, Figure 3, and Figure 4 show the 
resulting numbers of violations captured. In all three figures, the abscissa 
shows the period of the project development in days (in total 35 days). 
The ordinate shows the number of divergences – the architecture 
violations. 

Figure 55 depicts the number of violations per component. The 
components amiCAInteraction, LocationManager, and Persistence are 
mainly used by the other components. In the architecture, they are 
rather utility or library components, which are self-contained and have 
almost no outgoing relations. This is reflected in Figure 55 by showing 0 
violations (except for the component amiCAInteraction during the last 
days). The components Controller, UserInterface, and Synchronization 
constitute the major part of the relations in the system. They also cause 
almost all violations, as shown Figure 55. The divergences of the control 
group are all produced by the component UserInterface component, 
those of the supported group by the components Controller and 
Synchronization. 

Figure 56 aggregates the number of violations for both the control 
group and the group supported by live compliance checking. In the 
beginning of the implementation phase, the number of architecture 
violations produced by the supported group as well as by the control 
group increased. However, after 13 days of development, the number of 
architecture violations was reduced by more than 50%, whereas the 
value of the control group remained constant. Later there was only a 
slight reduction for the control group; the value of the supported group 
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is constantly about 60% lower than that of the control group. In the 
end, there was a peak of the divergences of the supported group. We 
assume that this peak results from the integration phase before the final 
deployment of the system.  

Next to the violations for both groups, Figure 57 depicts the total 
number of dependencies in the system in order to visualize the growth 
of the system. The major part of the dependencies were implemented in 
the first 13 days and then stayed more or less on a constant level with a 
peak at the end (the integration phase). We observed that when the 
number of violations in the supported group decreased, the number of 
overall relations also decreased (but less than the number of 
divergences). As the number of divergences stayed almost constant for 
the control group, we consider this to be an indicator that the supported 
group refactored parts of the system, which made the components’ 
implementation more compliant. 
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Figure 55 Live Feedback Experiment: Architectural Violations per Component 
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Figure 56 Live Feedback Experiment: Architectural Violations Aggregated by Supported and Control 
Group  
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Figure 57 Live Feedback Experiment: Architectural Violations and Total Relations  

6.1.2.2 Debriefing Questionnaire  

To measure transfer success (i.e., the acceptance of a newly introduced 
technology or software), a survey was conducted, asking the participants 
of the supported group 21 questions about their experiences of working 
with SAVE LiFe. The questionnaire was designed to address the idea of 
innovation transfer success factors as introduced by Green and Hevner 
[Green 2000]. These factors are shown in Figure 58. Several sub-factors 
are grouped into major categories (boxes), with influences on other 
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major categories, indicated by the arrows (e.g., “Target Environment” 
influences “Perceived Control”). All five categories directly or indirectly 
influence the transfer success of an innovation – which in our case was 
SAVE LiFe. 
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 Figure 58 Live Feedback Experiment: Transfer Success Factors 

The possible answers were organized in the form of a four point Likert 
scale, with the alternatives “strong disagree”, “disagree”, “agree”, and 
“strong agree”. To be able to calculate the trends, a scale from -2 to 2 
was assigned to each alternative. The number of answers for each 
alternative was then multiplied by the corresponding range number and 
the average was calculated. We consider a value of lower than -0.5 as a 
negative, and higher than 0.5 as a positive trend. The analysis of the 
answers given by the students showed positive and negative trends in 
different factors. Figure 58 depicts positive trends with a “+” (degree of 
novelty, satisfaction) and negative trends with a “–“ (adaptation, 
predictability, usefulness, quality, productivity). The other factors 
(adoption, champion support, choice, process, ease of use, and use) 
were rather balanced. The following list presents a discussion for these 
trends: 

� Adaptation: Adaptation is defined as the development and 
installation of the IT innovation [Green 1999], which means the 
familiarization of the user with the new technology. So the question 
in this context was whether or not the developers used the 
computation results provided by SAVE LiFe to improve compliance. 
The answers given indicate that this was not the case, which might 
possibly result from the reasons given for the factor predictability, 
which may also have caused this negative trend. 
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� Degree of Novelty: Degree of Novelty refers to the extent to which 
the learning and use of the IT innovation represents a new experience 
to the user [Green 1999]. The answers show a clear positive trend, 
indicating that the developers were satisfied with the usage and user 
interface of the SAVE LiFe.  

� Predictability: The factor of Predictability is defined in [Green 1999] 
as the predictability dimension of control. It refers to knowing what 
event(s) will occur and when, and not necessarily to controlling the 
event itself, meaning whether the students could anticipate the 
results computed by SAVE LiFe. The analysis of the questionnaire 
showed that the results were not predictable for the participants. 
Since all groups were doing all the tasks of the development process, 
but for their own components, including architecture design, the 
students might not have had an idea of the target architecture as a 
whole, making the evaluation results hardly predictable. This might 
also have caused a feeling of dissatisfaction, possibly also causing the 
negative trend in the adaptation trend. 

� Usefulness: Perceived usefulness refers to how reasonable the 
application of the new technology is seen, based on the provided 
support. The participants thought that the compliance checking did 
not help to improve the implementation. Hence, the compliance 
checking results were considered as rather useless.  

� Quality and Productivity: These factors refer to the perceived 
impact of the introduction of the new technology. The questions 
were whether SAVE LiFe helped to write architecture-compliant 
source code and therefore led to an improved architecture, and 
whether the results helped to save time in later refactorings. In these 
factors, there a negative trend was also identified, which is probably 
also based on the students not understanding the benefits of SAVE 
LiFe. However, no negative impact for quality and productivity was 
indicated, since there was no negative one in the adoption of SAVE 
LiFe. 

� Satisfaction: Although the overall trend was rather negative, the 
transfer success shows a positive trend for the factor satisfaction. The 
reason for this might be that the participants agreed with the 
intended purpose and capabilities of SAVE LiFe, although they might 
not have used the support for repairing all violations. 
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6.1.3 Threats to Validity 

The threats to validity cover three categories: internal, construct, and 
external, as proposed in [Wohlin 2000]. 

6.1.3.1 Internal Validity 

Internal validity is the degree to which independent variables have an 
impact on dependent variables. The following threats to internal validity 
were identified: 

� Due to the design of the GSE practical course, there was no explicit 
architect for designing the architecture and managing the realization. 
The students themselves took the roles of the architect and the 
developers as they designed the architecture and realized it. 
Therefore it cannot be guaranteed that the target architecture was 
correct with respect to the intended purpose and structure of the 
system and, since nobody controlled the realization, it is not sure 
whether the students perceived an incentive in being compliant to 
the architecture. 

� The number of participants in each component development team 
was rather small, as was the developed system, which makes it 
difficult to generalize the observed results for mid- or large-scale 
projects with more developers involved. 

� Due to the rules of the GSE practical course, the students were not 
forced to work in the laboratory and were therefore not forced to 
use SAVE LiFe. Although the server log files provided information 
about the usage, the fact the use was not enforced might affect the 
generalizability and thus, the validity of the analyzed results. 

� The participants may have had different levels of experience of using 
the Eclipse IDE for developing software projects, which might have 
made it difficult for students having less experience with Eclipse to 
use the live feedback results. This is also true for different levels of 
experience and for understanding the idea of software architecture. 
To reduce the effects of these threats, we explained the usage of 
SAVE LiFe to the participants in form of a presentation and of a 
tutorial.  

6.1.3.2 Construct Validity 

Construct validity is the degree to which the settings of the experiment 
in terms of the dependent and independent variables reflect the goal of 
the experiment. The following possible threats were identified: 

� As the distribution of the development groups into experiment 
groups was random, this might have resulted in an uneven 
distribution of experience levels and might therefore have caused a 
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bias of the analysis results because high architecture quality might 
result from the participants’ experience level rather than from the 
SAVE LiFe support. To mitigate this threat, the questionnaire asked 
about the experiences of the students. The analysis of this data did 
not reveal an experience advantage.  

� The participants knew about the fact that there were two different 
groups using different versions of Eclipse. This might have created a 
bias for the students. Due to the design of the GSE course and the 
environmental constraints, there was no way to separate the 
members of the two groups for the duration of the experiment. 

� It is not guaranteed that the questions asked in the debriefing 
questionnaire are the right ones to make a statement about the 
transfer success of SAVE LiFe. To mitigate this threat, the 
questionnaire was designed according to the idea of transfer success 
factors. 

6.1.3.3 External Validity 

External validity is the degree to which the results of the experiment can 
be transferred to other people and to changed environmental settings. 

� The participants might not be representative. Since all participants 
were students, the results might not be representative for industrial 
practice. To make a statement about the usage of SAVE LiFe in an 
industrial context, the experiment might have to be replicated with 
professional software developers as participants. 

� The task might not be representative. On the one hand, the system 
developed by the students belongs to a relatively new area of 
domain, namely ambient intelligence, and therefore does not reflect 
typical commercial software projects. On the other hand, the 
students’ interest to in achieving an implementation in compliance 
with the architecture might possibly have been low, as they did not 
continue working on this project after the GSE course had finished. 
To overcome these threats, we envision a replication of the 
experiment in a real project. 

� Green-field development happens rather seldom in industrial 
practice; typically, systems are not developed from scratch but 
evolved from existing reusable components, existing source code, or 
from migration. This was not the case in the GSE practical course: a 
completely new system was developed. To overcome this threat, a 
replication of the experiment should be conducted in the context of 
an evolving software project that is not being developed from 
scratch. 
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6.1.4 Conclusion 

The experiment investigated the impact of live compliance checking on 
the implementation of component teams. The analysis results showed 
that the number of architecture violations were, after an initial peak, 
almost 60% lower throughout in the group that was supported by SAVE 
LiFe, compared to the control group. We observed a decrease in the 
number of architecture violations. The violations in two complex 
components of the supported teams were significantly lower than in 
those of the control teams. We consider this as an indicator for the 
positive impact of SAVE LiFe. The debriefing questionnaire showed 
negative trends in several success factors, mostly caused by the weak 
adaptation of the developers. This is most presumably grounded in the 
nature of the project, which was part of a practical course, and we can 
therefore assume that the main goal for the students was to get the 
system running, and only minor interest existed in producing a high-
quality implementation that was compliant to the architecture. 
Additionally, we think that the participants’ focus was not on the target 
architecture, or that they did not have the basic concepts of their target 
architecture in mind, or that there was a deficit in understanding 
architecture violations, when they implemented the system, which was 
shown in the questionnaire results where the students indicated the 
results were not predictable. 

Based on the aspects mentioned above and on the threats to validity, we 
plan to replicate the experiment. We aim at getting deeper empirical 
insights into the effects of live compliance checking. Ideally, such a 
replication would include several modifications: 

� The project should not be short term only. The developers should 
have an interest in the future of the system (because they will have to 
maintain it).  

� Ideally, several component teams would implement the same 
component as specified in the architecture. 

� The number of component teams should be increased to obtain 
statistically significant results. 

� The participants should preferably be professional developers, with 
almost the same level of experience with software architecture, or at 
least the distribution into experiment groups should ensure that the 
number of professionals and inexperienced participants is the same 
for both experiment groups.  

� The two experiment groups should not know of each other and 
should develop the same product according to the same architecture. 
Also, the development of the whole system should be monitored, not 
only the components. 

� A software architect (and not the developers themselves) should be 
responsible for defining the architecture and track its realization.  
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� SAVE LiFe support should be mandatory during the whole 
experiment. 

Although there is a clear need for replication, the experiment provided 
initial evidence about the benefits of live compliance checking. The 
results showed a reduction in the number of violations for the supported 
development teams. All teams invested approximately the same 
development effort for developing top-level components. The supported 
teams caused less architectural violations, and, hence, when refactoring 
the implementation of the system to achieve architecture compliance, 
the supported teams would have about 60% fewer items to refactor. 
The fewer refactoring items would eventually result in effort savings for 
refactorings.  

We claim that live architecture compliance checking has a positive effect 
on the implementation of software systems. We think that prompt 
removal of violations (as opposed to late removal when applying 
analytical compliance checking) reduces the overhead effort. The results 
of this experiment are a first data point to corroborate our claim. 

6.2 Benefits of Regular Compliance Feedback 

In two case studies, we gave regularly repeated (though not live) 
feedback on the compliance of the software implementation and 
observed the compliance status over time. The research question for the 
two industrial case studies presented in this section was whether or not 
a high degree of compliance feedback has a positive impact on the 
overall evolution of the software systems. Hence, our hypothesis was: 

� HF0.2 – The null hypothesis is that compliance has no impact on the 
productivity of an organization.  

� HF2 – Compliance increases the productivity of the development 
organization. 

6.2.1 Product Line of Climate and Flue Gas Measurement Devices 

6.2.1.1 Context 

In [Knodel 2008b], we reported on the continuation of case A as 
presented in Section 1.2.1 with the product line of climate and flue gas 
measurement devices developed by Testo. The development 
organization decided to integrate analytical compliance checking into 
their quality engineering strategy. The results were presented in joint 
workshops at major project checkpoints. In the beginning, compliance 
checking was offered by Fraunhofer IESE as a service and was conducted 
offline. Currently, the Testo architects are conducting compliance 
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checking independently and on demand by using the Fraunhofer SAVE 
tool [Knodel 2009a]. 

Here we summarize the experiences with architecture compliance 
checking at Testo. In total, 15 different instances of the product line (i.e., 
distinct Testo products delivered to the market) have been checked 
regularly over a period of more than two years (as described in Section 
5).  

6.2.1.2 Compliance Status 

The Testo reference architecture, like every product line, consists of two 
parts: the application-specific implementation and the family-specific 
implementation with generic components, in Testo’s case called 
“framework (fw)”. Figure 59 depicts this principle, which holds for every 
instance of the Testo product line of climate and flue gas measurement 
devices. The arrow in Figure 59 indicates that the product-specific 
implementation parts are allowed to use the framework. On average, 
the Testo products achieve a reuse degree of about 40% (i.e., the 
framework comprises approximately 40% of each product line instance). 
The values have been measured with various size metrics like lines of 
code (LoC), number of framework files used, number of framework 
functions used. The size of the Testo measurement devices ranges from 
10 KLoC to 600 KLoC; all products have been implemented in the C 
programming language. 

 

 

Figure 59 Structural Model: Framework Usage 

Orthogonally to the framework, layering was established; however, no 
strict layering was enforced. The layers crosscut both the framework and 
the product-specific implementations, with one exception: the layer “ui” 
is purely application-specific. Figure 60 shows the layering of the Testo 
product line of climate and flue gas devices as initially specified. Figure 
60 depicts the adaptations of the layered architecture. Subsystems and 
components contained in layers have been filtered out with one 
exception: For the component “Display” in the layer “hc”, it was 
decided to make it visible in the layering, since all elements of the “ui” 
layer are allowed to access this component, but no other elements in the 
“hc” layer are. To compute the compliance checking results, we used 
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the Fraunhofer SAVE tool. Figure 61 depicts sample compliance checking 
results and shows the results using overlay icons (convergences as check 
marks, divergences as exclamation marks, and absences as “X” icons). 

 

Figure 60 Structural Model: Layering 

 

Figure 61 Compliance Status: Visualization of Convergences, Divergences, and Absences 

Table 18 shows the total number of convergences (# of conv.), 
divergences, and the degree of compliance (% compliant) for the 
products. Since absences mainly express dependencies not instantiated 
for a variant of the product line, we excluded them from the table. Table 
18 presents the detailed analysis results and lists the numbers of 
convergences and divergences to the layering as depicted in Figure 60. 
The number of the products roughly indicates the order of development 
despite the fact that some products were developed concurrently. The 
first column in Table 18 shows the evaluation date when compliance 
checking was conducted. For each product evaluated at an evaluation 
date, there are two rows: The first row lists the number of convergences 
and the number of divergences (the sum is the total number of 
dependencies within a product). The second row computes the degree 
of violation: The number of divergent relations is divided by the total 
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number of relations. Although the products are different regarding their 
features, their size, and their developers, the ratio of divergences within 
each product is comparable.  

Compared to the first three products described in Section 1.2.1, we can 
see that, except for product P1, all compliance degrees are higher (i.e., 
compliance was 95.7% for P1, 89.8% for P2, and 72.7% for P3). At the 
evaluation date (2006-08), Fraunhofer IESE produced the compliance 
checking results, this time for products P4 to P10. All these products 
comprised a percentage of divergences of less than 5% (P9 is the only 
exception with less than 10%). It can be observed that the total number 
of divergences significantly decreased afterwards. For the evaluation 
date 2006-10, compliance checking was repeated for products P4 to P10 
and was newly conducted for P11. The percentage of divergences 
decreased for all products evaluated, with the exception of P8 and P10, 
where a slight increase was found. Especially the compliance of product 
P11 is remarkable, since mainly new employees were involved in the 
realization of this product. The last two evaluation dates (2007-03 and 
2007-10) were conducted independently by the Testo architects and 
discussed internally. However, the compliance checking results were 
shared with Fraunhofer IESE. Updated evaluations of products P4, P5 
and P11 have been made, and products P12 to P15 were newly 
evaluated. It can be observed that the percentage of divergences did not 
exceed 5%. The exception of product P4 (5.8% at evaluation date 2007-
03) was counteracted, as the results for the date 2007-10 show. 

Date Status 
Products 

P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 
2006-08 # of Conv. 

# of Div. 
3824 

83 
1729 

33 
293 

6 
337 

18 
854 

21 
205 

16 
1990 

92 
n/a n/a n/a n/a n/a 

 % compliant 97.9 98.1 98.0 94.9 97.6 92.8 94.6 n/a n/a n/a n/a n/a 

2006-10 # of Conv. 
# of Div. 

4571 
76 

1044 
16 

313 
6 

398 
11 

1105 
45 

285 
20 

1810 
88 

3968 
107 

n/a n/a n/a n/a 

 % compliant 98.4 98.5 98.1 97.3 96.1 93.4 95.4 97.4 n/a n/a n/a n/a 

2007-03 # of Conv. 
# of Div. 

2307 
21 

505 
31 

n/a n/a n/a n/a n/a 
5822 
161 

6120 
44 

6164 
45 

2103 
13 

2092 
13 

 % compliant 99.1 94.2 n/a n/a n/a n/a n/a 97.3 99.0 99.3 99.4 99.4 

2007-10 # of Conv. 
# of Div. 

n/a 2843 
50 

n/a n/a n/a n/a n/a n/a 
3976 

39 n/a 
2975 

33 
2828 

33 

 % compliant n/a 98.3 n/a n/a n/a n/a n/a n/a 99.1 n/a 98.9 98.8 

Table 18 Compliance Status: Checking Results Grouped per Product and Evaluation Date  

For all evaluation dates, it can be said that the result enabled 
controversial discussions among architects and developers. Together 
with the rationales of the stakeholders involved, the compliance 
checking results served as input to the decision-making process on 
structural repairs. 



Validation 

 139 

6.2.1.3 Summary 

The main effect, as confirmed subjectively by the Testo architects and 
objectively after evaluating 15 products, is that the development 
organization obtains a great benefit from achieving compliance to a 
large extent and from avoiding (and counteracting) architectural 
degeneration. Although we cannot quantify the benefits of architecture 
compliance checking as a distinct quality engineering instrument, we 
observed certain factors that indicate its usefulness: 

� Shortened compliance checking cycle: Fraunhofer IESE started 
providing compliance checking activities as a service to Testo. The 
point in time when the compliance checking was conducted was 
usually late in product development. However, we were able to 
observe that the cycles between two compliance checking workshops 
became shorter over time (one evaluation in 2005, two evaluations in 
2006, and two evaluations in 2007). At the moment, Testo plans to 
further reduce the compliance checking cycle time and apply it early 
in product development, even if only partial implementations are 
available. This motivates the idea of live compliance checking, which 
shortens compliance checking to the least minimum possible by 
providing live feedback. 

� Fewer violations over time: The results of the compliance checking 
activities indicate that architectural knowledge in the minds of the 
developers has been established successfully. For instance, when 
comparing products P3, P4, P11, and P13 (all are mid-sized systems), 
a significant and sustainable decline in the number of divergences 
can be observed. We believe that the number of violations was 
reduced due to the learning effect, which was achieved by developer 
education in workshops and meetings. 

� Refinement of the analysis scope: The initial applications of 
compliance checking evaluated the framework usage and revealed 
violations of the layered architecture. The latest analysis results 
indicate by the low number of violations that these architectural 
constraints are now in place to a large degree. The architects at Testo 
plan to refine the analysis scope of compliance checking by 
evaluating the detailed dependencies on the subsystem and/or 
component level, too.  

� Cope with evolution: Compliance checking has been able to cope 
with the evolution of the Testo architecture and the implemented 
products. Currently, the third generation of the reuse infrastructure 
(i.e., the framework) is being developed and, as Table 18 shows, 
more than a dozen products have been verified. The compliance 
checking results provide input to the continuous refinement and 
improvement of the reference architecture and thus, the resulting 
products. 
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� Input to decision-making: Compliance checking, as mentioned 
above, provides input to the decision-making process regarding 
modifications to the architecture and/or source code. Besides, due to 
the product line context, it is one prerequisite for strategic discussions 
(e.g., investment into reusable components, test strategy, planning 
and design for reuse) affecting all members of the product line. In 
architecture-centric development, it is fundamental that the product 
implementations adhere to the architecture, since most decisions are 
based upon the architecture. 

� Raising architectural awareness: Architecture awareness among 
developers requires that each developer has knowledge about the 
architecture, especially in those parts that are related to the current 
task assignments. The discussion on compliance has fostered the 
awareness of the developers.  

The key lessons learned are that the development organization at Testo 
evolves its product line with a lot more instances at the same time now 
than in the past. Ensured compliance is one of the factors that allows 
managing and maintaining the family of systems at Testo. The 
importance of compliance was confirmed by the architects. We consider 
this productivity gain as a partial consequence of having compliance 
achieved. 

6.2.2 Remote Measurement Devices 

6.2.2.1 Context 

In [Beyer 2008], we report on our experiences in establishing an 
architecture-centric approach at a small development organization – 
Wikon GmbH. We applied product line engineering concepts to achieve 
reuse on a higher level of abstraction than source code. Iteratively, we 
evolved a development organization towards systematic reuse by 
introducing an architecture-centric strategy for product development. 
The Wikon measurement devices – called the XENON8 family – are 
embedded systems that monitor technical facilities remotely. The 
development organization for these devices comprises three people, two 
developers and one person mainly responsible for quality assurance. The 
systems are implemented in the C programming language. 

Crucial for the success of architecture-centric development was the fact 
that we ensured compliance of the software implementations. We 
defined a target for the structural decomposition and started the 
restructuring. In doing so, we monitored the gap between the intended 
state, which was only 54% compliant with the new structural 
decomposition, and the work in progress, which incrementally was 
refactored to establish the new structure. Over a period of roughly two 
years the implementation was reshaped towards the intended structure. 
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6.2.2.2 Compliance Status 

The first architecting activity we conducted was obviously to define the 
target architecture of the XENON8 platform. To learn about the 
variability, we analyzed two variants of the ancestor platform. For the 
architecture definition, we applied the architecting module of the 
Fraunhofer PuLSE methodology (Product Line Software and System 
Engineering, please refer to [Bayer 1999] for details), which resulted in 
four architectural views, namely conceptual view, structural view, 
behavioral view, and implementation view. This initial documentation of 
the intended architecture was partially reconstructed based on the 
analysis of the ancestor platform. It enabled efficient discussions and 
reasoning on the abstraction level of the software architecture. Hence, 
the architectural views were used as a communication vehicle and served 
as a foundation for making decisions on how to achieve the business 
and development goals.  
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Figure 62 Structural Model: Subsystems and Dependencies 

The structural view (see Figure 62) describes the functional 
decomposition of the system and captures the static structure of a 
system. It is relatively close to the later implementation because at 
Wikon, the subsystem structure is reflected by directories in the file 
system. It is therefore especially interesting for technical stakeholders like 
developers.  

We conducted static architecture compliance checking using Fraunhofer 
SAVE to regularly measure the distance between the intended target 
architecture and the implementation in progress. At the beginning, the 
implementation had a compliance degree of 54% of all the 
dependencies (i.e., includes, function calls, or variable accesses). During 
the evolution, the implementations were continuously refactored to 
match the intended architecture. The compliance status was reviewed 
regularly and, based on the compliance feedback, we could educate the 
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developers in advance on the consequences of the architectural decisions 
made. Although architecting and architecture-centric development were 
new disciplines at Wikon, the developers could achieve a compliance 
degree of 95% over time. On their own, the Wikon engineer stated the 
goal of achieving 98% in the near future.  

6.2.2.3 Summary 

Architecture-centric development can only be successful if the 
counterparts in the implementation are realized as intended. Then, and 
only then, can the architecture serve as a vehicle for decision-making on 
evolution and maintenance and as an instrument to guide the 
development. At Wikon, we were able to observe the positive impact of 
architecture-compliant software implementations. 

Compared to the previous product generation, the architecture-centric 
development saved 12 person-months of development time (from 32 to 
20 person-months) and 3 person-months for quality assurance (mainly 
testing, from 8 to 5 person-months) for the first product generation 
developed following the new strategy. Moreover, the number of variants 
derived almost doubled during the same period of time, while quality 
was kept on the same level (there were even slightly less issues due to 
software-related problems in the field). 

The regular feedback on compliance was one important factor to guide 
the restructuring activities at Wikon into the right (i.e., the intended) 
direction. The importance of compliance was confirmed by the Wikon 
engineers. We claim that compliance played a major role in achieving the 
productivity gain (doubled number of products, one third savings in 
development effort, with no drop in quality). 

6.3 Conclusion 

We investigated the role of live feedback in one experiment and 
compliance in industrial systems in two case studies. In summary, we 
learned the following lessons: 

� Live compliance checking can reduce the number of structural 
violations. As we observed in the experiment with 60% fewer 
violations, the number was significantly lower for the supported 
group than for the control group. 

� SAVE LiFe successfully realizes the idea of live compliance 
checking. The basic communication and analysis platform performed 
well in the experiment. Although we could collect a couple of minor 
suggestions for improving the implementation, we could show that 
the general principle of live feedback and quasi-constructive reverse 
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engineering works. Live compliance checking as the first instance 
provided conveying results.  

� SAVE LiFe scales to development organizations. We were able to 
run SAVE LiFe for the experiment with 19 developers for a period of 
35 days. Although this experiment took place in an academic setting, 
we are confident regarding potential roll-outs in industrial settings. 
Other test applications have already shown the scalability towards 
larger software-systems and larger distances between developers. 

� It is feasible to achieve high compliance degrees in industrial 
settings. We could observe in the two industrial case studies that in 
the end, they had a compliance degree up to 99% for particular 
products. This value shows that it is feasible to achieve compliant 
implementation in industrial practice. 

� Educating developers on the architecture can be achieved. 
Giving developers advice on compliance, informing them about 
violations and their architectural context (origin and target 
architectural elements, type of violation, etc.) educates the 
developers over time. We assume that the frequency of feedback 
influences the time for learning. The faster the feedback is received, 
the faster the learning is achieved. Therefore, live feedback as 
realized by SAVE LiFe is appealing because it provides the results with 
the least delay possible. 

� Compliance as one key enabler for architecture-centric 
development. We observed in both industrial studies that the 
benefits of architecture could be harvested because of compliant 
implementations. Productivity increased by ensured compliance of 
implementations with the architecture. 

In short, the experiment as well as the two industrial case studies 
revealed the importance of compliance feedback. Sustaining compliance 
by pointing out the structural violations in the implementation was 
successful. The results are indications that compliance feedback educates 
developers because the compliance could be sustained over a long 
period of time. Furthermore, education leads to better performance 
during the development. We therefore tend to accept the two 
hypotheses HF1 and HF2 and believe that feedback successfully establishes 
architecture knowledge in the minds of the developers. We further claim 
a positive impact of live compliance checking. 
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7 Analysis and Outlook 

This thesis introduced an approach for live compliance checking, which 
sustains structure in software implementations right from the beginning 
of the development. In other words, it achieves architecture compliance 
by construction.  
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Figure 63 Method Overview: Live Compliance Checking 

Figure 63 depicts the core parts of this thesis – the building blocks of the 
live compliance checking approach: 

� Section 2 introduces the underlying meta-models for the structural 
view of the architecture, the source code model, and the mapping 
between them.  

� Section 3 continues by discussing the state of the art of compliance 
checking techniques and presents base technologies from the area of 
reverse engineering.  

� The process for live compliance checking as part of the development 
is explained in Section 4. Further, we elaborate on the impact of 
high-frequency live compliance feedback on developers and derive 
potential savings for the compliance achievement effort.  

� The technical realization of SAVE LiFe (Software Architecture 
Visualization and Evaluation with Live Feedback) is presented in 
Section 5. SAVE LiFe is a client-server-client system providing a fat 
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client (the architecture manager), a central server (the compliance 
checker), and thin clients (the development monitor).  

� The overall empirical motivation for the idea of live compliance 
checking was already given in Section 1. We motivated the idea by a 
survey on industrial cases, where the evolution and maintenance of 
software systems was effort-intensive and time consuming. In all 
cases, we could further observe that none of the examined systems 
was compliant with its architecture. We confirmed in three 
replications of a controlled experiment that lack of compliance is one 
factor that affects the evolution negatively.  

� Having developed the solution and realized tool support via SAVE 
LiFe and its ancestor SAVE allowed us to investigate the effects of 
compliance checking with live feedback and feedback at regular 
intervals. Section 6 presents the results of this validation. Support by 
SAVE LiFe with live feedback on compliance resulted in 60% fewer 
violations. Further, we showed the positive effects of compliance in 
industrial case studies: Increased productivity. Moreover, we could 
observer that a degree of 99% compliance is feasible in an industrial 
context. 

The results and contributions of this thesis are summarized in Section 7.1 
followed by an outlook on future work in Section 7.2. Section 7.3 
concludes this thesis with final remarks. 

7.1 Results and Contribution 

There are three strategies for improving software productivity: working 
faster, working smarter, or avoiding unnecessary work [Boehm 1999]. 
Live compliance checking achieves the latter, which promises the highest 
payoff. Supported by SAVE LiFe, the effort for sustaining structure in 
software implementations is significantly reduced. Further, developers 
are educated on the architecture, which enables them to understand the 
role of their local task in the overall system perspective and to actively 
participate in architecting. 

The pro-active prevention of structural decay is the underlying idea of 
turning compliance checking from an analytical into a quasi-constructive 
technique. The results and contributions are in detail: 

� We defined a metric for architecture compliance, which can be used 
to assess the compliance status of software implementations (see 
Section 2.4). 

� The metric takes advantage of the formal definition of the meta-
models for the structural view of the architecture and the source 
code model (see Sections 2.1 to 2.3). Meta-models are required for 
the execution of analytical compliance checking and live compliance 
checking.  
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� We characterized typical evolution scenarios for implemented systems 
by using the compliance metric (see Section 2.5). 

� We exemplified how the reverse engineering archetype is instantiated 
by compliance checking techniques (see Section 3.3). 

� We provided a review of the state of the art in compliance checking 
(see Section 3.3). We showed the equivalence in expressiveness of 
Reflexion models and dependency rules (see Section 3.3). 

� We showed that Reflexion models provide better applicability for live 
compliance checking than dependency rules (see Section 3.4). 

� We explained the new paradigm of quasi-constructive reverse 
engineering with live feedback, which generally aims at the 
constructive use of analytical techniques (see Section 3.5). 

� We introduced the process for live compliance checking, which 
involves the roles of architect and developer (see Section 4.1). Their 
process parts extend their regular development process through 
interaction with compliance checking process parts. All three parts 
together constitute the approach for live compliance checking. 

� We explain how the high execution frequency leads to two effects in 
the implementation of software systems: the learning effect for the 
developers and the prompt removal effect for violations (see Section 
4.2). 

� We present a theoretical model on the savings for structural repairs 
effort (i.e., the compliance achievement effort, see Section 4.3), 
which predicts for weak effects savings of 67% compared to regular 
development.  

� Finally, Section 5 presents the tool support for live compliance 
checking. The client-server-client system consists of the architecture 
manager, the compliance checker on top of the analysis platform, 
and the development monitor. 

� The empirical contributions comprise a survey on industrial systems 
distilling the problem of lack of compliance (see Sections 1.2.1), three 
replications of a controlled experiment showing compliance benefits 
(less than 50% effort for an evolutionary task (see Section 1.2.2), an 
experiment showing the effect of live compliance checking supported 
by SAVE LiFe (see Section 6.1), and two industrial case studies 
reporting on the positive impact of compliance on the overall 
productivity of a development organization (see Section 6.2). Figure 7 
summarizes the empirical contributions (see Section 1.4). 

In short, this thesis contributes to the field of software architecture by 
providing a method that achieves compliance by construction. The 
positive effects have been empirically validated. In addition to this 
contribution, this thesis revealed open issues that provide many entry 
points for future research. 
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7.2 Future Work 

This section delivers a sketch of potential future activities based on the 
results provided by this thesis. The outlook is grouped into four areas: 
experimentation (addressing the need for further validation), compliance 
checking (raising issues in its application), quasi-constructive reverse 
engineering (the new paradigm introduced by this thesis), and live 
feedback platform (open issues with the underlying technical platform).  

7.2.1 Experimentation 

The empirical studies we provided in this thesis require further 
experimentation and replications, if possible, with varying factors. We 
can identify four cases that are particularly interesting: 

� First, the examined cases in the state-of-the-practice survey (see 
Sections 1.2.1) might not be representative. We therefore would like 
to extend the survey and encourage further investigation on this 
topic by other researchers. Although we have a strong belief that lack 
of compliance is a recurring, practical problem, more data is required 
to extend the ground of this assumption. 

� Second, the three replications of the compliance experiment (see 
Section 1.2.2) varied the groups of persons executing the 
evolutionary task, but this was the sole factor that was different. We 
challenge other researchers to vary the evolutionary task and the 
system under analysis. We look forward to receiving more data on 
this topic. 

� Third, the experiment on live compliance checking (see Section 6.2) 
provided a first data point on the impact of live feedback. However, 
due to the environmental settings, we plan to replicate this 
experiment. Ideally, we would have two groups of teams: all 
implementing the same functionality based on the same architecture 
over a long period of time (i.e., several weeks or month), one group 
with SAVE LiFe support and the other one without. Only such a long-
term study can deliver well-grounded empirical facts on the long-
term applicability and effects of live compliance checking. We are 
searching for such opportunities but know that this proposed 
experimentation scenario is rather utopistic. 

� Fourth, another open issue is to isolate the role of compliance for the 
productivity gain as observed in the two case studies reported on in 
Section 6.2. In both cases, the architects perceived compliance as an 
important factor; however, we were not able to quantify it. It would 
be interesting to have data that allows determining the exact impact 
of compliance.  
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In short, experimentation in future work requires more data points on 
the effects of compliance, live feedback, and the role of compliance 
throughout the entire lifecycle of the software system. 

7.2.2 Compliance Checking 

We gathered a lot of experiences on applying compliance checking 
(analytical and quasi-constructive with live feedback) in the course of this 
thesis. These experiences yield open issues for future research related to 
the result presentation and the capability to analyze variants: 

� The architects of a system have the responsibility to monitor and 
track the compliance of the implementation. Due to the inherent 
complexity of modern software systems, adequate means have to be 
chosen to support the architects and this task. Visualization offers the 
potential to easily see complex correlations in large data sets, which 
are not obvious when just looking at the pure data in a textual or 
tabular form. However, the visualization of compliance checking 
results for either architects or developers has a strong impact on the 
perception of the results. For instance, for the fat client of the 
architecture, we could show a 63% gain in effectiveness for 
architectural analysis tasks simply by changing the configuration of 
the graphical elements of the visualization [Knodel 2008c]. Future 
work should aim at finding an optimal configuration for the 
architects and investigate different visualization options for the 
developers, too. 

� In compliance checking we are able to analyze exactly one variant 
(snapshot-based or live during development) at a time. However, 
many systems today rather exist in families, which means they 
comprise a number of similar variants or are managed as a product 
line (see [Weiss 1999] and [Clements 2001] with explicit variation 
points. Compliance checking so far does not support the analysis of 
several variants at the same time (i.e., in one run). The extension of 
compliance checking might lead to effort savings when analyzing 
large product families.  

Compliance checking as such is rather mature, but we identified open 
issues in the visualization of the results and the missing ability to analyze 
several variants in one single run. 

7.2.3 Quasi-Constructive Reverse Engineering 

We introduced the paradigm shift towards quasi-constructive use of 
reverse engineering techniques (see Section 3.5). An open research 
question is how this paradigm will influence software development in 
the long run: 
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� First, there is a research need to analyze, which reverse engineering 
techniques are adequate and appropriate candidates to be 
transformed into a quasi-constructive technique. It is unknown at the 
moment, if all or a limited set of techniques (and if so, which ones) 
can produce useful results as a quasi-constructive technique.  

� Second, the return on investment (ROI) has to be analyzed for the 
techniques. Is the effort to integrate the technique into the 
development process worthwhile? For live compliance checking, we 
can say that there is clear pay-off, which was confirmed by the 
theoretical model and the empirical data. But this question is 
unanswered for other reverse engineering techniques. 

� Third, the technical infrastructure and its capabilities to execute other 
reverse engineering techniques in a quasi-constructive manner has to 
be reviewed with respect to its performance, resource consumption, 
and other issues. 

To summarize, we think that the idea of quasi-constructive reverse 
engineering [Knodel 2008a] is beneficial, at least for some techniques 
like compliance checking. But there is a clear need for future research 
before we can generalize our conclusion. 

7.2.4 Live Feedback Platform 

The technical live feedback platform (see Section 5) establishes a logical 
communication channel between the server and either the thin clients or 
the fat client. It further provides an extensible platform, which could 
provide more analysis features: 

� We can imagine realizing the live analysis for features like source 
code metrics, bad smells, anti-patterns, etc. All analyses are based on 
the meta-model of the source code. Hence, they potentially could be 
integrated as another kind of analysis provided by SAVE LiFe.  

� In addition to the light-weight live feedback for developers, we see as 
future work the transfer of graphical results so that the developers 
can use advanced visualization means for perceiving the results. 

� Another major benefit would be an extension for the fat client of the 
architect. Instead of just requesting the compliance status, it might 
realize a live monitor that visualizes the whole development work of 
the team live or in a flipbook-based manner. This feature would 
empower the architect to have full control and total transparency of 
the development organization currently ongoing work. 

The live feedback platform is the first step towards supporting 
development organizations in managing the source code in an 
architecture-centric manner. We envision future work to extend this 
platform towards live visualization of the whole ongoing development 
with additional analysis features realized on the basis of the platform. 
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These extensions could culminate in a software evolution environment 
where everything is visualized live and every modification is immediately 
processed, analyzed, and tracked. This software evolution environment 
would enable new development practices and establish quasi-
constructive reverse engineering with live feedback as a paradigm, and, 
last but least, fully integrate reverse engineering and forward 
engineering. Due to the new approach to quality engineering, rework 
and unnecessary work could be potentially saved. 

7.3 Final Remarks 

This thesis provides a classical example of applied research. We observed 
a practical problem in industry. The assumption on the underlying root 
cause was empirically validated – we found evidence that compliance 
has a significant impact on the effort required for evolution. This 
motivation then guided the development of the solution introduced by 
this thesis – live compliance checking. To enable this basic idea, we 
defined the method’s meta-models, the core technique, and the 
surrounding process. Further, we developed the SAVE LiFe tool to 
support and automate the process. Validating the solution then assured 
that the solution developed actually tackles the problem observed. Our 
studies to date confirm that this is the case. Feedback educates 
developers and eventually leads to a higher degree of compliance.  

Our approach achieves architecture compliance by construction. It 
sustains structure in implementations and assures traceability between 
architecture and source. However, only the future will allow judging the 
real value of live compliance checking. The method and the tool are 
ready to be rolled out for applications in industrial practice. And, of 
course, we feel confident regarding the future and optimistically look 
forward to live compliance checking applications. 
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Appendix A Architectural Views and Compliance 
Checking 

A.1 Architectural Views and Viewpoint 

The documentation of software architecture typically comprises a set of 
architectural views that have an explicit meta-model – the architectural 
viewpoint. 

The architecture community has adopted the idea of view-based 
architecture documentation. To apply it in practice, the set of views to 
be used must be selected so that it is neither too large (resulting in 
overhead) nor too small (missing important information). The selection of 
relevant views is a non-trivial task because of the variety of available 
views and stakeholder concerns to be addressed. Hence, it is common 
practice to constitute the architecture documentation on top of a 
standard set of architectural views and to tailor it towards system- 
project-, or organization-specific needs and, if necessary, extend the set 
with customized views. 

A number of architectural view sets has been proposed by different 
researchers. The most commonly used ones are presented in 
chronological order: 

� Kruchten: As one of the most important contributions to view-based 
documentation of software architectures, [Kruchten 1995] proposed 
a system of four interrelated views (logical, process, development, 
and physical view) augmented with a fifth redundant view (scenarios) 
that abstracts from requirements and shows how the architectural 
views work together to satisfy the requirements.  

� Davis: [Davis 1997] proposed a set of four views (domain, 
component, platform, and interface view) augmented with a fifth 
view, the context view, to capture the dynamic behavior and quality 
characteristics of the software system. 

� Hofmeister: Based on the analysis of the software architectures of 
large industrial systems, [Hofmeister 2000] proposed a set of four 
distinct views (conceptual, module, code, and execution view) each 
describing particular aspects of the system.  

� Herzum: [Herzum 2000] introduced another set of four views 
(technical, application, project management, and functional view).  

� Clements: [Clements 2002a] describes a set of three so-called view 
types and extends it by the description of commonly occurring forms 
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and variations called styles (module view type: decomposition, uses, 
generalization, and layer style; component-and-connector view type: 
pipe-and-filter, shared-data, publish-subscribe, client-server, peer-to-
peer, and communicating-process style; and allocation view type: 
deployment, implementation, and work assignment style).  

� Rozanksi: [Rozanski 2005] presents a catalog of six core views 
(functional, information, concurrency, development, deployment, and 
operational view) and applies architectural perspectives for 
considerations crosscutting the architectural views. 

� Fraunhofer IESE: The architectural view set defined at Fraunhofer 
IESE comprises a standard set of four architectural views (conceptual, 
structural, behavioral, and implementation view), which is optionally 
extended with four additional views (data, hardware, execution, and 
organizational view). [Bayer 2004] and [Knodel 2006a] present a 
detailed description of the Fraunhofer IESE view set, which is used 
throughout this thesis unless otherwise mentioned. 

Table 19 present a comparison of the different view sets as presented 
above. The views in Table 19 differ in terms of names and definition, and 
although the concerns they address are sometimes not clearly separated, 
the views can roughly be mapped onto each other. In the event there is 
no direct correspondence, Table 19 depicts a “–“ in the respective table 
cell. Sometimes two views correspond to one of the other view sets.  

Table 19 is not complete since other view models have been proposed, 
and single views have been motivated in literature, for instance, the 
built-time view [Tu 2001] or the decision view [Dueñas 2005]. However, 
one observation can be made in Table 19: All of the view sets compared 
propose the structural and the implementation view, and, with one 
exception, the behavioral view (or something named alike).   

� Structural view: The structural view describes the functional 
decomposition of the system and captures the static structure of a 
system in terms of layers, subsystems, and components, the 
interfaces provided by them, and the relationships between the 
various elements. 

� Implementation view: The implementation view describes how the 
software implementing a system is organized in the development 
environment. It captures how architectural elements defined in the 
structural view are organized in the development, integration, or 
configuration management environments. 

� Behavioral view: The behavioral view illustrates how the architectural 
elements defined in the structural view interact with each other for a 
number of typical usage scenarios. The behavioral view shows which 
elements of the architecture interact, which operations are invoked 
by an element, and which messages and events are passed between 
elements. 
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Kruchten Davis Hof-
meister 

Herzum Clements Rozanski Fraun-hofer 
IESE 

Use Cases Context View – – Scenarios Scenarios 
Perspectives 

Scenarios 

Logical View Domain View Conceptual 
View 

Application  
 

– – Conceptual View 

Development 
View  

Interface View Module View Technical  Module  Functional Structural View  

Process View Context View  Execution 
View 

– Component 
and 
Connector  

Concurrency Behavioral View 

Development 
View  

Component 
and Interface 
View  

Code View  Technical  Allocation 
(Implementati
on)  

Development Implementation 
View 

– – – – – Information Data View 
Physical View Platform View Execution 

View 
– Allocation 

(Deployment) 
Deployment Hardware View 

Process and 
Physical View 

Platform View Execution 
View 

– Allocation 
(Deployment) 

Operational Execution View 

– – – Project  
Management 
View 

Allocation 
(Work 
Assignment) 

–   Organizational 
View 

Table 19 Comparison of Architectural View Sets  

A.2 Architecture Compliance Checking and Violations 

Table 20 gives an overview of architecture compliance checking by 
relating the input view and the software system counterpart to each 
other. Hence, it illustrates which architectural views can be compared 
against which system artifacts. Please note that only the most popular 
architectural views (structural, behavioral, and implementation view; see 
Table 19) have been listed in Table 20 and that the conceptual view has 
not been included in the table since it is the most abstract view providing 
only a brief overview of a system.  

Table 20 further classifies the types of violations that can be detected 
and presents the application phase (covering the categories design, 
implementation, integration, and execution) in which the compliance 
checking activity is typically executed.  
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Input View System 
Artifact 

Violations Application 
Phase 

Structural View Component 
design models 

Design violations: 
unspecified architectural 
elements and unspecified 
static inter-element 
relationships 

Design 

Source code Structural violations: 
unspecified architectural 
elements and unspecified 
static inter-element 
relationships implemented 
in the source code  

Integration 

Run-time 
traces 

Structural violations: 
unspecified architectural 
elements and unspecified 
dynamic inter-element 
relationships implemented 
in the source code 

Execution 

Behavioral View Component 
design models 

Design violations:  
unspecified architectural 
elements and unspecified 
dynamic inter-element 
relationships  

Integration 

Run-time 
traces 

Protocol violations: 
unspecified dynamic inter-
element relationships  

Execution 

Implementation 
View 

Source code Decomposition 
violations: 
unspecified decomposition 
of architectural elements in 
the file system 

Integration 

Logging of 
configuration 
management 
transactions 

Ownership violations: 
unspecified code ownership 
(unauthorized access or 
modifications) of 
architectural elements  

Integration 

Regression test 
suite 

Test violations: 
unspecified omission of 
architectural elements in 
regression test  

Execution 

Table 20 Overview of Architecture Compliance Checking 
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Appendix B Experiment Compliance 

This section presents the material used for the experiment on the impact 
of compliance as described in Section 1.2.2. 
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B.1 Experiment Procedures 

TSAFE Experiment Procedures 
 

 
 
 
First of all, thank you for participating in the TSAFE experiment! Please note that the 
evaluation of this exercise will be done anonymously. 
 
 

A) Preparation 
� Note preparation start time here:  

 _______________ (e.g. 10:44) 
� Read this document and fill in the briefing questionnaire 
� Run TSAFE and run the TSAFE system test to ensure that the system is 

working correctly 
� Note preparation stop time here:   _______________ (e.g. 

11:24) 
� Ask your experimenter to acknowledge the test case pass and ask your 

experimenter for the task description 
 
 

B) Execution 
� Note execution start time (in minutes) here:  

 _______________ (e.g. 11:26) 
� Read the task description and do the task (you can run the TSAFE 

system test at any time to ensure the system is working correctly) 
� Note execution stop time (in minutes) here: 

 _______________ (e.g. 13:26) 
� Fill out debriefing questionnaire and submit your source code to your 

experimenter 
  

Figure 64: Experiment Compliance: Experiment Procedures 
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B.2 Experiment Object Description 

Tactical Separation Assisted Flight Environment (TSAFE) 
 
The experiment investigates how the quality of an architecture is affected by refactorings. 
Refactoring here means changing the decomposition of the source code (creating, moving, 
merging or splitting of methods, classes, packages or other source code elements) without 
altering the external behavior of the system. Hence, refactoring aims at improving the internal 
structure of the source code.  
 
We will ask you to perform a refactoring of the TSAFE system. We will evaluate the quality of 
the restructured source code. High quality is achieved when the architecture is decomposed into 
components that have high internal cohesion and low coupling to external components. After 
the experiment, we will analyze how well your restructured source code matches the reference 
solution created by several TSAFE experts. 
 
Please read this document carefully and contact your experimenter in case you have any 
problems in running TSAFE. Typically, the preparation takes about 15 – 30 minutes. 
 
Please try to perform the task as fast as possible but aim at achieving a high quality. The 
maximal allotted time for the executing task is 2 hours. Please note that it took the experts 
between 0.25 hours to 2 hours to complete the refactoring task. 
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B.3 Briefing Questionnaire 

 

Figure 65: Experiment Compliance: Briefing Questionnaire 
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B.4 Task Description 

Task Description – Refactoring Task     
The Tactical Separation Assisted Flight Environment, or TSAFE, is a tool to aid air traffic 
controllers in detecting and resolving short-term conflicts between aircraft. 
Goal: To support distributed development and outsourcing, TSAFE has to be refactored into 
distinct components. Each TSAFE components has to be realized in a separate Java project, 
which then can be managed and evolved by an independent development group. 
Your task is in detail: 

� Create the Java projects for the TSAFE components 
� Refactor TSAFE into the seven distinct components as specified 

below  
� Ensure that TSAFE is working correctly: no compilation errors, pass of 

TSAFE system test (please note that you can run the test at any time to 
ensure the system is working correctly) 

� Ask your experimenter to acknowledge the pass of the TSAFE test 

TSAFE Architectural Components 
Components Responsibilities 

TSAFE The TSAFE Main starts the client and the server. 

ClientServer The Server is responsible for reading and parsing radar data, storing flight information, 
and providing computations based on flight information.  

The Client is responsible for communicating with the Server and the User and for 
displaying flight information. 

FeedParser  The Parser is responsible for parsing the radar feed and extracting flight information 
that is provided in the form of flight messages 

Database  The Database is responsible for storing the flight information (flight position and flight 
plan) and providing it upon request  

Computation  The Computation component is responsible for all computations needed.  

The Trajectory Synthesis component calculates the trajectory (i.e. expected flight 
position) for a certain user defined time. 

The Conformance Monitoring determines whether or not a flight is conforming to its 
flight plan based on a certain user defined set of thresholds 

Calculation The Calculation calculates distances, angles etc. 

CommonDatastructures The common data structures comprise Trajectory (4-dimensional points (Latitude, 
Longitude, Altitude, Time)), Route (2-dimensional series of 
fixes), Flight (ID, flight track, flight plan), FlightPlan (aircraft 
data, speed, altitude, flight route), FlightTrack (actual position, 
speed, and heading information), PointXY, Point2D, Point4D 
(data structures representing positions). 

Table 1 – TSAFE Components  

Figure 66: Experiment Compliance: Task Description 
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B.5 Debriefing Questionnaire 

 

Figure 67: Experiment Compliance: Debriefing Questionnaire 
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B.6 Experiment Results  

ID = Group_Type_Number: A = Group A TSAFE1, B = Group B TSAFE2 

P = Pilot Students, F = Maryland Students, I = Industrial (ArQuE),  
K = Kaiserslautern Students (GSE 2008) 

B.6.1 Results Subject Performance 

ID Group Type Performance
B.1 B.2

ID Preparation time Execution time
Correctness 
Achieved

A_P_01 A P 15 54 64
B_P_01 B P 20 60 100
A_F_01 A F 36 78 79
A_F_02 A F 46 150 43
B_F_01 B F 16 47 100
B_F_02 B F 25 53 100
A_I_01 A I 15 45 86
A_I_02 A I 18 83 64
A_I_03 A I 20 135 86
A_I_04 A I 52 150 28
B_I_01 B I 27 54 100
B_I_02 B I 23 63 100
B_I_03 B I 45 115 100
B_I_04 B I 25 120 100
A_K_01 A K 23 133 79
A_K_02 A K 14 145 79
A_K_03 A K 13 136 35
A_K_04 A K 29 159 0
A_K_05 A K 10 105 100
A_K_06 A K 11 108 86
A_K_07 A K 11 85 86
A_K_08 A K 11 57 100
A_K_09 A K 14 118 93
B_K_01 B K 29 54 100
B_K_02 B K 32 29 100
B_K_03 B K 25 40 93
B_K_04 B K 29 44 100
B_K_05 B K 29 36 100
B_K_06 B K 15 35 100
B_K_07 B K 30 26 100  

Figure 68: Experiment Compliance: Results Subject Performance 
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B.6.2 Results Briefing Questionnaire: Subject Background 

ID Group Type BACKGROUND
A.1 A.2 A.3 A.4 A.5

ID Semester
experience in 
Java

experience in 
Eclipse

experience in 
Refactoring

experience in 
Architecting

A_P_01 A P 7 4 4 4 1
B_P_01 B P 6 4 4 4 4
A_F_01 A F 9 3 3 1 2
A_F_02 A F 6 2 2 1 2
B_F_01 B F 6 3 4 4 4
B_F_02 B F 6 3 3 1 2
A_I_01 A I 20 4 4 2 4
A_I_02 A I 40 3 3 2 2
A_I_03 A I 15 4 4 2 2
A_I_04 A I 40 1 2 1 2
B_I_01 B I 74 2 2 1 4
B_I_02 B I 70 3 2 1 2
B_I_03 B I 30 1 3 1 4
B_I_04 B I 15 1 1 1 2
A_K_01 A K 6 2 2 1 2
A_K_02 A K 6 3 2 1 2
A_K_03 A K 9 2 1 1 2
A_K_04 A K 7 2 1 1 1
A_K_05 A K 5 2 2 1 2
A_K_06 A K 5 3 3 2 2
A_K_07 A K 5 3 3 1 2
A_K_08 A K 5 3 3 1 2
A_K_09 A K 5 2 2 2 2
B_K_01 B K 7 2 2 1 2
B_K_02 B K 5 2 2 2 2
B_K_03 B K 8 2 2 1 1
B_K_04 B K 6 2 2 1 2
B_K_05 B K 6 3 2 1 2
B_K_06 B K 6 2 2 2 1
B_K_07 B K 6 3 3 1 2  

Figure 69: Experiment Compliance: Results Briefing Questionnaire 
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B.6.3 Results Debriefing Questionnaire: Task Related Questions 

ID Group Type Task-
B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.10 B.11

ID

understa
nding of 
the task

usage of 
Eclipse 
refactori
ng

manual 
changes 
to the 
source 

decomp
osition 
clear

sytem 
test after 
all 
refactori

system 
test after 
every 
single 

more 
time 
spend to 
improve 

high 
decomp
osition 
quallity 

imporve
ment by 
refactori
ng

A_P_01 A P 3
B_P_01 B P 5
A_F_01 A F 3 6 1 4 6 2 5 4 4
A_F_02 A F 4 4 6 2 1 1 3 5 1
B_F_01 B F 4 5 2 5 5 4 5 6 5
B_F_02 B F 5 4 4 2 6 2 3 5 3
A_I_01 A I 4 6 1 5 6 4 5 4 5
A_I_02 A I 3 5 1 5 5 3 2 4 2
A_I_03 A I 5 5 4 4 5 4 4 5 4
A_I_04 A I 5 5 1 2 1 1 1 3 1
B_I_01 B I 2 6 1 4 6 1 6 1 6
B_I_02 B I 4 5 1 3 5 1 4 2 4
B_I_03 B I 4 4 4 3 1 2 4 4 4
B_I_04 B I 4 2 4 4 5 2 6 3 3
A_K_01 A K 5 6 4 4 5 1 4 4 3
A_K_02 A K 5 5 2 5 6 1 6 2 4
A_K_03 A K 4 2 2 2 4 3 1 3 3
A_K_04 A K 5 6 1 6 6 1 6 5 5
A_K_05 A K 5 6 4 5 6 2 2 5 4
A_K_06 A K 6 6 1 5 6 1 2 5 5
A_K_07 A K 5 6 1 4 6 2 2 3 5
A_K_08 A K 5 6 2 5 6 1 4 2 5
A_K_09 A K 5 5 2 4 6 1 3 3 4
B_K_01 B K 5 6 1 4 6 1 4 4 4
B_K_02 B K 6 6 2 6 6 2 3 6 6
B_K_03 B K 5 6 1 5 6 1 1 1 6
B_K_04 B K 5 6 1 5 6 6 4 4 4
B_K_05 B K 6 6 1 4 6 1 3 2 4
B_K_06 B K 5 6 1 5 6 2 2 5 4
B_K_07 B K 6 6 1 6 6 1 2 6 4

 

Figure 70: Experiment Compliance: Results Debriefing Questionnaire: Task Related Questions 
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B.6.4 Results Debriefing Questionnaire: Questions with Respect to Material 

ID Group Type Material
C.1 C.2 C.3 C.4

ID

description of 
architectural 
components

task description 
clear

application of 
Eclipse 
refactorings realistic task

A_P_01 A P 3 5 6 5
B_P_01 B P 6 6 6 6
A_F_01 A F 3 4 4 4
A_F_02 A F 4 5 4 5
B_F_01 B F 2 5 5 5
B_F_02 B F 5 5 4 4
A_I_01 A I 4 4 5 4
A_I_02 A I 5 4 4 2
A_I_03 A I 4 5 5 5
A_I_04 A I 4 3 2 3
B_I_01 B I 6 4 5 3
B_I_02 B I 4 3 3 5
B_I_03 B I 5 5 5 4
B_I_04 B I 5 4 4 4
A_K_01 A K 4 5 5 5
A_K_02 A K 3 5 2 5
A_K_03 A K 5 5 2 4
A_K_04 A K 6 6 6 6
A_K_05 A K 6 5 4 5
A_K_06 A K 4 6 5 5
A_K_07 A K 5 5 4 6
A_K_08 A K 4 5 6 4
A_K_09 A K 5 5 4 3
B_K_01 B K 5 5 5 5
B_K_02 B K 5 5 5 5
B_K_03 B K 5 6 5 4
B_K_04 B K 5 5 5 5
B_K_05 B K 5 5 6 4
B_K_06 B K 5 5 6 6
B_K_07 B K 6 5 5 3  

Figure 71: Experiment Compliance: Results Debriefing Questionnaire: Questions with Respect to Material 
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Appendix C Example Source Code DRVFaçade  

This appendix section lists the source of the example used in the 
introduction (see Section 3.2 and 3.3).  

The method “doit()” shows the architecture-compliant implementation 
of this example, while the method “doitWrong()” causes a structural 
violation.  

C.1 Class BusinessLogic.java 

 

package businesslogic; 
 
import driver.*; 
 
public class BusinessLogic { 
  
 public void doit(){ 
  DriverFacade.activate(); 
 } 
 
 public void doitWrong(){ 
  HardwareDriver.activate(); 

//EmulationDriver.activate(); 
 } 
 
 public static void main(String args[]) { 
  BusinessLogic myLogic = new BusinessLogic(); 
  DriverFacade.mode = DriverFacade.HARDWARE; 
  myLogic.doit(); 
  myLogic.doitwrong(); 
 } 
} 
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C.2 Class DriverFacade.java 

 

C.3 Class HardwareDriver.java 

 

C.4 Class EmulationDriver.java 

 

package driver; 
 
public class EmulationDriver { 
 
 public static void activate() { 
  doit(); 
 } 
 
 private static void doit() { 
  System.out.println("Emulation executed."); 
 } 
} 

package driver; 
 
public class HardwareDriver { 
 
 public static void activate() { 
  doit(); 
 } 
 
 private static void doit() { 
  System.out.println("Hardware executed.");  
 } 
} 

package driver; 
 
public class DriverFacade { 
 public static int mode; 
 public static final int EMULATION = 0; 
 public static final int HARDWARE = 1; 
  
 public static void activate(){  
  switch (mode){ 
   case EMULATION:         
    EmulationDriver.activate(); 
     break; 
   case HARDWARE: 
    HardwareDriver.activate(); 
     break; 
  } 
 }   
} 
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Appendix D Algorithms SAVE LiFe in Pseudo Code 

D.1 Algorithms Architecture Manager: SAVE LiFe Fat Client 

The architect executes the methods publishArchitecture() and 
requestComplianceStatus() on demand. Both methods are accessible 
from the user interface of the Architecture Manager. 

D.1.1 Method: publishArchitecture 

// method publishArchitecture 
public int publishArchitecture() { 

// get client connected to server (auto-connect if not yet connected) 
ArchitectureManager client = ArchitectureManagerClient.getClient(); 
ComplianceChecker server = ArchitectureManagerClient.getServer(); 

 
// transferData = local data models managed by architect: (1) structural 
// model and (2) mapping, the data models to be transferred are encoded 
// as String arrays, the client ArchitectureManager always manages the 
// latest version of structural model and mapping   
StructuralModel structure = client.getStructuralModel(); 
MappingModel mapping = client.getMapping(); 
TransferData transferData =  

client.buildTransferData(structure, mapping); 
 

// remote call to server to transfer structural model and mapping model 
// as part of trasferData  
boolean Ok = server.receivePublishedArchitecture(transferData); 

 
// structural model and mapping have been transferred successfully to  
// server (i.e., compliance checker) 
if (Ok) { return; }  
// show error information 
else { displayErrorMSG(); } 

} 
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D.1.2 Method: requestComplianceStatus 

// method requestComplianceStatus 
public int requestComplianceStatus() { 

// get client connected to server (auto-connect if not yet connected) 
ArchitectureManager client =  
 ArchitectureManagerClient.getClient(); 
ComplianceChecker server =  
 ArchitectureManagerClient.getServer(); 

 
// remote call to server to request the transfer compliance status model 
// from compliance checker, the compliance status model comprises the  
// current overall compliance status of the whole system under 
development 
TransferData transferData = server.publishComplianceStatus(); 
ComplianceStatusModel complianceStatus =  

             transferData.retrieveComplianceStatusModel(); 
 client.setComplianceStatus(compliance) 
   

// visualize the compliance status model using a graphical diagram,  
// which enables the architect to reason on the compliance of the  
// overall system  

 client.visualizeComplianceStatus() 
} 
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D.2 Algorithms Development Monitor: SAVE LiFe Thin Client 

The development monitor tracks the work of each developer in the 
integrated development environment individually. The development 
monitor hooks into the incremental project builder of the development 
environment (e.g., for Eclipse org.eclipse.core.internal.events). The 
builder is executed whenever physical resources (i.e., files or folders) are 
changed and saved. When executed the method 
monitorCodeandSendDelta() of the development monitor is invoked 
automatically. Hence, the method is executed for any change made to 
the source code. 

When the server has computed the results, it invokes 
receiveLiveFeedback() remotely to transfer the results, potentially 
including the violation. 

D.2.1 Method: monitorCodeAndSendDelta 

// method monitorCodeandSendDelta 
public void monitorCodeandSendDelta() { 

// get client connected to server (auto-connect if not yet connected) 
DevelopmentMonitor client = DevelopmentMonitorClient.getClient(); 
ComplianceChecker server = DevelopmentMonitorClient.getServer(); 
 
// determine modified files in projects currently edited  
Files[] modifiedFiles = determineLocalDelta(ResourcesPlugin. 

getWorkspace().getRoot().getProjects(); 
 

// remote call to send delta (i.e., modified files) to server 
TransferData transferData = client.buildTransferData(modifiedFiles); 
Boolean Ok = server.receiveDelta(transferData); 
// delta (i.e., modified files) hasstructural model and mapping have  
// been transferred successfully to server (i.e., compliance checker) 
if (Ok) { return; }  
// show error information 
else { displayErrorMSG(); } 

} 
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D.2.2 Method: determineLocalDelta 

// method determineLocalDelta  
public Files[] determineLocalDelta (IProject[] projects) { 

foreach project in projects { 
 foreach file in project { 

// check file currently edited for modifications 
Status status = ConfigurationManagementAdapter 

.getFileStatus.getResource(file); 
 
  if (status == Status.MODIFIED) { 

//determine local delta of modifications, the 
resulting delta comprises a model of the file 
modifiedFiles[].add(file) 

  } 
} 

} 
// the delta comprises the source code files with modification made by 
// the developer, each developers  
return modifiedFiles[]; 

} 

D.2.3 Method: receiveLiveFeedback 

// method receiveLiveFeedback remote called by server 
public void receiveLiveFeedback(TransferData transferData) { 

// get client connected to server (auto-connect if not yet connected) 
DevelopmentMonitor client = DevelopmentMonitorClient.getClient(); 
ComplianceChecker server = DevelopmentMonitorClient.getServer(); 
 
// remotely called by server to transfer the results of the compliance 
// checking for the last delta sent to server 
DeltaResultModel deltaResults = 

transferData.retrieveComplianceStatusModel(); 
client.setDeltaResults(deltaResults) 
 
// displayDeltaResult 
client.displayDeltaResults(); 

} 
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D.2.4 Method displayDeltaResult 

// method determineLocalDelta  
public void displayDeltaResutl() { 

DevelopmentMonitor client = DevelopmentMonitorClient.getClient(); 
// get list of DeltaResults to display the single deltaResult, which  
// represent the architecture violations computed by the server  
DeltaResultModel deltaResults = client.getDeltaResults(); 
 
foeach deltaResult in deltaResults { 
 // resolve corresponding element in editor 
 String projectName = deltaResult.getProjectName(); 
 IPath path = deltaResult.getPath(); 

IWorkspaceRoot root =  ResourcesPlugin.getWorkspace().getRoot(); 
 IProject project = root.getProject(projectName); 

  ICompilationUnit unit = project 
.findElement(deltaResult.getCompilationUnit()); 

  
// clear existing marker, and create new ones for current  
// violations, and show them to developer 

 unit.clearMarker(); 
  unit.createMarkers(deltaResult.getViolation()); 

 unit.showMarkers(); 
} 

} 
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D.3 Algorithms Compliance Checker: SAVE LiFe Server 

The methods of the Compliance Checker are remotely triggered by the 
respective client. The ArchitectureManager invokes either 
receivePublishedArchitecture() or publishComplianceStatus(), while the 
DevelopmentMonitor invokes sendDelta().  

After compliance checking has been executed, the server invokes 
receiveLiveFeedback() in the DevelopmentMonitor so developers become 
aware of the violations – if present – promptly. 

D.3.1 Method: receivePublishedArchitecture 

// method receivePublishedArchitecture remote called by client 
public void receivePublishedArchitecture(TransferData transferData) { 

// get client connected to server (auto-connect if not yet connected) 
ArchitectureManager client =    
 ComplianceCheckerServer.getArchitectureClient(); 
ComplianceChecker server = ComplianceCheckerServer.getServer(); 
 
//update the data models of server 
client.updateStructuralModel(transferData); 
client.updateMapping(transferData); 

} 

D.3.2 Method: updateStructuralModel 

// method updateStructuralModel 
public void updateStructuralModel (TransferData transferData) { 

// updating existing structural model with new structural model sent by 
// client 
StructuralModel structure = transferData.retrieveStructure(); 
server.setStructure(structure) 

} 

D.3.3 Method: updateMapping 

// method updateMapping 
public void updateMapping(TransferData transferData) { 

// updating existing mapping with new mapping sent by client 
MappingModel mapping = transferData.retrieveStructure(); 

 server.setMapping(mapping) 
} 
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D.3.4 Method: publishComplianceStatus 

// method publishComplianceStatus, remotely called by client 
public void publishComplianceStatus() { 

// get client connected to server (auto-connect if not yet connected) 
ArchitectureManager client =  

 ComplianceCheckerServer. getArchitectureClient(); 
ComplianceChecker server = ComplianceCheckerServer.getServer(); 
 
// remote call to server to request the transfer compliance status model 
// from compliance checker, the compliance status model comprises the  
// current overall compliance status of the whole system under  
// development 
TransferData transferData = server.publishComplianceStatus(); 
ComplianceStatusModel complianceStatus 
=transferData.retrieveComplianceStatusModel(); 
 client.setComplianceStatus(compliance) 

} 

D.3.5 Method: receiveDelta 

// method receiveDelta remotely called by client 
public void receiveDelta(TransferData transferData) { 

// get client connected to server (auto-connect if not yet connected) 
DevelopmentMonitor client =  

ComplianceCheckerServer.getDevelopmentClient(); 
ComplianceChecker server = ComplianceCheckerServer.getServer(); 
 
// get modified files and create empty delta source code model 
Files[] modifiedFiles = transferData.retrieveModifiedFiles(); 
DeltaModel deltaModel = new DeltaModel(); 
 
// process each file locally modified by a developer and extract facts, 
// the delta model represents all locally modified files 
foreach file in modifiedFiles { 
 //cast file to compilation unit and extract delta facts 
 ICompilationUnit unit = file.getCompilationUnit(); 

DeltaModel deltaModel.add( 
server.extractDeltaFacts(unit, deltaModel)); 

} 
// update the source code model and keep information on history 
server.updateSourceCodeModel(deltaModel);  
 
// check compliance for the delta modified by a developer and distill  
// the violations (note: convergences and absences are filtered), the  
// delta violations are the spots causing violations (i.e., source code 
// comprising violating statements) 
DeltaComplianceStatus deltaCompliance =  

server.checkCompliance(deltaModel);  
deltaCompliance = server.distillDeltaViolations(deltaCompliance); 
 
// remote call to client to transfer the delta violations, the model  
// comprising the list of violations, this information raises the  
// awareness of each developer on client-side on violations caused by  
// him or currently present in the files modified, thus, develop can  
// correct the code and remove the code.  
TransferData transferData = client.buildTransferData(deltaCompliance); 
client.sendLiveFeedback(tranferData); 

} 
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D.3.6 Method: extractDeltaFacts 

// method extractDeltaFacts  
public DeltaSourceCodeModel extractDeltaFacts(ICompilationUnit unit,  

 DeltaSourceCodeModel deltaModel) { 
//parse the compilation unit with a programming language-specific parser 
and extract all dependencies caused by the file to other files or 
compilation units 

 CompilationUnitHandler handler = new CompilationUnitHandler();  
DeltaSourceCodeModel deltaModel =  

 handler.parseCompilationUnit(unit) 
return deltaModel; 

} 

D.3.7 Method: parseCompilationUnit 

// method parseCompilationUnit 
private DeltaSourceCodeModel parseCompilationUnit(ICompilationUnit unit, 

DeltaSourceCodeModel deltaModel) { 
// the ASTParser extract all dependencies caused by the compilation unit 
to other compilation units, hence the results are the delta facts 

 ASTParser parser = ASTParser.newParser().setSource(unit); 
CompilationUnit rootCU = (CompilationUnit) 
parser.createAST(null); 

 if (rootCU != null) {  
  rootCU.accept(new ASTVisitor(unit, deltaModel); 
 } 
 return deltaModel; 
} 
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D.3.8 Method: updateSourceCodeModel 

// method updateSourceCodeModel  
public void updateSourceCodeModel(DeltaSourceCodeModel deltaModel) { 

// get current date to mark point in time of modifications made 
GregorianCalendar date = new GregorianCalendar(); 
 
// get the source code model 
SourceCodeModel sourceModel = server.getSourceCodeModel(); 
 
// iterate over the elements of the deltaModel and update the source  
// code model respectively, because all modification are sent to the  
// server, the source code model managed by the central server is always 
// up-to-date  
foreach modelElement in deltaModel { 

// element exists already, update point in time and investigate 
// dependencies 

 if (sourceModel.exists(modelElement) == true) { 
  sourceModel.updateState(modelElement, date); 
 

// iterate over the dependencies of the model elements of 
// the deltaModel and update the source code model  
foreach modelDependency of modelElement { 

 
// dependency exists already, update modification 
// point in time 

   if (modelDependency.existsInSourceCodeModel()  
== true) { 

sourceModel.updateState(modelElement, 
           modelDependency, date); 

} else { 
// dependency does not exist, create  
// dependency in source code model with 
modification point in time 
sourceModel.add(modelElement,  

modelDependency, date); 
}    

}  
} else { 
// dependency does not exist, create model element and its  
// dependencies in source code model with modification point in 
// time 

  sourceModel.addModelElementWithDependencies(modelElement, 
state); 

 } 
 

foreach modelDependency of modelElement { 
  if (modelDependency.getModificationDate < date) { 

// source code model is cleaned, in case a  
// dependency no longer was removed 

   sourceModel.deleteDependency(modelDependency, 
 date); 

} 
} 

} 
} 
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D.3.9 Method checkCompliance 

// method checkCompliance  
public DeltaComplianceStatus checkCompliance(DeltaSourceCodeModel deltaModel) { 
 // get computational models required for compliance checking 
 StructuralModel structure = server.getStructuralModel(); 
 MappingModel mapping = server.getMapping(); 
 

// the lifting operator resolves the mapping and results in the  
// liftedCodeModel, which is a representation of the source code model 
// on the abstraction level of the structural model, hence, both models 
// can be compared 

 StructuralModel liftedCodeModel = server.lift(mapping, deltaModel); 
 

// create empty result container to store the compliance checking  
// results 

 DeltaComplianceStatus deltaCompliance = new DeltaComplianceStatus(); 
 

// check presence if planned dependencies of structure to identify  
// absences 

 foreach plannedDependency in structure { 
  plannedSourceElement = plannedDepdency.getSourceElement(); 
  plannedTargetElement = plannedDepdency.getTargetElement(); 
 
  foreach actualDependency in liftedCodeModel { 
   if (actualDependency.qetSourceElement() 

.equals(plannedSourceElement)) { 
    // plan matches actual, dependency is CONVERGENCE 
    deltaCompliance.add(plannedDependency, 

     CONVERGENCE); 
    break; 
   } 
  } 
  
  // plan did not match actual, dependency is ABSENCE 
  deltaCompliance.add(plannedDependency, ABSENCE); 
 } 
 

// check if actual dependencies are planned in structure to identify  
// divergences (i.e., violation dependencies)  

 foreach actualDependency in liftedCodeModel { 
  actualSourceElement = actualDepdency.getSourceElement(); 
  actualTargetElement = actualDepdency.getTargetElement(); 
 
  foreach plannedDependency in structure{ 
   if (actualDependency.qetSourceElement() 

.equals(actualSourceElement)) { 
    // actual matches plan, dependency is CONVERGENCE 

deltaCompliance.add(actualDependency,  
       CONVERGENCE); 

    break; 
   } 
  } 
  
  // actual did not match plan, dependency is DIVERGENCE 
  deltaCompliance.add(actualDependency, DIVERGENCE); 
 } 

// return compliance checking results (deltaCompliance), the totality of 
// CONVERGENCEs, ABSENCEs, and DIVERGENCEs 

 return deltaCompliance; 
} 
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D.3.10 Method: distillViolations 

// method distillViolations  
public DeltaComplianceStatus distillViolations(DeltaComplianceStatus  
                deltaCompliance) { 

// filter for compliance status for divergences only 
 foreach dependency in deltaCompliance { 
  if (dependency.getStatus() == CONVERGENCE) { 

deltaCompliance.remove(dependency); 
} 

  if (dependency.getStatus() == ABSENCE) { 
deltaCompliance.remove(dependency); 

} 
} 
return deltaCompliance; 

} 
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Appendix E Experiment Live Feedback 

This section presents the material used for the experiment on live 
compliance checking with SAVE LiFe as described in Section 6.1. 
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E.1 Briefing Questionnaire 

 

Figure 72: Experiment Live Feedback: Briefing Questionnaire 
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E.2 Debriefing Questionnaire 

 

Figure 73: Experiment Live Feedback: Debriefing Questionnaire 
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E.3 Results Briefing and Debriefing Questionnaire 

Questions Factor strong agree agree disagree strong disagree
I used the evolution monitor on a regular basis during the 
implementation.

Developer 
Involvement - 1 5 3 2

I used the the results of the evolution monitor to check the 
architecture compliance of my source code.

Developer 
Involvement - 1 2 6 2

It was hard to get familiar with the handling of the evolution 
monitor.

Target Environment -
Degree of Novelty 0 1 6 4

I would have needed more support from an expert to use the 
evolution monitor.

Target Environment -
Champion Support 0 6 3 2

I would have needed a better tutorial or a training to use the 
evolution monitor.

Target Environment -
Training 1 6 1 3

I had the choice whether to use the evolution monitor or not. Perceived Control - 3 1 5 2
The evolution monitor improved the connection between 
architectural work and implementation.

Perceived Control - 
Process 1 6 3 1

The evolution monitor results were predictable.
Perceived Control - 
Predictability 0 2 8 1

I had no problems in using the evolution monitor.
Perceived 
Characteristics - 2 4 3 2

The evolution monitor helped me to avoid architecture violations.
Perceived 
Characteristics -  1 3 6 1

The evolution monitor helped me to avoid conflicting code 
between me and my team members.

Perceived 
Characteristics -  0 3 6 2

The evolution monitor helped me to reveal the architectural 
context of the elements I worked on.

Perceived 
Characteristics -  0 4 5 2

The evolution monitor led to an improved architecture. Perceived Impacts - 0 3 5 2
The evolution monitor helped me to write code that is compliant 
to the planned architecture.

Perceived Impacts - 
Quality 2 4 4 1

The evolution monitor helped to improve the overall quality of 
the system.

Perceived Impacts - 
Quality 0 4 5 2

The evolution monitor saved me time to merge mine and my 
team members’ code.

Perceived Impacts - 
Productivity 0 2 6 3

The evolution monitor saved me time of later refactorings due to 
architecture violations.

Perceived Impacts - 
Productivity 0 4 6 1

In my next project I would like to use the evolution monitor 
again.

Transfer Success - 
Use 1 4 3 2

As an architect/project manager I would recommend my 
developers to use the evolution monitor.

Transfer Success - 
Use 1 6 1 2

I liked working with the evolution monitor.
Transfer Success - 
Satisfaction 1 4 2 2

I think the evolution monitor is cool tool.
Transfer Success - 
Satisfaction 3 4 1 2

 

Figure 74: Experiment Live Feedback: Results Briefing and Debriefing Questionnaire 
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