
glueTK : A Framework For Multi-Modal, Multi-Display
Human-Machine-Interaction

Florian van de Camp
Fraunhofer IOSB

Karlsruhe, Germany
florian.vandecamp@iosb.fraunhofer.de

Rainer Stiefelhagen
Karlsruhe Institute of Technology

Karlsruhe, Germany
rainer.stiefelhagen@kit.edu

ABSTRACT
As new input modalities allow interaction not only in front of
a single display, but enable interaction in the whole room,
application developers face new challenges. They have to
handle many new input modalities, each with its own inter-
face and requirements for pre-processing, deal with multiple
displays, and applications that are distributed across multi-
ple machines. We present glueTK, a framework that abstracts
from the complexities of these input modalities, allows the
design of interfaces for a wide range of display sizes, and
makes the distribution across multiple machines transparent
to the developer as well as the user. With an example ap-
plication we demonstrate the wide range of input modali-
ties glueTK can support and the functionality this enables.
GlueTK moves away from the focus on point and touch like
input modalities, enabling the design of applications tailored
towards interactive rooms instead of the traditional desktop
environment.

Author Keywords
Application frameworks;multi-modal interfaces

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User
Interfaces. - Graphical user interfaces.

General Terms
Design, Human Factors

INTRODUCTION
A wide range of new input modalities are becoming mature
enough to be used in real world applications. The introduc-
tion of the Kinect has shown, that there is much interest in
new input technology. It has also shown, that the focus of in-
teraction broadens from thinking just in terms of display coor-
dinates, to the human in front of the display. Other computer
vision technology offers an even wider spectrum of informa-
tion about humans that can be used for interaction. For an
application developer however, it is still hard to make use of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’13, March 19–22, 2013, Santa Monica, CA, USA.
Copyright 2013 ACM 978-1-4503-1965-2/13/03...$15.00.

Figure 1. Room setup with back projection video wall and digital table

all this information. Current frameworks are mostly WIMP
based and therefore do not offer interfaces for modalities
other than mouse and keyboard. In many cases this has led
to using touch like input modalities to emulate mouse input,
which severely limits the real potential of this new generation
of input modalities that can provide richer and more natural
ways of interaction. Post-WIMP frameworks have been pro-
posed, but they take care of handling almost exclusively touch
like input modalities.
When Xerox created the Star with the mouse as an input
modality, they completely rethought the user interface [15].
Unlike previous text based interfaces they tailored the in-
terface towards making use of the potential of a computer
mouse. This example shows, for all new input modalities,
input (handling new input modalities) and output (display of
content) can not be considered independent of each other.
GlueTK is a framework for handling both, input and output,
which allows the output to be tailored towards the proper-
ties of the input modalities and the input modalities to be im-
proved by utilizing knowledge about what is currently being
displayed. In addition, glueTK abstracts away from the fact
that applications are distributed across multiple machines and
displays by introducing a network transparent signal and slot
system.
The requirements for such a framework pose many chal-
lenges. A large variety of input modalities has to be handled,
which are connected in completely different ways and pro-
vide not only touch like data but completely orthogonal input
data as well. Since many input modalities are concerned with
persons in the whole room rather than in front of a single

display, multiple display devices with different aspect ratios,
resolutions and sizes, ranging from smartphones to display
walls of many meters in size have to be handled. And because
multiple displays are involved, the framework has to abstract
from the fact that multiple machines and applications are in-
volved; neither the application developer nor the user wants
to worry about this. The framework has to allow for transpar-
ent communication and data transfer across applications and
machines. All components of the framework have to meet
high performance requirements as the input needs to trigger
instant visual feedback and allow for low latency interaction.
The latency of the whole interaction chain from input han-
dling to display update has to be minimal to allow for fluent,
natural interaction.
The remainder of the paper is structured as follows: First
we will discuss related work, followed by a description of
glueTK’s architecture and its components. Using an exam-
ple application for crisis control rooms we give an insight to
what kind of applications can be created using glueTK. A fi-
nal conclusion will both summarize and give an outlook on
the future plans for glueTK.

RELATED WORK
There have been several approaches to handle touch and
touch-like input modalities. Especially for table top displays,
multi touch has gained much popularity and several frame-
works have been created with such a display in mind [7, 26,
11, 16, 24]. While these frameworks deal with the many dif-
ferent technologies enabling multi touch they are mostly lim-
ited to touch and multi touch like modalities. As the table top
display is the focus for these frameworks, they do not support
inter display and inter machine interaction.
Other projects move away from a single display to allow in-
teraction in a room. The intelligent room project [5] is one,
that aims at providing an intelligent room, without any dis-
plays, that users can interact with in a star-trek like fashion.
The system integrates multiple input modalities by utilizing
”agent-based layers” in which each agent offers an abstrac-
tion of the component it wraps, so the application developer
doesn’t have to deal with it in detail. One of the main goals
of the interactive workspace project by Johanson et al. [14] is
the design and use of rooms that contain one or more large
displays. The use of these is not tailored towards the multi-
ple modalities and display sizes for the most part, but towards
using readily available technology such as websites and tra-
ditional WIMP applications. They implemented an ”Event
Heap” that is used as a central entity to distribute events be-
tween all machines and interfaces. A specific application of
multiple input modalities for collaborative work on multiple
devices has been presented by Bragdon et al. in [4]. Instead
of presenting a generic approach to implementing such appli-
cations, they focus on the combination of touch and pointing
as well as the social acceptability of gestures in an office set-
ting.
Krumm et al. [17] present one of the few systems that go be-
yond touch-like modalities for interaction. In their system,
they use a multi person tracker to control certain functional-
ity of an intelligent room. However their focus is the tracking
system itself that has to cope with the challenges faced in such

an environment and not the use or integration of the tracking
system for interaction. Fernandes et al. [8] describe a mid-
dleware framework that allows the use of multiple modalities
that can easily be exchanged if they offer overlapping capa-
bilities.

There has been a lot of work on fusing multiple input modal-
ities [9, 23, 18]. There are frameworks to accomplish the
fusion of multiple input modalities in a generic fashion such
as MUDRA [13]. The focus is the fusion itself and there-
fore only touch-like modalities or naturally related modalities
such as speech are considered in most cases. Most of the work
on multi modal input ignores the question of the correspond-
ing user interface. However as Oviatt [20] points out, output
is part of a multi modal interaction. Melchior et al. [19] de-
scribe a toolkit that deals with many issues of multi display
interaction, especially data and widget transfer between dis-
plays. While supporting multiple displays, devices and plat-
forms, for input and output they rely on the traditional WIMP
paradigm and also focus on working on a single device at a
time. The ROSS API [28] is a toolkit that allows communi-
cation between multiple devices to exchange input and output
data. The main focus is a nested structure to organize devices
and modalities within a room. One of the few examples of
frameworks that include dedicated output is PyMT [12]. They
state that current GUI toolkits are WIMP based and therefore
not built for the new range of input modalities. Rendering
user interfaces tailored towards multi touch interaction is a
part of PyMT. This allows them to build applications that take
into account the features multi touch has to offer compared to
a mouse, and also deal with its properties. PyMT is build
for touch like input modalities and while the control of input
and output would allow for it, they do not make use of the
knowledge about what is displayed on the screen to improve
the input modalities.
While most frameworks only focus on the input modalities,
mostly ignoring the display of user interfaces and the ac-
tual interaction with displays, glueTK provides one coher-
ent framework to handle input as well as create user inter-
faces and drive multiple display devices. GlueTK supports
not only touch and pointing like modalities and speech, which
are rather common, but also enables the use of information
from systems like person tracking, head pose estimation and
face identification for interaction.

GLUETK
In the following sections we will describe the glueTK archi-
tecture and how it deals with the challenges involved in cre-
ating multi-display applications utilizing a large variety of
input modalities. One of the main challenges is making all
different input modalities easily available, as they come with
a wide variety of interfaces, data representations, and they
require different kinds of pre-processing. Displays vary in
physical size, aspect ratio, and resolution, this is both chal-
lenging from a performance perspective but also from a de-
sign perspective as user interface elements have to be tailored
towards these different configurations. Since many new input
modalities, like pointing gestures, are not necessarily bound
to a single display, glueTK applications can span across mul-
tiple displays that are driven by different machines. Because

of this necessary separation, glueTK has to deal with com-
munication and data transfer across machines to make this
distribution transparent to the application developer and the
end user. GlueTK is implemented in C++ and uses the Clut-
ter toolkit [1] for rendering. To seamlessly integrate the
multi modal and multi display aspects of glueTK, Clutter is
completely wrapped and invisible to the developer. For net-
work communication we use a middleware based on the pub-
lish/subscribe communication paradigm, developed in our re-
search group. GlueTK is split into two separate libraries:
glueInput and glueOutput. GlueInput provides a clean inter-
face to input modalities and takes care of all pre-processing
and adaptation so the developer only has to deal with one
coherent interface. GlueOutput offers an easy way to build
efficient interfaces for a large variety of display types, from
smartphones to high resolution video walls, connected to one
or multiple machines in a network. In many cases, it is not an
option to rewrite existing applications using glueTK. In these
cases, glueInput can be used without glueOutput to integrate
new input modalities into an existing application.

The contributions of this paper are:

• A network transparent signal and slot system

• A flexible and simple interface to modalities beyond
mouselike input and context aware preprocessing

• A generic framework for creating cross machine and cross
display user aware applications

• A way to enable the use of new modalities in existing ap-
plications without limitation of the modalities potentials

GLUETK ARCHITECTURE
As an introduction to the components that make up glueTK
and how they work together, Figure 2 illustrates the architec-
ture with some exemplary components. Along with the fol-
lowing description, this is intended to give an overview of the
architecture before the components will be described in more
detail.
The input modalities are displayed on the left. FaceID, a
face recognition system, which outputs progress information
about the identification process, Persontracker, a multi person
tracking system which generates a list of coordinates of per-
sons in a room, a pointing gesture recognition system, and
a gyro mouse, which outputs relative display coordinates.
While FaceID, Persontracker and pointing recognition send
their information via a local network, the gyro mouse has a
USB interface. For each of those input modalities there is
a corresponding event handler on the right. The goal of the
event handlers is to gather data from the input modalities, do
pre-processing and add functionality. All event handlers push
the final information as signals to the event manager. Be-
sides managing all event handlers and being the central point
of communication for all input data, the event manager also
takes care of subscribing to network streams. This way, if
multiple event handlers need the same data, there is no need
to subscribe to them separately in each event handler. Con-
text handlers subscribe to signals of other event handlers and
generate additional information. The 3D pointing directions

of the pointing system, for example, are mapped to displays
in the room this way.
Because many displays can be used in a glueTK application
that are driven by different machines, intra machine as well
as inter machine communication and data transfer are impor-
tant aspects of glueTK. To make the differentiation easier, a
glueTK application consisting of several applications in the
traditional sense is from here on called “glue application”.
All applications that make up such a glue application, com-
municate using a network transparent signal and slot system,
which also takes care of the communication within each ap-
plication. The proxy event handler takes care of distribut-
ing local signals via the network to all other applications
and making the received signals available locally. This way,
within a glue application there is no difference between a sig-
nal from within the same application and a signal from a dif-
ferent application running on a different machine.
To distribute these signals to the right slots of the right wid-
gets, the signal manager keeps track of connected signals and
slots using a mapping table. Every time a signal comes in,
either from a local widget or from the event manager, the sig-
nal manager checks if any slots are connected to it and calls
the corresponding slots if that is the case. If only glueInput is
used, the signal manager constitutes the interface to any third
party software. If both glueInput and glueOutput are used, a
derived signal manager also initializes the display and man-
ages the rendering of all widgets.
Widgets are interface elements created from basic building
blocks provided by glueTK. A widget can offer slots that can
be connected to any signal, be it for communication with
other widgets, e.g. a button click triggering the display of
an image, or for reacting to data from input modalities, e.g.
moving the widget to the display position provided by the
gyro mouse, to create a cursor.

GLUE INPUT
The input layer takes care of getting information from input
modalities to the application developer. This way, instead of
having to deal with a multitude of different interfaces to get
the input data, all information is provided via one coherent
interface.

Event manager
The event manager is the entity between the event handlers
and the user interface. By having one central component for
communication between input and output layer, many dupli-
cations can be avoided. It allows for a single, clean interface
between the layers, which makes it easy to separate them. To
provide input modalities with context information, glueTK
applications always provide information about the state of the
user interface elements (position, size, state etc.) to the event
manager where event handlers can access this information.
If glueInput is used to connect modalities to an existing ap-
plication, the application developer can provide context in-
formation at run time which is made available to the event
handlers to exploit this information. For delivering input data
from any modality to the user interface, glueTK allows for
similar flexibility. All input data is provided as signals which
can be mapped to functions as will be shown below. This
way, the developer has a coherent way of accessing all data,

Figure 2. glueTK architecture overview with exemplary input modalities and corresponding event handlers

independent of the actual formatting, protocols or required
pre-processing the modalities rely on.

Event handlers
Input modalities come with a wide variety of interfaces. This
ranges from devices directly connected via USB, requiring
special drivers or emulating a mouse, to systems running on
different machines, communicating via a network. Because
this variety of sources complicates the handling of multiple
modalities, glueTK abstracts from them at the earliest possi-
ble point using event handlers. While many established in-
put devices can simply be wrapped by an event handler, so
their input data can be accessed in a generic fashion, there
are many new modalities that can be greatly improved in the
event handler. Two examples for improvement are data filter-
ing and added functionality. Unlike the input device itself, the
event handler has access to the current state and layout of the
user interface. This allows for taking this context information
into account when filtering data to, for example, make use

of assisting technologies like force fields [3]. An example for
added functionality is the click event we added to our pointing
gesture recognition system. The pointing gesture recognition
system only provides the pointing direction. To actually in-
teract with an interface it lacks a way to trigger a click. An
easy way to implement a click functionality is a dwell timer
- keeping the pointing arm at the same position for a certain
amount of time triggers a click. Instead of implementing this
feature inside the pointing gesture recognition system it was
implemented within the corresponding event handler. This
way, the event handler will only start the dwell timer if the
gesture points towards a click able object. Also, the event
handler can easily pass information about the dwell progress
to the application, which provides the user with immediate
visual feedback as illustrated in Fig. 3. As the pointing ges-
ture recognition is not as robust and accurate as a mouse, the
amount of filtering applied to the pointing data can be in-
creased when close to a click able object to assist the user
in keeping the cursor still.

Figure 3. Visual feedback when clicking a button

Context handlers
While it is common to make raw input data like coordinates
from a person tracker available, in many cases application
developers do not want to deal with the details of this infor-
mation as this would require additional logic in the interface.
To abstract from this low level information, context handlers
subscribe to the signals from one or more event handlers and
provide higher level information, again as signals, to the ap-
plication. In the case of a person tracker, the kind of high
level information could be relations of persons to displays
(eg. “person x left display y”’). In case of pointing modali-
ties that are detached from a specific display and simply pro-
vide pointing directions in the room coordinate system, the
data has to be mapped to the displays in the room to provide
display coordinates that can actually be used to interact with
an interface on a screen. Context handlers are, however, not
limited to abstracting from data from a single event handler.
Fusion of both similar modalities and heterogeneous modali-
ties can be done within a context handler. For example, using
both person tracker and pointing system data, the detected
pointing directions can be associated with the corresponding
persons. This allows to differentiate between a multipoint
gesture by a single person and two single point gestures by
two different persons.

COMMUNICATION
GlueTK provides a communication mechanism based on the
signal and slot concept [27]. It is used to provide the input
data from the event handlers to all applications within the glue
application. This makes input modalities usable in a whole
room independent of the actual machine they are connected
to. In addition, the same mechanism is used to allow wid-
gets to communicate with each other, again independent of
what machine they reside on, and to transfer widgets between
displays and therefore machines.

Signals and slots
The idea of a signal and slot system is, that objects can send
signals containing arbitrary information which - if connected
- are received by other objects and will execute special func-
tions, so called slots. This concept allows for very flexible,
asynchronous communication. Unlike previous implementa-
tions, a distinctive feature of the signal and slot implemen-
tation in glueTK is that local signals are automatically dis-
tributed over the network and are available to all parts of the
glue application. Therefore the way signals and slots are con-
nected in most implementations:

connect(Object1, Signal1, Object2, Slot2)

Is extended to support the connection of signals and slots
across several applications:

connect(App1, Object1, Signal1,
App2, Object2, Slot2)

This allows to connect one specific signal to one specific slot.
The identifiers in the connect command are just strings, so
there is no need to have access to the objects in code, and
signals and slots can be connected at any point, in any part
of the glue application. In many cases it can be convenient to
address all applications or all slots or all objects. To achieve
this, any identifier in the connect command can be substituted
by the wildcard character “*”.

connect(App1, Object1, Signal1,
*, *, hide())

Every interface element has default slots for common func-
tionality, one of them is the “hide” slot, which hides the el-
ement when called. The above command connects a single
signal to all “hide” slots of any object in any application and
would hide all interface elements without addressing each in-
dividually. Independent of what machine an input modality is
connected to, independent of where widgets reside, the com-
munication is always based on this signal and slot system and
that is all the developer has to deal with.

Widget transfer
As glue applications can spread across multiple screens,
users should be able to move widgets across screens without
worrying about the underlying technical details. This allows
for example, to attach a personal menu widget to a person’s
position in the room and have the menu show up on the
display closest to the person. Or to simply drag a widget
from one display to another. Making this possible however, is
not trivial, as screens can be connected to different machines.
So moving a widget from one screen to another might
actually require the widget to be transferred to a completely
different machine. While the network transparent signal and
slot system abstracts from the fact that a glue application
runs across multiple machines to drive multiple displays
with regard to the communication, signals are designed for
low latency communication and are therefore not suitable
for transferring large amounts of data. The transfer of a
widget can be triggered explicitly or by setting its position
relative to a different screen. It is then serialized as JSON
data, attaching binary data as encoded strings. The data is
transferred to the target machine via a network connection,
where a new widget is then created by deserializing this
data. To avoid delays in case of large attached binary data
(large textures for example), widgets have a flag which, when
set, causes them to be synchronized. This means that every
machine keeps a continuously updated copy of the widget.
This way, if the widget is transfered across displays, the
data is already available on the target display. This allows to
move widgets across displays, no matter if these displays are
connected to the same machine, running a single application
or if they are connected to different machines, running
different applications.

Signal manager
The signal manager is the link between the input and output
layer. All signals from input modalities or other applications,
that come in via the event manager, are passed to the signal
manager. Using a mapping table, it looks up which slots are
connected to incoming signals and calls the corresponding
functions. The signal manager also offers the bidirectional
interface for developers, to integrate the input modality ab-
straction of glueTK into existing applications.
For a glue application, the signal manager is extended to also
drive connected displays and manage the rendering of wid-
gets. It passes any signals emitted by the widgets to the event
manager, so they are available within the whole glue appli-
cation. As the signal manager is highly multi threaded, there
is no limit to the number of simultaneous signals that can be
passed on and handled, which is important when dealing with
not only multi touch, but multi person, multi touch on large
display walls.

GLUE OUTPUT
GlueOutput is responsible for creating and rendering user in-
terfaces on displays. Despite the fact that these displays vary
greatly in size, resolution and aspect ratio, the goal is to offer
the application developer an easy and flexible way to create
user interfaces for an arbitrary range of displays. For this
reason, glueTK offers elementary building blocks, that allow
for easy assembly of custom, interactive widgets that can be
connected to input modalities as well as communicate with
each other. While this requires additional work, it allows to
build widgets specifically tailored towards the properties of
the available input modalities as well as screen sizes and res-
olutions.

Widgets
In existing GUI toolkits, widgets intend to solve one specific
input task, usually obtaining one well defined type of value
from the user. There are common sets of widgets that provide
input elements for the most common types of values. This
causes users to get used to certain ways information is asked
from them and makes them feel comfortable even with un-
known applications as many parts of that application are in
fact, well known. This kind of reuse is possible if the input
modalities as well as the range of display sizes and resolu-
tions stays the same. Of course it is possible to simply scale
such widgets to any screen size, but that would most defi-
nitely not result in an optimal interface. Also, given the wide
range of modalities glueTK supports, not all input modalities
would work with widgets tailored towards mouse use.
In most cases, this means that custom widgets, to allow user
input, have to be created. This way, the best possible interface
can be created given the target displays and input modalities.
To assist users in the creation of such custom widgets, glueTK
contains building blocks for images, videos, text, maps and
web content that can be easily combined. Every building
block has a set of default properties such as position, size,
rotation, etc. so that placement and manipulation is the same
for all types of building blocks. Each widget created from one
or more of these building blocks, has the ability to offer slots
to allow access to its functionality. These slots can be con-
nected to signals from input modalities to, for example, set

the widget’s position to that of a person in front of the display
to make the widget follow the person.

Animation manager
The animation manager allows to apply a predefined set
of animations to any widget to provide visual feedback
to the user. In addition, every property of a widget can
be manipulated with custom animations to create more
appealing interfaces. Animations are applied by calling a slot
in the animation manager, which allows their use at any point
in the glue application, even across displays and machines.
When dealing with input modalities that are not universally
known, providing this kind of feedback is important as users
tend to need more guidance.

EVALUATION AND EXAMPLES
To demonstrate the functionality of glueTK, an application
for a next generation control room has been implemented.
In addition to this overview of functionality that glueTK en-
ables, we evaluated the network transparent signal and slot
system with regard to its performance, as it is an important
aspect of the high flexibility described above. It is therefore
important that its performance does not constitute a bottle-
neck for the framework. We did not evaluate the rendering
performance since we rely on the external Clutter library [1].
As Clutter is OpenGL based, the performance is highly de-
pendent on the utilized hardware and display resolutions. We
do however drive displays up to 2160p with a single NVIDIA
GTX480 and up to eight XGA displays using two low end
NVIDIA GF9600GT without having any performance issues.

Performance evaluation
There are four ways signals are used within glueTK: from
event handlers to widgets of the same application, from wid-
gets to other widgets within the same application, from event
handlers to remote applications and from widgets from one
application to a remote application. There is, however, no
difference internally between sending a signal from an event
handler to a widget or from another widget. For evaluation
we therefore differ between internal signals within the same
application and remote signals, between separate applications
that run on different machines. Most signals are lists of pa-
rameters which result in rather small amounts of data which
have to be transferred. For evaluation, we chose a typical sig-
nal size of 342 characters (∼ 0.33kbyte) and for comparison
a 76480 characters signal (∼ 74kbyte or about twice the text
of this paper). For remote signals we used two machines in
a switched gigabit ethernet network. We transfered 100000
signals 10 times. The time from sending a signal to trigger-
ing the target slot was measured. The following table shows
the averaged results as the number of signals per second.

type/size 342 characters 76480 characters
local 115500.11sps 111844.31sps

remote 6690.75sps 407.84sps

Considering that most input modalities, which usually pro-
duce higher traffic than inter widget communication, update

with 50Hz or less, the performance of the network transpar-
ent signal and slot system leaves enough room to not cause
any significant latency.

Control Room Application
While glueTK is a generic framework which has been used to
build different applications, we present a control room appli-
cation as a specific example. The task of a control room is the
planning and dispatching of relief squads, to deal with disas-
ter situations. Each user is typically assigned a role according
to the continental staff system which assigns a certain set of
tasks and responsibilities. Cohen at al. [6] have shown early
on that technology can assist users in command and control
environments. So unlike current, rather low tech rooms, the
goal of the “smart” control room is to allow multi modal in-
teraction with a multitude of displays and devices to make the
use of technology more intuitive and efficient. In the follow-
ing, an example scenario will be described that shows some
aspects of the application and how glueTK manages a wide
variety of input modalities ranging from person tracking to
head pose estimation and display devices from a 9cm smart-
phone to a 427cm video wall. We will first describe the in-
volved hardware and software components.1.
The main display is a 4m× 1.5m back projection video wall
with a resolution of 4096px × 1536px which serves as an
overview of the whole geographic region of the area of au-
thority. A 0.9m × 1.2m digital back projection table with a
resolution of 1400px×1050px serves as an interactive work-
station for specific assignments. Tablet computers can be
used on the table as high resolution digital magnifiers and an-
notation boards as described in [10]. On a total of 4 machines
(Intel QuadCore 2.4Ghz) with 10 cameras (9 Axis 211a, 1
Logitech Quickcam Pro), we have six computer vision com-
ponents running:
A commercial face recognition system [2] using a webcam
attached to the right side of the video wall. Four cameras
around the video wall are used to build a 3D reconstruction of
the area in front of the video wall and derive pointing gestures
from that information as described in [22]. A person tracking
component utilizing a camera with a fish eye lens in the ceil-
ing can track multiple persons throughout the whole room.
At the digital table, a stereo camera set up allows the use of
not only pointing gestures, but also the detection of more de-
tailed hand gestures as described in [21]. A marker tracker
can locate and identify tablet computers and smart phones on
the digital table using a MCMXT-Marker [10] based tracker.
Finally, a head pose estimation system [25] uses a camera that
observes the person standing in front of the digital table and
analyses the persons’ focus of attention.
The task of the glueTK application is to make use of all the
information these components provide and create user inter-
faces on the displays to assist users in assessing the situation
and plan missions for the relief units, based on the informa-
tion about incidents coming in. One example usage of the
application will be described in the following, highlighting
what happens behind the scene to make the interactions pos-
sible.
1A video of the smart control room application is available at:
http://www.youtube.com/watch?v=cTDqDbBrysk

Figure 4. Visual feedback indicating the face identification in progress.

The video wall displays an overview map of a city while the
digital situation table displays a small subsection of the map
in greater detail. A person, S1, is standing at the digital sit-
uation table as another person, S2, comes in. S2 starts his
shift, and needs to get an overview at the videowall of what
is going on in the city. To be able to use the system, he has
to identify himself by looking into the webcam attached to
the side of the video wall. The face identification compo-
nent sends out status information like face detected, identifi-
cation in progress and successfulid idX or unknown person.
A face identification event handler receives these status mes-
sages via the network and makes them available as signals in
the glueTK application. A face identification widget gives the
user visual feedback about the ongoing identification progress
by providing slots to display banners (see Figure 4) that are
connected to these signals. A personal menu widget has a slot
that is connected to the successfulid idX signal, which causes
the personal menu belonging to S2 to appear right in front of
him after identification.

To make the personal menu appear right in front of S2 it needs
information about the person’s location as well. To provide
this information as signals, so it is readily available to the
widgets, there is a tracking event handler that receives up-
dates about the locations of all persons in the room. At the
video wall, since it is such a large display, the location in-
formation is not only used to make the menu appear at the
person’s location initially but it also follows the person as he
walks along the video wall.

The map used on the video wall is rather minimal to avoid
clutter on the overview. However, S2 can get more detailed
information by selecting a map overlay tool from his personal
menu. To do this, he simply points to the according icon in
his personal menu (Figure 5).
A few things happen in the background at this point. First of
all, there is an context handler for the pointing gesture com-
ponent that detects dwell based clicks, while giving visual
feedback as described above. As mentioned before, the per-
sonal menu follows the person along the video wall. This can
be a problem if the person tries to select an item from the
menu. To make this easier the pointing signal is not only con-

Figure 5. Pointing gesture to select items in the locked menu.

nected to the cursor but also to the personal menu, that will
lock in place if it is pointed at. The map overlay that appears,
displays a more detailed map in a rectangular region around
the pointing direction and moves with the pointing gesture
across the whole wall. With another click the overlay can be
dismissed.
Now that S2 got an overview, he joins his colleague at the
table and walks from the video wall to digital table. The
personal workspace automatically follows S2 from the video
wall to the table. A context handler uses the information
about the person’s position and the displays’ positions, to
generate signals like at wall or at table which are connected
to corresponding slots of the personal menu widget and trig-
ger a display transfer. Here, glueTK abstracts away from the
fact that these are different displays driven by different appli-
cations running on different machines. The user has a coher-
ent experience of interacting with one room-embracing glue
application.
While S1 and S2 are at the table an alarm message about an
explosion is displayed at the video wall. Both go up to the
video wall and their respective personal workspaces appear
in front of them. They can now collaborate at the wall by
using additional tools from their workspaces to analyse the
alarm with respect to the overall situation.

To actually plan the deployment of relief squads in detail,
they move back to the table. To signal anyone looking at the
overview wall that this alarm is taken care of, one of the op-
erators loads the alarm message into his personal workspace
using a pointing gesture. By doing so, the event is now as-
signed to him and as soon as he arrives at the digital table, it
moves and zooms the map to the location of the explosion.
At the digital table, special hand gestures allow different map
manipulations. With all five fingers stretched out the map
can be moved, with two fingers stretched out the map can
be zoomed with both hands, and a single stretched out finger
triggers a click signal (see Figure 6).

Since glueTK gets information about the head pose orienta-
tion of the person in front of the digital table, it can keep
track of what display the operator currently looks at. While
both are focused on the table, planning the deployment of re-

Figure 6. Map layer selection with pointing gesture on the digital table.

lief squads, another alarm comes in which is only displayed
on the table. If the operator in front of the table looks up to
the video wall, the alarm is displayed there as well with addi-
tional information to help him understand the global context.
The operator can then point from the table to the alarm on
the wall to acknowledge the message. Even so, this pointing
gesture is detected by the cameras above the table, which are
connected to the machine that drives the table display, glueTK
makes this information available globally, so it can be used to
interact with the video wall as well.
Another operator S3 comes in with a smart phone to trans-
fer some images he took to the video wall. He can control
a special cursor on the wall using the phone’s gyroscope and
transfer the pictures by clicking on them. Of course the trans-
fer works both ways, so to get the deployment blueprint S1
and S2 created on the table, the smart phone can be placed
on it, where it is located and identified using a marker on its
back. The transfer is initiated by placing one finger on the
table and another on the smart phone.

All of the described components and functionality is imple-
mented and works in real time. The full glue application has
been presented at CeBIT 2011 and proven to work within the
challenging conditions of an exhibition booth.

CONCLUSION
In this paper, we presented a framework for creating multi
modal applications that can span across multiple displays and
machines. A generic approach is used to handle any input
modalities, not limited to touch like modalities, they are made
available through a single coherent interface. It allows for
bidirectional communication to enable the use of context in-
formation. As many modalities targeted do not provide touch
like data, this context information is important and input data
can not simply be used to emulate a mouse as it is common
practise in many frameworks with a focus on point and touch
input. This abstraction layer can be used independently in ex-
isting applications without drawbacks, to integrate new input
modalities. The presented framework assists in the creation of
interfaces for a wide range of display sizes, aspect ratios, and
resolutions. The distribution of user interfaces across displays

and machines as well as all communication, is transparent to
the application developer as well as the end user. In an exam-
ple application for crisis response rooms, we demonstrated
the integration and interaction of many input modalities like
gestures, person tracking, face identification, headpose ori-
entation, a gyroscope as well as the utilization of multiple
displays in a room. While glueTK has already been used by
other people than the original developers, in the future we
would like to make glueTK available to a greater audience.
As for extending glueTK, we will explore ways of providing
more complex widgets, which are still usable independent of
screen sizes and connected modalities, and further improve
the use of context information as this becomes more impor-
tant in such complex environments.

Acknowledgements
This work is supported by the Fraunhofer-Gesellschaft Inter-
nal Programs under Grant 692 026.

REFERENCES
1. Clutter toolkit. http://www.clutter-project.org (accessed October, 2012).

2. Videmo face sdk. http://videmo.de/products (accessed October, 2012).

3. Ahlström, D., Hitz, M., and Leitner, G. An evaluation of sticky and
force enhanced targets in multi target situations. In 4th Nordic
conference on Human-, no. October (2006), 14–18.

4. Bragdon, A., Deline, R., Hinckley, K., and Morris, M. R. Code Space :
Touch + Air Gesture Hybrid Interactions for Supporting Developer
Meetings. In ITS (Kobe, Japan, 2010).

5. Brooks, R. A. The intelligent room project. In Proceedings of the 2nd
International Conference on Cognitive Technology, CT ’97
(Washington, DC, USA, 1997), 271–.

6. Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith,
I., Chen, L., and Clow, J. Quickset: multimodal interaction for
simulation set-up and control. In Proceedings of the fifth conference on
Applied natural language processing, ANLC ’97, Association for
Computational Linguistics (Stroudsburg, PA, USA, 1997), 20–24.

7. Echtler, F., and Klinker, G. A multitouch software architecture. In
Proceedings of the 5th Nordic conference on Human-computer
interaction: building bridges, NordiCHI ’08, ACM (New York, NY,
USA, 2008), 463–466.

8. Fernandes, V., Guerreiro, T., Araújo, B., Jorge, J., and Pereira, J. a.
Extensible middleware framework for multimodal interfaces in
distributed environments. In Proceedings of the 9th international
conference on Multimodal interfaces, ICMI ’07, ACM (New York, NY,
USA, 2007), 216–219.

9. Flippo, F. A Framework for Rapid Development of Multimodal
Interfaces. In Design (2003).

10. Geisler, J., Eck, R., Rehfeld, N., Peinsipp-Byma, E., Schutz, C., and
Geggus, S. Fovea-tablett : A new paradigm for the interaction with
large screens. In Human Interface and the Management of Information.,
vol. 4557 of Lecture Notes in Computer Science. 2007, 278–287.

11. Gokcezade, A., Leitner, J., and Haller, M. Lighttracker: An open-source
multitouch toolkit. Comput. Entertain. 8, 3 (Dec. 2010), 19:1–19:16.

12. Hansen, T., Hourcade, J., Virbel, M., Patali, S., and Serra, T. PyMT: a
post-WIMP multi-touch user interface toolkit. In Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces,
ACM (2009), 17–24.

13. Hoste, L., Dumas, B., and Signer, B. Mudra: A Unified Multimodal
Interaction Framework. In Proceedings of ICMI 2011 13th
International Conference on Multimodal Interaction (2011), 97–104.

14. Johanson, B., Fox, A., and Winograd, T. The Interactive Workspaces
project: experiences with ubiquitous computing rooms. IEEE Pervasive
Computing 1, 2 (Apr. 2002), 67–74.

15. Johnson, J., Roberts, T. L., Verplank, W., Smith, D. C., Irby, C. H.,
Beard, M., and Mackey, K. The xerox star: A retrospective. Computer
22, 9 (Sept. 1989), 11–26, 28–29.

16. Kaltenbrunner, M., and Bencina, R. reactivision: a computer-vision
framework for table-based tangible interaction. In Proceedings of the
1st international conference on Tangible and embedded interaction,
TEI ’07, ACM (New York, NY, USA, 2007), 69–74.

17. Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer, S.
Multi-camera multi-person tracking for EasyLiving. Proceedings of the
third International Workshop on Visual Surveillance (2000), 3–10.

18. Lalanne, D., Nigay, L., Palanque, P., Robinson, P., and Vanderdonckt, J.
Fusion Engines for Multimodal Input : A Survey. Interfaces (2009),
153–160.

19. Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy, P. A toolkit
for peer-to-peer distributed user interfaces: concepts, implementation,
and applications. In Proceedings of the ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’09 (New York, NY,
USA, 2009), 69–78.

20. Oviatt, S., and Cohen, P. Perceptual user interfaces: multimodal
interfaces that process what comes naturally. Communications of ACM
43, 3 (Mar. 2000), 45–53.

21. Peinsipp-Byma, E., Geisler, J., and Bader, T. Digital map and situation
surface: a team-oriented multidisplay workspace for network enabled
situation analysis. J. T. Thomas and D. D. Desjardins, Eds., vol. 7327,
SPIE (2009), 732703.

22. Schick, A., Camp, F. v. d., Ijsselmuiden, J., and Stiefelhagen, R.
Extending touch: towards interaction with large-scale surfaces. In
Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, ACM (2009), 117–124.

23. Serrano, M., Nigay, L., Lawson, J.-y. L., Ramsay, A., Murray-smith, R.,
Denef, S., and Augustin, S. The OpenInterface Framework : A tool for
multimodal interaction. In Design (2008), 3501–3506.

24. Shen, C., Vernier, F. D., Forlines, C., and Ringel, M. Diamondspin: an
extensible toolkit for around-the-table interaction. In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI ’04,
ACM (New York, NY, USA, 2004), 167–174.

25. Voit, M., Nickel, K., and Stiefelhagen, R. Neural network-based head
pose estimation and multi-view fusion. vol. 4122, Springer (2007),
291–298.

26. Wang, X., Zhou, Q., and Xin, Y. The construction and application of
multitouch interactive platform based on touchlib. In Proceedings of the
2011 4th International Conference on Intelligent Networks and
Intelligent Systems, ICINIS ’11, IEEE Computer Society (Washington,
DC, USA, 2011), 153–156.

27. Weis, T., and Geihs, K. Components on the desktop. In Proceedings of
the Technology of Object-Oriented Languages and Systems, TOOLS
’00 (Washington, DC, USA, 2000).

28. Wu, A., Mendenhall, S., Jog, J., Hoag, L. S., and Mazalek, A. A nested
api structure to simplify cross-device communication. In Proceedings
of the Sixth International Conference on Tangible, Embedded and
Embodied Interaction, TEI ’12, ACM (New York, NY, USA, 2012),
225–232.

	INTRODUCTION
	RELATED WORK
	GLUETK
	GLUETK ARCHITECTURE
	GLUE INPUT
	Event manager
	Event handlers
	Context handlers

	COMMUNICATION
	Signals and slots
	Widget transfer
	Signal manager

	GLUE OUTPUT
	Widgets
	Animation manager

	EVALUATION AND EXAMPLES
	Performance evaluation
	Control Room Application

	CONCLUSION
	Acknowledgements

	REFERENCES

