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Abstract: If a moving camera observes a specular surface in which some
environment is reflected, the pixel values per se do not directly characterise
the surface. However, the associated optical flow, or specular flow (SF),
as it is called in this situation, is an environment-agnostic observable that
depends on the surface position, orientation, and curvature. The derivation
of the SF in the limit of an infinitely remote environment has been published
earlier by the authors, but in a relatively opaque coordinate-dependent form.
In this report, we present a simpler and a more general derivation of the SF
as a function of the surface structure, where the crucial part is played by the
so-called Weingarten map. This result allows us to formulate the conditions
when the SF diverges, and to derive a simple formula to relate the Gaussian
curvature of the surface to the SF.

1 Introduction

The shape-from-specular flow (SFSF) approach has been suggested [RB06] as
a convenient tool to estimate the 3D shape of moving reflecting objects while
abstracting away from the details of the environment. One first estimates the op-
tical flow (OF) field – the apparent displacements of prominent image elements
between the subsequent video frames – and uses it to reconstruct the shape. If
the camera observes a curved mirror, the motion field may exhibit smooth distor-
tions, infinities, discontinuities etc., which may warrant the adaptation of the
common OF algorithms. Such OF is commonly referred to as specular flow
(SF) [AZBS11, CnVA+09].

The first SFSF methods were able to estimate the parameters of simple known
shapes [RB06]. Later, the problem was theoretically re-formulated in terms
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of global variational reconstruction [LBRB08]. More recently, Adato et
al [AVBSZ07, AVZBS10, CnVA+09, VZGBS11] provided a practical general
solution for a special setup where a telecentric camera is fixed with respect to the
object and the infinitely remote textured environment undergoes a global rigid ro-
tation. The flow field is obtained from the camera images with the common OF
algorithms, and the resulting system of coupled linear partial differential equa-
tions is discretized and solved with standard tools. The improvements introduced
in that series of papers lead to significant relaxation of the original requirements
to the system calibration and the needed data, and reduced the problem to a
system of linear partial differential equations (PDEs) [CnVA+09].

While very elegant, such an approach is not yet suitable for the common indus-
trial settings. A more realistic setup would use e.g. a pinhole camera, moving
along some trajectory with respect to the object that reflects a distant static envi-
ronment. In this formulation, the problem has an additional dimensional param-
eter that is missing in the orthographic model – the distance between the camera
and the object. The motion of isolated specularities relative to the fixed sur-
face features in this case has been studied in [BB91], but no attempt has been
made to recover the arbitrary surface shapes from the observed data. More
recently, [Pak14a] introduced the paraxial formalism for the SF in perspective
projection but did not present the final results.

In what follows we reproduce the derivation of the main results of [Pak14a] with
the help of an alternative approach developed in [BB91]. We further analyze
the structure of the resulting SF equations and in particular outline the relation
between the Gaussian curvature of the surface and the observed specular flow.
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Figure 2.1: Geometry of a camera’s view ray after a single specular reflection.
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2 Notation

Let us assume an observation setup shown in Fig. 2.1. A camera C with the pro-
jection center located at point c observes a reflection of a light source S located
at s. A light ray originates at S and follows the (unit) direction l̂ until it hits the
specular object O at some surface point r, and then reflects towards the camera.
The unit direction from the camera to the reflection point is t̂, and the normalized
surface normal vector at the reflection point is n̂. The distances from the camera
and the source to the reflection point are λ and µ, respectively, i.e.

r = c+ λ t̂ = s+ µ l̂. (2.1)

In what follows, we will heavily use a linear operator π[d̂] that projects an arbi-
trary vector x on the subspace orthogonal to d̂ (some unit vector such as n̂, t̂, or
l̂):

π[d̂] · x ≡ x⊥d̂ = x− d̂ (x · d̂), or
(
π[d̂]

)
ij

= δij − didj , (2.2)

where δij is the Kronecker symbol and di, dj are the components of d̂. For the
product of two projectors, we reserve the special notation Π = π[n̂]·π[t̂]/

(
n̂ · t̂

)
.

We will also need a projector P whose action on a vector x is as follows:

P · x =
n̂×

(
x× t̂

)
n̂ · t̂

, or (P)ij = δij −
ti nj

n̂ · t̂
.

The latter expression may be obtained by contracting antisymmetric tensors1

in the more explicit form (P)ij = εikl nk εljm tm/
(
n̂ · t̂

)
. From the above

definitions and the matrix forms of the projectors, one easily finds their trivial
properties:

π[d̂] · x = 0 for x ‖ d̂, π[d̂] · x = x for x ⊥ d̂, (2.3)

P · x = 0 for x ‖ t̂, P · x = x for x ⊥ n̂, P · π[t̂] = P, and Π · P = Π.

Since the SF is related to motion, we use the “dotted”notation for time deriva-
tives. For example, the camera’s velocity is ċ ≡ ∂c/∂t. In a scene of Fig. 2.1,
in general, if the camera moves, only the source location remains constant, i.e.
ṡ ≡ 0.

1 A fully antisymmetric tensor, or a Levi-Civita symbol, is defined here as follows: ε123 = 1, and
εijk = −εjik = −εikj . It is commonly used to define vector products: (a× b)i = εijkajbk .
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Finally, we introduce the Weingarten map W that connects the variation of a point
r on a surface and the respective change in the normal vector n̂. In particular,

˙̂n = W · ṙ. (2.4)

The coordinate representation of W is frame-dependent, but its eigenvalues and
eigenvectors are the intrinsic invariant properties of the surface at the point r.

3 Specular flow for a moving pinhole camera

With the introduced notation, we are now in the position to derive the specular
flow perceived by the moving camera (the object O and the source S remain
static) in terms of the camera motion ċ and the local surface parameters at point
r. Our guideline will be to prevent the proliferation of the source parameters to
the result.

According to Fig. 2.1, the directions t̂, ŝ, and n̂ satisfy the reflection law, i.e.

t̂+ l̂ = ν n̂ (3.1)

for some ν. Let us differentiate Eq. (3.1) with respect to time and apply π[n̂]:

π[n̂] ·
(
˙̂t+

˙̂
l
)
= π[n̂] ·

(
ν̇ n̂+ ν ˙̂n

)
= ν ˙̂n. (3.2)

The latter equality holds since ‖n̂‖ = 1, thus ˙̂n · n̂ = 0 and π[n̂] · ˙̂n = ˙̂n. Next,
let us multiply Eq. (3.1) with n̂ and use n̂ · t̂ = n̂ · l̂:

ν = n̂ ·
(
t̂+ l̂

)
= 2n̂ · t̂. (3.3)

Substituting ν from Eq. (3.3) into Eq. (3.2), we arrive at

˙̂n = π[n̂] ·
(
˙̂t+

˙̂
l
)
/
(
2n̂ · t̂

)
. (3.4)

Next, let us differentiate the first equality in Eq. (2.1) and project it using π[t̂]:

π[t̂] · ṙ = π[t̂] ·
(
ċ+ λ̇ t̂+ λ ˙̂t

)
= π[t̂] · ċ+ λ ˙̂t, or

˙̂t = λ−1π[t̂] · (ṙ − ċ) . (3.5)

Again, we exploit that ˙̂t · t̂ = 0 and π[t̂] · ˙̂t = ˙̂t. By analogy, we may differentiate
the second equality of Eq. (2.1), project it with π[l̂], and use ṡ ≡ 0 to find

˙̂
l = µ−1π[l̂] · ṙ. (3.6)
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Now we may substitute Eqs. (3.5) and (3.6) into Eq. (3.4):

˙̂n = π[n̂] ·
[
λ−1π[t̂] · (ṙ − ċ) + µ−1π[l̂] · ṙ

]
/
(
2n̂ · t̂

)
. (3.7)

This expression involves the operator products π[n̂] ·π[t̂] and π[n̂] ·π[l̂]. In order
to eliminate the source-dependent operator π[l̂], we must prove that

π[n̂] · π[l̂] · ṙ = π[n̂] · π[t̂] · ṙ. (3.8)

Indeed, since ṙ is tangential, and n̂ is orthogonal to the mirror surface, then
ṙ · n̂ = 0. Further, the reflection law Eq. (3.1) implies that t̂ = t‖n̂ + t⊥n̂ and
l̂ = t‖n̂ − t⊥n̂, where n̂ · t⊥n̂ = 0 and t‖n̂ = (ν/2) n̂. Combined, this leads to
the equality

t̂ · ṙ = t⊥n̂ · ṙ = −l̂ · ṙ. (3.9)

Using Eq. (2.2) and (3.9), we than establish that

π[n̂] · π[t̂] · ṙ = π[n̂] ·
[
ṙ − t̂

(
t̂ · ṙ

)]
= ṙ − t⊥n̂

(
t̂ · ṙ

)
, and

π[n̂] · π[l̂] · ṙ = π[n̂] ·
[
ṙ − l̂

(
l̂ · ṙ

)]
= ṙ + t⊥n̂

(
l̂ · ṙ

)
= ṙ − t⊥n̂

(
t̂ · ṙ

)
.

This proves Eq. (3.8) and allows us to transform Eq. (3.7) into

˙̂n = π[n̂] · π[t̂] ·
[
λ−1 (ṙ − ċ) + µ−1ṙ

]
/
(
2n̂ · t̂

)
. (3.10)

Our primary quantity of interest is the SF, defined as f ≡ ˙̂t, i.e. it is the variation
of the sight ray direction caused by the motion of the camera. From Eq. (3.5),

λ f = π[t̂] · (ṙ − ċ) . (3.11)

Applying P on Eq. (3.11), using Eq. (2.3) and the fact that ṙ ⊥ n̂, we find:

λP · f = P · π[t̂] · (ṙ − ċ) = ṙ − P · ċ, or ṙ = P · (λf + ċ) . (3.12)

Now we may plug ˙̂n of Eq. (2.4) and ṙ of Eq. (3.12) into Eq. (3.10) and simplify:

˙̂n = W · ṙ = W · P · (λf + ċ) =
1

2
Π ·

[
κ P · (λf + ċ)− ċ

λ

]
, and

λ2 [2W − κΠ] · P · f = [−2λW · P + λκΠ · P −Π] · ċ.
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(In the above formula, we introduce κ = λ−1+µ−1). Using again the properties
of the projectors Eq. (2.3), we arrive at the final invariant SF equation:

λ2 [2W − κΠ] · P · f = [(λκ− 1)Π− 2λW · P] · ċ. (3.13)

In case the source S is located very far away from the mirror and the camera
(µ → ∞), then κ = λ−1, and we obtain an even simpler expression

[2λW −Π] · P · f = −2W · P · ċ.

4 Two-dimensional SF equation

First of all, we notice that Eq. (3.13) is linear in the SF and the camera velocity,
as should be expected from the lowest-order approximation. Further, since both
ċ and f are multiplied with P or Π, their components parallel to t̂ do not play
any role, and Eq. (3.13) is equivalent to a system of two equations. We therefore
cannot e.g. solve Eq. (3.13) for f , since the matrix [2W − κΠ] ·P has no inverse.

In order to move further, let us assume some coordinate frame such that c =
(0, 0, 0)T and t̂ = (0, 0, 1)T . The SF and the camera motion in this frame are
f = (f1, f2, f3)

T and ċ = (ċ1, ċ2, ċ3)
T . Since only the components of f , ċ

orthogonal to t̂ (i.e. the first and the second) matter, we may re-write Eq. (3.13)
as follows:

λ2
[
2W(2) − κΠ(2)

]
· f(2) =

[
(λκ− 1)Π(2) − 2λW(2)

]
· ċ(2). (4.1)

Here f(2) = (f1, f2)
T , ċ(2) = (ċ1, ċ2)

T , and all operators with subscript (2) are
2 × 2 matrices obtained by dropping the last row and the last column from the
3×3 representation. In particular, P(2) becomes a unit matrix and drops out, and
W(2) is a matrix known as the second fundamental form of the surface.

Since the SF equation is two-dimensional, we may at any camera position record
at most two independent SF vectors f

(1)
(2) and f

(2)
(2) , corresponding to the two

independent motion vectors ċ (1)
(2) and ċ

(2)
(2) . Having made two such observations,

we combine them into the matrices F =
(
f

(1)
(2) ,f

(2)
(2)

)
and Ċ =

(
ċ

(1)
(2) , ċ

(2)
(2)

)

so that

λ2
[
2W(2) − κΠ(2)

]
· F̃ = (λκ− 1)Π(2) − 2λW(2), (4.2)

where F̃ = F ·
(
Ċ
)−1

is a normalized SF corresponding to the two orthogo-
nal unit camera motions. Now the criterion for the existence of a finite SF is
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straightforward: if the matrix
[
2W(2) − κΠ(2)

]
is singular, the SF diverges. This

happens, when κ is an eigenvalue of the matrix 2W(2) · Π−1
(2). Such condition is

more complex than the identification of “parabolic points”, commonly believed
to cause infinite SF, and involves (via κ) the positions of the camera and the
source.

In case µ → ∞ Eq. (4.2) simplifies to:
[
2λW(2) −Π(2)

]
· F̃ = −2W(2). (4.3)

5 Gaussian curvature and the SF

Let us re-write Eq. (4.2) as

2λW(2) ·
[
λF̃ + I(2)

]
= Π(2) ·

[
(λκ− 1)I(2) + λ2κF̃

]
, (5.1)

where I(2) is a 2 × 2 unit matrix. If we introduce explicitly the components of
the unit normal vector n̂ = (n1, n2, n3)

T , the projector becomes

Π(2) =
1

n3

(
1− n2

1 −n1n2

−n1n2 1− n2
2,

)
,

which implies detΠ(2) = 1. Taking the determinant of Eq. (5.1), we end up with

detW(2) = det
[
(λκ− 1)I(2) + λ2κF̃

]
det

[
2λ

(
λF̃ + I(2)

)]−1

,

or, in the limit µ → ∞,

detW(2) = det
[
F̃
]
det

[
2
(
λF̃ + I(2)

)]−1

. (5.2)

Eq. (5.2) is quite remarkable: detW(2) is the Gaussian curvature, which is an
intrinsic property of the surface at point r, independent of how the surface is
embedded in the 3D space. The right-hand side depends only on the measured
SF matrix F̃ and the distance λ. Let us now consider three special cases:

• If the surface is nearly flat, the observed SF should be close to zero, and
‖λF̃‖ � 1. The distance-dependent term then drops out, and we get

detW(2) =
1

4
det F̃ .

This equation suggests a direct method to measure small residual curva-
tures of nearly planar surfaces.
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• If instead ‖λF̃‖ � 1, which happens e.g. for a camera positioned near
the focus point of a spherical mirror of radius 2λ (i.e. all camera sight
rays are reflected in the same direction), the SF-dependence disappears, as
expected:

detW(2) =
1

4λ2
.

• If the surface is developable, i.e. it may be locally “unfolded” into a
flat sheet without stretching (this happens when it is locally a cylinder),
its Gaussian curvature is zero. According to Eq. 5.2, this implies that
det F̃ = 0. The two recorded SF vectors then must be collinear, or, al-
ternatively, there must exist a direction of the camera motion such that the
respective SF vanishes. Intuitively, if the camera moves along the cylinder
axis, then indeed the reflection of the infinitely remote environment must
remain static on the sensor, and the SF is zero.

On a more general level, the derived relations between the SF and the curvature
allow us to differentiate the SF-based reconstruction from the other optical shape
measurement techniques as follows. The triangulation-based methods (as well as
interferometry) are directly sensitive to the point position in space (or the zeroth-
order derivative). In deflectometry, the primary measured quantity is the normal
vector (the first-order surface derivatives). The SF, as shown above, is directly
sensitive to the second order derivatives which enter the Weingarten map and the
curvatures. Therefore, the error profiles and the dominant error sources of any
SF-based methods will be different from the alternatives and may justify their
use in some applications.

6 Explicit coordinate form

In order to obtain the explicit expressions for the Weingarten map and the normal
vector, we need to assume some parametrization of the reflecting surface near
r in terms of two intrinsic surface coordinates u and v. Given some function
r(u, v),

W(2) =
1

EG− F 2

(
eG− fF fG− gF
fE − eF gE − fF

)
,

where E = ru ·ru, F = ru ·rv , G = rv ·rv , e = ruu ·n̂, f = ruv ·n̂, g = rvv ·n̂,
and the subscripts stand for the partial derivatives such as ruv ≡ ∂u∂vr.
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One convenient parametrization identifies u and v with the sensor coordinates
of a pinhole camera located at c such that its central direction coincides with t̂,
and the u- and v-axes are collinear with the global x- and y-axes, respectively.
The surface geometry near r(0, 0) is described by a two-dimensional depth map
s(u, v):

r(u, v) = s(u, v) (u, v, 1)T ,where

s(u, v) = s0 + usu + vsv +
u2

2
suu +

v2

2
svv + uv suv.

This is precisely the parametrization suggested in [Pak14a]. If one expresses
W(2) and the components of the normal vector n̂ = (rv × ru) / |rv × ru| in
terms of the shape parameters s0, ..., suv , and substitutes them into Eq. (4.1) in
the limit µ → ∞, one arrives at the explicit form of variables and the operators
in Eq. (4.3):

λ = s0, W(2) = s−1
(
s20 + s2u + s2v

)−3/2
M, where

M = s20

(
suu suv
suv svv

)
− 2s0

(
s2u susv
susv s2v

)

+

(
sv (svsuu − susuv) sv (svsuv − susvv)
−su (svsuu − susuv) −su (svsuv − susvv)

)
, and

Π(2) = s−1
(
s20 + s2u + s2v

)−1/2
(
−s20 − s2v susv
susv −s20 − s2u

)
.

Solving Eq. (4.1) with these operators for the components of f(2) as a func-
tion of ċ(2), one exactly reproduces f(0, 0) in Eq. (3.1) of that reference. Our
present calculation is therefore equally powerful, but provides more insight into
the structure of the SF equations.

7 Conclusion

In this report, we provided a detailed derivation of how the SF in a point depends
on the observation parameters and the properties of the reflecting surface. Unlike
previous results, the presented equations are explicitly invariant and compact,
allowing a deeper insight into their structure. In particular, we formulated the
simple condition for the SF to diverge, and highlighted the relation between the
SF and the Gaussian curvature of the surface. The future work will be related to
finding ways to recover the 3D shape of the surface based on the observed SF.
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