
Specification and Security-Analysis of an
Application using the SHVT

Tutorial

Carsten Rudolph, Jürgen Repp
Fraunhofer Institute for Secure Information Technology

E-Mail: Carsten.Rudolph@sit.fraunhofer.de,Juergen.Repp@sit.fraunhofer.de

March 4, 2008

1 Introduction

Objectives of this tutorial:

• Introduction to the specification of an application using inheritance mech-
anism for roles and transition patterns.

• Explanation of mechanisms for specification refinement.

• Step-by-step tutorial for analysis of a simple example protocol.

This tutorial requires the SHVT and the project and preamble files for the ex-
ample 1.
Additional information: SHVT Tutorial, SHVT-Handbook (online help)

Scenario:
A simple application where a client requests secret data from a server is specified.
The tutorial comprises the following steps:

1. Specification of the application and security goals using basic definitions
for the network layer.

2. Implementation of an attacker who tries to get secret information.

3. Adapting the model to the real environment of the application (WIFI, In-
tranet, SSL, usage of certificates) and specification of the security mecha-
nisms used to ensure the security requirements defined in step 1.

1contact shvt@sit.fraunhofer.de for more information

1

4. After the protocol refinement it is checked whether the security goals are
achieved.

2 Specification of the Application

2.1 First Specification using transition patterns

The Standard preambles with data types (sets.vsp) and functions (functions.vsp)
are available for specification of cryptographic protocols. In this tutorial we
assume that these standard definitions are used. In this case, the protocol speci-
fication consists of three parts:

• Part 1

Declaration of roles
Initial state of state components

• Part 2

Transition patterns specify protocol steps

• Part 3

Binding of roles with agents’ names

2.2 Roles and initial state

Role notion supports specification of actions for subjects acting in a certain role.
All actions (elementary automaton) executed in a certain role are assigned to
this role in the definition of an transition pattern. Also state components can be
assigned to a certain role. This can be compared with class definitions of pro-
gramming languages. Local state components correspond to local class variables
and transition pattern to methods of this class. Differently to class definitions
in programming languages the instantiation of roles has to be defined statically
in the preamble file. No dynamic creation of roles is possible. In programming
languages these mechanisms are used to encapsulate functionality and data. For
state transition pattern access to local state components is not encapsulated.
Access to local state components by transition pattern, not assigned to the corre-
sponding role, can be modeled. So there are no restrictions when attack models
have to be specified.

For every instantiation the corresponding elementary automaton and the state
components will be generated from the definitions of transition pattern and state
pattern assigned to this role. It is possible to refine the behavior of a transition
pattern depending on varying instantiations of the role.

2

Two roles are defined: Client and Server . The command def role is used
for declaration of roles.

Listing 1: Defintion of roles

def role Cl i en t from Network
{ s e c r e t : Messages seq := : : ,

s t a t e : Messages := ’ s t a r t ’ ,
s e r v e r : Agents seq := Server } ;

def role Server from Network
{ s e c r e t : Messages seq := [’ s e c r e t ’] ,

s t a t e : Messages := ’ i n i t ’ } ;

For each role we specify two local state components state , and secret . The
initial values of these state components are also specified in the role declaration.
Client knows the identifiers of all agents acting as an server, in order to be able
to start protocol runs with these agents. The servers are stored in in the local
state component server (the name Client server has to be used for this state
component in transition patterns). Role names in initial states and transition
patterns are automatically replaced with actual agents’ names during the gener-
ation of analysis scenarios. The used inheritance mechanism (from Network) will
be explained in 2.5.

2.3 Transition pattern

Protocol steps are specified by transition patterns. Each pattern specifies one
single step. The patterns specify conditions for state transitions and changes
of the states of state components of the particular agent and of shared state
components (e.g. Network). All other state components remain unchanged .

Syntax:

def_trans_pattern role_a pattern_label

(x1,x2,x3,...,xn)

allocations,

predicates,

actions;

This generates a transition pattern pattern label and assigns it to a role role a

. The next line declares local variables. These variables are local to the transition
pattern. The rest of the pattern contains allocations, predicates and actions on
state components (adding or removing elements). A state transition can occur
in a particular state, if in this state an interpretation of the local variables exists

3

such that all allocations are defined, all predicates true and all actions result in
a valid subsequent states in accordance with the domains of state components.

2.4 Some important operators

Table 1 shows the most important operators to be used in transition patterns.
A State denotes a state component, c a constant value and mset a multiset. xu

is a previously unbound variable and xb is already bound by a previous line in
the pattern. Apart from the operation given here, other operators can be used
as described in the SHVT handbook, section on preambles.

4

operator example description

<< xu << A State xu is allocated with one element of A State (non-
deterministic) and deleted
in A State. If A State is empty, no operation will
occur.

xb << A State If xb ∈ A State, xb is deleted in A State.
c << A State If c ∈ A State, c is deleted in A State.
mset << A State If mset ⊆ A State, this subset is deleted in A State.

>> xb >> A State xb is inserted in A State
mset >> A State mset is inserted in A State
c >> A state c is inserted in A State

? xu ? A State xu is allocated with one element of A State (non-
deterministic)

xb ? A State if xb ∈ A State, this boolean term is true,
otherwise it’s false.

c ? A State if c ∈ A State, this boolean term is true,
otherwise it’s false.

xu ? mset xu is allocated with one element of mset (non-
deterministic)

xb ? mset if xb ∈ mset, this boolean term is true,
otherwise it’s false.

c ? mset if c ∈ mset, this boolean term is true,
otherwise it’s false.

∼? xu ∼? A State predicate is false
xb ∼? A State if not xb ∈ A State, this boolean term is true,

otherwise it’s false.
c ∼? A State if not c ∈ A State, this boolean term is true,

otherwise it’s false.
:= xu := term xu is allocated with term

xu := A State xu is allocated with the sequence stored in state
A State .

A State := term A State is allocated with the value of term converted
to a multiset.

Table 1: Table of important operators

2.5 Abstract Roles

Abstract roles are roles for which no instantiation of state components and transi-
tion pattern is performed. Other roles can inherit these roles. Transition pattern
and state components of the abstract role are instantiated for these pattern if
they are not also declared as abstract roles.
The roles Client and the Server inherit possible state components, transition

5

pattern and macros from the abstract role Network . No state components are
inherited from Network .

The shared state component Network , used by the abtract role Network , is
empty in the initial state:

def_state Network: net_elem_seq := ::, Network_send, Network_rec;

For integration of attackers, Network can be split into two state components
Network send and Network rec . The command “Split” in the context menu of the
preamble definition is used to activate split of state components.
The abstract role Network also inherits an abstract role (Basic):

Listing 2: Basic network access
def role Basic ab s t r a c t

{}
{ send (to ,m, net)

(Basic , to ,m) >> net }
{ r e c e i v e (from ,m, net)

(from , Basic ,m) << net }
{ l i s t e n (from , to ,m, net)

(from , to ,m) << net }
{ r e l a y (from , to ,m, net)

(from , to ,m) >> net } ;

def role Network abs t r a c t from Basic
{}
{ send (to ,m)

send (to ,m, Network)}
{ r e l a y (from , to ,m)

r e l ay (from , to ,m, Network)}
{ r e c e i v e (from ,m)

r e c e i v e (from ,m, Network) }
{ l i s t e n (from , to ,m)

l i s t e n (from , to ,m, Network) } ;

No local state components are declared for the roles Basic and Network (after
the def role ... line). The role Basic provides four macros for accessing state
component representing the network interface:

send,receive,relay,listen

The abstract role Network also provides these four macros. In this case the
name of the state component representing the network interface is not used as a
parameter. In all cases the state component Network is used. So it is possible to
use the same mechanisms for different network parts by declaring different roles
(e.g. DMZ, Intranet etc.). It’s not possible to use one of the four macros defined
by the role Basic directly in transition pattern whose roles’ inherit from Network

6

. The first macro found in the inheritance hirachy is used. Initial values of state
components of sup roles with equal names are overwritten.
The inheritance hirachy for the roles Client and Server defined in section 2.2
looks as follows:

Client

Network

Basic

Server

Network

Basic

2.6 Simple Example

Using the macros defined with the abstract role Network our simple Example can
be specified by the following transition pattern:

Listing 3: Application
def trans pattern Cl i en t s e nd g e t s e c r e t

()
C l i e n t s t a t e = ’ s t a r t ’ ,
C l i e n t s t a t e := ’ wait ’ ,
send (C l i e n t s e r v e r , [’ g e t s e c r e t ’]) ;

def trans pattern Cl i en t r e c s e c r e t
(s e c r e t)
C l i e n t s t a t e = ’ wait ’ ,
C l i e n t s t a t e := ’ s t a r t ’ ,
r e c e i v e (C l i e n t s e r v e r , [’ data ’ , s e c r e t]) ,
when var iab le bound (s e c r e t) = ’ t rue ’ {

(Cl ient , conf , [s e c r e t]) >> Goals } ;

def trans pattern Server cmd ge t s e c r e t
(from ,m)
l i s t e n (from , ’ Server ’ ,m) ,
head (m)= ’ g e t s e c r e t ’ ,
s e c r e t ? s e c r e t ,
send (from , [’ data ’ , s e c r e t]) ,
(Server , conf , [s e c r e t]) >> Goals ;

Several agents could be assigned to the role Client and the role Server using
the construct def pattern bind . In our example we only will use the default
binding where the name of the agent is equal to the role name.

This example can be found in the demo directory of the SHVT. In order to
load the example and to edit the specification the following steps have to be
carried out using the SHVT:

1. start SHVT

7

• The tool is started using the start script sshvt in the installation di-
rectory.

2. load project

• In the SHVT main menu start the Project Manager.

• In the project manager window use File>Open to load the project
file. The file is called ExampleApplication.prj and is in the subdirectory
ExampleApplication.

• The project is shown as a tree. There are four group nodes Standard-
Preambles, Network, Basic Example,and Extended Example. The sub-
tree StandardPreambles contains nodes for standard preamble defini-
tions (data types and functions). To open our example click middle
mouse on Basic Example.pre in group Basic Example.

The group Network comprises all definitions related to network access and net-
work structure. The already mentioned role Network , used for basic specification
of network access, is also included in this group. Two variants of the example
application are included in the project tree. Basic Example includes the preamble
implementing the application described in this section. Since macros of the ab-
stract role Network are used in the transition pattern of Basic Example.pre it will be
necessary to perform a macro expansion for these transition patterns to interpret
analysis results. For expansion of the transition pattern Client send get secret

use the command Misc > Expand Transition Pattern in the preamble editor menu
bar and select this pattern 2:

Listing 4: Macro expansion
def trans pattern Cl i en t s e nd g e t s e c r e t

()
C l i e n t s t a t e=’ s t a r t ’ ,
C l i e n t s t a t e := ’ wait ’ ,
(Cl ient , C l i e n t s e r v e r , [’ g e t s e c r e t ’]) >> Network send ;

Here the macro call receive(Client server,[’data’,secret]) is expanded to
(Client,Client server,[’get secret’]) >> Network send . If more complex inheri-
tance mechanisms and macros are used it is essential for interpretation of analysis
results to check macro expansion.

Now we can check our model by computing the reachability graph (graph of all
states with the coresponding transitions). Execute the command Analysis in the
context menu of group Basic Example and click on the command Start Exhaustive
Analysis in the right pane of the analysis window which is opened.

2only the transition pattern with a name beginning with token at the current cursor position
are listed

8

Analysis
Start: 25.1.2008 12:43:07
Stop: 25.1.2008 12:43:07

Reachability Graph SerEx (5)

3 States computed.
(1 DeadState)
(0 Pseudo State Transitions)
(3 State Transitions)

The reachability graph can be drawn using the command Draw Graph in the
context menu of Reachability Graph SerEx (5) :

Only three state state transitions occur. The initial state M-1 can by displayed
by clicking (clicking mouse-l on compile) Reachability Graph SerEx (5) , the last
state M-4 with no successor state can be displayed by clicking mouse-l on (1

DeadState) :

M-1
Client_send_get_secret M-2
Client_secret: <::>
Client_server: <Server>
Client_state: <start>
Goals: <::>
Network: <::>
Server_secret: <[secret]>
Server_state: <init>

M-3 Client_rec_secret
M-4+
+++ dead +++

Client_secret: <[secret]>
Client_server: <Server>
Client_state: <wait>
Goals: <(Client,conf,[secret]).(Server,conf,[secret])>
Network: <::>
Server_secret: <[secret]>
Server_state: <init>

In the last state the client did store the secret received from the server on
Client secret . The state component Goals has the value
<(Client,conf,[secret]).(Server,conf,[secret])> . This state component is used
to model certain security requirements. In our case the value ’secret’ has to be
confidential and only client and server should have access to this data. Goal is

9

set in the related protocol steps. The real implementation of the protocol will
not include these statements. They are used for analysis purposes only. Because
only the agents Client and Server exist in our model analysis of the security re-
quirements is useless. In the next step a possible attacker is added to the model.
This attacker is sniffing the network traffic. Despite the fact that it’s clear that
the attacker will be successful (no security mechanisms are used) it makes sense
to check whether the attacks will be found before adding the necessary security
mechanisms to the model, to avoid errors in the attacker model.

Analysis with attacker and automatic search for successful attacks.
To activate the attacker the following steps have to be executed:

• In the project manager choose Options in the menu for Basic.pre in group
Network. Activate Split by choosing Yes.

• Activate compile (click for attacker functions.pre in group Standard Preambles
(left mouse click) and Attacker sniff Network.pre in group Basic Example.
This attacker sniffs the network and tries to decode messages using all data
available for him. Also generic attacker models where the attacker also tries
to manipulate the protocol are available, but not used in this tutorial.

• Choose Set Break in the Analysis window (in the menu on the right side).
A break condition has been saved with the project. This condition is au-
tomatically loaded. This break condition stops the computation of the
reachability graph as soon as the attacker has access to data marked as
confidential in the state component Goals . Activate the break condition by
clicking Set Break.

• Start the computation of the reachability graph by clicking Start Exhaustive
Analysis in the command pane on the right side.

• The computation stops and a state is shown in the output pane. In this
state the attacker has sniffed the confidential secret from Network send and
would put the sniffed message to Network receive if the analysis is continued.

• Choose Compute one Way to Root in the object menu for M-6 (while doing
this, a frame is drawn around the complete state. The tool automatically
computes one possible path to the initial state. This path shows which steps
lead to the successful attack. This path can be explored and displayed step
by step.

2.7 Extended Example

In the next step security mechanisms and the system environment will be added
to the model:

10

• Access to the Server is secured by using SSL. Only access by clients with
valid certificates will be accepted.

• An access control server (ACS) located in the intranet will distribute these
certificates.

• WIFI is used by the client to access the resources. The keys for WIFI
encryption are included in the initial state of the system.

Therefore new abstract roles are defined and added to group Network:

Intranet Uses the basic mechanisms for network access. For roles which inherit
Intranet instead of Network . The macros send, receive, ... use the state
component Intranet instead of Network.

WIFI Provides mechanisms for network access for roles which inherit WIFI in-
stead of Network. The macros send , receive , etc. use the state component
Air instead of Network and the network traffic is encrypted using symmetric
keys.

PKI Provides macros and abstract roles for checking certificates, and distribu-
tion of certificates.

SSL The abstract roles for usage of SSL are defined in this preamble (The SSL
handshake is modeled very simplified).

The actual protocol specification with role declarations and transition pat-
terns is included in the group Extended Example in the project. This folder also
contains the preamble Gateway.pre with the transition pattern for relaying data
from Intranet to WIFI and vice versa, and the attacker models.

The new transition pattern for initial distribution of certificates by the access
control server ACS is added to the specification of the application:

Listing 5: ACS Server
def role ACS from Intranet , CA Root

{ c l i e n t k e y s : ne t e l em seq := (ACS, Cl ient , 1111) } ;

def trans pattern ACS send c e r t
(c l i e n t , key va l)
(’ACS ’ , c l i e n t , key va l) << ACS cl ient keys ,
s end c e r t (c l i e n t , key va l) ;

The role ACS which inherits the role Intranet and CA Root sends certificates
to all clients whose keys are stored in the state component ACS client keys . The
ACS is located in the intranet. The actual protocol specification has not been
changed, except of changing the inheritance hirachy:

11

def_role Client from SSL_Client
....

def_role Server from SSL_Server
.....

Client

SSL Client

SSL WIFI

CA WIFI

Air

Basic

Server

SSL Server

SSL Intranet

CA Itranet

Basic

The macro expansion for the transition pattern Client send get secret looks quite
different compared to the expansion of this pattern presented in listing 4:

Listing 6: Macro expansion
def trans pattern Cl i en t s e nd g e t s e c r e t

(SSL Cl ient send key 1 , SSL Cl i en t s end ce r t 1 ,
WIFI in t e rna l r e l ay ne t 2 , WIFI in t e rna l r e l ay key 2)
C l i e n t s t a t e=’ s t a r t ’ ,
C l i e n t s t a t e := ’ wait ’ ,
SSL Cl i ent send key 1 := s f i l t e r t a g (’ Server ’ , C l i e n t s s l k e y s) ,
i f SSL Cl i ent send key 1 =: : {

(’ Server ’ , [’ g e t s e c r e t ’]) >> Cl i e n t s s l me s s a g e s ,
SSL C l i en t s end c e r t 1 ? C l i e n t s s l c e r t ,
(WIFI in t e rna l r e l ay ne t 2 , ’ sym ’ , WIFI in t e rna l r e l ay key 2)

? C l i e n t w i f i k e y s ,
(Cl ient , ’ Server ’ ,
encrypt (WIFI in t e rna l r e l ay key 2 ,

[’ SSL connect request ’ , SSL C l i en t s end c e r t 1]))
>> Air ,

else {
(WIFI in t e rna l r e l ay ne t 2 , ’ sym ’ , WIFI in t e rna l r e l ay key 2)

? C l i e n t w i f i k e y s ,
(Cl ient , ’ Server ’ , encrypt (WIFI in t e rna l r e l ay key 2 ,
encrypt (SSL Cl ient send key 1 , [’ g e t s e c r e t ’]))) >> Air } ;

In the next step the attacker model for network sniffing is added in the same
way as described in section 2.6. Since the state component Network is not used

12

in this model now for instance Air and Intranet could be observed. An attacker
for sniffing the intranet is included in the project:

• In the project manager choose Options in the menu for Intranet.pre in group
Network. Activate Split by choosing Yes.

• Activate compile for attacker functions.pre in group Standard Preambles (left
mouse click) and Attacker sniff Intranet.pre in group Extended Example.

• Execute the command Analysis in the context menu of Extended Example.pre.

• Choose Set Break in the Analysis window (in the menu on the right side).
The same break condition can be used, because only the security require-
ments stored in the state component Goals are checked. The break condi-
tion is independent from the attacker type.

• Start the computation of the reachability graph by clicking Start Exhaustive
Analysis in the command pane on the right side.

Also in this case a break occurs. State M-21 is displayed. The secret value
’secret’ is stored unencrypted in the state component Attacker State , which is
used to store the knowledge of the attacker. The secret is computed by the
transition Attacker read from the value of Intranet send :

(Server,Client,[encrypt,((Client,Server),sym,8888),[data,secret]])

To decode the encrypted message the attacker must have the knowledge of
the symmetric key ((Client,Server),sym,8888) used by client and server. The
transition where the attacker acquires this knowledge can be found using the
search function of SHVT:

• Determine on path from the initial state to state M-21 , where the break
condition is fullfilled. (Command: Compute one Way to Root in the context
menu of the state).

• Search the state where the knowledge of the symmetric key was acquired
using the predicate
attack((’Server’,’conf’,((’Client’,’Server’),’sym’,8888)).

(’Client’,’conf’,((’Client’,’Server’),’sym’,8888)),

Attacker State,Global)=’true’;

using the command Search in the context menu of the path from the initial
state.

A subpath where the key is computed in the last transition of the path is
computed. The last search predicate looks similar to the predicate used in the
break condition:

13

attack(Goals,Attacker State,Global)=’true’;

Goals is replaced by

(’Server’,’conf’,((’Client’,’Server’),’sym’,8888)).
(’Client’,’conf’,((’Client’,’Server’),’sym’,8888))

In the case of the break condition Goals had the value: (Server,conf,[secret]) ,
which did state that secret has to be treated confidential. Only the server should
know secret . The client did not yet receive secret, therefore the corresponding
value is not stored in Goals at this time. The constant which replaces Goals does
express that the used symmetric key has to be treated confidentially and only
client and server should know the key. States where this condition is violated
are searched in our path. The result of the search query is a path where this
condition is violated in the last state. In the predecessor state of this last state
Intranet send has the value:

<(Server,Client,
[SSL_connect_response,

[sign,(CA_Identity,priv,2222),(Server,pub,2222)],
[crypt,(Client,pub,1111),((Client,Server),sym,8888)]])>

The symmetric key is encrypted, but the attacker seems to be able to decrypt
this part of the message.
The next step where the attacker gets the knowledge to do the decryption can
be found in the same way.

14

