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Abstract

Non-quadratic regularizers, in particular the `1 norm regularizer can yield sparse solutions that
generalize well. In this work we propose the Generalized Subspace Information Criterion (GSIC)
that allows to predict the generalization error for this useful family of regularizers. Under certain
technical assumptions GSIC is shown to be an asymptotically unbiased estimator of the general-
ization error. GSIC is shown to have a good performance in experiments with an `1 norm as we
compare with the Network Information Criterion and cross-validation in relatively large sample
cases. However in small sample cases, GSIC tends to fail to capture the optimal model due to
its large variance. Therefore, we also introduce its biased version, which achieved reliable model
selection in the relevant and challenging scenario of high dimensional data and few samples.

Keywords: Model selection, Regularization constant, Generalized Subspace Information Crite-
rion, Sparse regression

Zusammenfassung

Nichtquadratische Regularisierer, inbesondere der `1 Norm Regularisierer können Lösungen mit
dünn besetzten (sparse) Parametervektoren und trotzdem guten Generalisierungseigenschaften
erzielen. In unserer Arbeit schlagen wir das verallgemeinerte Subspace Information Kriterium
(GSIC) vor, das es erlaubt den Generalisierungsfehler für diese wichtige Klasse von Regularisier-
ern vorherzusagen. Unter bestimmten technischen Bedingungen können wir zeigen, daß GSIC
den Generalisierungsfehler asymptotisch fehlerfrei schätzt. Im experimentellen Vergleich zu NIC
und Kreuzvalidierung für einen `1 Norm Regularisierer finden wir erst bei einer relativ großen
Anzahl von Trainingsbeispielen eine gute Performanz für GSIC. Im Falle von wenigen Trainings-
beispielen zeigt GSIC durch seine große Varianz die Tendenz das optimale Modell nicht korrekt
zu erfassen. Daher schlagen wir das GSIC mit Bias vor, das nun eine verläßliche Modellselektion
selbst in dem relevanten und anspruchsvollen Szenario hochdimensionaler Daten bei nur wenigen
gegebenen Trainingsmustern erlaubt.

Keywords: Model-Selektion, Regularisierungskonstante, Generalized Subspace Information Cri-
terion, Sparse Regression

Submitted to IEEE Transactions on Neural Networks.
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Chapter 1

Introduction

Supervised learning techniques allow to estimate underlying unknown statistical input-output re-
lations from given training data [1, 2, 3]. In this process one has to be careful not to overfit
the training data, but to estimate the underlying statistical data generation process, such that the
learning machine generalizes well, i.e. that it gives a good estimate even for unseen data.

One way to avoid overfitting is to restrict the function class from which the estimators are
chosen. Thus, one introduces a preference from complicated models towards simpler models for
example by choosing a model with a small VC dimension [4, 1] or by introducing regularization
[5]. Intuitively this amounts to selecting a smoother model.

In this paper we will consider regularization for enhancing the generalization capability. Here
the parameters � of the learning machine are determined such that a weighted sum of the training
error and the regularization term R

Error(�) = TrainingError(�) + �R(�) (1.1)

is minimized, where � is called the regularization constant. If the regularization constant is too
large, then the estimator is under-fitting, the estimation is too smooth and the generalization error
becomes large. If the constant � is selected too small, then overfitting and high-frequent estimators
result. Therefore, the problem of model selection, i.e. in our case determining the value of the
regularization constant is essential for good generalization performance. There is a large body of
literature of how to choose the regularization constant (e.g. for neural networks see [2, 6, 7]). The
ideal criterion would be the generalization error itself, or approximations thereof, e.g. in a worst or
average case setting. The former considers the worst generalization error achieved on all possible
training sets (see e.g. methods based on VC theory [8, 1, 4]). The latter considers ensemble
averages over all possible training sets, for example the Network Information Criterion (NIC)
[9, 10] or the Subspace Information Criterion (SIC) [11]. Furthermore there are very successful
criteria as cross validation [12], CL [13] or the Bayesian evidence framework [14, 15], which
approximately evaluate the ensemble error using the training data. In this paper, we will focus on
prediction methods for the ensemble average of the generalization error.

The prediction of the generalization error becomes easier if additional unlabeled input data
points are known. NIC – a generalization of Akaike’s information criterion [16] – is a typical
method which does not make use of the distribution of unlabeled additional data points1. It only
assumes that all data has essentially the same distribution as the training samples. For example in
text classification [17] many additional unlabeled samples are available, so an accurate estimation
of the input distribution beyond the training data is actually possible. SIC – a generalization of
CL – makes use of additional unlabeled data and therefore has been shown to perform better than

1A further assumption of NIC is that it can only be used in nested models, a condition which does not always hold
in the regularization case.
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6 CHAPTER 1. INTRODUCTION

NIC, particularly in the small sample setting [11]. The technical feature of SIC is that it predicts
the generalization error by utilizing a reference estimator, which is an unbiased estimate of the
true parameter. SIC was so far only applicable to linear regression with quadratic regularizers,
which includes e.g. weight decay (see [2, 18, 19]).

Recently sparsity inducing non-quadratic regularizers have become rather popular since with
still good generalization properties [20, 21, 22, 23, 24, 25, 26] sparse solutions (i.e. most of the
model parameters become zero) are found in the training process. Often they are based on l1

regularization. Since such regularization terms are non-quadratic, the original SIC criterion cannot
be applied to them.

In this work we therefore propose the Generalized Subspace Information Criterion (GSIC)
that allows to predict the generalization error for the family of non-quadratic regularizers. Among
several other interesting theoretical properties, we will show that GSIC is an asymptotically un-
biased estimator of the generalization error. In experiments with relatively large samples, GSIC
achieves a good performance as we compare with NIC and cross-validation. However, in small
sample cases, GSIC tends to fail to capture the optimal model due to its large variance. To alleviate
this problem, we introduce a biased version of GSIC, which is derived from a reference estimator
regularized by a quadratic regularizer. This biased version (GSICb) introduces yet another model
selection problem: determining the regularization constant of the reference estimator. But, since a
quadratic regularizer is used here, the regularization constant can be determined by efficient algo-
rithms [6]. In experiments using an `1 norm regularizer, GSICb shows an excellent performance,
when compared to NIC and cross-validation.

The rest of this paper is organized as follows: In Sec. 2, we formulate the problem of gener-
alization error prediction in detail. In Sec. 3, the generalized SIC for non-quadratic regularizer is
proposed, and its asymptotic bias is investigated. Sec. 4, we introduce the biased version for GSIC
for small sample cases. Sec. 5 considers the application of GSIC to sparse regressors. Experiments
in Sec. 6 give a comparison of our method with NIC and cross validation. Finally, Sec. 7 gives
concluding remarks.



Chapter 2

Preliminaries

In a linear regression problem, a target function is approximated by a parametric model which
is linear in parameters. Let us assume that the target function f(x), x 2 R

d , is contained in a
parametric model

f�(x) =

pX
i=1

�i�i(x); (2.1)

where �i : Rd ! R is a given (nonlinear) function and � 2 R
p is the parameter vector. Then, we

can describe f(x) as

f(x) =

pX
i=1

��i �i(x); (2.2)

where ��i is the true parameter. The training examples consist of input points xi 2 R
d and the

corresponding output yi 2 R, which are degraded by additive noise �i:

yi = f(xi) + �i: (2.3)

We assume that all random variables f�igni=1 are independent and subject to the same distribution
with mean zero and variance �2. In this paper, we focus on the case where the parameter � is
determined by finding � that minimizes the sum of squared errors and a (twice differentiable)
regularization term R(�)

Lr =
1

n

nX
i=1

(f�(xi)� yi)
2 + �R(�): (2.4)

Let us define �̂ as the solution of the optimization problem:

�̂ = argmin
�

Lr(�): (2.5)

The generalization error of �̂ is

Ex[(f(x)� f
�̂
(x))2] =

Z
(f(x)� f

�̂
(x))2q(x)dx; (2.6)

where q(x) denotes the distribution of the additional unlabeled input points. Let us assume that
the solution of (2.4) is unique. Then, the solution �̂ is considered as an implicit function of

7



8 CHAPTER 2. PRELIMINARIES

training examples f(xi; yi)g
n
i=1. Because yi is described in terms of xi and �i according to (2.3),

the solution �̂ is written as

�̂(x1; � � � ;xn; �1; � � � ; �n): (2.7)

In model selection, the optimal � should be determined so that the generalization error is mini-
mized. However, since �̂ depends on random variables �i, the generalization error (2.6) is also
a random variable. In order to compare two random variables, we focus on the mean only. The
mean of generalization error is called ensemble average, which is described as

JG = E�Ex[(f(x)� f
�̂
(x))2]; (2.8)

where �̂(x1; � � � ;xn; �1; � � � ; �n) is abbreviated as �̂ and E� := E�1 � � �E�n .
For the sake of a better geometrical understanding, we define the inner product in parameter

space as

h�;�0i = Ex[(

pX

j=1

�j�j(x))(

pX

k=1

�0

k�k(x))]

= �
TP�0; (2.9)

where P is the matrix whose (i; j) element is given as

Pij = Ex[�i(x)�j(x)]: (2.10)

Then we can rewrite the ensemble average of the generalization error using the norm of parameter
space as

JG = E�k�̂ � �
�k2: (2.11)

The matrix P can be exactly calculated if we know the distribution q(x) of the additional unlabeled
input samples. If q(x) is unknown, P can be estimated, e.g. by using the unlabeled samples
fx0

kg
m
k=1 [17] as

Pij =
1

m

mX

k=1

�i(x
0

k)�j(x
0

k); (2.12)

or one can assume that q(x) is the uniform distribution over some domain.



Chapter 3

Generalization Error Prediction

In this section, we derive a generalization error prediction method called Generalized Subspace
Information Criterion (GSIC).

3.1 Basic Idea

Fig. 3.1 illustrates the idea. By considering all possible noises, the parameter �̂ takes various
values and forms a distribution, where �m is the mean of �̂, i.e., �m = E�[�̂]. The generalization
error JG is the average distance between �̂ and the underlying true solution �

�. Because there is
no information about ��, we introduce another parameter �̂u such that �̂u is an unbiased estimate
of ��:

E�[�̂
u] = �

�

: (3.1)

A typical choice of �̂u is the least mean squares estimator (i.e. without the regularizer) [11].
Then the distance between �̂ and �̂

u (the broken line in Fig. 3.1) gives a rough estimate of the
generalization error. We will derive an unbiased estimator of the generalization error by adding
modification terms to this distance. Note that this technique to use an unbiased estimator was first
introduced in SIC [11].

θ

θ*

θ

m

^ θu^w

v

Figure 3.1: Basic idea for evaluating the generalization error.
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10 CHAPTER 3. GENERALIZATION ERROR PREDICTION

3.2 Generalized Subspace Information Criterion

In this section, we will derive an unbiased estimator of JG. JG can be decomposed into the bias
and variance (see also [27]) as

E�k�̂ � �
�k2 = E�k�̂ � �

m + �
m � �

�k2

= E�kw + �m � ��k2

= k�m � ��k2 + 2E�h�
m � ��;wi+E�kwk

2

= k�m � ��k2 +E�hw;wi; (3.2)

where w := �̂ � �m. The bias term can be expressed by using k�̂ � �̂uk2 as

k�m � ��k2 = k�̂ � �̂uk2 � k�̂ � �̂uk2 + k�m � ��k2

= k�̂ � �̂uk2 � k�̂ � �m + �m � �̂u + �� � ��k2 + k�m � ��k2

= k�̂ � �̂uk2 � kw + �m � v � ��k2 + k�m � ��k2

= k�̂ � �̂uk2 � kw � vk2 � 2hw � v;�m � ��i; (3.3)

where v := �̂u � ��. The second and third terms in (3.3) can not be directly evaluated, so we
average out these terms. Then the second term yields

�E�kw � vk2 = �E�hw;wi+ 2E�hw;vi �E�hv;vi; (3.4)

and the third term vanishes. This approximation gives the following unbiased estimator of JG
called the Generalized Subspace Information Criterion.

Definition 1 (Generalized Subspace Information Criterion) The following functional is called
the Generalized Subspace Information Criterion:

GSIC = k�̂ � �̂uk2 + 2E�hw;vi �E�hv;vi: (3.5)

Note that the proposed GSIC includes SIC as a special case.

3.3 GSIC for Quadratic Regularizers

For calculating (3.5), an unbiased estimate �̂u, the variance terms E�hw;vi and E�hv;vi are
required. In this section, we will show how to calculate these terms in linear regression with a

quadratic regularizer R(�) = �̂
T
R�̂, which results in the original SIC [11][19].

Let K be the n � p matrix whose (i; j) element is �j(xi) and y = (y1; : : : ; yn)
T . K is

sometimes called the design matrix [28]. When ( 1
n
KTK + �R) is invertible, �̂ is given as [19]:

�̂ =
1

n
(
1

n
KTK + �R)�1KTy: (3.6)

When KTK is invertible, an unbiased estimate �̂u is given as [11]

�̂u = (KTK)�1KTy: (3.7)

Then the first term in (3.5) can be calculated. The second and third term can be exactly calculated
as [11]

E�hw;vi = �̂2tr(PW ); (3.8)

E�hv;vi = �̂2tr(PV ); (3.9)
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where tr(�) denotes the sum of diagonal elements of a matrix. Here, �̂2 is an estimate of the noise
variance. When n > p, its unbiased estimate is given as [29]

�̂2 =
yTy � (K�̂u)Ty

n� p
: (3.10)

Also, P is defined by (2.10), and W and V are p� p matrices defined as

W =
1

n
(
1

n
KTK + �R)�1; (3.11)

V = (KTK)�1: (3.12)

This finally yields the original SIC for quadratic regularizers [11]:

SIC = (�̂ � �̂u)TP (�̂ � �̂u) + 2�̂2tr(PW )� �̂2tr(PV ): (3.13)

3.4 GSIC for Non-Quadratic Regularizers

When we are concerned with non-quadratic regularizers, �̂ can not be obtained analytically like in
(3.6). Instead, it is usually obtained by some optimization method (e.g. [30, 9]). For this reason,
it is difficult to evaluate the second term E�hw;vi in (3.5). So we approximate E�hw;vi under
the assumption that the Hessian H = [ @

2Lr

@�i@�j
] of the loss function Lr is invertible for any �̂. Then,

E�hw;vi is approximated as

E�hw;vi � �̂2tr(PW 0); (3.14)

where

W 0 =
1

n

�
1

n
KTK +

1

2
�rrR(�̂)

�
�1

; (3.15)

and rrR(�̂) is the p � p matrix whose (i; j) element is @R(�)
@�i@�j

��
�=�̂

. The derivation of this
approximation is described in appendix A. This gives GSIC for non-quadratic regularizers, which
we propose in this paper:

Definition 2 (GSIC for Non-Quadratic Regularizers) The following functional is called the
Generalized Subspace Information Criterion for non-quadratic regularizers:

GSIC = (�̂ � �̂u)TP (�̂ � �̂u) + 2�̂2tr(PW 0)� �̂2tr(PV ); (3.16)

where �̂u, P , �̂2, W 0, and V are given by (3.7), (2.10), (3.10), (3.15), and (3.12), respectively.

The goodness of GSIC for non-quadratic regularizers as a model selection criterion is substan-
tiated by the following theorem.

Theorem 1 Assuming that �̂ can be represented as a b-th (b <1) order polynomial of y and the
moments of �i up to b-th order are bounded, GSIC for non-quadratic regularizers is an asymptotic
unbiased estimate of JG:

E�[GSIC] = JG +O(n�2): (3.17)

A proof of the above theorem is provided in appendix B. When the regularization term is
quadratic, GSIC agrees with the original SIC (3.13). In this case, it is an exact unbiased estimate
of JG.
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Chapter 4

Biased GSIC

In practical situations, it is common that as many basis functions as training examples are used,
e.g. the Gaussian functions centered on all input points. In such cases, the unbiased solution �̂

u

tends to have a large variance, which also makes the variance of GSIC large. Therefore model
selection can become unstable.

For reducing the variance, it is effective to replace �̂u by �̂
� obtained by weight decay regu-

larization as

�̂
� = (KTK + �I)�1KTy: (4.1)

The (conceptual) distributions of �̂u and �̂� are illustrated in Fig. 4.1. Although the mean of �̂�

has a small bias away from the true parameter ��, the variance of �̂� becomes much smaller than
that of �̂u. We observe that by using the regularized �̂� instead of �̂u, GSIC becomes slightly
biased but its variance is drastically reduced. However, now another regularization constant �
has to be determined. By adjusting � such that �̂� is an accurate estimator of ��, the error of
GSIC is expected to be improved. Indeed, this expectation is supported by simulations in Sec.6.1.
Fortunately, it is by far easier to determine � for weight decay regularization than to determine �
in the sparse regressor since in the weight decay case, the leave-one-out error can be efficiently
computed in closed-form [6]. Also other sophisticated methods are available such as CL [13] and
GCV [31]. By using the closed-form result for the weight decay regularization parameter �, a
good estimate of the noise variance �2 is obtained as (see e.g. [31])

�̂2 =
yTZ2y

tr(Z)
; (4.2)

where Z = I � K(KTK + �I)�1KT . Note that using (4.2) instead of (3.10) also slightly
increases the bias of GSIC, but the variance is even further decreased. We call this technique
biased GSIC(GSICb).

13



14 CHAPTER 4. BIASED GSIC

θ*

Distribution of θû

Distribution of θα̂

Figure 4.1: Illustration of the distributions of ^�
u (not regularized) and ^�

�

(regularized). The
difference is that the variance of ^�

�

gets smaller and the mean of ^�
�

(denoted as � in the figure)
does no longer coincide with the true parameter ��. The gain of shrinking the variance is expected
to by far exceed this bias.



Chapter 5

GSIC for Sparse Regression

In this section, GSIC is applied to sparse regression.
It is well-known that the `1 norm regularization leads to a sparse solution, where most of the

parameters �i’s are zero [20, 22]. A sparse regressor is practically useful because it automatically
selects necessary basis functions and moreover a sparse solution saves the computational cost. The
loss function for the sparse regressor is given as

Lr =
1

n

nX

i=1

(f�(xi)� yi)
2 + �

pX

i=1

j�ij: (5.1)

Minimizing Lr with respect to � is done by a convex quadratic programming which can be solved
efficiently [30]. Let us decompose � = �+���, where all elements of �+ and �� are nonnegative.
Then, the minimizer of Lr with respect to � is obtained by finding �+ and �� that minimize

1

n
�T � + �

pX

i=1

(�+i + ��i ) (5.2)

under the constraint that K(�+ � ��) = y + �, �+ � 0, and �� � 0.
To apply GSIC to the sparse regressor, we need to evaluate rrR. For this purpose, we

approximate the regularization term R(�) =
Pp

i=1 j�ij by a continuous function as

R0(�) =

pX

i=1

�i tanh(�i); (5.3)

where the slope is e.g.  = 10. Then, rrR is a diagonal matrix whose i-th element is

rrRii = 2(sech2(�̂i)� 2�̂isech
2(�̂i) tanh(�̂i)): (5.4)

Using (5.4), we can compute W 0 from Eq.(3.15) and therefore calculate GSIC for the sparse
regressor.

15
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Chapter 6

Experiments

In this section, we perform experiments for sparse regressors.

6.1 Illustrative Example

Let the regression function be

f�(x) =

50X

i=1

�i exp

�
�

kx� sik
2

�2

�
; (6.1)

where � = 1 and 50 template samples si’s are equally spaced in [�15; 15]. We obtain the true
parameter �� by the least mean squares estimate with f(si; g(si))g50i=1, where

g(x) = jxj�1 sin jxj: (6.2)

For training, n input points fxig
n

i=1
are chosen randomly from the uniform distribution on

[�15; 15]. The output values are obtained as yi = f(xi)+ �i, where �i’s are independently subject
to a normal distribution with mean zero and standard deviation �. The target function and training
examples are displayed in Fig. 6.1. The regularization constant is selected from

� = 1:0� 10�4; 1:0 � 10�3:5; : : : ; 1:0 � 10�1 (6.3)

by 10-fold cross validation (CV), NIC, GSIC and GSICb. Also, 100 additional unlabeled samples
fx0

i
g100
i=1

are given from the uniform distribution on [�15; 15]. In GSIC and GSICb, the distribution
q(x) of these additional input points is estimated by the empirical distribution of the unlabeled
samples:

q(x) =
1

100

100X
i=1

Æ(x � x0i); (6.4)

where Æ(x) = 1 when x = 0 and otherwise Æ(x) = 0. The true generalization error is measured
by

Error =
Z

15

�15

(f�(x)� f(x))2 dx: (6.5)

The performance of CV, NIC, and GSIC is measured by the generalization error at the selected
� (Fig. 6.2). The experiment consists of 100 trials with different noise. When n = 200, all criteria
work well with no significant difference. As n decreases to 60, CV still works well, but NIC and
GSIC tend to give a large generalization error.

17



18 CHAPTER 6. EXPERIMENTS

−15 −10 −5 0 5 10 15

−0.5

0

0.5

1
f(x)

Figure 6.1: Learning target function and 100 training examples with � = 0:3.

In order to investigate the cause of errors by NIC and GSIC in detail, actual values of CV, NIC,
and GSIC are displayed in Fig. 6.3 for (n; �) = (60; 0:3) and (200; 0:3). Note that the values of
GSIC in the figure are biased, because we ignored the terms k�̂uk2 and �̂2tr(PV ), which are
irrelevant to model selection. Thus we can see the essential contributions to the variance of the
estimate.

When (n; �) = (200; 0:3), the shape of the curves by CV, NIC, and GSIC is very close to
the true curve, which explains why the model selection was carried out successfully. Although
CV still gives an accurate curve when (n; �) = (60; 0:3), the curves of NIC and GSIC are no
longer accurate. These graphs also show that the inaccuracy of the curves by NIC and GSIC
has different characteristics. The NIC curve is tilted towards left, which shows that NIC tends
to choose smaller regularization constants. This figure tells us that the unbiasedness of NIC is
essentially lost because of the small sample effect. In GSIC, huge variance dominates the graph,
so the shape of the average curve is unreliable. The variance of GSIC is large especially when the
regularization constant � is small. So, for explaining the failure in NIC, the bias plays a main role
whereas in GSIC, the variance is of primal importance.

In order to reduce the variance of GSIC, we introduce the biased version GSICb. The top
graph in Fig. 6.4 shows the generalization error at selected � by GSICb with changing �:

� = 1:0 � 10�4; 1:0 � 10�3:5; : : : ; 1:0 � 101: (6.6)

The bottom graph in Fig. 6.4 displays the true generalization error of �̂� with changing �. These
graph shows that the minimum of these two curves approximately agrees. This means that if �
is determined such that the true generalization error of �̂� is minimized, then the performance
of GSICb is expected to be the best. In the experiments, we use a leave-one-out cross-validation
to approximate the true generalization error and thus to determine � (see Sec. 4). Note that for
GSICb, the noise variance is estimated by (4.2). Fig. 6.2 shows that GSICb works as good as other
methods when n = 200. With the decrease of n to 60, GSICb tends to work much better than NIC
and non-regularized GSIC, and its performance is comparable to CV. Fig. 6.3 shows that the shape
of the GSICb curve shadows the true curve nicely when (n; �) = (200; 0:3). Note that terms
which are irrelevant to model selection are ignored also in GSICb because of the similar reason
to above. When (n; �) = (60; 0:3), the variance of the GSICb curve is far reduced compared to
that of the non-regularized GSIC curve, and its shape coincides very well with the true curve. This
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Figure 6.2: Generalization errors at selected � for the respective model selection criterion shown
with standard box plot (100 trials). The box plot notation specifies marks at 95, 75, 50, 25, and 5
percentiles of values. ‘OPT’ denotes the generalization error with the optimal �.
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Figure 6.3: Values of each criterion by 100 trials shown with standard box plot. The horizontal
axis denotes log �. The solid line denotes the mean values.
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Figure 6.4: (Top) The generalization error at selected � by GSICb with changing � (n = 60 and
� = 0:3). The horizontal axis denotes log�. The results of cross validation and GSIC are also
shown for comparison. (Bottom) Generalization errors of �̂� with changing �.

implies that the introduction of regularization parameter � for obtaining an unbiased estimator (cf.
(4.1) and (4.2)) drastically reduces the variance with an irrelevant effect on the bias. Therefore,
GSICb works excellent even for small samples. The computation times of GSICb and CV are
plotted in Fig. 6.5: GSICb is much faster than CV, the advantage increases as n becomes larger.

In summary, this illustrative one dimensional experiment shows that non-regularized GSIC
performs well when n is large, but it can become unstable for small sample cases. Although
it is heuristically derived, GSICb works comparably well as CV in all cases studied and it is
computationally much more efficient than CV.

6.2 Experiment on Multidimensional Data

To further inspect the performance of GSIC(b), we studied a number of multidimensional data sets
provided by DELVE [32]; we will report exemplarily about results on the Boston Housing data in
this work. The Boston Housing dataset has 506 points in 14 dimensional space, where we used the
14th variable MEDV as the output value. Each input variable is divided by its maximum value for
normalization. We randomly choose 50 samples for training and 100 samples as unlabeled data.
The 356 remaining test samples are used for measuring the generalization error. The regression
function is described as

f�(x) =

50X

i=1

�i'(x;xi); (6.7)

where ' is a linear spline kernel [33], and all the 50 training samples are used as the template
samples. In one dimensional space, the linear spline kernel with an infinite number of nodes is
described as

'(xi; xj) = 1 + xixj + xixj min(xi; xj)�
xi + xj

2
(min(xi; xj))

2 +
(min(xi; xj))

3

3
: (6.8)
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Figure 6.5: Computation time. The horizontal axis denotes the number of training examples and
the vertical axis denotes the computation time in seconds.
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Figure 6.6: Generalization errors at selected � by 100 trials in Boston Housing dataset. The
number of samples is 50. The results are shown with the standard box plot.

The 13 dimensional kernel is obtained as the product of 13 one-dimensional kernels. The reg-
ularization parameter � is chosen from 1:0 � 10

�7; 1:0 � 10
�6; : : : ; 1:0 � 10

3. In GSICb, we
have chosen the parameter � from 1:0 � 10

�5; 1:0 � 10
�4:2; : : : ; 10 � 10

3 by the leave-one-out
cross validation. Note that, in the cross validation process of this experiment, the kernel functions
corresponding to hold-out training samples are not used, i.e. the regressor from Eq.(6.7) has ac-
cordingly less kernel functions. The result of 100 trials are summarized in Fig. 6.6. Even in the
challenging situation that the number of samples is the same as the number of parameters, GSICb
performed almost as good as 10-fold cross validation.

Note that in this case, GSIC cannot be applied, because the noise variance cannot be obtained
as in (3.10), since n = p.



Chapter 7

Concluding Remarks

In this paper, we proposed GSIC and GSICb, two generalization error prediction methods for non-
quadratic regularizers, which make use of the distribution of additional unlabeled input points.
They extend SIC, whose range of application is limited to quadratic regularizers. Theoretically, the
bias of GSIC was shown to vanish asymptotically. In experiments, GSIC worked well with larger
samples in its original form, and its regularized variant GSICb worked excellent even for small
sample sizes. Therefore GSIC(b) is an interesting stand-alone model selection technique. Another
aspect of GSICb is that it makes use of a well-tuned reference estimator. So conceptually, we can
understand GSICb as a technique to achieve good model selection from a reference estimator,
i.e. we can transfer regularization knowledge from one learning machine to another. GSICb is
especially useful when the model selection of the reference estimator – as in our case – can be
done efficiently. Thus we can save a good amount of computation time.

Future work will focus on theoretical aspects of choosing reference estimators for GSICb.
An interesting question here is how to optimally transfer e.g. regularization information from a
reference estimator to another learning machine or in general between two learning machines. For
this purpose, we will analyze both bias and variance of GSICb, for instance along the lines of [34].
Furthermore we plan to apply GSIC(b) to classification and unsupervised learning.
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Appendix A

Derivation of GSIC

In this section, we will show the derivation of (3.15). Because we assumed that the solution of the
learning problem is unique, ^� is considered as a function of y. Let z := (f(x1); : : : ; f(xn))

T and
� := (�1; : : : ; �n)

T . Also, let the derivatives of �̂(y) be denoted as

r�̂i(y) :=

 
@�̂i

@y1
(y); : : : ;

@�̂i

@yn
(y)

!T

; (A.1)

and r�̂(y) := (r�̂1(y); � � � ;r�̂p(y))
T . Then, �̂(y) can be expressed via Taylor expansion as

follows:

�̂i(y) = �̂i(z + �) = �̂i(z) +r�̂i(z)
T �+ Si; (A.2)

where Si is the residual. Then, wi (i-th element of w) is described as

wi = �̂i(z + �)�E�[�̂i(z + �)] = r�̂i(z)
T �+ Si �E�[Si]: (A.3)

Expressing an unbiased estimator �̂u(y) by (3.7), r�̂u(y) is given as

r�̂u = (KTK)�1KT ; (A.4)

and hence vi (i-th element of v) is described as

vi = r�̂ui
T �: (A.5)

Now E�hw;vi is expressed as

E�hw;vi =

pX
i=1

pX
j=1

PijE�[wivj]; (A.6)

where E�[wivj] is expressed as

E�[wivj] = �2r�̂i(z)
Tr�̂uj +E�[Si(r�̂

u
j
T �)]: (A.7)

Here, we approximate E�[wivj] by

E�[wivj] � �2r�̂i(y)
Tr�̂uj ; (A.8)

i.e., the second term of (A.7) is ignored and z in the first term is replaced by y. The error produced
by this approximation is O(n�2) (see appendix B), so it can be neglected when n is large. Then
we obtain

E�hw;vi � �2tr(PW 0) (A.9)
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where

W 0 = r�̂(y)r�̂u
T
: (A.10)

By implicit derivation theorem, the derivativesr�̂(y) can be obtained from the saddle point equa-
tion,

@Lr

@�i
= 0; (i = 1; : : : ; p); (A.11)

as follows:

r�̂(y) = �H�1M; (A.12)

where H is a p� p matrix whose (i; j) element is Hij =
@2Lr

@�i@�j
, and M is a p� n matrix whose

(i; j) element is Mij =
@2Lr

@�i@yj
. Substituting (2.4) to (A.12), we have

r�̂(y) =
1

n

�
1

n
KTK +

1

2
�rrR(�̂(y))

�
�1

KT : (A.13)

Consequently, (3.15) is derived by substituting (A.4) and (A.13) into (A.10).



Appendix B

Proof of Theorem 1

Here, we shall show the order of the error by the approximation in (A.8) is O(n�2):

E�[Si(r�̂uj
T �)� �2(r�̂i(y)�r�̂j(z))

Tr�̂uj ] = O(n�2) (B.1)

First, we assume that �̂(y) can be represented by b-th order polynomial (b <1), and the moments
of �i up to b-th order are bounded. Then, Si =

Pb
a=2 Sia and

Sia =
1

a!

nX
k1=1

� � �

nX
ka=1

@a�̂i

@yk1 � � � @yka
(z)�k1 � � � �ka: (B.2)

We first show the following lemmas.

Lemma 1 Let i1; : : : ; ia denote a set of indices such that 1 � i1; : : : ; ia � n. Then, the following
relation holds:

E�[

nX
i1=1

� � �

nX
ia=1

aY
k=1

�ik ] = O(nba=2c) (B.3)

where bxc denotes the largest integer not larger than x.

Lemma 2 The order of a-th order derivatives of �̂(y) is described as

@a�̂i

@yi1 � � � @yia
= O(n�a): (B.4)

Proofs of the above lemmas are given in appendix C and D. Note that Lemma 2 also holds for
�̂u(y) by setting � = 0.

First, we will derive the order of the term E�[Si(r�̂uj
T �)]. By using Lemmas 1 and 2, we have

E�[Sia(r�̂uj
T �)] = E�

 
nX

k=1

@�̂uj

@yk
�k

! 
1

a!

nX
i1=1

� � �

nX
ia=1

@a�̂i

@yi1 � � � @yia
�i1 � � � �ia

!

=
1

a!

nX
k=1

nX
i1=1

� � �

nX
ia=1

@�̂uj

@yk

@a�̂i

@yi1 � � � @yia
E�[�k�i1 � � � �ia ]

= O(n�1�a+b(a+1)=2c): (B.5)

Then, the order of E�[Si(r�̂uj
T �)] is equal to that of its leading term E�[Si2(r�̂uj

T �)] = O(n�2).
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Next, we focus on the other term E�[(r�̂i(y)�r�̂j(z))
T
r�̂uj ], which is described as

E�[(r�̂i(y)�r�̂j(z))
T
r�̂uj ] =

nX

k=1

@�̂uj

@yk
(E�[

@�̂i

@yk
(z + �)]�

@�̂i

@yk
(z)): (B.6)

By Taylor expansion, we have

E�[
@�̂i

@yk
(z + �)]�

@�̂i

@yk
(z) = E�[

nX

l=1

@2�̂i

@yk@yl
(z)�l] +E�[

b�1X

a=2

Ta]; (B.7)

where

Ta =
1

a!

nX

i1=1

� � �

nX

ia=1

@a+1�̂i

@yk@yi1 � � � @yia
(z)�i1 � � � �ia : (B.8)

The first term of the right-hand side of (B.7) is zero because each �i is independent and has zero
mean. From Lemmas 1 and 2, we have O(E�[Ta]) = O(n�(a+1)+ba=2c): Then, the order of the
second term is equal to that of the leading term E�[

Pb�1
a=2 Ta] = O(n�2). By substituting this and

the relation
@�̂uj
@yk

= O(n�1) into (B.6), we have (B.1).
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Proof of Lemma 1

The task is to derive the order of Qa:

Qa =

nX

i1=1

� � �

nX

ia=1

E�[�i1 � � � �ia ]; (C.1)

Let us define an index vector i = (i1; : : : ; ia)
T and assume that i contains r(i) unique values

v1(i) < � � � < vr(i)(i). Let the number of indices whose values are vj(i) be denoted as mj(i):

mj(i) = jfk j ik = vj(i)gj (C.2)

where j � j denote the cardinality of a set. For example, if i = (4; 4; 5; 2; 4; 2)T , then r(i) = 3,
v1(i) = 2, v2(i) = 4, v3(i) = 5, m1(i) = 2, m2(i) = 3, and m3(i) = 1. Also, define the set of
all index vectors as I , then Qa can be rewritten as

Qa =
X

i2I

E�[�i1 � � � �ia ]; (C.3)

Let us define the subset of I as

I 0 = fi j mj(i) 6= 1 for j = 1; : : : ; r(i)g: (C.4)

This excludes the index vectors which have at least one isolated index, which does not have com-
mon value in the other indices. For any index vector with isolated indices, E�[�i1 � � � �ia ] = 0
because �i’s are independent and have zero mean. Then, we have

Qa =
X

i2I0

E�[�i1 � � � �ia ]: (C.5)

The set I 0 can be decomposed as

I 0 = I1 + I2 + � � � + Irmax ; (C.6)

where Ik denotes the set of index vectors such that r(i) = k, and rmax is the maximum number
of unique values. Then, Qa is rewritten as

Qa =

rmaxX

r=1

X

i2Ir

E�[�i1 � � � �ia]: (C.7)
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Since the noise moments are bounded by assumption, there exists a positive constant M that
E�[�i1 � � � �ia] � M . Then, we have

Qa � M

rmaxX

r=1

jIrj: (C.8)

The number of possible combinations of the values assigned to v1(i); : : : ; vr(i) is nCr. Let
m(a; r) denote the number of possible combinations that indices i1; : : : ; ia are assigned to r
values v1(i); : : : ; vr(i). Then jIrj is nCrm(a; r). Because m(a; r) does not depend on n, we
have jIrj = O(nCr) = O(nr).

Therefore the order of Qa is equal to that of its leading term O(nrmax). Now the problem is
reduced to obtaining rmax. Let bxc denote the largest integer not larger than x. When r = ba=2c,
Ir is not empty, because, for even a, you can find i such that mj(i) = 2 for all j = 1; : : : ; a=2, and
for odd a, you can find i such that mj(i) = 3 for one j and mj(i) = 2 for the others. However,
when r = ba=2c + 1, Ir is empty, because at least one mj(i) is 1 and violates the condition in
(C.4). Therefore, rmax = ba=2c.
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Proof of Lemma 2

Let us describe that the a-th order derivative of ^�k as

q
(a)
i (�̂(y);y) =

@a�̂k

@yi1 � � � @yia
(D.1)

where i1; : : : ; ia are indices in [1; n]. Assume that the a-th order derivative is described only by
�̂(y), that is, there is some function f such that q(a)(�̂(y);y) = f(�̂(y)). Then, the (a + 1)-th
order derivative q(a+1)(�̂(y);y) can also be described by �̂(y) only, because

q(a+1)(�̂;y) =
@f

@yia+1
=

pX

k=1

@f

@�̂k

@�̂k

@yia+1
(D.2)

and @�̂k
@yia+1

is described only by �̂(y) as in (A.13). Because the first order derivative q
(1)
i (�̂(y);y)

is described only by �̂(y) as in (A.13), it is proved that the derivatives of any order are described
only by �̂(y).

From (A.13), we can derive that @�̂k
@yi

= O(n�1). Let the order of q(a)i be O(n�m), then the

order of q(a+1)i is O(n�(m+1)) from (D.2). Therefore, we have q
(a)
i = O(n�a).
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