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Abstract

In this paper, an agent-based software architecture for

automated wide area video surveillance systems is pre-

sented. The proposed concept is designed for detection and

tracking of moving objects across multiple camera views.

The surveillance system consists of a decentralized collab-

orative sensor network with object- and task-oriented archi-

tecture. At sensor node level, image processing algorithms

are applied for event and object detection. In case of detec-

tion (e. g. motion) an agent-based multi-sensor processing

cluster is created. Each instantiated cluster is responsible

for observation of one object in the scene. Object handover

is managed autonomously by the dynamic sensor clusters.

The dynamic sensor clustering approach allows adding new

sensors without resetting the system parameters, which is a

big advantage in large sensor networks. Furthermore, by

using the agent-based architecture it is possible to create a

framework with an adaptive data and processing load. Ad-

ditionally, upgrade of system capabilities can be done easily

updating or adding new processing agents. The proposed

concept has been proved on an experimental video surveil-

lance system at the Fraunhofer IITB.

1. Introduction

Video surveillance and monitoring is one of the most re-

cent fields of development and research. Due to the increas-

ing threat by crime, industrial espionage and even terrorism,

video surveillance systems became more and more impor-

tant during the last years.

Most of the video surveillance systems, which are cur-

rently used, are managed by human operators who con-

stantly monitor all video streams. This reduces the effi-

ciency of the surveillance task (given by the vigilance of the

operator) and limits the number of applicable video sensors.

One possible solution to overcome these restrictions is

the use of automated surveillance and security systems.

Such systems are able to operate 24h a day with constant

performance and are able to manage a higher number of

sensors at the same time.

Especially in large video sensor networks, there is an in-

creasing need for high quality automated surveillance meth-

ods. When using a small number of sensors, the operator is

able to overlook all videos simultaneously and to switch his

focus between them to keep a person in view. A higher

number of sensors require an abstract visualization of the

scene for situation awareness (e.g. a map with all detected

and tracked objects). Hereby the object detection and track-

ing task cannot be done by interaction of the operator. In

an automated video surveillance system this task has to be

fulfilled by integrated processing modules without the op-

erator knowing about the participating sensors and needed

data. In doing this the operator only receives processed in-

formation about events or location of objects and is then

able to manage more complex situations. A major task for

the automatic surveillance system is the multi-sensor multi-

target tracking functionality. The tracking of objects with

constant identity across different cameras views is a com-

plex task.

In this paper we present an object-oriented concept for

a distributed agent-based video surveillance system, able

to detect and track multiple objects across different sensor

views in a wide observation area. The focus hereby is the

usability of the multi-sensor system on an IP-based surveil-

lance network with a very high number of sensors. This

paper is organized as follows: After a short overview of re-

lated works in chapter 2, chapter 3 provides a brief overview

of the basic components of our system architecture. After
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these chapters 4, 5 and 6 describe the basic components in

detail. In a final step, the experimental system and future

works are presented.

2. Related Work

Few approaches have been proposed for distributed

agent-based surveillance systems [4], [16], [10], [1] and

[5]. In [10] and [4] Collins et al. introduce a system for

video surveillance and monitoring (VSAM) in large areas.

The system consists of multiple calibrated cameras and a

site model. The objects were tracked by using correlation

and 3D location on the site model. The system architecture

described in [10] and [4] is centralized, and therefore not

fault tolerant and scalable with the number of sensor nodes

[5].

In [16] Ukita et al. introduce a real-time coopera-

tive multi-target tracking system. The system consists of

a group of ”Active Vision Agents” (AVAs), each of them

connected to a dedicated active camera. All AVAs coopera-

tively track their targets by dynamically exchanging object

information with each other. With this cooperative tracking

capability, the system as a whole is able to track multiple

moving objects.

However, the architecture described in [16], is able to

track only one object (target) with each sensor. This is jus-

tified by the use of active sensors (pan/tilt). Tracking of

numerous targets is solved by applying a high number of

sensors for the area under observation, but this approach is

typically not practicable for operational systems.

In [1] Atsushi et al. introduce a method for multi-target

observation in wide area environments. The architecture

proposed is highly flat and its components consist of dis-

tributed autonomous image processors (so-called ”watch-

ing stations”) and so-called ”station parameter management

agents”. Each ”watching station” is assigned to a dedicated

sensor node but is able to apply multiple image processing

algorithms (”seeing agents”). The ”station parameter man-

agement agents” only provide sensor parameters and do not

control the ”watching stations”. In this approach the main

drawback is the required computational power for the dis-

tributed autonomous ”watching agents”. Each ”watching

agent” performs tracking algorithms, data fusion and de-

cision making with high requests on computational power.

Consequently, if multiple sensors observe the same object

in the world, the system performs multiple complex pro-

cessing tasks (one for each sensor).

3. Architecture Overview

The architecture proposed in this paper is led by the idea

of an object- and task-oriented agent-based data process-

ing. By ”task-oriented” the coordination of available sen-

sors and scheduling of computational resources depending

Figure 1. Overview of the object- and task-oriented system archi-

tecture with two fixed and one dynamic level. On the dynamic

level, object-based Processing Clusters are applied for distributed

collaborative multi-sensor processing.

on the surveillance tasks assigned by the security staff or

human operator is meant. Hereby, the system does not ob-

serve all objects in view and consequently does not pro-

cess all sensors simultaneously, but focuses on interesting

events (look-out mode) and starts complex observation pro-

cesses for detected relevant objects. In this case relevant

sensors are assigned to clusters for multi-sensor processing

and data fusion. The architecture consists of a hierarchical

structure with two fixed and one dynamic level. The low-

est level (fixed) summarizes the data sources (sensors) with

associated Specialized Detection Agencies (SDAs). The

SDAs perform low level object detection, segmentation and

feature extraction. Each sensor is continuously processed

independently by an integrated SDA. These agencies have

observation functionality for further algorithms with higher

requirements to the computational power (e. g. tracking or

object recognition/identification).

The highest level node (fixed) is the so-called Cluster

Manager (CM). The CM is responsible for the management

of the medium dynamic level which consists of temporarily

existing multi-sensor processes, so-called Processing Clus-

ters (PRCs). The PRCs in turn are advanced processing

modules which are identified with a specific surveillance

task (e. g. tracking). They have the ability to manage and

process multiple sensors (sensor clusters). Additionally,

they are able to determine and manage autonomously those

SDAs, which are needed to fulfil the associated surveillance

task.

The collaboration of the components on the three levels

can be described by the following example: If a new surveil-

lance task has to be fulfilled, the human operator assigns the

new task to the system, setting up a semantic description

using a Human-Machine-Interface (HMI, e.g. application
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frontend) interactively. The task parameters are interpreted

by the Cluster Manager (CM) which now starts a task spe-

cific process (PRC) for advanced data processing.

In the next step, the new PRC uses the initial parameters

provided by the human operator (e. g. start position of an

interesting object) to determine the suitable sensors (SDAs)

for the dedicated task. Additionally, it sets up connections

to the involved SDA for further data requests.

Now, the subscribed SDAs continuously transmit all in-

formation about observations to the PRC for multi-sensor

fusion and advanced processing (e.g. tracking). Over time,

if due to object movement or changes of observation condi-

tions other sensors or SDAs become more suitable or sub-

scribed sensors are no more applicable for the running task,

the PRC autonomously reorganize the sensor participants

by subscribe to new SDAs and unsubscribe to other one.

The main advantages of this framework are network scal-

ability, failure robustness of individual components and the

possibility to reconfigure the system on- and offline (e. g.

add/remove sensors). If we consider SDAs as parts of the

sensors (e. g. intelligent cameras), the scalability of the sen-

sor network will be mainly affected by the required compu-

tational power for the PRCs. This means, that the needed

processor capacity is not affected by the number of sensors

but by the number of average detections or events and the

number of surveillance tasks.

Robustness is typically given by the redundant sensor

clusters. If a sensor stops working, only a small field of

view will be out of range. This lacking field of view is

handled like an object occlusion by the PRCs. Finally, on-

line reconfiguration is quite an important attribute for large

surveillance systems. With the unfixed sensor assignment

to local processing units and the dynamical cluster genera-

tion the participating sensors are redetermined periodically

during the surveillance tasks of the PRCs. In doing this,

after adding new sensors to the network and online registra-

tion of the sensor calibration parameters in a database, the

new sensor is available to all existing PRCs for later cluster

reorganisation.

In the following sections each type of level nodes (CM,

PRCs and SDAs) is explained more detailed.

4. The Cluster Manager Architecture

The Cluster Manager is the highest level of the system

architecture. It fulfils three main tasks. The first is the ad-

ministration of the dynamic level which consists of the cre-

ated PRC instances (Figure 2: PRC-Interfaces). Consid-

ering that there is one PRC for each relevant object in the

scene the first task is equivalent to the administration of the

objects or targets temporarily under observation.

As mentioned before, the system architecture introduced

in this paper is led by the idea of an object- and task-

oriented resource management for scheduling computa-

tional resources depending on the surveillance tasks. For

the realization of this central idea, the Cluster Manager re-

ceives the information about observation jobs by the user

over a Human-Machine-Interface (HMI, e.g. application

frontend). In doing so, the Task Management Interface acts

like an interpreter and enables the Cluster Manager to gen-

erate new PRC instances in case of new tasks formulated by

the user.

A second functionality within the CM is the Task- &

Object-Control module which buffers the assigned task pa-

rameters and takes over the task supervision for running

jobs. This functionality includes the permanent observation

of the running observation processes and the transmission

of temporary observation/tracking results to external mod-

ules (e. g. situation awareness tools or visualization com-

ponents).

Figure 2. Internal Architecture of the Cluster Manager. The

Task Management Interface & Task Control is responsable for the

interpretation of tasks formulated by the human operator and for

PRC scheduling.

As a last (optional) capability, the CM is able to process

additional requests for new surveillance tasks coming from

the SDAs. This option is interesting for automatic genera-

tion of specific PRCs triggered by detections from specific

SDAs.

5. The Processing Cluster Architecture

Processing Clusters are the most complex modules with

the highest requirements to the computational power. PRCs

are responsible for the multi-sensor processing and fusion

(e. g. tracking) of a dedicated object in the scene. They
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include a Dynamic Sensor Management and the Tracking

Module as their main components. The Dynamic Sensor

Management (DSM) module is an independent component

which determines cluster members for a given observation

state. This determination is needed in case that the ob-

ject under observation temporarily moves out of the field of

view of the sensors in the cluster. Given the actual object pa-

rameters (position, motion model, object features etc.) and

the a-priori known calibration parameters of all sensors, the

DSM calculates the relevant subset of the sensor network

that is needed for further observation of the object. This pe-

riodical dynamic reorganisation of the participating sensor

nodes and the representation of the observation results in a

common feature space lead to a decoupling of the sensor-

related measurements and the multi-sensor data association

process (e. g. tracking). So, if the sensors that collabo-

rate in an observation cluster are substituted over time, only

the appropriate measurements will change. The data asso-

ciation process for position fusion, however, is completely

independent from the participating measuring sensors (Fig-

ure 4).

As mentioned before each PRC observes only one object

in the scene (Figure 2). However, an object can appear in

more than one sensor view at the same time. Therefore, the

Tracking Module creates an active SDA-Interface for each

cluster sensor (Figure 3). An additional sub module is re-

sponsible for fusion of observation measurements that are

provided by the SDAs participating in the cluster. For a

multi-sensor tracking application the fusion result is a uni-

fied trajectory and feature set for the observed object.

In doing so, a multi-target-tracking approach for each

sensor is not needed in our system. The Tracking Module

only consists of a single-target-tracker enables to track one

object in a multi-target environment.

This is a main point where our system significantly dif-

fers from the architecture proposed in [1], which assumes

tracking and multi-sensor fusion capabilities of each intel-

ligent sensor node. The advantage of a sensor-oriented fea-

ture extraction and an object-oriented tracking improve ex-

ploitation of the computational resources.

5.1. Dynamic Sensor Management/Clustering

The object-oriented sensor clustering concept that was

introduced before overcomes the typical object handover

problem between sensor-oriented trackers. The PRCs in-

volve only sensor nodes which could be relevant for a robust

tracking task.

The sensor selection is done reiteratively by the Dynamic

Sensor Management of the Processing Cluster (Figure 3).

As in general a PRC is generated interactively by selection

of initial parameters from sensor data (e. g. initial posi-

tion of an object by selection of the object within a live

video stream) at least one sensor is already assigned to the

Figure 3. Architecture of the Processing Cluster (PRC). The two

main modules are the Dynamic Sensor Management for continu-

ous reorganization of the sensor-cluster memebers, and the Track-

ing Module for multi-sensor data fusion and tracking.

PRC after start. After this initialization step a cyclic ob-

ject dependent reorganisation of the cluster participants is

performed.

There are several algorithms in literature for camera-

selection and clustering in sensor networks. Some ap-

proaches estimate the observation quality (e. g. quality

of detected faces, person velocity in relation to the camera

view, [15], [6]), and selects the cameras with the best qual-

ity coefficients. In [12] a look-up table is used for camera

selection in large networks. Depending on the object posi-

tion, the sensors a-priori assigned to this specific location

are selected. In [14] the authors introduce a sensor selec-

tion method based on a new quality measure called ”Ap-

pearance Ratio”. The ”Appearance Ratio” characterizes the

object detection or segmentation quality of each sensor. Er-

can et al. introduce in [3] a sensor selection method based

on the minimum MSE of the best linear estimate of the ob-

ject position as quality metric. The best linear estimate is

defined by a chosen camera measurement model.

These methods are possible candidates as components of

the Dynamic Sensor Management module. At the present

state of development, a simple ”k-nearest neighbour” ap-

proach is implemented which selects the k sensors with the

field of views next to the object position. Unfortunately,

this approach is only applicable if the sensor coverage is

very high. In future works primarily modifications of the

approaches presented in [14] and [3] will be evaluated in

332342342



Figure 4. An exemplary dynamic clustering and data association

process: The three pictures on top show the ideo of continuous

cluster reorganization. The next row shows the observations of

the current cluster members (assigned in a common feature space

or coordination system). Finally, in each time step a data fusion

approach is performed for object tracking.

our experimental video surveillance system. Enhancements

are mainly needed, because of the non-overlapping field of

views of our experimental sensor network.

Especially, we will analyse the use of sensor clusters for

logical relationship between sensor nodes with disjoint field

of views. As an example for the application of such clus-

ters, cameras installed in front of elevator gates in a build-

ing, have to belong to an own cluster for continuous object

tracking across different floors. This relationship can not be

modelled with 2D representation of field of views.

5.2. SDAInterfaces/Tracking Module

Depending on the determined sensors in the cluster, in-

stances of SDA-Interfaces are created for each cluster mem-

ber. The SDA-Interfaces are active processes which sub-

scibe to cluster SDAs, which now in turn start providing

most recent data about observed objects (e. g. position,

colour features, shape, position, etc.). Each time new ob-

servation data is available, a data validation and association

process is performed by the Tracking Module for position

estimation and identification of the observed object. In our

PRCs we implement a data association approach based on

Bayesian fusion with inconsistency detection, similar to the

approach presented in [11]. All object positions provided

by the observing SDAs are modelled as bivariate Gaussian

distributions. Hereby, all SDAs provide the positions of all

objects in the field of view. Using the approach in [11]

the observations are evaluated and the inconsistency rela-

tive to the estimated position by the tracking approach is

determined. Sensors which provide more consistent data

are preferred during the Bayesian fusion step. The fused

position measurement of an object is then used as the new

measurement for a standard Kalman filter as linear motion

estimator.

Further details about the position fusion methods will not

be discussed in detail in this work, as in this paper we fo-

cus on the network architecture only. Nevertheless, we will

point out, that there are numerous approaches for this task,

discussed in many publications [2], [7], [13], [4], [9],

[8].

6. Specialized Detection Agency

The Specialized Detection Agencies are distributed soft-

ware applications with simple event notification functional-

ity (trigger) and feature extraction capability. Each sensor

in the network is directly assigned to a different SDA. The

agencies in turn consist of three logical units. First of all, the

Sensor Interface for raw data access (e. g. video streams);

Second, the PRC Interface for communication to the sub-

scribed PRCs (subscriptions); and last, the so-called Simple

Agent Plattform (SAP). The SAP is a modular platform for

dynamic generation of vision agents with different capabili-

ties. Depending on the available processor resources on the

intelligent sensors or the specific detection task ordered by a

PRC, the SAP activates one or multiple vision agents for im-

age processing. All activated vision agents perform individ-

ual algorithms for event detection and feature extraction (e.

g. motion detection, face detection, change detection (aban-

doned luggage, theft)). After this the extracted information

and object features are available to all subscribed PRCs. By

providing observation descriptions on feature level, and ad-

ditionally only on demand the network load is reduced sig-

nificantly. This guarantees that only task-relevant processes

affects network load by extensive data exchange.

The object description messages are structured in a

header and a body part. The message header includes object

independent sensor and observation parameters like Sen-

sorID, calibration parameters, timestamp, activated detec-

tion agent (e. g. motion detection), body size etc. The body

on the other hand, includes feature vectors about the ob-

served objects. At the present state, our experimental sys-

tem includes motion detection agents for the object track-

ing task only. Hereby, the body includes the positions of

the objects as bivariate Gaussians (in a common coordi-

nate system), height, width and the estimated object type

(human/man-made object), for all detected objects in sen-

sor range as default features. Additionally, an optional data

field for object descriptors like color histograms, contours,

face templates, covariance descriptors etc. is provided by

the protocol for advanced data association and fusion ap-

proaches.
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Figure 5. Specialized Detection Agency. The SDA is a sensor re-

lated process, therefore only one sensor interface is included. With

the Simple Agent Platform the SDA is able to perform one or more

detection approaches on the sensor data and provide the observa-

tions to subscribed PRCs over the PRC-Interface.

The decentralized detection agencies enable to distribute

computational load and enable the system to efficiently

transmit data from heterogeneous sensors and approaches.

Furthermore, the distributed structure allows to highly re-

duce the data load on the network and at the same time to

focus computational load on external processors.

7. Experimental System

The experimental system at the Fraunhofer IITB consists

of about 25 cameras installed on three floors in our build-

ing. All sensors are state-of-the-art IP-cameras, and com-

mercially available. The fields of view of the sensors cover

a major part of the test areas, but not completely. There-

fore, the vision system needs robust algorithms that are able

to track objects in case of occlusions or disappearance and

reappearance. This capability is mainly needed to track ob-

jects or people across different floors (using elevators).

For evaluations and tests of the system capabilities we

installed four cameras in the entrance hall, one of those in

particular for face detection of people entering the building.

Two more cameras observe the lounge at the second floor in

front of a conference room. About 12 more cameras cover

the corridors of several floors and one office wing of our in-

stitute. Furthermore, we installed additional video cameras

observing the elevators on all three floors. Object classifi-

cation and face recognition approaches will be applied on

these cameras for tracking persons who enter the elevator at

Figure 6. SDAs of two cameras performing motion detection and

position estimation. The green lines visualize the estimated height

and width of the detected blob. The red cross shows the estimated

position of the object blob, after shadow removal.

one floor and leave it at another one.

The computational capacity of the experimental systems

consists of 9 high-end PCs available on the market. Five

of them are temporarily emulates the intelligent cameras

(with 5 running SDAs each). One processor core is actually

used for the CM. The other processor cores provide compu-

tational resources for PRCs which means for surveillance

tasks.

We test the architecture for single-object and multi-

object tracking, which means, using one or more PRCs at

the same time and observed a quite stable performance with

low network load. All 25 SDAs have processed the assigned

video stream with 10fps and 4CIF resolution and therefore

generated object observation messages with about 10KB

per frame and object in range. Consequently, the amount of

data received by a PRC with an average sensor cluster size

of 3 is approx. 300KB/s which is negligible. On the other

hand, we observe, that the CPU load needed by a PRC for

data reception, synchronization in parallel, data association,

fusion and tracking is very high.

For proof of concept, figure 6 and 7 show the results of

four SDAs performing motion detection and position esti-
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Figure 7. SDA of two more cameras at the first floor of the IITB.

mation to an object of interest. In this sequence one tar-

get has been tracked on a corridor at our lab, over seven

cameras with overlapping field of view. In addition to the

motion detection capabilities, the SDAs include a calibra-

tion parameter sets for the dedicated cameras, which enable

the SDAs to transform the geometric feature extracted from

moving blobs (height, width, position) in a global coordi-

nation system. The estimated features are illustrated by the

green lines to each object.

Figure 8 shows the observed detections of the objects in

a common coordination system. All detections are visual-

ized as marker with different colors for different SDAs. As

shown in the plot, the detections of each sensor are limited

to certain areas (given by the FOV of the cameras). The

trajectory of the observed object generated by the assigned

PRC is illustrated by the green solid line.

Even though our main focus for application is object

tracking, the system architecture presented in this paper is

not application specific. For example it would be also think-

able to perform a ”person identification”-task to search a

specific person in large camera networks. For this task,

the human operator might provide one or more face tem-

plate(s) to a ”face recognition”-PRC as initial parameters.

The SDAs in this case perform face detection and feature

extraction.

Figure 9. Expandability of the System. Cluster Managers are re-

sponsable for task handling with a dedicated number of SDAs. Mi-

gration of single tasks (PRCs) between local networks is managed

by the Global Cluster Manager.

8. Future Work

Especially for large area surveillance systems expand-

ability is an important aspect. The architecture presented

in this paper is highly expandable of two reasons: First,

the SDAs as distributed processing units, do not directly

charge the computational resources of the system. Conse-

quently, adding sensors by constant number of observation

tasks does not significantly increase the system load. Sec-

ond, the PRCs are only generated for dedicated surveillance

tasks (assigned by the human operator). In doing so, the

computational load of the system mainly depends on the

amount of observation tasks. Nevertheless, a higher num-

ber of sensor nodes (SDAs) implies a higher load for the

PRCs. As mentioned before, the PRCs dynamically per-

form a reorganisation of the cluster which leads to a higher

complexity for a higher density of sensors.

For very large systems with local operators responsible

for different areas, the system is designed to be subdivided

in ”local networks”, with a dedicated number of SDAs and

a CM each. An additional Global Cluster Manager (GCM)

is integrated in the architecture for communication between

the local CMs and the capability for migration of single

PRCs from a subnet to another (for tracking object cross-

ing different subnets).

For simulation of such subnets, the experimental system

at our institute will be logically divided in three local net-

works - one at each floor - with at least six SDAs each. The

WAN is simulated by the network backbone at our institute.

Because of the identical hardware setup and infrastructure,

we will be able to determine a realistic performance gain

compared to the basic architecture.

A second ambition in future works will be the integration

of heterogeneous sensors (and SDAs) in the experimental

system, to prove the sensor independent concept. We intend
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Figure 8. Sensor observations in a multi-target environment (dots), and the estimated track for an assigned moving target (green line).

to integrate microphones for acoustic localization of objects

with proper SDAs.
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