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ABSTRACT

In addition to detecting and tracking persons via video surveillance in public spaces like airports and train
stations, another important aspect of a situation analysis is the appearance of objects in the periphery of a
person. Not only from a military perspective, in certain environments, an unidentified armed person can be
an indicator for a potential threat. In order to become aware of an unidentified armed person and to initiate
counteractive measures, the ability to identify persons carrying weapons is needed. In this paper we present a
classification approach, which fits into an Implicit Shape Model (ISM) based person detection and is capable
to differentiate between unarmed persons and persons in an aiming body posture. The approach relies on
SIFT features and thus is completely independent of sensor-specific features which might only be perceivable
in the visible spectrum. For person representation and detection, a generalized appearance codebook is used.
Compared to a stand-alone person detection strategy with ISM, an additional training step is introduced that
allows interpretation of a person hypothesis delivered by the ISM. During training, the codebook activations and
positions of participated features are stored for the desired classes, in this case, persons in an aiming posture
and unarmed persons. With the stored information, one is able to calculate weight factors for every feature
participating in a person hypothesis in order to derive a specific classification model. The introduced model is
validated using an infrared dataset which shows persons in aiming and non-aiming body postures from different
angles.
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1. INTRODUCTION

The ability to detect and track persons is one core task of many vision based surveillance and threat assess-
ment systems and applications. In recent years, many person detection and tracking approaches have been
introduced1–3. In most high-level applications, person detection and tracking alone is not sufficient to allow for
situation assessment. Here, further information is necessary to build and maintain a meaningful picture of the
environment and thus be able to assess a situation. Besides the interpretation of person trajectories which is an
important part of many high-level applications, another essential part of situation assessment is the context of a
person. This means, that not only the person itself is relevant in many applications, but also objects the person
interacts with. Especially in military threat assessment, objects carried along by persons play an important
role because they are an essential indicator for a possible threat. In particular, weapons are of interest in this
context, but also other objects like bags which might contain explosives are relevant here. Thus, an important
contribution to detect possible threats using vision is the detection of objects in the context of persons. This task
is a very challenging one because objects which are relevant in this context are diverse. Thus, straightforward
training of an object detector for a specific class is not sufficient here for two reasons: (i) object appearance
might be influenced by the person which carries the object and (ii) the object itself might not be visible at all
but only inferable in the context of the person. In this paper, we present an approach which copes with these
challenges and uses object appearance and person context to infer the presence of an object. Specifically, our aim
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is to differentiate persons without an object from those in aiming body posture which implies the presence of a
weapon. For that, we build on an Implicit Shape Model (ISM) based person detection approach introduced in4

for infrared data. Here, a general appearance codebook is used for person representation. In this work we extend
this person detection approach by introducing an additional training step which allows for detailed interpretation
of a person hypothesis which was generated by the person detector. The detailed analysis allows to differentiate
”normal persons” from those which might constitute a threat.

In detail, during training, which builds on samples of ”normal persons” and ”dangerous persons”, the code-
book activations and positions of participated features are stored for the relevant classes, in this case, persons
in an aiming posture and unarmed persons. With the stored information, one is able to calculate weight factors
for every feature participating in a person hypothesis in order to derive a specific classification model.

Only little work has been yet performed in this area. In5 a shape analysis algorithm, combining periodic
motion estimation with a static symmetry analysis of a person silhouette, has been introduced in order to
determine whether a person is carrying an object under the usage of a foreground segmentation for silhouette
information. Symmetric violations are interpreted as a carried object. A further development of these results
is presented in6. Another approach is presented in7. Here, Branca et al. try to detect persons carrying objects
such as a probe or a tin within a segmented foreground region to identify intruders in archaeological sites. The
detection is based on wavelet decomposition and the classification uses a supervised three layer neural network,
trained on examples of probes and tins in foreground segmentations. These approaches rely on a foreground
detection that distinguishes objects and specially persons from a static background, therefore a direct comparison
is not feasible.

The paper is structured as follows. In section 2 the basics of the person-detection approach is introduced and
the extensions and adaptions according to4 are detailed. In section 3, we show how the information delivered
by this feature based person detector can be used to inherently classify aiming body posture in our application.
The evaluation of the specific classification model is elaborated in section 4.2.

2. PERSON DETECTION

Our classification model is built on a state-of-the-art person detector presented in4. In this section, we briefly
describe the training and detection approach and the enhancements compared to the basic trainable ISM object
detection approach by8.

2.1 Training

During the training stage, a specific object class is trained on the basis of annotated example images of the desired
object category. The training is based on local features that are employed to build an appearance codebook of
a specific object category.

Local features extracted from the training images on multiple scales are used to build an object category
model. As local features, we picked SIFT9 over other local features like SURF10 or a combination of Harris11

and Shape Context12, because they offer robustness and other advantages as shown in13. The features extracted
from the training images on multiple scales are used to build an object-category-model. For that, features are
clustered in descriptor space to identify reoccurring features which are characteristic for the object class. To
generalize from the single feature appearance and build a generic, representative object model, the clusters are
represented by the cluster center. At this point, clusters with too few contributing features cannot be expected
to be representative for the object category and are therefore removed from the model. The remaining feature
clusters (codebook prototypes) are the basis for the generation of the ISM that describes the spatial configuration
of features relative to the object center and is used to vote for object center locations in the detection process.
For that, every SIFT feature found in the training data is compared to all codebook prototypes. The spatial
occurrence of the feature is added to the spatial distribution of a codebook prototype if the similarity (sum of
squared differences in descriptor space) of a feature and the prototype is above an assignment threshold. A
weight factor which is based on the similarity of prototype and feature is used to model the importance of the
feature in the spatial distribution. A single feature can contribute to more than one codebook entry (fuzzy
assignment).



2.2 Detection

In order to detect objects of the trained class in an input image, SIFT features are extracted. These features
are then matched with the codebook prototypes, activating prototypes with a match above a threshold tsim.
The spatial distribution of the prototypes casts votes for object center locations in a 3D (2 image dimension and
scale) hough-voting-space. The voting space is divided into a discrete grid in x-, y-, and scale-dimension to allow
fast identification of promising object hypothesis locations. Each grid that defines a voting maximum in a local
neighborhood is taken to the next step, where voting maxima are refined by mean shift to accurately identify
object center locations.

At this point there are two extensions in the used detector by4 to the work of Leibe et al.8 First, the vote
weights are not equally distributed over all features and codebook entries, but assigned with a weight factor
determined by the feature similarities. The weight factor ρ(fk, Ci) for an assignment of an image feature fk and
a codebook entry Ci is defined by:

p(Ci|fk) =
tSim − ρ(fk, Ci)

tSim

. (1)

Where ρ(fk, Ci) is the sum of squared differences in descriptor space. The same distance measure is used
for the weight factor p(V~x|Ci) of a vote for an object center location ~x when considering a codebook entry Ci.
The vote location ~x is determined by the ISM learned in training. Here, ρ(fk, Ci) is the similarity between a
codebook representant and a training feature that contributes to the codebook entry. The overall probability for
and weight of a vote wV ote is:

wV ote = p(Ci|fk)p(V~x|Ci). (2)

Secondly, the training data dependency is reduced. In the initial approach by Leibe et al., all votes that
contributed to a maximum are used to score a hypothesis and decide which hypotheses are treated as objects
and which are discarded. According to this the voting and thus the hypothesis strength depends on the amount
and the character of training data. Features, that have often been seen in the training data, result in codebook
entries with a large amount of contributing features and thus in a vast of votes for a single object center location
with only the evidence of a single image feature. Since a feature-count independent normalization is not possible
at this point, this can result in false-positive hypotheses with a high strength, generated by just a single or
very few false-matching image features. Because a single image feature can only provide evidence for an object
hypothesis once, just a single vote - the one with the highest similarity of image- and codebook-feature - count
for image-feature/hypothesis combination. The score of a hypothesis can thus directly be inferred from the sum
of all V contributing votes, without the need for a normalization:

γΦ =
V

∑

i=1

wV ote
i . (3)

Because objects at higher scales can be expected to generate much more features than those on lower scales
this score is furthermore divided by the volume of the scale-adaptive search kernel (see8 for details). The result
of the detection step is a set of object hypotheses Φ, each annotated with a score γΦ. This score is subject to a
further threshold application. All object hypotheses below that threshold tscore are removed from the detection
set Φ.

3. OBJECT DETECTION IN THE PERIPHERY OF A PERSON

In this section, we present a classification approach with the key ability to differentiate between armed and
unarmed persons in image data. The Implicit Shape Model (ISM) based person detection using SIFT features,
outlined in section 2 is capable of handling both infrared and visible sensor data. Compared to the ISM person
detection strategy, an additional training step is introduced that allows interpretation of a person hypothesis
delivered by the ISM. Using trained class specific activation profiles and local distribution of features, weight



factors are calculated for every feature participating in a person hypothesis in order to derive a specific classifi-
cation model. From the underlying concept, the detector described in section 2 is independent from the object
category, but for the goal to detect objects in the periphery of a person, enhancements are necessary. The
immediate surroundings of the object are modified through the presence of a person and often only parts of
the carried object are visible. Therefore extracted features do not match with prototypes, which represent fully
visible objects. Furthermore carried objects do not offer many characteristic patterns and the details of carried
objects show a high similarity to background image structures. This can result in a false-hypothesis with a high
score γ caused from background features. Hence, variation of the detection parameters such as tsim, tscore can
not solve the problem. According to this, the stand-alone ISM detector is only applicable in cases where the
relevant object categories offer adequate characteristic structures.

A hierarchic detection, i.e. first applying a person detection with a corresponding codebook and then an
object detection with a corresponding codebook, extends the number of detectable object categories only by
some particular categories. Through this enhancement the stable person detector is used to eliminate false-
hypotheses in the background, but only objects that are not carried too close to the person’s body can be
detected additionally.

To solve the problem of a modified object environment due to the presence of a person, the separation between
the person and the object codebook is set off. Thus changes of local gradients are considered and as a result
we receive a combined codebook that is able to deliver strong hypotheses for persons with and without carried
objects. In addition to variation of shapes and view angles for an object category persons with and without
objects have to be included in the ISM training data. From the detection set Φ, we do not deliver evidence if a
person is carrying an object. Therefore an additional training is needed in order to derive a specific classification
model.

3.1 Codebook activation

In order to get evidence if a person carries an object, it is essential to figure out which codebook prototypes
include information about the presence of this object. Hence, an analysis of the activation of all prototypes
of the combined codebook is accomplished to allocate the prototypes between classes. Therefore additional
training images are divided into the classes ”persons with a weapon in an aiming posture” and ”persons without
a weapon in a normal posture”. The recording of the codebook activation is orientated towards the Bag-of-Words
(BoW) method. BoW can be used for an image category classification, where histograms represent the quantized
occurrence of a local image fragment14. Visual words, which are quantized vectors with attributes such as color
and texture, are used for similarity calculation.

Through the codebook index of the prototypes one gains a visual vocabulary of sorts. With the BoW
method one receives a representation of a special image category by a typical frequency distribution of the visual
vocabulary. To inquire a class specific activation profile - assimilable to a visual word - the ISM detector is
applied for all class separated training images. For a particular hypothesis the information which prototypes
were activated from features contributing to a hypothesis is stored. So one receives after M ISM based person
detection for the classes ”person with weapon in an aiming posture” and ”person without weapon in a normal
posture” the mean activity āi of a codebook entry for M positive person hypotheses for a specific class (Fig. 1).

A BoW classification of a test image is examined through the minimum distance between the specific frequency
distribution for category and the frequency distribution ascertained in the test image. In comparison to BoW
categorization, not all histograms or codebook entries are used to classify a test person, but exclusively activated
codebook entries are incorporated. This is necessary because BoW is a statistical approach where all features
extracted in an image influence the classification. The ratio of extracted features to the size of a visual word
histogram differs widely to the ratio of activated codebook entries per person hypothesis to the total number of
codebook entries. Since the ISM representation takes variation of shapes and view angles into account, only few
prototypes can participate in a hypothesis. Therefore a consideration of features not matching with prototypes
for a particular hypothesis leads to a false interpretation.

With the established activation profile, the similarity α between a person detected with a combined codebook
and a class can be defined by:



Figure 1. Visualization of the codebook activation recording. For the classes ”person with weapon in an aiming posture”
(down) and ”person without weapon in a normal posture” (up) the mean activity āi of a codebook entry for M positive
person hypothesis is stored.

α =

L
∑

i=1

Fi
∑

f=1

(1 − (āTest,f − āi)). (4)

Where L ∈ {1, .., N} is the number of activated codebook entries per hypothesis, N the number of prototypes
stored in the codebook and Fi the number of corresponding features per codebook entry. For a single frame
interpretation āTest is 1. The single terms of the activation similarity are the first weight factor of the complete
classification model.

3.2 Inclusion of spatial information

One major advantage of the ISM is neglected when the codebook is interpreted as a single visual word histogram
of sorts without the spatial distribution stored in the codebook. Not only the activated codebook entries are
delivered by an ISM hypothesis, but additionally the position of the hypothesis center is known.

By means of the features that contribute to a hypothesis, the relative position of the keypoints to the center
can be determined. But this relative position carries an uncertainty regarding the real corresponding vote position
inside the Kernel. Due to the fact that a matching feature is only considered once for the calculation of the
hypothesis score γ, one particular ISM offset can be attached to this feature. For scale adaption this value is
divided by the scale dimension of the extracted feature. Considering scale adaption and the uncertainty of the
real position inside the Kernel, the ISM offsets can be used to assign codebook entries corresponding feature
positions. During the recording of the activation profiles, the ISM spatial distribution is partitioned in class
specific relative codebook entry positions with scale adaption.

Based on this class specific spatial distribution, a spatial similarity can be calculated for a new person
hypothesis. With the codebook indexes, a matching feature position can be compared with the estimated spatial
distribution of the classes. Introducing a threshold tOffset which determines the maximal distance between
keypoint positions for a new hypothesis and the stored class specific positions, we can define the spatial similarity
d for a class by:

d =
L

∑

i=1

Fi
∑

f=1

tOffset − minK
k=1(

√

(xOffset,k − xTest,i,f )2 + (yOffset,k − yTest,i,f )2)

tOffset

. (5)



Figure 2. Features with corresponding codebook entry and spatial distribution PC from the ISM, that were assigned
through annotation to the carried object weapon (left). person detection with activated codebook entry (right). Due to
the calculated vote weight one can unambiguously infer the connection to a training feature (red).

Where K ∈ {0, ..,M} is the number of relative positions per codebook entry stored during M training
hypotheses for a class, L ∈ {1, .., N} is the number of activated codebook entries per hypothesis, N the number
of prototypes stored in the codebook and Fi the number of corresponding features per codebook entry. The
values xOffset and yOffset are the class specific relative positions of a codebook entry which are determined in

training and can be calculated with (x, y)Offset =
δKeypoint,(x,y)−δV ote,(x,y)

scale feature
. Here the terms δV ote and δKeypoint

are the image positions of the strongest vote and keypoint position of features resulting in a hypothesis. The
values xTest and yTest are relative positions for the inquired hypothesis which can be calculated analogous to
(x, y)Offset. With the terms di one gains the second weight factor for the classification model.

3.3 Semantic annotation

Using only the activation and spatial similarities, a direct position calculation of a carried object is not feasible.
Codebook entries that show a significantly stronger activity for the class with the carried object are indicative
for the carried object. According to this, the keypoint position of a feature that matches with such a codebook
entry can be used for the calculation of the carried object position.

Furthermore, the enhancements by4 in the detection step of the ISM approach provide an unambiguous
inference to a training feature, that has created a specific vote. Hence, only the strongest vote is considered for
the calculation of the hypothesis score γ, the corresponding offset leads back to a particular training feature.
During the ISM training an annotation can be added to the codebook entries for features that can be associated
with carried objects. The training data carried object annotation can directly be used to annotate training-
features found on carried objects with semantic identifiers. The person hypotheses resulting from detection
consist of a number of votes. These were generated by specific entries (that refer to training features) in certain
codebook entries that were activated by image features. Using the annotation of these entries, one is able to
infer the semantics of (some) image features that contribute to a person hypothesis (see Fig. 2).

In case of a classification of an armed person, the keypoint of an activated annotated feature can be used to
determine the weapon position. If more than one annotated feature is involved in a hypothesis, the vote weight
factor p(V~x|Ci) is considered for a more detailed position calculation. For Z involved annotated features the
weapon position is defined by equation:

(x, y)Objekt =

∑Z
i=1 δKeypoint,(xi,yi) · p(V~x|Ci)

∑Z
i=1 p(V~x|Ci)

. (6)



Table 1. Classification results for the classes ”person with weapon in an aiming posture” and ”person without weapon in
a normal posture”.

single frame decision
number of persons armed/unarmed sensitivity specificity

100/100 0.95 0.9

Due to the fact that this semantic annotation has the weakness that the similarity between an image fea-
ture and the training feature is calculated only indirectly by the similarity between the (generalized) codebook
prototypes and the image feature (see equation 1) and details of carried objects can show a strong similarity
to background image structures, this annotation is not used as stand-alone carried object identifier. In case of
classification of an armed person the activation of an annotated feature can be used for verification as well as
for the position calculation.

Considering Fig. 2, it is clear that extracted training features of a carried weapon (left) do not include details
of the weapon. Actually, the underlying keypoint positions are expected to be on the brighter body parts and
not directly on the weapon itself. Therefore the term ”recognition of an aiming posture” rather than ”weapon
detection” should be used.

4. MODEL VALIDATION

4.1 Classification Model

By combination of the similarities α and d a classification model arises which takes the spatial distribution of
single prototypes as well as the ISM activation structure into consideration. For each desired class the similarity
to the ISM person hypothesis is calculated. A classification if a person is carrying an object or if a person is in
an aiming posture can be determined with the help of the maximum similarity c between a new hypothesis and
the differentiation classes. This similarity c is defined by:

c = maxU
j=1(

L
∑

i=1

Fi
∑

f=1

αj,i,f · dj,i,f ) , L ∈ {1, ..., N}. (7)

Where U is the number of classes, N the number of prototypes stored in the codebook, Fi the number of
corresponding features per codebook entry and L ∈ {1, .., N} is the number of activated codebook entries per
hypothesis. The term j shows which class is classified. In case of classification of an armed person the positions
of annotated features are used to calculate the carried weapon position.

4.2 Results

For model validation, an infrared dataset which shows persons in aiming and non-aiming body postures from
different angles is used. The image resolution is 640 × 480 pixel, where single persons appear in a size of about
50 × 180 pixel. The actual weapon size is only about 35 × 10 pixel, therefore feature descriptors extracted on
the weapon always include structures from a person. This means a stand-alone ISM detection with a weapon
codebook is not feasible. Stable keypoints occur preferably on brighter body parts such as the hand and not
directly on the weapon itself. This is valid for all steps - for the ISM training, for the activation recording and
for test images. For performance evaluation the sensitivity and specificity is considered. In this paper sensitivity
is defined by the ratio of correctly classified persons in an aiming posture to the number of correctly detected
persons in an aiming posture with the ISM and the specificity is defined by the ratio of correct classified persons
in a non-aiming posture without weapon to the number of correct detected persons under such conditions with
the ISM.

Examples of correctly classified person without weapon are shown in Fig. 4. The center of a person hypothesis
is marked with the bigger green circle, all features involved in the hypothesis are marked with the smaller green
circle. Table 1 contains the overall results of the model validation. The determined weapon region is accentuated
by the red circle and annotated features are accentuated by a pink outline. Classification examples for armed



Figure 3. Classification examples for sensitivity estimation. The figure shows an armed person in an aiming posture where
the weapon position is accentuated by the red circle.

Figure 4. Classification examples for specificity estimation. The figure shows a person without weapon who is classified
correctly.

persons in an aiming posture are shown in Fig. 3. In these examples, the area of the carried weapon is also
calculated correctly, even though the size of the weapon is only about 35 × 10 pixel.

With the determined sensitivity of 0.95 and the specificity of 0.9 the presented classification model is capable
of differentiating between unarmed persons and persons in an aiming body posture. Some of the false decisions are
caused by a sub-par training. Structures from person details such as legs are not significant for the classification.
Therefore prototypes of these structures must have an identical value for the mean activity for both classes. Due
to a variation of shapes and view angles for persons in the training data, a small discrepancy can not be avoided.
The problem can be solved by not considering all features involved in a hypothesis but only from particular
regions. In this case only features above the hypothesis center are relevant for a classification. Furthermore in
a single frame decision it can not be assured that in crucial regions features are extracted despite the fact that
the score of the person hypothesis is strong. By extending the classification over an image sequence and using
the person tracking presented in15 the probability of this unlikely scenario can be reduced.

The presented approach can also be used for classification of persons carrying a backpack from a side view.
In the free accessibly CASIA Gait Dataset C16 a sensitivity of 0.91 and a specificity of 0.93 could be determined
(see Table 2). Examples of correctly classified person with and without backpack are shown in Fig. 5 and 6. The
bigger green circle is marking the center of a person hypothesis, the smaller green circles are marking features
involved in a person hypothesis. Due to the extremely strong similarity between backpack details and shoulder
details, the small deterioration of the performance can be explained. Here the consideration of the class specific
spatial distribution has a stronger influence on the similarity c.

Table 2. Classification results for the classes ”person with backpack” and ”person without backpack” (CASIA Gait Dataset
C).

single frame decision: CASIA Gait Dataset C
number of persons with/without backpack sensitivity specificity

100/100 0.91 0.93



Figure 5. Classification examples for sensitivity estimation. The figure shows a person carrying a backpack where the
backpack position is accentuated by the red circle.

Figure 6. Classification examples for specificity estimation. The figure shows a person without backpack who is classified
correctly.

5. CONCLUSION

In this paper, we present a classification approach with the key ability to differentiate between armed and unarmed
persons in image data. Compared to a stand-alone person detection strategy with ISM, an additional training
step is introduced that allows interpretation of a person hypothesis delivered by the ISM. Using trained class
specific activation profiles and local distribution of features, weight factors or rather similarities are calculated
for every feature participating in a person hypothesis in order to derive a specific classification model. The
introduced classification model is evaluated in two thermal image sequences with different carried objects. The
evaluation results of the test sequences show, that the classification model performs well for detection of a carried
backpack in a side angle view and for identification of a person with a weapon in an aiming body posture.
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