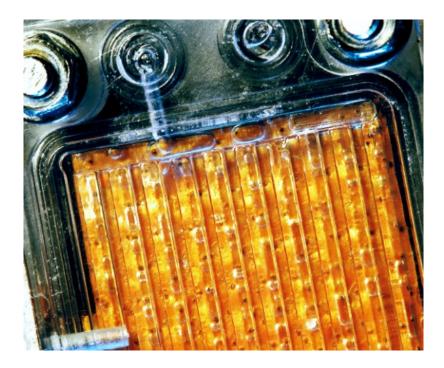
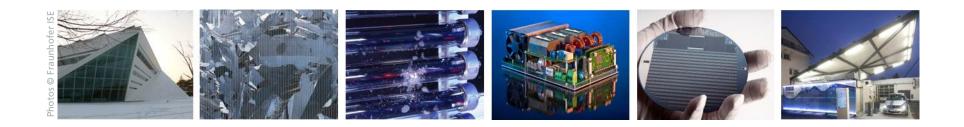

Water Electrolysis: Status and Potential for Development

Tom Smolinka


Fraunhofer-Institut für Solare Energiesysteme ISE

Joint NOW GmbH – FCH JU Water Electrolysis Day Brussels (BE), April 03, 2014


Agenda

- Short introduction to Fraunhofer ISE
- Applications for water electrolysis
- Key features of different EL approaches
 - Alkaline electrolysis AEL
 - PEM electrolysis PEMEL
 - High temperature electrolysis HTEL
- Discussion of technical challenges:
 - Performance and efficiency
 - High pressure operation
 - Part-load and overload capability
 - Life-time
- R&D demand and summary

Fraunhofer Institute for Solar Energy Systems ISE Performing Research for the Energy Transition

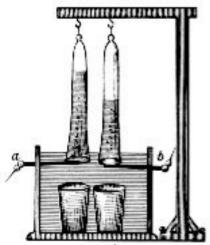
12 Business Areas:

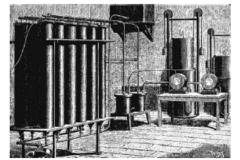
- Energy Efficient Buildings
- Silicon Photovoltaics
- III-V and Concentrator Photovoltaics
- Dye, Organic and Novel Solar Cells
- Photovoltaic Modules and Power Plants
- Solar Thermal Technology

- Hydrogen and Fuel Cell Technology
- System Integration and Grids Electricity, Heat, Gas
- Energy Efficient Power Electronics
- Zero-Emission Mobility
- Storage Technologies
- Energy System Analysis

3

H₂ Refueling Station at Fraunhofer ISE


- Publicly accessible refueling station, located at premises of Fraunhofer ISE
- Main components of the filing station:
 - (Membran electrolyser
 (30 bar / 6 Nm³/h)
 - Mechanical compressor
 - Storage tanks
 - Dispenser units (200/350/700bar)
 - Filling according to SAE J2600
- Integrated container solution
- Coupled with renewable energies:
 - Photovoltaic modules (roof)
 - Certified green electricity
- Two fuel cell cars from Daimler



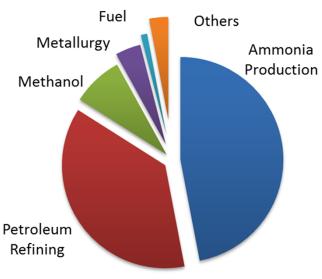
Hydrogen Production by Electrolytical Water Splitting Known for more than 200 years.

Test set-up of Ritter

Alkaline electrolyser around 1900

- Invention of voltaic pile (1799) enabled investigations of electrolytic approaches
- Main principle demonstrated around 1800 by J. W. Ritter, William Nicholson and Anthony Carlise
- Today 3 technologies available:
 - Alkaline electrolysis (AEL)
 - Electrolysis in acid environment (PEM electrolysis - PEMEL) (SPE water electrolysis)
 - Steam electrolysis (High temperature electrolysis -HTEL or SOEL)

 $2 H_2O \rightarrow 2 H_2 + O_2$



Johann Wilhelm Ritter (1776-1810) Picture credits: all www.wikipedia.org

Hydrogen Production by Electrolytical Water Splitting Today's industrial hydrogen production.

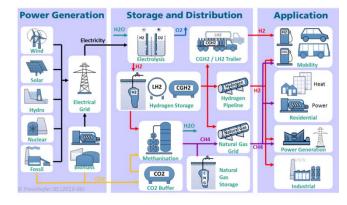
- Global hydrogen production:
 600 Bill. Nm³/yr
- Mostly steam reforming
- Less than 1 % by water electrolysis

Industrial application electrolyser Jewellery, laboratory and medical 5 - 500 Nl/h engineering Generator cooling in power plants 5 - 20 Nm³/h Feed Water Inertisation 10 - 50 Nm³/h (BWR water chemistry) Float glas production 50 - 150 Nm³/h (protective atmosphere) **Electronics industry** 100 - 400 Nm³/h 200 - 750 Nm³/h Metallurgy Food industry (fat hardening) 100 - 900 Nm³/h Military und aerospace < 15 Nm³/h

Source: DWV brochure (2006)

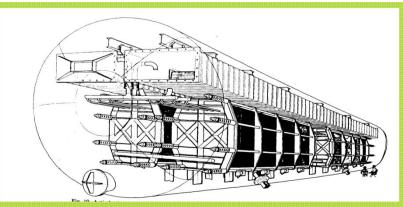
Fraunhofer

Typical size


6

Coupling Renewable Energies and Water Electrolysis New market opportunies with power to gas (PtG).

Coupling Renewable Energies and Water Electrolysis New market opportunies and ...

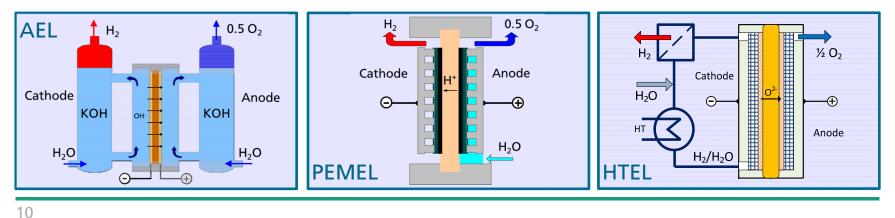


- New tasks for electrolysers in the PtG concept
 - Operating (spinning) reserve for electrical grid (demand site management, load balancing)
 - Hydrogen production as fuel for FCEV
 - Large-scale storage systems by gas injection to the NG grid or underground storage
 - Hydrogen for industrial applications

Coupling Renewable Energies and Water Electrolysis New market opportunies and new challenges.

- Large EL plants up to x 100MW
 - Scale-up vs. numbering up
 - Optimum pressure level
- Small footprint for on-site H2 production
 - Compact design
 - High-pressure operation
- Highly flexible operation
 - Fast start/stop cycling
 - Efficient part-load operation and efficient stand-by mode
 - Overload capability
- Decrease in CAPEX due to less annual full-load hours \rightarrow cost pressure!

75 MW AEL module, concept EdF (30 bar, 160 °C) [1]


Definition H2 fueling stations	H2 fueling capacity	Required EL size		
HRS Type XS	80 kg/d	~ 40 Nm³/h		
HRS Type S	212 kg/d	~ 100 Nm³/h		
HRS Type M	420 kg/d	~ 200 Nm³/h		
HRS Type L	1.000 kg/d	~ 450 Nm³/h		
Definition of HRS size according to H2 Mobility (2012)				

[1] LeRoy 1983, Int. J. Hydrogen Energy)

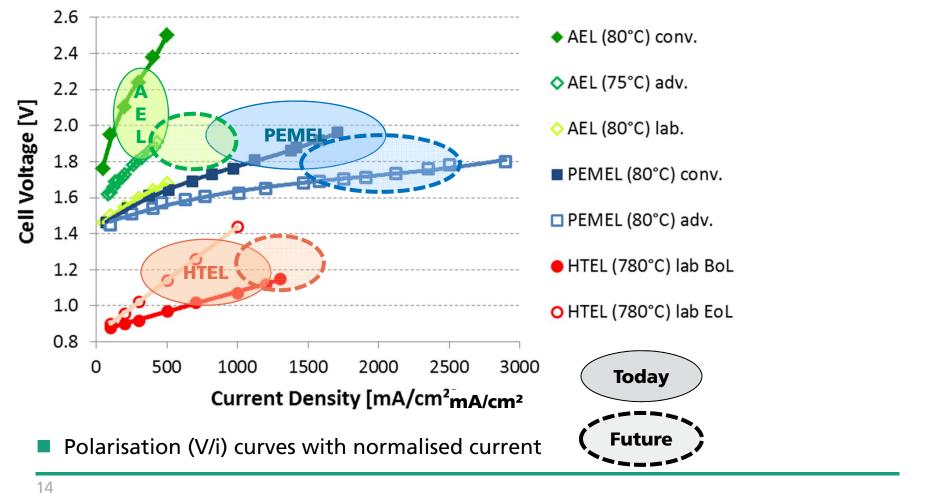
Water Electrolysis Three approaches for hydrogen and oxygen production

Technology	Temp. Range	Cathodic Reaction (HER)	Charge Carrier	Anodic Reaction (OER)
Alkaline electrolysis	40 - 90 °C	$2H_2O + 2e^- \Longrightarrow H_2 + 2OH^-$	OH-	$2OH^{-} \Longrightarrow \frac{1}{2}O_2 + H_2O + 2e^{-}$
Membrane electrolysis	20 - 100 °C	$2H^+ + 2e^- \Rightarrow H_2$	H+	$H_2O \Rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$
High temp. electrolysis	- 700 - 1000 °C	$H_2O + 2e^- \Longrightarrow H_2 + O^{2-}$	O ²⁻	$O^{2-} \Rightarrow \frac{1}{2}O_2 + 2e^-$

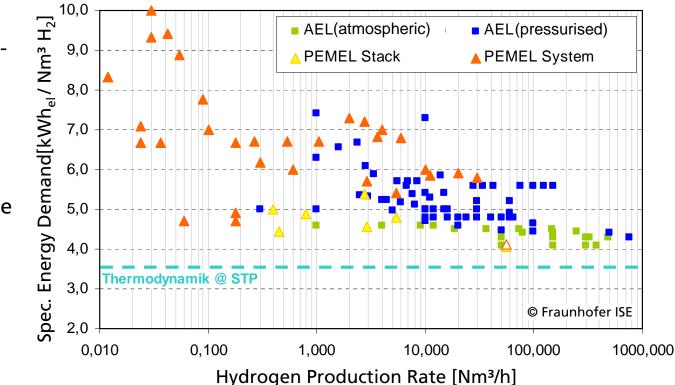
Water Electrolysis Main technical features - overview

	Alkaline Electrolysis	Membrane Electrolysis	Solid Oxide Electrolysis
Electrolyte	Liquid alkaline KOH	Solid acid polymer	Ceramic metal compound
Electrodes	Ni/Fe electrodes (Raney)	Noble metals (Pt, Ir,)	Ni doped ceramic
Temperature	50-80 °C	RT - 90 °C	700 - 1,000 °C
Pressure	< 30 bar	< 200 bar	Atm.
Modul size (commercial)	Max. 760 Nm³ H ₂ /h ~ 3.2 MW _{el}	Max. 30 Nm³ H ₂ /h ~ 170 kW _{el}	~ 1 Nm³ H ₂ /h kW range

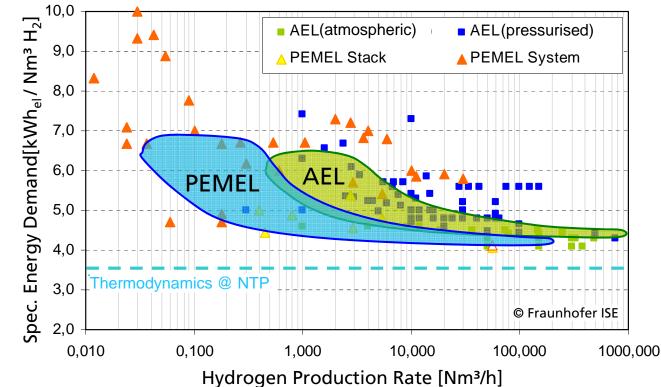

Development Trends in Water Electrolysis (Pressurised) alkaline electrolysers (re)enter the MW class


12

Development Trends in Water Electrolysis PEM electrolysers entering MW class as well.


(1) Performance and Efficiency of Water Electrolysis Comparison of different EL technologies at stack level.

(1) Performance and Efficiency of Water Electrolysis Attempt to compare the efficiency at system level.

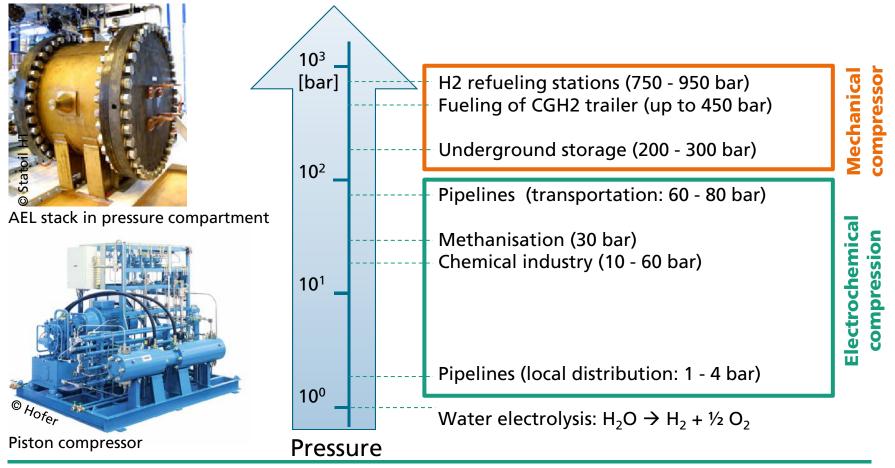

- Specific energy consumption as measure for efficiency
- Manufacturer's data
 - No standardised data
 - Different pressure and H₂ purity
 - Specifications for steady state operation

(1) Performance and Efficiency of Water Electrolysis Attempt to compare the efficiency at system level.

- Energy consumption will not be reduced significantly in the future
 - Higher operating pressure
 - High power densities due to cost pressure
 - Dynamic operation (start/stop, standby)

(2) Do We Need High-Pressure Electrolysis? PEM electrolysis favours high pressure operation.

30 bar AEL stack in pressure compartment


55 bar PEM stack HTEL compartment

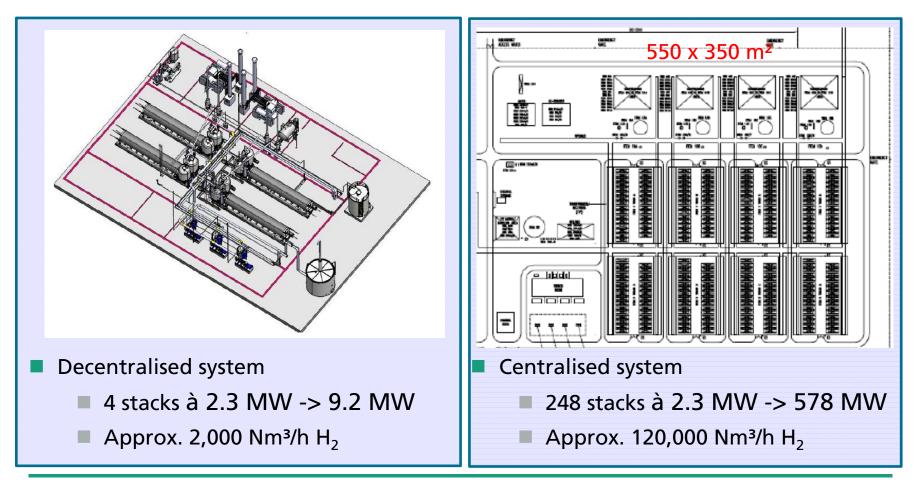
Pressure [bar]	AEL	PEMEL	HTEL
Typically	4 - 15	30	Atm.
Available	60	207	(Atm.)
Demonstrated	~ 345	~ 400	(10)

- AEL (with liquid electrolyte)
 - Pressure balanced design and complex system layout limit HP operation (CAPEX)
- PEMEL
 - Differential pressure system, simpler layout and compact design favour HP operation
- HTEL
 - Restrictions due to HT and HP in parallel

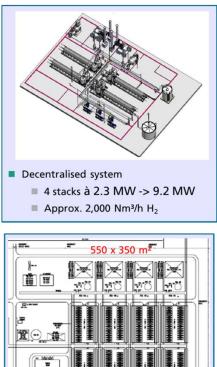
(2) Do We Need High-Pressure Electrolysis? Typical pressure level of different applications

(2) Do We Need High-Pressure Electrolysis? Electrochemical compression should be the first step!

AEL stack in pressure compartment


Piston compressor

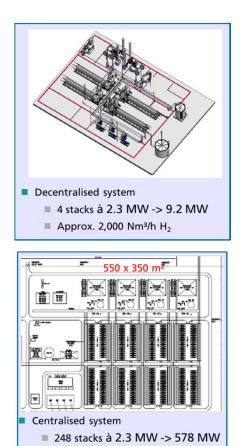
- Hydrogen needs to be compressed for nearly all applications
 - electrochemical compression is more efficient
 - mechanical compression is cheaper at higher P
- Operating pressure of electrolyser is an economical trade-off (CAPEX)
 - today: typically 10 40 bar
 - In the future: probably up to 60 80 bar
 - Higher pressures only for niche applications
 - Large-scale storage and hydrogen mobility requires mechanical compressors


19

(3) Part-load and Overload Capability Modularity enables different applications.

Source: Fell - NEL Hydrogen, 2011, NOW-Workshop Berlin

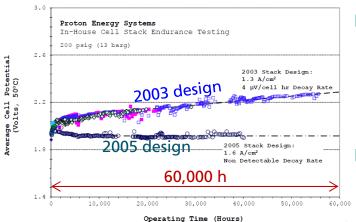
(3) Part-load and Overload Capability Multi-stack configuration facilitates low part-load limit.

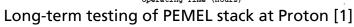


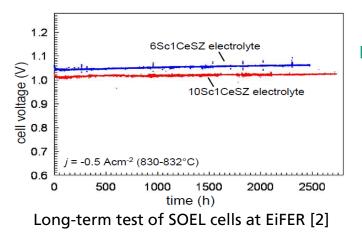
Centralised system 248 stacks à 2.3 MW -> 578 MW Approx. 120,000 Nm³/h H₂

- Lower part-load limit is defined by
 - Self-consumption of the EL system
 - Gas purity H_2 in O_2 (quality and safety issue)
- New applications in energy sector (PtG)
 - Multi-stack configuration for larger installations
 - part-load non-critical
 - H2 refueling stations with on-site electrolyser
 - capacity small enough for system with single stack
 - H2 demand and buffer tank allows nearly constant operation

(3) Part-load and Overload Capability High overload could make sence.




Approx. 120,000 Nm³/h H₂


- Overload capability has to be discussed separately for (1) Electrochemical cell/stack
 - PEMEL stack has high overload capability
 - AEL stack is limited by bubble overpotential
 - HTEL stack ... ?
 - (2) Process part (BoP)
 - Overload for short time possible (<< 1 hour)
 - Thermal management and gas -quality are critical
 - (3) Power electronics
 - Rectifier has NO overload capability
- Overload capability is possible but results in higher CAPEX for power electronic and partly for BoP
 - Could be useful for electrical grid services

(4) Life-Time of Electrolysis Cells and Stacks Durability is given for steady state operation at LT

AEL life-time

- Older systems have excellent life-time in steadystate operation > 100,000 h / 9-15 years
- Newer concepts : 50-70,000 h
- **PEMEL** life-time
 - Comparable to AEL if well designed
 - But mostly < 40,000 h / 5-10 yrs
 - Degradation mechanism not fully understood
- HTFI life-time
 - Few 1,000 h with decay rate < 1%/1000 h
 - But considerable progress in the last years: 40,000 h should be feasible (cell level)
 - Thermal management is essential for dynamic operation and life-time

[1] Everett / Proton OnSite, Proceedings PEMEL Durability Workshop, 2013-03 [2] Shefold, Brisse / EIFER, Manuscript ICACC 2014 © Fraunhofer ISE

Where Do We Have R&D Demand in the Next Years?

AEL

- Increasing current density
- (Increasing pressure tightness)
- Faster dynamics of the complete system (BOP)
- Higher part load range
- Decreasing production costs through economies of scale

PEMEL

- Increasing life time of materials/ stack
- Proof of scale up concepts for stack
- Decreasing costs by substitution or reduction of expensive materials
- (Decreasing production costs through economies of scale)

HTEL

- Development of adapted electrodes/ electrolyte for SOEL
- Cell and stack design
- Proof of life time
- Pressure tightness
- Cycling stability



Summary The principle of water electrolysis is known for more than 200 years Importance of water electrolysis gets larger with growing integration of renewable

- energy sources
- New market opportunities (PtG concept, hydrogen FCEV) entail new requirements for water electrolysis systems
- Alkaline electrolysers are a mature technology in the MW range for industrial use but needs to be adapted to new markets requirements
- PEM electrolysis is available in the small scale as proven technology with several advantages but has to enter the MW class
- HT electrolysis is still in the lab scale but has made considerable progress, substantial R&D is required before systems are on the market

Thanks a lot for your kind attention!

Fraunhofer-Institut für Solare Energiesysteme ISE Freiburg / Germany

Dr. Tom Smolinka tom.smolinka@ise.fraunhofer.de www.ise.fraunhofer.de

