
Hochschule Darmstadt

- Fachbereich Informatik -

Trustworthiness in Peer-to-Peer Communication for Commercial Applications

Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

vorgelegt von

Roman Korn

Betreuer: Prof. Dr. Michael Massoth
Korreferent: Prof. Dr. Harald Baier

Ausgabedatum: 13.04.2010
Abgabedatum: 13.10.2010

Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten
Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder
mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen Prüfungsbehörde
eingereicht worden.

Darmstadt, den 13.10.2010

Kurzfassung

Peer-to-Peer (P2P) ist ein weit verbreitetes und ausgiebig untersuchtes Paradigma der Kom-
munikationstechnologie. Es wird erfolgreich im Bereich der Ressourcenverteilung eingesetzt.
Ressourcen können in diesem Kontext als beliebige, große Datensätze (z.B. Multimedia-Inhalt)
betrachtet werden. Obwohl P2P-Systeme viele Vorzüge mit sich bringen, sind bisher kaum
kommerzielle Anwendungen zu finden. Das Fehlen adäquater Sicherheitsmechanismen scheint
Unternehmen davon abzuhalten diese Technologie einzusetzen. Einige Bedenken werden offen-
sichtlich, wenn man es mit dem traditionellen Client/Server Modell vergleicht. Im Gegensatz
zum traditionellen Modell werden Ressourcen auf der Kundenseite, dem so genannten Peer (en-
gl. Nachbar), vorgehalten. Jeder Peer darf Ressourcen mit jedem anderen Peer austauschen. Ein
solches direktes Zusammenspiel unter Peers ist durch den Ressourcenanbieter viel schwieriger
zu kontrollieren als ein geschützter, zentraler Serverbereich. In Geschäftsmodellen, bei denen
vertrauliche digitale Ressourcen vertrieben werden, müssen einige sicherheitskritische Fragen
neu beantwortet werden. Insgesamt muss studiert werden, wie ein Peer so vertrauenswürdig wie
ein geschützter Server des Client/Server Modells werden kann.

Aus diesem Forschungsbereich liegen bereits einige konzeptionelle Ergebnisse vor. Insbeson-
dere die Protokollspezifikationen des Nano Data Centers (NaDa) Projekts wurden gestaltet, um
Sicherheitsmechanismen in P2P Netzwerken zu verankern. Der vorgeschlagene Ansatz beruht
auf Erweiterungen aus dem Bereich des Trusted Computing (TC). Allerdings konnte die Um-
setzbarkeit des Konzepts bisher nicht erwiesen werden. Es muss gezeigt werden, dass die Pro-
tokolle implementiert werden können und dass das Ergebnis ein realistisches Leistungsverhal-
ten aufweist. Dafür wird ein Demonstrator in einem physischen (nicht-virtuellen) Labor in-
stalliert. Die Experimente im Labor werden durch das cOntrol and Management Framework

(OMF) durchgeführt, um Reproduzierbarkeit und Objektivität der Ergebnisse zu unterstützen.
Der realisierte Demonstrator vereint eine Open Source P2P Anwendung, kryptographische

Bibliotheken und auf Hardware basierende Sicherheitsfunktionalität eines Trusted Platform

Module (TPM). Die Messtechnik und detaillierte Maße sind für externe Komponenten und alle
Protokollschritte definiert. Eingeführte Schlüsselindikatoren ermöglichen Vergleichbarkeit mit
anderen Implementierungen. Sowohl für die original- als auch für die erweiterte, vertrauenswürdi-
ge Anwendung wurden Experimente durchgeführt. Die Ergebnisse zeigen einen zu erwartenden
Leistungsverlust im Austausch für integrierte Mechanismen, die Vertrauens-würdigkeit gewährleis-
ten. Auf Grund des Protokolldesigns liegt der größte Anteil an der Gesamt-verarbeitungszeit
noch vor der eigentlichen Durchführung des Protokolls. Leistungsschwache Bereiche und Eng-
pässe konnten identifiziert werden. Die Ergebnisse ermöglichten es Verbesserungen zu konzip-
ieren und umzusetzen. Insgesamt zeigt sich die Lösung als vielversprechender Kandidat für den
kommerziellen Einsatz.

Abstract

Peer-to-Peer (P2P) is a widely used and extensively explored communication paradigm. It is
successfully applied in the area of resource distribution which, in this context, may be seen as
any large data file (e.g. multimedia content). Though P2P systems offer many benefits, com-
mercial applications are still rare. The lack of adequate security mechanisms seem to preclude
companies from deploying this technology. Some concerns become obvious when it is com-
pared to the traditional client/server model. In contrast to this traditional model, resources are
stored at the customer’s site, the so called peer. Each peer may exchange resources with any oth-
er peer. Such a direct interaction between peers is much harder to control by resource providers.
But controlling is important in business models where confidential resources are distributed in
the P2P network, instead of keeping them in protected server areas. Who is allowed to share
resources with whom? How can be assured, that only authorized peers access the network? If
each peer becomes a server, how can its integrity be retained? In summary, it has to be studied,
how a peer can become as trustworthy as the protected server in the client server model.

Some conceptual work is already done in this field of research. Especially, some protocol
specifications of the Nano Data Centers (NaDa) project are designed to establish security mech-
anisms in P2P networks. The suggested approach relies on architectural extension from the area
of Trusted Computing (TC). But there is no proof of concept available, yet. It has to be ensured
that the protocols can be implemented and that the solution shows a realistic performance be-
havior. Therefore, a demonstrator is set up in a physical network laboratory which is expected
to offer more meaningful measures than a simulation environment would. Experiments within
the laboratory are deployed and conducted by the cOntrol and Management Framework (OMF)
in order to support reproducable and objective results.

The solution is an implemented and evaluated demonstrator of a trustworthy P2P system. It
integrates an open source P2P application, cryptographic libraries, and hardware based security
functionality from a Trusted Platform Module (TPM). The introduced measurement technique
is based on measures, that are obtained from system time stamps. Detailed measures are defined
for external components and all protocol steps. Introduced key performance indicators provide
comparability to other implementations. Appropriate sets of experiments are conducted, to pro-
vide statistical certainty of the results. Results are obtained for the original P2P system and the
trustworthy P2P system. They show an expected performance loss in exchange for mechanisms
that assure trustworthiness. Due to the protocol design, most of the overall processing time is
located previous to the actual protocol processing. Areas of low-performace could be identified
as well as bottlenecks. Based on the results, some optimizations are implemented and some sug-
gested. Altogether, the solution has turned out to be a promising candidate for the commercial
application.

Acknowledgement

Ich danke meiner Mutter Ewa, meiner Ehefrau Nataliya, meinem Sohn Niklas, meinem Bruder
Daniel und allen lieben Verwandten und Freunden, die auf viel gemeinsame Zeit verzichten
mussten um mir den notwendigen Freiraum für die Arbeit an dieser Thesis zu schaffen.

Besonders danke ich meinem Betreuer im Fraunhofer Institut, Nicolai Kuntze, der sich im-
mer die Zeit für meine sinnvollen sowie unsinnigen Fragen genommen hat. Vor allem danke
ich meinem Betreuer Professor Michael Massoth und meinem Korreferenten Professor Harald
Baier für alle Anregungen und die viele konstruktive Kritik, durch die ich eine Menge lernen
konnte.

Vielen Dank an Nico Lincke und Jürgen Repp, ohne die mir die vielen Arbeitsstunden lange
nicht so viel Freude bereitet hätten. Ebenfalls bedanke ich mich bei allen Kollegen für die gele-
gentlichen Gespräche die mir neue Einsichten gegeben haben oder auch nur zu dem positiven
Arbeitsklima beigetragen haben.

Contents

Erklärung 1

Kurzfassung 2

Abstract 3

Acknowledgement 4

List of Figures 9

List of Tables 10

1 Introduction 11
1.1 Problem Description . 11
1.2 Motivation and Goals . 11
1.3 Commercial Application . 12
1.4 Related Work . 14
1.5 Outline . 16

2 Foundations 17
2.1 Peer-to-Peer Communication . 17

2.1.1 Segmented Resources . 18
2.1.2 Networks . 19
2.1.3 Resource Exchange Network . 20
2.1.4 Resource Discovery Network . 21
2.1.5 BitTorrent . 22

2.2 Cryptographic Techniques . 24
2.2.1 Message Encryption & Decryption 25
2.2.2 Digital Signature . 27
2.2.3 Public-key Certificate . 28
2.2.4 Protocol . 29

2.3 Trustworthiness . 30
2.3.1 Trusted Computing System (TCS) . 31
2.3.2 Trusted Platform Module (TPM) . 33
2.3.3 State Measurement . 34
2.3.4 Attestation . 35

2.4 Conclusion . 37

CONTENTS Page: 6

3 Application Development 38
3.1 NaDa Environment . 38

3.1.1 Component Interfaces . 39
3.2 Protocol Specification . 41

3.2.1 Original Tracker Protocol . 41
3.2.2 Extended Tracker Protocol . 42
3.2.3 Original Peer-Wire Protocol . 46
3.2.4 Extended Peer-Wire Protocol . 47

3.3 Communication Framework . 50
3.3.1 Tracker Protocol . 50
3.3.2 Peer-Wire Protocol . 52

3.4 Cryptography Integration . 55
3.4.1 Architecture . 55
3.4.2 Application . 56
3.4.3 TPM & TSS . 57

3.5 Conclusion . 57

4 Performance Evaluation 59
4.1 Experiment Process . 59
4.2 Measurement Configuration . 60

4.2.1 Network . 60
4.2.2 Framework . 61
4.2.3 Nodes . 61

4.3 Measurement Technique . 62
4.3.1 Method . 62
4.3.2 Measure Definition . 64
4.3.3 Statistical Measures . 65

4.4 Experiments . 66
4.4.1 Application Scenario . 66
4.4.2 Download Experiment Scenario . 69

4.5 Results . 70
4.5.1 Initial announce-started for a resource (Tracker Protocol) 71
4.5.2 Subsequent announce-started for a resource (Tracker Protocol) . 73
4.5.3 Initial handshake for a resource (Peer-Wire Protocol) 73
4.5.4 Subsequent Communication for a resource (Peer-Wire Protocol) 75
4.5.5 Further Analysis . 76

4.6 Conclusion . 78

CONTENTS Page: 7

5 Performance Optimization 80
5.1 Approach and Focus . 80
5.2 Application Optimization . 82

5.2.1 Serialization . 82
5.2.2 SML Validation . 83

5.3 Protocol Optimization . 86
5.3.1 Replacing public key encryption . 86
5.3.2 Concurrent Computing (Shared Secret) 86
5.3.3 Multiple Hash Attestation . 89
5.3.4 Passive Attestation . 91
5.3.5 Peer-Level Shared Secrets . 92

5.4 Conclusion . 93

6 Conclusion and Outlook 95
6.1 Results . 95
6.2 Conclusion . 95
6.3 Outlook . 96

Appendix I

A Measurement I
A.1 Experiment Description . I
A.2 Experiment Report . IV
A.3 JVM Configuration . VI
A.4 Experiment Results . VIII

A.4.1 Experiment: Experiment_nada_2010_07_28_18_59_34.tar.gz . . VIII
A.4.2 Experiment: 100626_ExpSet100_JBT_Standard_R19.tar.gz . . . IX
A.4.3 Experiment: 100724_ExpSet100_TBT_Standard_R48 X
A.4.4 Experiment: 100730_ExpSet100_TBT_Standard_R50 XII
A.4.5 Experiment: 100731_ExpSet100_TBT_Standard_R51 XIII
A.4.6 Experiment: 100805_ExpSet100_TBT_Standard_R53 XIV
A.4.7 Experiment: 100806_ExpSet100_TBT_Standard_R54 XV
A.4.8 Experiment: 100807_ExpSet100_TBT_Standard_R55 XVI
A.4.9 Experiment: 100814_ExpSet100_TBT_Standard_R58 XVII

B Cryptography Integration XVIII
B.1 Applied Configuration . XVIII

B.1.1 Keys . XVIII

CONTENTS Page: 8

B.1.2 Services . XVIII
B.2 Certificate Example . XIX

C Thesis DVD (back side of the cover) XX
C.1 Folder Structure . XX
C.2 Experiments . XX
C.3 Project Files . XXI

Abbreviations XXIII

References XXVI

List of Figures

1 Classification of Peer-to-Peer Systems. 17
2 Resource Segmentation. 19
3 Resource exchange networks. 20
4 Trusted Computing System (TCS). 31
5 Overview of the main TPM components. 33
6 High-level view of Nano Data Centers (NaDa). 39
7 Communication Framework of the Tracker Protocol. 51
8 Communication Framework of the Peer-Wire Protocol. 53
9 Handshake (HS) Message Format. 54
10 Peer Protocol (PP) Message Format. 54
11 Trust Protocol (TP) Message Format. 55
12 Trusted Software Stack (TSS). 57
13 Network setup. 60
14 Measurement Points and Processing Time. 64
15 Download use case (functional view without extension). 68
16 Comparing initial announce-started for a resource (MEAN, 1s = 1, 000ms). 71
17 Comparing initial handshake for a resource (MEAN, 1s = 1, 000ms). 73
18 Optimization Process. 81
19 Sequence diagram concurrent SML validation. 84
20 Sequence Diagram: Concurrent computing of a shared secret. 87
21 Class Diagram: Concurrent computing of a shared secret. 88

List of Tables

1 Excerpt of a SML from an IMA system [SAI-2006]. 35
2 Usage of the Platform Configuration Registers (PCR). 36
3 Applied Cryptographic Keys. 56
4 Applied Cryptography Services. 57
5 (a) Tracker protocol results of tBitTorrent (1s = 1, 000ms). 72
6 (b) Tracker protocol results of jBitTorrent (1s = 1, 000ms). 72
7 Comparing (a) and (b) tracker protocol performance (1s = 1, 000ms). 72
8 (a) Peer-Wire protocol results of tBitTorrent (1s = 1, 000ms). 74
9 (b) Peer-Wire protocol results of jBitTorrent (1s = 1, 000ms). 74
10 Comparing (a) and (b) peer-wire protocol performance (1s = 1, 000ms). 75
11 Measuring the Diffie-Hellman parameter generator (1s = 1, 000ms). 76
12 Measuring the ticket creation time (1s = 1, 000ms). 77
13 Measuring the SML validation time with KHL&SML size of 400 (1s = 1, 000ms). 78
14 Comparing original with optimized serialization (1s = 1, 000ms). 83
15 Measuring the SML validation time (1s = 1, 000ms). 84
16 Comparing concurrent SML validation (1s = 1, 000ms). 85
17 Comparing optimized secret creation to previous version (1s = 1, 000ms). . . . 88
18 Measures of TPM quotes (1s = 1, 000ms). 89

1 Introduction

1.1 Problem Description

Peer-to-Peer (P2P) is a widely used and extensively explored communication paradigm. It is
successfully applied in the area of resource distribution which, in this context, may be seen as
any large data file (e.g. multimedia content). Though P2P systems offer many benefits, com-
mercial applications are still rare. The lack of adequate security mechanisms seem to preclude
companies from deploying this technology. Some concerns become obvious when it is com-
pared to the traditional client/server model. In contrast to this traditional model, resources are
stored at the customer’s site, the so called peer. Each peer may exchange resources with any oth-
er peer. Such a direct interaction between peers is much harder to control by resource providers.
But controlling is important in business models where confidential resources are distributed in
the P2P network, instead of keeping them in protected server areas. Who is allowed to share
resources to whom? How can be assured, that only authorized peers access the network? If each
peer becomes a server, how can its integrity be retained? In summary, it has to be studied, how
a peer can become as trustworthy as the protected server in the client server model.

Some conceptual work is already done in this field of research. Especially, some protocol
specifications of the Nano Data Centers (NaDa) project are designed to establish security mech-
anisms in P2P networks. The suggested approach relies on architectural extensions from the
area of Trusted Computing (TC). But there is no proof of concept or characteristics of such an
application available, yet.

1.2 Motivation and Goals

This thesis examines how a typical P2P application can be enhanced to a trustworthy P2P ap-
plication. The application shall be integrated as a building block of the NaDa content delivery
system. Software and hardware security mechanisms are incorporated, to reach this goal. The
core tasks are the design and implementation of the communication application as well as its
evaluation in relation to performance behavior. With the application, an already proposed pro-
tocol design from Kuntze et al. [KUN-2010] is realized. It consists of several concepts like
the Diffie-Hellmann key exchange, remote attestation and ticketing to establish trust between
multiple parties.

The evaluation offers valuable insight in direction of future development and commercial ap-
plication. It includes the definition of experiment scenarios, a measurement technique, measures
and key indicators. Results are reproducible and comparable. All experiments are conducted in
a laboratory that is equipped with physical components (no emulators). Each participating entity
of the Peer-to-Peer system is represented by a network node. All are interacting over a TCP/IP

INTRODUCTION Page: 12

network. The cOntrol and Management Framework (OMF) is applied to deploy, monitor and
control experiments.

Areas of low performance and bottlenecks are identified during evaluation and measurement.
Based on the evaluation, concepts for an optimized application are discussed. Technical designs
are created and implemented for promising concepts.

1.3 Commercial Application

Business application

The results of this thesis will be applied in a system for distribution of virtual goods called
Nano Data Center (NaDa). A Nano Data Center is a network of platforms (similar to set-
top boxes1), that are based on P2P and Trusted Computing technology. It is established and
maintained by an Internet Service Provider (ISP). Virtual goods may be distributed by several
content providers (CP), utilizing only one platform. Two main applications are characterized in
an executive summary of the NaDa project [THO-2010b]. The business field of a pay-per-view
VoD is in the main focus of this thesis:

• VoD: In context of the NaDa project, Video-on-Demand (VoD) applications are divided
in the three types: User Generated Content (UGC), Catch-up TV, and pay-per view. For
each, a different revenue model is defined. With generated content services, as provided
by e.g. YouTube2, the content providers could not earn significant revenues in the past
[HUA-2007]. This is similar for Catch-up TV. These services provide television content
at no charge. Typically, contents are available some days after the television broadcast.
In the business field of pay-per-view VoD, content is provided just for a short while.
Especially, that field requires protection of the content.

• Multiplayer games: Peer-to-Peer approaches are described as very promising for appli-
cations like Second Life [VTT-2010]. Second Life realizes a social network platform as
a virtual (visual) world. Large amounts of data need to be stored and transported to pro-
vide the service. However, current client server architectures show poor scalability and
become overloaded very soon. That limits the acceptability and the growth of the system.
Distributed caching mechanisms that are based on P2P technology, are seen as a solution
to overcome such limitations. P2P may become an enabler for revenues.

1A set-top box is a network device stored at the costomers site with the ability to receive virtual goods.
2www.youtube.com

INTRODUCTION Page: 13

Benefits of P2P systems

According to research results of the Fraunhofer-Institut für Sichere Informationstechnologie

(SIT)[SIT-2010a] and an industrial partner Technicolor[TEC-2010] (a global provider of set-
top boxes), this approach is expected to provide relevant benefits compared to technologies that
are already established at the market. Major benefits are:

• Bandwidth Efficiency: Kuntze and Rudolph[KUN-2009a] describe, that P2P networks
allow optimized bandwidth utilization. Especially, capacities of the so called “last mile”
are not efficiently utilized in centralized networks. It is assumed, that the P2P network
substitutes the centralized core network. Optimized bandwidth utilization is desirable for
network operators. Costs can be reduced if only the necessary capacities are provided.

• Energy Efficiency: According to an evaluation in context of the NaDa project [THO-2010],
the energy efficiency of a P2P like content distribution system can be much better than
a comparable centralized content distribution. Some selected scenarios of interest, show
energy savings from 28% to 40%.

• Disk Space and Computing Power Efficiency: Within centralized systems, the customer’s
equipment is only used, to casually consume selected content. Most of the time, disk
space and computing power are simply not used. P2P systems enable the equipment to
actively take part in content distribution. This is beneficial to the content provider that can
reduce storage and computing power at the back end.

• Scalability and Complexity: Scalability is seen as one of the most critical drawbacks of
centralized systems [EUC-2009]. Peer-to-peer systems are naturally scalable. The degree
of scalability depends on the employed techniques of a concrete system. Regarding this
aspect, modern P2P systems exceed centralized systems. The operation of badly scaling
systems is generally seen as costly. Especially the expansion of a system becomes in-
creasingly expensive. The same applies to the complexity of systems [KUN-2009]. P2P
systems show low complexity compared to centralized systems.

• Availability and Connectivity: Availability describes the proportion of time a system is
in a functioning condition. This can be expressed as the ability to establish a connection
(Connectivity) as well. Because of the distributed character of P2P, the critical compo-
nents of a system are duplicated many times (Redundancy). There is no single point of
failure anymore. Hence, the availability is provided by the whole network instead of a
connection to a central system. It certainly depends on the implemented techniques and
the type of P2P system, as well. Availability is always a necessary measure for commer-
cial applications. If services are less available, less can be sold.

INTRODUCTION Page: 14

1.4 Related Work

NaDa Project

The thesis is part of the NaDa [SIT-2010a] research project that is funded by the European
Union (FP7 Project Media Distribution)[EUC-2009] and coordinated by Thomson [TEC-2010].
Industrial partners and research institutes work together, in order to research and develop a next
generation content distribution network. Numerous contributions have already been created.
They are basis and environment for the results of this thesis. The Fraunhofer Institute SIT con-
tributes IT-Security concepts, designs and solutions to the project. The most important results
are:

• Kuntze et al. published a scientific paper, called “Trust in Peer-to-Peer content distribu-
tion protocols”[KUN-2009]. It describes the integration of hardware based trust concepts
from the domain of Trusted Computing in the BitTorrent protocol suite. An extension to
BitTorrent protocols is suggested. The solution allows detection and suppression of ma-
licious or manipulated nodes from the network. The resource consumption is considered
in the design as well.

• Leicher et al. contributed an “Implementation of a Trusted Ticket System”[LEI-2009]. It
describes an approach to establish trust between multiple parties. The approach is reused
in the protocols that are implemented within this thesis.

• Kuntze and Rudolph studied “Trust in Distributed small sized Data Centers” [KUN-2009a].
They propose a security architecture for commercial P2P applications, where devices are
not under the physical control of the owner. The solution allows the protection of re-
sources (content) and software. Manipulated nodes can be excluded and certain applica-
tions can be isolated. The isolation enables several content distribution services on one
platform. With this thesis, parts of the suggested architecture are implemented.

• Kuntze et al. present an architecture, including security functionalities, in “Trust in the
P2P Distribution of Virtual Goods” [KUN-2009]. It focuses on the business area of virtual
goods distribution. They identify, that the efficiency, in terms of latency, is crucial to the
applicability of the architecture. Some of the security functionalities are realized within
this thesis, as well as, measurements of the performance.

Within the ongoing thesis “Entwicklung eines Konzepts für ein sicheres Peer-to-Peer System
mit dezentralem Management”, by Lincke [LIN-2010], results of the current work are reused.
The thesis mainly addresses the management of a trustworthy P2P system. Where this is current-
ly realized as a central entity, a decentralized approach is expected to provide many desirable
advantages. Furthermore, advanced management functionality shall be defined.

INTRODUCTION Page: 15

Other research activities

P2P & TC. Some effort has already been made on the research of P2P networks that are based
on trusted computing. A related approach is described by Balfe et al. [BAL-2005]. They
suggest applying features from the TCG specifications to enhance security of P2P networks.
Ideas are discussed in the context of commercial P2P networks, too. Though many aspects of
the current approach are already discussed, a concrete P2P network is not described. The
proposed extensions apply to the protocols SSL/TLS3 and IPSec4. Measures of such an
application or a commercially applied solution are not known, yet.

Other Approaches. The security concerns for the business fields, relevant in NaDa, are
discussed in several scientific papers. But the solutions are not implemented on infrastructural
level. They can be classified in reputation- and detection based approaches.

• A reputation based approach is described by Ayyasamy and Sivanandam in “Trust Based
content Distribution for Peer-to-Peer Overlay Networks” [AYY-2010]. The scientists iden-
tify adversary nodes as a major risk in P2P content distribution systems. They suggest
introducing a trust index for each participant of the network. Based on a bad value of the
index, single participants may be excluded from communication.

• A detection based approach is described by Sherman et al. in “Adding Trust to P2P Dis-
tribution of Paid Content” [SHE-2009]. They suggest special network participants that
police the system. Characteristics of malicious peers are defined and measures. Suspi-
cious peers are detected and excluded from the network.

Other Business Applications. Similar approaches are already described for other business ap-
plications.

• For business models in the area of P2P Voice over IP (VoIP) and decentralized dissemina-

tion control (DCON), Shandu and Zhang [SAN-2005] described an approach to control
the access and dissemination of data objects. The approach is based on trusted computing
technology like the work described in this, but different business models are addressed.

• The P2P Next project [VTT-2010] is an international consortium of academic and
industrial players, who aim to create a P2P content delivery platform. It is focused on the
distribution of real-time streaming media over the internet, especially broadcasting. That
focus is different from the focus of the NaDa project, since broadcasting of e.g.
television channels does not need the same security level. NaDa is based on the
assumption that the distribution of resources needs to be strongly protected.

3Secure Socket Layer (SSL) / Transport Layer Security (TLS)
4Internet Protocol Security (IPSec)

INTRODUCTION Page: 16

1.5 Outline

The thesis is organized in six chapters. This chapter provides a problem description, motiva-
tion and goals of the thesis. An introduction is given to related work in this field of research.
Furthermore, the benefits of a commercial application are summarized. Chapter two contains
the foundation for the subsequent work. Fundamental concepts of P2P communication, cryp-
tographic techniques and trusted computing are introduced. In chapter three the development
of an enhanced application is explained in detail. It begins with an overview of the application
environment and continues with a detailed comparison of the original and the enhanced pro-
tocols. From a functional perspective, all implemented tasks of the communication parties are
described, according to the protocol flow. The enhanced communication framework is present-
ed and also the integrated cryptographic engines. In chapter four, the performance evaluation is
described. Initially, an overview of the experiment process is given. The measurement configu-
ration and technique are described in detail, as well as the conducted experiments. Results are
discussed and its conclusions lead to chapter performance optimization. It includes implement-
ed and suggested modification that, are expected to increase the processing time. A description
of the focus and the approach is provided. The thesis concludes in chapter six.

The layout of the thesis follows the guidelines and recommendations from the department of
computer science of the University of Applied Sciences Darmstadt. As far as applicable, UML
2.0 [OMG-2010] is applied as a common language for the description of software systems.

2 Foundations

This chapter provides an overview of technologies and theories on which the following work
is founded. Fundamental terms and concepts are introduced for the area of trustworthiness and
Peer-to-Peer (P2P) communication. The assurance of trustworthiness is based on concepts of
Trusted Computing (TC) and the underlying cryptographic techniques. An overview of P2P
technology should allow a deeper understanding of the subsequent work.

2.1 Peer-to-Peer Communication

With the Internet a worldwide communication network has evolved over the last decades. In-
formation is exchanged between its participants. Services are provided and accessed every day.
Since the early days of the Advanced Research Projects Agency Network (ARPANET), the
dominant paradigm for distributed systems (e.g. based on the file transfer protocol) was the
client/server model. It realizes a distributed system, wherein central server (S) (e.g. Web serv-
er) offers resources to many clients (C). Nowadays, the main application is the World Wide Web

(WWW) with web servers and client browsers. In this model, the network components are ar-
ranged according to a star topology (figure (a) 1). The central server distributes resources and it
is responsible for discovering the resource location. Resources are typically located at the server
or its backend system. When contents are consumed, the resources do not have to be preserved
on the client. A server does not request resources from a client in order to deliver it to another
one. Furthermore, a client is not intended to obtain resources from other clients.

(c) Pure P2P(a) Client-Server

C

C

CC

C
S

(b) Centralized P2P

T

resource

location

P

P

P

P P resource
& location

P

P P

P

P

Figure 1: Classification of Peer-to-Peer Systems.

Nowadays, the contrary P2P paradigm is applied in many areas. Network nodes in such a
system are termed peers (P). They are equally combining server and client functionality. Each

FOUNDATIONS Page: 18

peer typically communicates directly with many other peers. Any peer can provide resources
to any other peer. Resources may include bandwidth, storage space, computing power, digital
content or others. This thesis focuses on digital content (e.g. multimedia).

Any peer can exchange (share and download) resources with any other peer. In that way, re-
sources are replicated and stored on peers instead on a central server. Very often the term overlay

network is associated with Peer-to-Peer. It describes network topologies that are formed above
other (underlying) network topologies. From a layered network perspective, all of the Peer-to-
Peer networks are present on the application layer. The Internet up to the Internet Protocol (IP)
layer may be seen as its underlying network.

Terminology. Peer-to-Peer is a paradigm for communication on the Internet that is avoiding

central services. A Peer-to-Peer system is a self-organizing system of equal, autonomous

entities called peers.

In view of the applied paradigm for resource discovery, Peer-to-Peer systems may be classified
in pure and centralized Peer-to-Peer systems. This thesis focuses on the centralized approach
with a centralized resource discovery. An example is shown in figure (b) 1 on the previous page.

Centralized systems represent a mixture of both paradigms. The Peer-to-Peer paradigm is
applied for the exchange of resources and the client-server paradigm is applied for resource
discovery. One or many central servers, termed tracker (T), keep track of the resource location
and provide contact information of all participating peers. All peers are equal and autonomous.
In terms of resource exchange, the system is self organizing. A peer may join or leave the
network in own discretion. This approach is already applied for commercial systems. Examples
are Skype5 in the area of Voice over IP (VoIP) or Zattoo6[CHA-2009] in the area of television

(TV) broadcasting. In the area of file sharing, the BitTorrent7 system can be operated in that
way, too. But commercial applications, especially in the area of file sharing, are rare.

Peers in pure Peer-to-Peer systems are responsible for the resource exchange and also for
the resource discovery (figure (c) 1 on the preceding page). The discovery is realized by a self-
organizing and autonomous network. No central service is applied anymore. All peers are equal
regarding resource exchange and resource discovery.

2.1.1 Segmented Resources

Peer-to-Peer systems are usually applied to distribute large sized resources (e.g. video file).
But it is not applicable to share the whole resource at once between two peers. Since peers
act autonomous, a sharing peer may leave the network before the exchange of the resource is

5www.skype.com
6www.zattoo.com
7www.bittorrent.org, www.bittorrent.com

FOUNDATIONS Page: 19

completed. Then the remaining peer would have peer to start the exchange again with another
peer. A typical solution is the segmentation of a resource. A peer that is interested in a resource
may receive different segments (pieces, chunks, etc.) of it from many peers at once. Another
major advantage is that peers can start to share the resource even if they haven’t obtained the
entire copy, yet.

(1) (2) (3)

B

A

E

D C

B

A

E

D C

B

A

E

D C

Figure 2: Resource Segmentation.

An example is shown in figure 2. It is assumed that each peer has a connection to all other
peers that are interested in the same resource. Only peer A has a complete copy of the resource
which is divided in three segments. Each peer may have the same upload and download capacity
of one segment per time unit. (1) Initially only peer A can provide a segment to another peer
(E). (2) Thereafter, peer A and E can provide a segment to two other peers (D,B) at the same
time. (3) With the next step, and until all have obtained the complete resource, four segments
can be provided at a time.

2.1.2 Networks

The introduced peer-to-peer systems (pure and centralized) realize different overlay networks
for resource exchange and the resource discovery. In the previously depicted topologies, all
peers are connected to all other peers. But such topologies are rare in practice, since they fail
on a large scale. Alternative mechanisms for the construction of the overlay network(s) have to
be applied. They are meant to meet an acceptable degree of relevant requirements. An exam-
ple is redundancy to enforce network cohesion. Within this thesis it is strongly distinguished
between resource exchange and resource discovery network. This is due to the fact that the
subsequent work focuses only on a centralized resource discovery in combination with a (sim-
plified) managed resource exchange and storage. A content provider is intended to decide who
may exchange and store content. Advanced concepts are subject to current research activities,
see related work of Lincke and Kuntze in secion 1.4.

FOUNDATIONS Page: 20

2.1.3 Resource Exchange Network

The resource exchange network, or delivery network from a commercial perspective, is typically
very restricted by the interests of each peer. A different network will emerge for each resource,
since not all peers are interested in the same resource (see figure 3). Within the network each
peer has contact information of all other peers that are sharing the same resource. The contact
information is provided by entities of the resource discovery network (e.g. central server).

(a) Different Resources

T

resourceA

P

P

P

P P
resourceB

(b) Tree Topology

P

P

P

P P

(c) Mesh Topology

P

P

P

P P

resourceC

Figure 3: Resource exchange networks.

An optimal topology of an exchange network depends on many requirements as resource
utilization, degree of stability, degree of connectivity, delivery performance, etc. The approaches
can be generally divided in two classes: tree-based (figure 3b) and mesh-based (figure 3c). A
comparative study, from the area of P2P live streaming, is provided by Magharei and Rejaie
[MAG-2007]. In tree-based approaches, joining and leaving of nodes may have consequences
to the whole tree of peer connections. A single peer can’t contact other peers at will. This is
done by a global tree construction algorithm. In some areas push mechanisms are applied. They
are flooding the network of a certain resource. That is similar to a multicast or a broadcast.

In mesh-based approaches, peers may join or leave the network (churn), and create or cancel
connections randomly. There are no explicit mechanisms to construct the topology. But still
some mechanisms are needed to guarantee for a resource exchange network of high performance
[LEG-2006].

The so called choke algorithm is introduced to exclude or limit the network connection of
a peer. Decisions are based on the uploading rate of each peer. It becomes necessary, since
an autonomous acting peer might refuse to share resources (free-riding). The behavior can be
based on a rational decision. If the network capacity is used for download only, an increasing
download rate could be expected. That would be advantageous for the peer. The game theory,
a branch of applied mathematics, describes optimal strategies for such situations. They can be
applied in P2P networks as well. An example is the tit-for-tat strategy. It assumes that coop-
erating peers will achieve a better result in the long run. In BitTorrent, that is implemented as

FOUNDATIONS Page: 21

optimistic unchoke which is giving a worse rated peer a chance to cooperate (share).
Another mechanism, termed rarest-first, supports the availability of resources. In Peer-to-

Peer networks the resource is distributed. Some segments of a resource might be stored on
more peers than other segments. In some cases a peer is not able to receive a complete resource
if segments are not available at the connected peers. Hence, peers are interested to obtain the
rarest segments at first. In the view of the whole network, this strategy increases the overall
availability of resources.

2.1.4 Resource Discovery Network

Peer-to-Peer systems are characterized by a redundant distribution of resources to peers. Unlike
the client-server model, there is no central storage anymore. As a consequence, resource dis-
covery mechanisms have to be implemented. They have to cope with highly dynamic network
entities that frequently join or leave the network and frequently store or erase content.

Many approaches have been implemented in Peer-to-Peer systems during the last decade.
They are founded on a variety of scientifically contributions from the area of graph theory
and, very often, practical experiences. A detailed overview can be found in [STE-2005] and
[MAH-2007]. Typical strategies of resource retrieval are a central server, flooding search or
distributed indexing. Because of the variety of emerged approaches, a detailed introduction can’t
be provided within this thesis. Furthermore, the created solution is independent of the concrete
approach. An exemplary system is used to provide a proof of concept. For that purpose, the
traditional BitTorrent system with a central tracker is chosen.

Central Server

As already stated, in the traditional BitTorrent system, a central tracker is responsible for the
resource discovery. It keeps track of the distribution of a resource within the network. This is
ensured by a tracker protocol. Each peer has to inquire contact details of other peers that are
sharing segments of the requested resource. That approach is similarly implemented in Napster,
eDonkey, Zattoo, and others. Solutions of this class have to deal with many requests to the
central server.

Pure Peer-to-Peer

In parallel, pure Peer-to-Peer systems have been developed. They either rely on arbitrary con-
necting peers or mechanisms to organize the structure of the discovery network. Gnutella is an
example of a pure and unorganized Peer-to-Peer system. It uses flooding as resource discovery
mechanism. An advantage is that there is no single point of failure. Each participant can be
replaced by another. But such networks have shown poor results for the discovery of resources.

FOUNDATIONS Page: 22

It is typically very slow and in some cases it fails completely to retrieve a resource, even if it is
available.

Structured Peer-to-Peer

An organized structure of the network and the storage of content are enforced in many systems.
Exemplary systems are CAN, Chord, Pastry, Tapestry, Kademlia and others. All of these are
based on distributed hash tables (DHT). They differ in structure, routing algorithms and perfor-
mance. Most of these approaches are not limited to P2P systems. They are successfully applied
in the area of large scale storage management systems, too [RAT-2001].

DHTs decouple the naming scheme from the name resolution process. A contrary example is
the Domain Name System (DNS). Its naming scheme addresses keys (DNS addresses) to values
(IP-Addresses) by a hierarchical tree structure. The root of the structure is the top-level domain,
followed by the 2nd level domain and so on. Values (IP-Addresses) are resolved according
to this structure by dedicated DNS servers. Disadvantages of the DNS approach are e.g. the
dependency on the roots, potential single point of failures and no real load balancing. In DHTs,
keys are opaque. They are created using a hash function that is mapping each data object (or its
reference e.g. name of a file) to a unique key in a defined key space (e.g. 160-bit in SHA-1). A
node ID, out of the key space, is assigned to each participant (peer) of the network according
to defined rules. Herewith, the node becomes responsible for an address space of referenced
data that is close to its own ID. The notion of closeness varies amongst the approaches. Well
known are definitions like: the ring space in Chord[STO-2001], cartesian n-dimensional space in
CAN[RAT-2001] and the XOR metric of Kademlia[MAY-2002]. Each node stores (key, value)
pairs and provides the basic operations store(key, value) and retrieve(key) = value.

2.1.5 BitTorrent

BitTorrent defines a distributed system that is enabling P2P communication, especially for the
purpose of file sharing. It was initially specified by Bram Cohen [COH-2008] in 2001. The
communication between peers is defined by two protocols (see section 3.2). The Peer-Wire

Protocol (PWP) describes the communication between peers and the Tracker Protocol (TP)
between peers and trackers. Initially BitTorrent was based on central trackers, but some of its
later extensions allow a DHT based resource discovery (e.g. Kadmelia). BitTorrent establishes
its own terminology. Relevant terms in context of this thesis are:

• Seeder: A peer that has a complete replica of a resource.

• Leecher: A peer that downloads, but refuse to share a resource.

FOUNDATIONS Page: 23

• Downloader: A peer that is downloading and sharing, but hasn’t got a complete replica
of a resource, yet.

• Swarm: A collective group of peers that are sharing the same resource.

• Metainfo file: A metafile (typically named .torrent) that contains meta information of
a resource. The file is sometimes called Torrent, too. Throughout the thesis it termed
metafile.

• Tracker: A network node that keeps track of a swarm of peers which are sharing the same
resource.

• Publisher: The initial seeder that is creating and publishing (to specified tracker) the
metainfo file.

BitTorrent is broadly used in conjunction with additional web servers. They store metafiles and
provide them to anyone. Peers may download them and contact the trackers contained in the
metafile.

Metafile

The metafile (also metainfo file or torrent) is a unique reference to a certain resource (e.g.
multimedia file), and it refers to at least one tracker. That file can be freely exchanged in any
available way. It is created by a peer that owns the initial resource replica. By publishing it to
a tracker, the peer offers to share it with other peers. Therefore, the tracker stores the metainfo
file and peer contact information. Contact details are provided to other interested peers. Main
attributes of the metainfo file are described below. The file is encoded in a BitTorrent specific,
platform independent encoding format, called Bencoding.

• Announce(-list): Contains the URL of the tracker. Peers can join the swarm, using
this URL.

• Info: Contains information about the files to download:

– For single file torrents: length, md5sum, name, piece length, pieces

– For multi file torrents: files, name, piece length, pieces

• Creation date, Comment, Created by

In BitTorrent networks, a resource is segmented in so called pieces. The publisher defines the
length of a piece and therewith the total amount of pieces. This total amount is defined as the
size of the resource divided by the piece length. Typically, the piece length is a power of two.

FOUNDATIONS Page: 24

For each piece a hash value (160-bit SHA1) is computed and stored as concatenated string in
field pieces of the metafile. That enables integrity measurement of each piece. During data
exchange between peers, the pieces of data are further segmented and delivered as blocks of
data.

2.2 Cryptographic Techniques

Within this section, cryptographic techniques, terminology and notations that are applied in the
following chapters are introduced. Notations are in the style of the project, which provides a
context to this thesis. In this way, they are applicable to all project related resources. Another
reason is that in scientific literature no common notation seems to be used. The mathematical
foundation of the cryptographic techniques is not discussed in detail within this thesis. Where
applicable, appropriate references for further reading are provided. The same applies to crypto-
graphic algorithms.

Cryptographic techniques have a very long history. They are based on the longing to keep
and transmit information secretly. They are mostly used by encryption and decryption, digital
signatures or secure key exchange. History has shown that techniques are successfully applied
for a period of time until ways are discovered which allow to access or manipulate the secret
information. The same is true for modern techniques.

Nowadays cryptography is characterized by a paradigm which became popular in the second
half of the last century. Techniques (functions, algorithms, protocols) have been made pub-
lic. The only remaining secret was the cryptographic key. This approach has turned out to be
advantageous. It allows quality control by all participants and it enables standardization. Fur-
thermore, it allows users to leave the group users that know the algorithm. The consequence for
secret techniques was that a new secret technique had to be established between the remaining
users.

Terminology. A cryptographic key (denoted by K) is a string (binary for computers) of a

certain length depending on the algorithm used. The length of the key determines a key

space including all possible keys.

The key is computed by cryptographic algorithms to transform information into another format
ensuring that the information can’t be deduced. Recovering the information within a realistic
period of time should only be possible by the secret key. Mainly two differing concepts of keys
have evolved, symmetric and asymmetric keys (private key and public key). However some
techniques like hash functions (see 2.2.3) do not use keys at all.

FOUNDATIONS Page: 25

Notation

Cryptographic algorithms with key involvement are depicted as name{parameter}Key = output.
It can be read as a function which maps parameter values and the key(-parameter) to an output
value. In some cases the type of function may already be implied by the type of the applied
key. The unnecessary name could be omitted. But it seems to be easier to read (and understand)
in this way. For cryptographic functions in this context, the parameters can typically be recon-
structed using a reverse function and a reverse key. If this is not provided, the common notation
name(parameter) = output is used.

2.2.1 Message Encryption & Decryption

The encryption and decryption of messages is expected to fulfill certain security goals. Most
important, the plaintext is kept confidential (Confidentiality), even if it is transmitted over an
open network. Only the recipient should be able to interpret the message. It must be ensured, that
only the sender is able to encrypt a message and only the receiver is able to decrypt the message.
Therefore, the receiver is able to ascertain the origin of the message (Authentication). On the
opposite, the sender can’t deny that he encrypted the message (Non-repudiation) if he is ensured
that only the sender can create the respective encrypted message. That is why, modifications of
the encrypted message should always be recognizable by the receiver (Integrity).

Terminology. A message is plaintext (sometimes called cleartext). The process of disguising

a message in such a way as to hide its substance is encryption. An encrypted message is

ciphertext. The process of turning ciphertext back into plaintext is decryption. Encryption

and decryption is performed by an algorithm called cipher.

Cryptographic operations are depicted as follows. In modern cryptography both operations re-
ly on cryptographic keys. In symmetric systems, the same key is utilized for encryption and
decryption. Keys are called symmetric keys, here.

enc{plaintext}K = ciphertext

dec{ciphertext}K = plaintext

In asymmetric systems different keys are applied for each operation. These are public keys
Kpub, that can be accessed by everyone and private keys Kpriv, that are in possession of only
one owner. Even more, both keys can be applied for both operations.

enc{plaintext}Kpub
= cyphertext

dec{cyphertext}Kpriv
= plaintext

enc{plaintext}Kpriv
= cyphertext

dec{cyphertext}Kpub
= plaintext

FOUNDATIONS Page: 26

A message that is encrypted with a private key can be read by everyone using the corresponding
public key whereas a message that is encrypted by a public key can only be read by the owner
of the corresponding private key.

Cipher

Modern ciphers perform mathematical operations (e.g. substitution, transposition) on a fixed
length input. Since the length of the input string is not fixed in practice, these strings are divided
in a stream of single characters or blocks of characters. Accordingly, ciphers can be classified
in block and stream ciphers. Ciphers within the context of this thesis apply cryptographic keys
as additional input. Bock and stream ciphers are mainly applied in symmetric key cryptogra-
phy. They provide different characteristics, hence they are applied in different areas in practice.
Commonly used ciphers are the Advanced Encryption Standard (AES) and its predecessor Data

Encryption Standard (DES). AES is also known as Rijndael-algorithm which was developed by
Joan Deamen and Vincent Rijmen.

Block ciphers operate in different modes [ECK-2008, Chapter 7.5.2]. Typical modes are Elec-

tronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB) and Output

Feedback (OFB). These modes differ mainly in the level of security (vulnerability) and their
performance. Some of them require a commitment of both communication parties to an ad-
ditional shared and secret initialization vector. Often the input string is not a multiple of the
block size. In that case, some characters are missing for the encryption of the last block. This is
compensated by padding schemes that attach defined or calculated values to the input string.

Stream ciphers operate similar to one-time pads [ECK-2008, Chapter 7.4.3]. A pseudo ran-
dom key-stream is used for the encryption and decryption operation. This approach is seen to
be faster than block ciphers, but it bears its own vulnerabilities.

In the area of public-key cryptography, Rivest, Shamir, and Adleman (RSA) developed cryp-
tographic algorithms that are nowadays established as de facto standard. RSA ciphers and
many other standards are described in the Public-Key Cryptography Standards (PKCS) of the
RSA laboratories [RSA-2010]. Some of these standards can be found in other standardizing
organizations, too (e.g. RFC’s from the IETF8). In practice, RSA is combined with padding
schemes to prevent a number of attacks. Some encryption schemes are standardized in PKCS#1
[RSA-2002], these are RSAES-PKCS1-v1_5 and RSAES-OAES (Optimal Asymmetric En-
cryption Padding) for encryption, and RSASSA-OAEP and RSASSA-PKCS1-v1_5 for signa-
tures. The definition of a padding scheme is included in PKCS#5 [RSA-1999].

8www.ietf.org

FOUNDATIONS Page: 27

2.2.2 Digital Signature

Digital signatures are an essential component in the application of modern cryptography. They
represent a digital equivalent to an ordinary handwritten signature. Digital texts like documents
or messages can be signed, whereby certain goals are achieved. These are the same goals hand-
written signatures are meant to achieve [SCH-1996]. The signed document would be any kind
of arbitrary string containing relevant information.

• Authentic: The signature convinces the document’s recipient that the signer deliberately
signed the document.

• Unforgeable: The signature is a proof that the signer, and no one else, deliberately signed
the document.

• Not reusable: The signature is part of the document; it can’t be moved to a different
document.

• Unalterable: The document can’t be altered after signing.

• Non-repudiation: The signer can’t later claim that he didn’t sign it.

Terminology. A digital signature is the output of a signing algorithm which is applied to an

arbitrary string using a cryptographic key. Such a signature provides the same character-

istics that are expected from handwritten signatures.

In recent applications (and within this thesis) the creation and verification of digital signatures
is based on algorithms using asymmetric key cryptography. A signature is bound to the pri-
vate key that is utilized during the creation of the signature. Depending on the algorithm used,
signing can be seen as an encryption of a string with the private key (e.g. RSA[SCH-1996, Ch.
2.6]). Then the verifier can compute the signature using the public key of the signer. The result-
ing string is equivalent to the signed string. Since the verification key is public, everyone can
compute the verification.

signing : sig{string}Kpriv
= signature

verification : ver{signature}Kpub
= string

With this approach authenticity is given, since it is assumed that only the signer possesses the
private key. The signature is unforgeable as far as this is provided by the underlying encrypting
algorithm respectively its mathematical foundation. Signing can only be done with a certain
private key and for everyone it should be hard to calculate or guess that key. No one can reuse
the signature since different strings will always result in different signatures. Otherwise the

FOUNDATIONS Page: 28

verification would lead to many different strings and no one would know which string was
signed. The string can’t be modified once it is signed (encrypted). Not even by the signer,
because an altered string would lead to an altered signature. Finally, the signer can’t repudiate
the signing of a string by his private key since the verification can only be successfully computed
with the appropriate public key.

2.2.3 Public-key Certificate

A public-key certificate (within this thesis called certificate) is typically used to bind an identity
to a public key. This is done by a certifying third party, termed Certification Authority (CA).
Certificates confirm that a key is registered for a certain identity, which has been validated
according to the CA’s commitments. All participating parties have to trust the CA.

Terminology. A public-key certificate Certowner
issuer is someone’s public key, signed by a trusted

entity (issuer). Depending on the format definition it may contain credentials referring to

the public key owner and additional data.

The certificate may be generated by an appropriate digital signature algorithm using the private
key of the CA. Everyone possessing the CA’s public key can obtain the key and credentials for
another party of interest9.

sig{credentials,Kpub}CApriv
= Certowner

issuer

ver{Certowner
issuer}CApub

Depending on the chosen certificate standard (e.g. ITU-T10 X.509 / [RFC-5280]) respectively
application design different credentials are included. Very common are: the name of the owner,
declaration of algorithms used, identifier of the certificate, validity of the certificate, identifier
of the CA (issuer) and restrictions to the application of the key[BUC-2008, Ch. 17.2.3]. The
origin of a certificate can be verified by the public key of the issuer.

Hash functions

In cryptography hash functions are often used to verify the integrity of messages (or more
generally strings). Typically a so called hash function computes an arbitrary-length message
string to a smaller fixed-length string called hash. Keys are not used.

h(message) = hash

9In practice a certificate may be represented as an object containing credentials and key as well as a signature
over the hash of these values.

10www.itu.int/ITU-T

FOUNDATIONS Page: 29

The hash is sometimes referred to as a fingerprint, implying that each message has a unique
fingerprint. If this is ensured by the hash function, an altered message can easily be recognized
by comparing the hash of the original message with the hash of the altered message. Nowa-
days, commonly used hashing algorithms like those described by the secure hash algorithm

(SHA)[SCH-1996, Ch. 18.7] represent one-way hash functions.

Terminology. A one-way hash function is a hash function that works in one direction: It is

easy to compute a hash value from a message, but it is hard to generate a message that

hashes to a particular value. And it is hard to find another message that can be computed

to the same hash (collision resistant).

Whether a function can be classified as on-way depends on the existent knowledge and tech-
nological abilities. It may change over time and new functions have to be discovered. Hash func-
tions may be further classified in weak collision-resistant and strong collision-resistant[BUC-2008,
Ch. 12.1]. Weak, if it is not possible to find a collision for a given message in practice and strong,
if it is not possible to find any collision in practice. Furthermore it is important to notice, that
the output of the hash function does not depend on the input in a way that a single bit change
would lead to minor (predictable) changes in the resulting hash. Ideally, on average half of the
hash is changed then.

2.2.4 Protocol

Usually cryptographic techniques are applied in communication between two or more parties.
In order to accomplish certain tasks (data exchange, key exchange, authentication, attestation,
etc.), communication steps are defined. Series of communication steps form protocols.

Terminology. A Protocol is a series of steps, involving two or more parties, designed to ac-

complish a task. A cryptographic protocol is a protocol that uses cryptography. [SCH-1996]

Several primitive protocols may be implemented on different communication layers or they
may be combined to a more complex protocol on one layer. Such a protocol is presented and
implemented within this thesis. It incorporates the Diffie-Hellman (DH) protocol as a primitive
[RFC-2631].

With the DH protocol (see protocol 1 on the next page) two parties establish a symmetric
shared secret key over a public network. Therefore they exchange public parameters and values
computed by a one-way function. One-way functions are relatively easy to compute, but signif-
icantly harder to reverse. An example is the discrete logarithm. There is no algorithm known,
able to solve this problem efficiently [BUC-2008].

FOUNDATIONS Page: 30

Protocol 1 Diffie-Hellman
1. Pre-computation:

Alice : a, A = gamod p, parameter := {g, p}
2. Send public key and parameters:

Alice→ Bob : {g, p} , Kpub := {A} (1)
3. Compute public key:

Bob : b, B = gbmod p

4. Compute common secret:

Bob : K = Abmod p

5. Send public key:

Bob→ Alice : B (2)
6. Compute common secret:

Alice : K = Bamod p

Previous to the protocol Alice chooses a random private key a within {0,1, ..., p-2}. Fur-
thermore, Alice generates the public parameters {g, p} where g is a primitive root modulo the
prime p with 2 ≤ g ≤ p − 2. Parameters and private key are applied in the creation of the
public key A. This public key and the public parameters are transmitted to Bob. Now, Bob gen-
erates its own random private key b and its own public key B in the same way Alice did before.
Additionally, the shared symmetric key K is computed using Alice’s public key A, Bobs own
private key b and the public prime p. Finally, Bob transmits its public key B to Alice who com-
putes the shared symmetric key K using the received public key B the private key a and the
public parameter p. Both communication parties established a common secret that can be used
to encrypt and decrypt further communication. It has to be mentioned, that this protocol does
not provide authentication of the communication parties and therefore it is vulnerable to certain
threats (man-in-the-middle[BUC-2008, 9.5.3]).

2.3 Trustworthiness

Trust is a very universal term, describing a degree of reliance on the (predicted) behavior of a
system. If the observed behavior is as expected a system may be accepted as trustworthy. Within
the area of information and communication technology systems may be seen as computing
systems (equipped with a processing unit) or a group of connected systems forming a network
system.

Regarding IT-Security, systems may be classified as trustworthy if they meet certain security
goals, especially integrity and authenticity. Today’s IT-systems are characterized by an increas-
ing vulnerability that is attended by an increasing complexity. Within the last years, efforts have
been made to design and realize systems with a higher degree of confidence in its state and the

FOUNDATIONS Page: 31

attestation of its state to remote systems. Especially, members of the industry consortium Trust-

ed Computing Group (TCG)[TCG-2010] have contributed to this development. It is strongly
based on cryptographic techniques, mainly from the area of asymmetric cryptography. Together
it is commonly known as Trusted Computing.

Terminology. „Trusted Computing describes the execution of security crucial software on a

system, which current state was classified as trustworthy and which provides methods to

measure the current state.“

2.3.1 Trusted Computing System (TCS)

An overview of a Trusted Computing System (TCS) is given in figure 4. It shows several inde-
pendent layers that are typical to modern personal computers. The TCG specifies extensions to
some layers respectively components so that they become trustworthy. However, services and
applications that are not extended may be operated on such a system as well. This is necessary,
since it is practically not possible to extend all applications of all providers. Instead, dedicated
applications have to be classified as trustworthy or untrustworthy by the operator of the system.
This approach is well-established anyway.

All extended components together form a so called Trusted Computing Base (TCB), that is
able to measure and report the state of all software applications on the system. The specifica-
tion of a Trusted Computing Platform (TCP) describes new and amended hardware components
as well as firmware (e.g. Basic Input/Output System (BIOS)). Most important is an additional
hardware chip called Trusted Platform Module (TPM). An extended operating system, called
Trusted Operating System (TOS), may operate on the basis of the TCP. Furthermore, the TOS
is offering TPM functionality to the service layer which is offering the functionality to applica-
tions. This is called a Trusted Software Stack (TSS).

Trusted Computing System (TCS)

Applications

Services

Trusted Operating System (TOS)

Trusted Computing Platform (TCP)

Trusted Applications

Trusted Services

Figure 4: Trusted Computing System (TCS).

FOUNDATIONS Page: 32

Chain of trust

All trusted components together establish a chain of trust in which each component measures
the integrity of the next component from the start of the system. Measurement is performed by
the root of trust or a program that is previously measured. Therefore hash values of platform
properties like the ROM of a hardware component, an executable or operating system libraries
are generated. Such a measurement is rather passive since it just creates and stores hash val-
ues. Whether a trustworthy system can really be trusted or not, has to be decided by a third
party. Therefore the TCS offers reporting functionality. Amongst others a typical chain of trust
includes the TPM as a root of trust, a Core Root of Trust Measurement (CRTM) as part of the
BIOS, the Master Boot Record (MBR), an operating system loader, an operating system kernel,
device drivers and services.

Roots of trust

The TPM is specified to provide three roots of trust forming the basis for all subsequent trust
decisions. This is referred to as Trusted Building Block (TBB) as well. Such roots of trust are
already well known in the area of IT-Security. An example is the Root-Certification Autority

(Root-CA) of a Public Key Infrastructure (PKI). If a root can’t be trusted anymore, the same
applies for all subsequent decisions.

• Measurement: The root of trust for measurement (RTM) is a trusted implementation of a
hash algorithm for the initial integrity measurement.

• Storage: The root of trust for storage (RTS) is a trusted implementation of a shielded
non-volatile location to hold the Storage Root Key (SRK).

• Reporting: The root of trust for reporting (RTR) is a trusted implementation of a shielded
non-volatile location to hold the unique platform identity key, called Endorsement Key

(EK). That key provides the cryptographic identity to the TPM.

It has to be noted, that there is still one more root to be trusted: the manufacturing process.
That process is highly critical since it includes implementation of the EK, which is the root for
all subsequent decisions. Another certifying trusted party is intended to guarantee with an EK-
certificate for a trustworthy creation of the EK. According to the current specification (version
1.2), the TPM itself does not provide any functionality to perform a manipulation (create, delete,
modify) of an EK. All other keys are created subsequently. Even the SRK is created later on by
an invocation (Take-Ownership) of the TPM owner. That however, may be repeated with a
change of ownership that is protected by an owner password.

FOUNDATIONS Page: 33

Capabilities

The TCS provides additional capabilities compared to ordinary systems (e.g. personal com-
puter). It is able to measure, store and report the integrity of all software components in a
trustworthy manner. Further capabilities like cryptographic operations that can’t be influenced
by any software component on the system are available. These operations can be used to pro-
vide a secured storage on the hard disk. The access to storages can additionally be bound to a
certain state of the system. An attestation mechanism is introduced to provide evidence of the
current state to a third party. Since the EK is unique and protected, the TPM and subsequently
the whole TCS can clearly be authenticated. Processes that are running on the system can be
protected from other processes that might be not trustworthy. Moreover, trustworthy devices
(e.g. I/O devices) can be introduced. They establish a protected communication to the TCS.

2.3.2 Trusted Platform Module (TPM)

The aim of trusted computing is to establish trusted computing systems and consequently a
trusted infrastructure based on trusted systems. An important part of a trusted system is the
trusted platform module (TPM) which may be implemented as a software (e.g. [STR-2010]) or
hardware component. A specification of such a module is provided by the TCG [TCG-2005].
Depending on the type of system (e.g. mobile phone, personal computer, embedded systems,
...) and its specific requirements, different modules may be applied. An example is the mobile

trusted module (MTM) specified by the TCG. Compared to personal computer (PC), these
mobile phones are characterized by much stronger trust requirements, more complex patterns
of ownership and more often subject to casual theft [MAR-2008].

Trusted Platform Module (TPM) Functional Units

Sym. Crypto Engine

SHA-1 Engine

HMAC Engine

RNG

RSA Engine

Processing Unit

I/O Interface

Persistent Memory
EK

SRK

Owner Secret

Volatile Memory

PCR-0 … PCR-15

Key Handles

Session Handles

RSA Key Slots

Program Code

Figure 5: Overview of the main TPM components.

An overview of a TPM is given in figure 5. It is part of the TCP and it contains all parts of
a typical microcontroller. The Input/Output (I/O) interface is connected to the Low Pin Count

FOUNDATIONS Page: 34

(LPC) bus of the motherboard together with other components like the boot Read Only Memory

(ROM) that is storing the BIOS. A processing unit handles requests and accesses services from
the functional units. Values can be stored on a persistent and a volatile memory.

Functional units respectively engines provide cryptographic operations (see section 2.2).
These are engines for symmetric and asymmetric key cryptography, hashes, keyed-hash mes-

sage authentication codes (H-MAC) and a random number generator (RNG).
The volatile memory contains session handles that are applied in communication with exter-

nal components. Key handles and RSA key slots are used to provide a trustworthy implemen-
tation of key storage and loading from an external storage space (e.g. hard disk). An amount
of Platform Configuration Registers (PCR) store concatenated hash values (see 2.3.4) of all
executed programs.

The persistent memory contains the previously introduced asymmetric keys: EK and SRK
(both RSA, 2048 Bit). If a new owner of the TPM performs a Take-Ownership operation a
password is inquired. It is stored as owner’s secret on this memory. The program code enables
the operation and interaction of the TPM. In the current specification (version 1.2) of the TCG
[TCG-2005], ninety-one mandatory, platform independent functions of the TPM are defined.
Examples are: the previously operation to take the ownership or the TPM_Quote operation
which necessary for attestation of the TCS’s state to a remote party (see 2.3.4).

Attestation Identity Key (AIK)

An additional important asymmetric key (RSA, 2048 Bit), called Attestation Identity Key (AIK),
might be stored in the persistent memory, too. The AIKs are applied as pseudonyms for the
EK during attestation as described in section 2.3.4. In practice however, more than one AIK
can be expected. Then they are stored on an external device that is protected by the SRK.
Typically, AIKs are certified by a trusted third party. An AIK certification protocol is described
in [MUE-2008, P. 59]. A TCS creates a new AIK and provides its public part together with an
EK certificate to the certification authority. If the authority is able to verify the EK certificate
and the TCS identity, it certifies the AIK.

2.3.3 State Measurement

In order to understand the attestation, at first the measurement has to be understood in more
detail. Based on the chain of trust, it is ensured that each component is measuring the next
component to be executed. A component within this context can be any block of data that is
known to take part in execution. This might be a boot-loader image, the operating system kernel,
device drivers, executables, libraries and others. For each relevant block of data a hash value
(SHA-1, 160 Bit) is computed and given to the TPM by an invocation of the TPM_Extend

FOUNDATIONS Page: 35

function. Additionally, each hash value and a corresponding, identifying string (e.g. file name
of an executable) are stored in the Stored Measurement Log (SML). That SML (see table 1) is
not part of the TPM. It is stored on another device like a hard disk. Typically the SML is split
in several files for e.g. BIOS, operating system and application measurements. Furthermore, it
does not have to be protected since it just represents the claimed state of the TCS. Evidence has
to be provided by the TPM.

PCR Index Measurement Value (SHA-1) Description
10 9797edf8d0eed36b1cf92547816051c8af4e45ee boot_aggregate

10 ea8239dfed9dd11bd538f9c3234e0d7b71672fff /bin/sh

10 ebb4f3db0b83c1e717e3d05f702e4608a9c2ea08 /lib/ld-linux.

10 671aba5cb6df951463e57c963e8c327fc6cfb5ab /lib/libcrypt.

10 445babe91e586090cb7f9782b44ba115ceec6b7f /lib/libm.so.

10 411ab19e995e06b1d7378e1daea9926ccba1ea20 /lib/libc.so.

10 68b297cd8fe07a3e54e6ce9d2e66afa799e472a3 /sbin/depmod

10 407285ba377ea035f2ff6d61c47ead8befa7cd5f /sbin/modprobe

Table 1: Excerpt of a SML from an IMA system [SAI-2006].

As already explained, simultaneously to an extension of the SML, the measured hash value is
given to the TPM. However, the TPM does not have to store all the provided hashes to provide
evidence of the state. Instead each added hash value is concatenated with a hash value that was
previously stored in an appropriate Platform Configuration Register (PCR).

newPCRi = hash(oldPCRi||addHashV alue)

According to the current specification (version 1.2) of the TCG each TPM should at least pro-
vide 23 PCRs for different purposes. Mainly, they group the measured software components in
classes in order to use a dedicated register. Accordingly an attestation can be performed for a
selected group of components. An example of the PCR usage is given in table 2.

2.3.4 Attestation

A TCS is able to measure and report its state. A state can be reported locally to users and
devices, or it can be reported to a remote system. Together with a report (SML), the attesting
TCS provides evidence that it is really in the claimed state. This is called attestation. Based on
this information an appraiser decides if the evidence can be trusted or not. Such an appraiser
does not necessarily have to be a TCS itself. Any system that is capable of interpreting the
attester’s evidence, may decide about it. An appraiser has to verify (i) the root of trust, (ii) the
report (SML) and (iii) the evidence.

Terminology. “Attestation is the activity of making a claim to an appraiser about the prop-

erties of a target by supplying evidence which supports that claim. An attester is a party

FOUNDATIONS Page: 36

PCR Index Usage
0 CRTM, BIOS and Host Platform Extensions

1 Host Platform Configuration

2 Option ROM Code (e.g. firmware)

3 Option ROM Configuration and Data

4 Initial Program Load (IPL) Code (usually the MBR)

5 IPL Configuration and Data (for use by the IPL Code)

6 State Transition and Wake Events

7 Host Platform Manufacturer Control

8-15 Defined for the use by the Static Operating System

16 Debug

17-23 Defined for the use by the Dynamic Operating System

Table 2: Usage of the Platform Configuration Registers (PCR).

performing this activity. An appraiser’s decision-making process based on attested infor-

mation is appraisal”[COK-2010]

Remote Attestation

The remote attestation between two TCSs can be performed over an open network using a
public key infrastructure. Therefore a remote attestation protocol that ensures the integrity of
the evidence can be applied. A simplified version is depicted in protocol 2 below. It is performed
between the attesting TCS tcs and the appraiser app. Similar protocols and vulnerabilities (e.g.
man-in-the-middle) are described and discussed in [MUE-2008].

Protocol 2 Remote Attestation Protocol
1. Pre-computation:

app : nonce, CApub

tcs : AIKCerttcsca

2. Challenge Request:

app→ tcs : nonce (1)
3. Compute Quote / load SML:

tcs : SML, Quote := quote {nonce, PCR0..n}AIKpriv

4. Challenge Response:

tcs→ app : Quote, AIKCerttcsca , SML (2)
5. Verification:

app : (i)ver{AIKCerttcsca }CApub
, (iii) verify SML

(ii)ver{Quote}AIKpub
, verify SML&PCR

Initially the appraiser has to create a cryptographic number-used-once (nonce) that is a ran-

FOUNDATIONS Page: 37

dom value, valid for only one attestation execution. With message (1), called challenge request,
the nonce is transmitted to the TCS. Now, the TCS invokes the TPM_Quote function of the
TPM with the received nonce as parameter. The TPM signs the nonce together with a selection
of PCRs using its private AIK key. With message (2), called challenge response, the TCS trans-
mits the quote object, the corresponding SML and its AIK certificate. Now, the appraiser is able
to verify:

• The root of trust: Verification of the certificate by a public key of CA.

• The evidence: Verification of the PCR within the quote (signature) by the public AIK key.
Furthermore by calculating an expected PCR and comparing it to the received PCR.

• The reported state: SML values are compared to a previously defined list of valid compo-
nents.

The calculation of an expected PCR is performed in the same way that is performed by the TPM
(see section 2.3.3). Each entry of the SML is concatenated and hashed with the next value.

2.4 Conclusion

This chapter provides profound knowledge of basic terms and concepts that are applied in the
following chapters. They originate from the domain of trusted computing, Peer-to-Peer technol-
ogy and cryptography. Most important are the general architecture of trusted computing systems
and the trusted computing platform, state measurement and state attestation. Following chap-
ters focus on a centralized Peer-to-Peer system with a distributed resource exchange network
and a centralized resource discovery network. NaDa management functionality and distributed
approaches for the resource discovery network are not subject to this thesis (see section Related
Work 1.4).

3 Application Development

The development of a demonstrator is the next step towards commercial application of a P2P
system that is based on the principles of Trusted Computing. The demonstrator is neither a sim-
ulator nor a prototype. Contrary to simulation, the demonstrator will be deployed in a physical
laboratory close to a real commercial environment. It is not intended (and possible within this
thesis) to provide all the necessary functionality and reliability that would be expected from a
prototype. Mainly, the demonstrator should serve as a basis for empirical studies. The results
shall give direction to further development and research efforts.

Two already proposed protocols [KUN-2010] serve as high level specification for the demon-
strator. This chapter provides the description of the realization, including design and implemen-
tation. Several components like an open source BitTorrent application are integrated, amended
and extended. As far as possible, the original BitTorrent protocols are kept unchanged, in order
to preserve the approved processing. Unaltered BitTorrent specific functionality is not exam-
ined in detail. Extensions are described in detail on protocol, communication framework and
message level. Furthermore, an overview of the integrated cryptographic engines is provided.

3.1 NaDa Environment

The implemented protocols are embedded in the NaDa [KUN-2009] architecture for distribu-
tion of virtual goods (e.g. multimedia contents). The architecture describes several components
of all parties that are participating in the distribution of content. At the customer’s household
the physical NaDa platform is installed. It realizes communication services to an Internet Ser-

vice Provider (ISP), one or more Content Providers (CP) and platforms of other customer’s.
Customers may access content from this platform via a personal computer, a set top box or
similar devices. Even though such a platform is physically located at the customer’s household,
it remains under control of the ISP. For this reason, it is equipped with a TPM. The architecture
enables such a platform to deliver content from more than one CP at once. Specific applications
for each participating CP can be installed. Separation is achieved by a virtualized and protected
context for each CP.

From each CP context a communication component, that is installed and controlled by the
ISP, can be utilized to download and share content. That component is mainly based on Peer-
to-Peer technology, enhanced with the trustworthy Tracker Protocol (TP) and the Peer-Wire

Protocol (PWP). The protocols are implemented as extension to the Java BitTorrent (jBitTor-
rent) [DUB-2007] application. jBitTorrent provides tracker and peer services. On each platform
an instance of the peer application is running as part of the communication component. It may

APPLICATION DEVELOPMENT Page: 39

interact with peers of other customer platforms or trackers. Both, the ISP and each of the CPs run
and maintain trackers. The ISP tracker is keeping track of ISP level software updates and track-
ers of CPs are keeping track of the distribution of content. A dynamic view (sequence diagram)
for the download use case is shown in figure 15 on page 68. Within this model, central trackers
are assumed. Unique identities are provided to the system by a certification authority. Respon-
sibilities are assigned to the ISP, though another trusted party might be involved in practice.
The NaDa architecture describes further components for management, storage and monitoring.
However, they are currently not involved in Peer-to-Peer communication and therefore, they are
not in focus of this thesis.

Content Provider

Distribution Peer

Policy/Lookup Tracker

Mgnt & Monitoring

Internet Service Provider

Distribution Peer

Policy/Lookup Tracker

PWP

TP

TCP

PWP

PWP

TP

Identity CA

Mgnt & Monitoring Others

Others

NaDa

Figure 6: High-level view of Nano Data Centers (NaDa).

3.1.1 Component Interfaces

Trustworthy BitTorrent

The trustworthy BitTorrent (tBitTorrent) protocols are implemented as an extension to the open
source jBitTorrent [DUB-2007]. It includes several applications that are written in Java version
6. BitTorrent functionality is provided by a group of applications. Graphical interfaces are not
available, yet. According to the configuration, detailed log files for each application are stored
on each node. They can be evaluated for management purposes.

Tracker. Within the current model, trackers are operated by CPs and the ISP, only. The
tBitTorrent system provides functionality of the original jBitTorrent, but achieves additional
security goals.

APPLICATION DEVELOPMENT Page: 40

• Start: Start of the tracker application and listening on designated port.

• Upload: Upload (store) a metafile to the tracker/creation of an empty swarm.

• Announce: Peers can register to a swarm, receive other addresses peers and authorization
tokens (ticket) for members of the swarm.

Peer. Peer components are utilized by all participants (ISP, CP and customer). Three
applications provide an interface to other systems.

• Create Metafile: Metafiles can be created according to the BitTorrent specification (see
section 2.1.5).

• Publish Metafile: Metafiles can be published to the designated tracker.

• Download/Share: Peers can download and share content according to the Peer-Wire Pro-
tocol. Certain content is specified as an argument on startup.

Management & Monitoring

Management and monitoring functionality is available for CPs and the ISP. CP management
is restricted to their context and ISP management targets the whole infrastructure, respec-
tively each platform. Interfaces between management and NaDa platforms are currently not
specified in detail. As an initial approach, they are implemented in the scripting language Ru-
by [RUB-2010]. Communication is realized by remote procedure calls (RPC) over TCP (see
[RFC-1831]). Management is intended to invoke functionality of the realized tBitTorrent. With-
in this initial version, there is no interface for policy or billing implemented. The demonstrator
allows communication between all peers that have successfully accomplished both protocols.

Customer Interfaces

Appropriate customer interfaces are not realized in the current state of NaDa development.
However, the work of this thesis provides functionality to download resources in a trustworthy
manner. It can be expected, that a NaDa platform will offer graphical user interfaces, similar to
non commercial BitTorrent applications, in combination with content stores like iTunes11.

Identity CA

A CA-Server is providing functionality of a Certification Authority (CA) to a CA-Client on
the NaDa platform. Both are utilized for the creation of AIKs (see Attestation Identity Key

11http://www.apple.com/de/itunes/

APPLICATION DEVELOPMENT Page: 41

in section 2.3.2) of a platform. The applications are derived from the Ethemba [BRE-2008]
framework and demonstrator for TPM applications. Currently, client and server are integrat-
ed in tBitTorrent to provide functionality of a CA. Concepts of attestation and validation are
integrated, too. Both implemented protocols (PWP, TP) rely on the certification of Attestation

Identity Keys (AIK). AIKs represent the identity of the TPM during attestation. Authenticity
can be proven by the appropriate public key of the CA. This key is assumed to be securely
transferred to each peer.

3.2 Protocol Specification

3.2.1 Original Tracker Protocol

The tracker protocol is performed between a peer and a tracker. It specifies messages that are
transferred by the Hypertext Transfer Protocol (HTTP). Hence, the tracker provides an HTTP
service. Protocol 3 depicts the original tracker protocol. Only the required and none of the op-
tional values are shown (see [COH-2008] for details). This protocol accomplishes the following
tasks:

• Announce membership in a swarm.

• Request a list of swarm members.

Protocol 3 Original Tracker Protocol
0. Setup previous to protocol.

p : metafile := {announce, info := {name, pieceLength, pieces, ...}}
t : metafile

1. Peer sends request message.

p→ t : url{info_hash, peer_id, port, uploaded, downloaded, left,event} (1)
2. Tracker sends response message.

t→ p : interval, peers :=
{
{peer_id, ip, port}p1..pN

}
(2)

(1a) Peer sends request message. If a peer is interested in downloading a resource or sharing
a resource, a corresponding metafile has to be obtained from any kind of file source, e.g. a
known file server. In field announce, the metafile includes a URL of a tracker that is keeping
track of the corresponding swarm tracker. The URL is enriched by several values forming a
message to the tracker. Most important is the parameter event that may be set to started,
stopped or completed. With event started, the peer announces that it wants to become
member in a swarm. Leaving the swarm is announced by stopped. If a full replica of the
resource is received the value completed is transmitted. A swarm is identified by the

APPLICATION DEVELOPMENT Page: 42

info_hash that is known from the metafile. The values peer_id and port are provided as
contact information for other members of the swarm, whereas the fields uploaded,
downloaded and left, refer to the peer’s sharing activity and the completeness of the local
resource replica.

(1b) Tracker receives request message. Depending on the event of the message, the tracker
processes its content. An initial call from a peer contains the event started. The tracker adds
its contact details (ip, port) together with identifier peer_id to the list of swarm members.
Other values are stored for further processing.

(2a) Tracker sends response message. If the info_hash is known to the tracker and there are
already other peers associated to this swarm, the tracker adds the contact information of the
peers to the response. All responses contain an interval, indicating a period of time that the
peer should wait before repeating the request. Peers will do this frequently in order to the local
list in synch and to signal the tracker that they are still participating.

(2b) Peer receives response message. With receipt of the response, the peer obtains an
identifier and contact information of all peers that are currently sharing the requested resource.
Each of them may be contacted using the PWP.

3.2.2 Extended Tracker Protocol

The extended protocol, as described by [KUN-2010] 12, is performed between a peer and a
tracker. All steps have to be performed synchronously. The protocol accomplishes all tasks of
the original version and several additional tasks:

• Mutual authentication of both parties (PKI).

• Integrity (software) of the peer platform is validated (attestation).

• An encrypted communication channel is established (shared secret exchanged).

• A download authorization token (called ticket) is exchanged.

Once all the tasks are accomplished, data may be exchanged between both parties using an
encrypted and trustworthy connection. The complete extended tracker protocol is depicted in
protocol 4 and described in detail below. The application is implemented accordingly. Key
format, algorithm and provider configuration are described in section 3.4.

12The notation within this thesis is slightly amended: AIKCerttpeeris depicted as AIKCertpeerca ; KpA
pub,K

pB
pub is

depicted as hash(KpA
pub||K

pB
pub)

APPLICATION DEVELOPMENT Page: 43

All messages, except of the last, are synchronous messages. They have to be executed in the
depicted order. Apart from the depicted content, a peer sends the fields peer_id, port and event
with each transmission. They are included as URL parameters. The tracker additionally sends
an event. Events are used to identify current message type. All of these values are not shown in
the following protocol description.

Protocol 4 Extended Tracker Protocol
0. Setup previous to protocol.

p : metafile, (AIKp
pub, AIK

p
priv) , AIKCertpca , St

pub

t : metafile, (St
pub, S

t
priv) , Cca

pub

1. Peer sends an encrypted request.
p→ t : enc

{
request,Kp

pub, SMLp, AIKCertpca
}
St
pub

(1)

2. Tracker computes the shared secret.

t : Kp,t = Kt
priv ◦K

p
pub (2)

3. Tracker sends a signature and a public key.
t→ p : sig

{
hash(Kp

pub||Kt
pub)
}
St
priv

, Kt
pub (3)

4. Peer sends a quote.
p→ t : quote

{
hash(Kt

pub||K
p
pub), PCR0..n

}
AIKp

priv

(4)

5. Peer computes the shared secret.

p : Kp,t = Kp
priv ◦Kt

pub (5)
6. Tracker sends the encrypted response.

t→ p : enc {Data}Kp,t (6)

(1a) Peer creates message. Message (1) is defined as a collection of values that are encrypted
using a public key of the tracker (enc {values}St

pub
). The appropriate St

pub has to be inquired
from a CA (or obtained from an extended metafile), already. This step is not part of the
protocol. Furthermore, it is expected that the TCS is equipped with the certificate AIKCertpca
in advance.

The request field of message (1) contains the info_hash. It is a hashed value of the info
field within the metafile. This metafile has to be load from file system in order to extract the
info_hash and to obtain the address of the tracker in field announce. The transmission of
a public key Kp

pub is the inital part of the shared secret exchange, as described in protocol 1 on
page 30. Before creation of the key pair

(
Kp

pub, K
p
priv

)
, appropriate random DH parameters

have to be generated. Furthermore, peer p has to load its local SMLp from the file system.
Loading has to be done rather close to protocol processing, since an out-dated SMLp could
not be validated against the quote object in message (4). Finally, the certificate AIKCertpca
has to be read from a key storage and added to message (1), thereafter.

APPLICATION DEVELOPMENT Page: 44

Since asymmetric encryption is known to be comparably slow, symmetric encryption is applied
instead. Message (1) may now be depicted as enc {values}Rp,t ,enc {Rp,t}St

pub
. Though the

same security goals are achieved, it has to be noted that a gain in performance is only given in
case of sufficiently large messages (see section 5.3.1). Before the previously described values
can be encrypted, the random symmetric key Rp,t has to be freshly generated. Decryption can
only be computed using this symmetric key Rp,t. Thus this key must be transmitted to the
tracker. A confidential transmission of key Rp,t is ensured by encryption using the known
public key St

pub of tracker t. Hence, enc {Rp,t}St
pub

is added to message (1) as another value.

(1b) Tracker processes message. The tracker receives two encrypted values as described
before. Initially the private key St

priv is applied to decrypt the symmetric random key Rp,t.
Afterwards this key is applied to decrypt message (1). Both, SMLpand AIK certificate, are
stored until message (4) is received because the values of that message are necessary to
complete the appraisal. The signature is verified by the public key of the certification authority
Cca

pub (e.g. ISP) and the expiry of the certificate is verified using the current system time. The
Cca

pub has to be provided previous to protocol processing, e.g. during setup of the platform by
the ISP. The request is stored until creation of message (6).

(2) Tracker computes shared secret. With message (1) Kp
pub is transmitted to the tracker.

Based on the peer key’s parameter, the tracker computes an own key pair
(
Kt

pub, K
t
priv

)
and the

shared secret Kp,t = Kt
priv ◦K

p
pub (symmetric key). The key is applied with message (6) and

subsequent communication steps.

(3a) Tracker creates message. With message (3), the signature sig
{
hash(Kp

pub||Kt
pub)
}
St
priv

and the tracker public key Kt
pub have to be transmitted. The signature is computed on the hash

of two concatenated keys. It ensures authenticity for the transmitted tracker public key and it
acknowledges the receipt of the peer public key Kp

pub in step (1).

(3b) Peer processes message. With message (3) a signature and the public key of the tracker
are received. The tracker key is stored for further processing during the following steps. The
signature is verified with help of previously received values. The local peer public key Kp

pub

and the received tracker public key Kt
pub are concatenated and hashed. For the verification the

already available tracker public key St
pub is used (ver{signature}St

pub
).

(4a) Peer creates message. With message (4) a quote object transmitted to the tracker. The
object is created by the local TPM. A selection of PCRs (currently PCR10) and a nonce are
signed by the private key AIKp

priv of the TPM and a nonce. This nonce is obtained by
concatenating and hashing the previously received tracker public key Kt

pub and the local key
Kp

pub . The signature on Kp
pub confirms its authenticity which is not provided since receipt of

APPLICATION DEVELOPMENT Page: 45

message (1). The signature on Kt
pub acknowledges the receipt of this key. With the signed

PCRs, the tracker is able to appraise the attestation.

(4b) Tracker processes message. The tracker receives a quote object including the hash of the
two concatenated keys Kt

pub and Kp
pub(nonce), a list of PCRs (currently PCR10) and a

signature on both values. Now the tracker concatenates and hashes the locally available keys
and compares the result with the received hash.

With the SML, received in message (1), the expected value of the PCR10 is calculated as
described in chapter 2.3.4. The result is compared to the received PCR in message (4). They
have to be equal in order to complete the appraisal of the integrity.

The SML contains identifiers and hashes of all measured applications on the peer system.
These hash values were computed on the application data (binary, etc.). For each application
hash in the SML a matching hash is searched in the list of known (valid) applications, the so
called Known Hash List (KHL). Any unknown application hash in the SML would cause the
appraisal to fail.

The quote object was created using the private key AIKp
priv of the TPM. It can be verified by

the previously calculated nonce, the PCR and the certified public key AIKCertpca received in
message (1). A valid signature proves authenticity and integrity of the signed values and
completes the attestation process.

Now, it is assured that the peer’s integrity is provided. Since, integrity and authenticity of the
received peer key Kp

pub and the transmitted tracker key Kp
pub is assured by validation of the

quote object, it can be assumed that the previously created shared secret is only known to the
peer and the tracker. It can be utilized in further communication.

(5) Peer computes shared secret. With message (3), the public key Kt
pub of the tracker was

received and its integrity and authenticity could be verified. That key is based on parameters
that are equal to the local public key Kt

pub. As described by the DH key exchange (see
protocol 1 on page 30), the peer can now compute the shared secret key Kp,t = Kp

priv ◦Kt
pub

(symmetric key). It is applied in message (6) and subsequent communication.

(6a) Tracker crates message. The last communication step of the tracker protocol is message
(6). During execution of the previous steps, a shared secret key Kp,t could be established. That
secret key can be used to encrypt all following messages (enc {Data}Kp,t). Message (6) can be
seen as an answer to the request in message (1). A list of data objects
Data = {datap1, datap2, ..., datapn) has to be transmitted over this channel, now. The tracker
searches appropriate peers that are sharing the requested resource. They must be successfully
connected via the tracker protocol in advance.

APPLICATION DEVELOPMENT Page: 46

A data object data :=
(
AddresspB, AIKCert

pB
ca , ticket

)
is created for each available peer.

All data objects are added to the list. Each data object permits the peer, to perform the PWP
with a dedicated peer (e.g. pB). The AddresspB contains the peer_id, the IP-Address and the
TCP port peer pB is listening on. A certificate AIKCertpBca is provided to verify the identity
of pB during PWP communication.

Moreover, a ticket := enc {AIKCertpca, resource, time}KpB,t is included in each data object.
Such a ticket authorizes peer pB to share the specified resource with the owner of the
certificate AIKCertpca within a period of time. It has to be transmitted to peer pB during PWP
processing. Only peer pB is intended to decrypt its content. Since the ticket is not directly
transmitted to peer pB, its integrity and confidentiality must be assured. This is achieved by
encryption using a shared secret between peer pB and the tracker t. It implies that such a ticket
can only be created if peer pB and tracker t have successfully performed the TP in advance.

(6b) Peer processes message. This is the final step in TP processing. The peer has to decrypt
the message using the shared secret (dec {Data}Kp,t). Elements of the data list are either stored
or updated. Further processing is done using the PWP as described in the following sections.

3.2.3 Original Peer-Wire Protocol

The peer wire protocol is performed between peers. One peer initiates the communication
with a handshake request, the other responds with a handshake acknowledge. Thereafter, each
peer may asynchronously send and receive messages. This protocol accomplishes the following
tasks:

• Both parties agree to exchange a certain resource.

• Both parties agree to communicate according to a certain protocol.

• Both parties exchange pieces of a certain resource.

Protocol 5 Original Peer-Wire Protocol
0. Setup previous to protocol.

pA : info_hash
pB : info_hash

1. Peer pA sends handshake message.

pA→ pB : peer_idpA, info_hash, protocol, reserved (1)
2. Peer pB sends handshake response message.

pB → pA : peer_idpB, info_hash, protocol, reserved (2)
3. Peer pA and pB send asynchronous messages.

pA↔ pB : type, payload (3)

APPLICATION DEVELOPMENT Page: 47

(1) Peer pA sends handshake message. Peer pA creates the initial handshake message with
the intension to contact peer pB. Contact information must be provided by a tracker previous
to this protocol. The info_hash identifies the resource that is requested to share. Peer pB is
expected to share it, since the tracker provided pB’s contact information for the specific
resource. Both peers agree on a protocol that is specified in field protocol. The field reserved
is not used, yet. With receipt of message (1), peer pB stores the senders contact details and its
peer_id.

(2) Peer pB sends handshake response message. If the protocol is known and agreeable,
peer pB creates an own handshake message. The message includes its own peer_id together
with an info_hash and a protocol identifier. The values of the fields Info_hash and protocol

are expected to be equal to the previously received values. They confirm the request. Field
reserved is not used, yet. Peer pB receives the acknowledging handshake and verifies its
content.

(3) Peer pA and pB send asynchronous messages. Both peers exchange information about a
specific resource to share (e.g. which pieces are available). Pieces may be downloaded until
both parties obtained the same set of pieces. This might be a complete resource or only parts of
it. Communication is ended at any point of time by one of the peers.

3.2.4 Extended Peer-Wire Protocol

The extension to the peer-wire protocol is based on a proposal of Kunzte et al. in [KUN-2010].
It accomplishes tasks of the original protocol and the additional tasks:

• Mutual authentication of both parties (PKI)

• Indirect attestation by a third party token (ticket).

• An encrypted communication is established (shared secret exchanged).

• A download authorization token (called ticket) is exchanged and verified.

This implementation (see 6 on the following page) embeds the enhancement between hand-
shake request and response of the original protocol. Accordingly, message (1) serves as initial
handshake and message (6) carries the acknowledging handshake. Currently, the fields proto-

col and reserved of the original handshake are not used and not transmitted with message (1).
Contrary to the proposal, the peerID is added to the message (1) in order to correspond with the
handshake message. All messages, except of the last, are synchronous messages. They have to
be executed in the depicted order. It is assumed that both communicating parties have already

APPLICATION DEVELOPMENT Page: 48

completed the TP with the same tracker. Key format, algorithm and provider configuration are
described in section 3.4.

Protocol 6 Extended Peer-Wire Protocol
0. Setup previous to protocol.

pA : (AIKpA
pub, AIK

pA
priv) , data :=

(
AddresspB, AIKCert

pB
ca , ticket

)
pB : (AIKpB

pub, AIK
pB
priv) , KpB,t, info_hash

1. Peer pA sends the initial request (handshake).

pA→ pB : peerIDpA , KpA
pub , ticket := enc

{
AIKCertpAca , resource, time

}
KpB,t (1)

2. Peer pB sends a response.
pB → pA : KpB

pub , quote
{
hash(KpA

pub||K
pB
pub), PCRnone

}
AIKpB

priv

(2)

3. Peer pA sends a request.
pA→ pB : quote

{
hash(KpB

pub||K
pA
pub), PCRnone

}
AIKpA

priv

(3)

4. Peer pA computes the shared secret.

pA : KpA,pB = KpA
priv ◦K

pB
pub (4)

5. Peer pB computes the shared secret.

pB : KpA,pB = KpB
priv ◦K

pA
pub (4)

6. Peer pB sends the final encrypted response (handshake).

pB → pA : enc {Content}KpA,pB (5)

(1a) pA creates message. Based on the tracker response of the extended tracker protocol, peer
pA may have received a data object. It implies, that peer pB is sharing the requested resource.
Peer pA has to load the address of peer pB (AddresspB), the certificate of its TPM public key
and the corresponding ticket for further processing. Locally, DH parameters and the key
pair
(
KpA

pub, K
pA
priv

)
are created. They are needed to establish a shared secret key according to

the DH protocol. The ticket and the public key KpA
pub are transmitted to peer pB with message

(1). Corresponding to the original PWP handshake, peerIDpA is sent, too.

(1b) pB processes message. Peer pB receives message (1) containing a ticket, the public key
KpA

pub and the peerIDpA. This message serves as an initial handshake corresponding to the
original protocol. At first, peer pB decrypts the ticket using the secret key KpB,t that is shared
with tracker t. The key was already exchanged during tracker protocol execution, prior to this
protocol. Peer pB verifies the requested resource (info_hash) and the validity of the ticket
with help of the provided time. The received certificate AIKCertpAca is stored but not verified,
since this is expected to be done by the (trusted) tracker already. A local key pair(
KpB

pub, K
pB
priv

)
is created according to the parameters of the received key KpA

pub.

(2a) pB creates message. With message (2), a quote object and the public key KpB
pub of peer pB

are transmitted to peer pA. The quote object is obtained from the TPM and thereby signed with

APPLICATION DEVELOPMENT Page: 49

its private key AIKpB
priv. Two concatenated and hashed keys (KpA

pub,K
pB
pub) are provided as nonce.

PCRs are not included (PCRnone) since an attestation is not defined for the PWP. Instead, the
ticket from the trusted tracker vouches for the integrity of both peers. With the quote object,
peer pB can be authenticated, the receipt of KpA

pub is acknowledged and the authenticity of KpB
pub

can be verified.

(2b) pA processes message. Peer pA receives message (2) containing key KpB
pub and a quote

object. The key is stored and the quote object is verified. Since no PCR values are included in
the quote object, an attestation cannot be performed. This is expected to be done by the
(trusted) tracker, in advance. But the public key AIKpB

pub, included in the certificate
AIKCertpBca , is applied during verification of the quote object that is signed by the key
AIKpB

priv. The verification proves the authenticity of the message. Additionally, peer pA
verifies the nonce. It is computed as hash of the two concatenated keys (KpA

pub,K
pB
pub). Herewith,

it is ensured that peer pB has received the authentic key KpA
pub and that peer pA has received the

authentic key KpB
pub.

(3a) pA creates message. With message (3) a single quote object is transmitted to peer pB.
This quote object is signed using the private key AIKpA

priv of pA. It contains the hash of two
concatenated keys (KpB

pub,K
pA
pub). PCR values do not have to be included in this quote object. It

is expected that the integrity of peer pA has already been verified by the (trusted) tracker.

(3b) pB processes message. Peer pB receives message (3) containing a single quote object
that is signed by key AIKpA

priv. The signature is verified by the public key AIKpA
pub of pA. This

key is obtained from the certificate AIKCertpAca that was received within the ticket of
message (1). It is not necessary to verify the signature of certificate AIKCertpAca , since this is
expected to be done by the (trusted) tracker.

The quoted hash value however, has to be verified in order to assure that peer pA has received
the right public key KpB

pub and that the public key KpA
pub received in message (1) is authentic and

not altered. For that purpose, the local keys KpB
pub and KpA

pub are concatenated and hashed. The
resulting value must match the hash within the quote object. Since the complete quote was
previously verified, the authenticity and integrity of the hash is given, already.

(4) pA and pB compute shared secret. Now, both parties compute the shared secret and
complete the Diffie-Hellman protocol. Peer pA computes KpA,pB = KpA

priv ◦K
pB
pub and peer pB

computes KpA,pB = KpB
priv ◦K

pA
pub. All following communication is encrypted by the symmetric

key KpA,pB.

(5a) pB creates message. With transmission of message (5), peer pB completes the protocol
extension. This message serves as response to message (1). It carries a content that is

APPLICATION DEVELOPMENT Page: 50

encrypted using the shared secret key KpA,pB. The content just contains a handshake
message according to the original PWP.

(5b) pA processes message. Peer pA receives message (5) and decrypts it using the shared
secret key KpA,pB. From now on, both parties may exchange asynchronous messages
according to the original PWP. Each of those messages is completely encrypted as described in
message (5).

3.3 Communication Framework

3.3.1 Tracker Protocol

Peer and tracker communicate on the application layer of the internet model [RFC-1122]. They
realize a client/server topology where the tracker is a server and peers are clients. Messages are
transmitted via the Hypertext Transfer Protocol (HTTP, [RFC-2616]).

The tracker integrates the Simple[GAL-2002] web framework. It listens to specified ports
of the Transmission Control Protocol (TCP) and passes incoming requests to message han-
dling tracker classes. A tracker provides upload services and, so called tracker services. The
UploadService just receives metafiles and the TrackerServiceTrusted processes
requests of the TP (see class diagram 7 on the next page). Requests of the TP are processed by
an instance of PeerConnection for each connected peer.

On the peer site, HTTP requests are transmitted by the ClientHttpRequest and an
URLConnection that provides input and output streams of the network communication. Re-
quests are created and processed by the PeerUpdaterTrusted thread. It creates a mes-
sage object and a URL string including the current event. With the extended tracker protocol
new events and the corresponding messages Encryption (1), SignQuote (3), Quote (4),
DataQuote (6), are introduced. Unlike the original protocol, the extended version uses the
HTTP POST method in order to transmit the required messages. Previously, the GET method
without attached content was sufficient.

Message Format

Peer and tracker communicate over the HTTP protocol [RFC-2616]. HTTP-Request messages
and HTTP-Response messages are exchanged. Throughout the thesis it is assumed, that HTTP-
messages are transported over TCP/IP packets. Each tracker protocol message is represented
by an object. Message elements are defined in section 3.2. Within the message object, they are
represented as byte arrays. Message objects are serialized to a string that can be carried within
HTTP. The string is given to the Simple web framework that is handling further transportation
steps to its destination. Some messages are of variable length. E.g. the content length might

APPLICATION DEVELOPMENT Page: 51

:TrackerServiceTrusted
+ process(req: Request, res: Response)
- createDataList(pc :PeerConnection,

pList ArrayList, rc: Resource)

:UploadService
+ process(req: Request, res: Response)

:Tracker

1

1

1

«Thread»
:PeerUpdaterTrusted

- post2Tracker(…, event: String): Map
- processResponse(map: Map)

:PeerConnection

1
0..*

«Interface»
:Conttainer

+ handle(req: Request, res: Response)

:ClientHttpRequest
+ post(source: URL, obj : Object): InputStream

«use»

:URLConnection
+ getInputStream(): InputStream
+ getOutputStream(): OutputStream

1

1

+ processENC(req: Request)
+ processSIG(req: Request)
+ processQUO(req: Request)
+ processDAT(req: Request)

Figure 7: Communication Framework of the Tracker Protocol.

vary for formats of certificates and keys, SMLs, amount of peers and others. Exemplary content
lengths could be extracted from a network analysis tool (wireshark13). In application revision
55, these are: 60,269 bytes for message (1), 876 bytes for message (3), 1,169 bytes for message
(4) and 3,752 bytes for message (6). The complete captured network traffic of revision 47 and
revision 55 can be found on the thesis DVD as described in section C.2 on page XX.

An example of a HTTP POST request is shown in format 1 on the next page and an ex-
ample of an HTTP response is shown in format 2 on the following page. The POST request
contains the /announce string and the content length of the following serialized message ob-
ject. In the current version, still the values info_hash, peer_id, port and event are transmitted
as plaintext. That corresponds with the original protocol. Depending on a security analysis of
a concrete business model, concepts for hiding them might become necessary. No other TP
fields are transmitted anymore. A successful response contains 200 OK, the server type and a
serialized message object as content.

13www.wireshark.org

APPLICATION DEVELOPMENT Page: 52

Format 1 Example of an HTTP POST Request

POST / announce ? p e e r _ i d =VALUE&p o r t =VALUE&e v e n t =VALUE HTTP / 1 . 1
Conten t−Type : m u l t i p a r t / form−d a t a ; boundary =THIS_STRING_SEPARATES
User−Agent : J ava / 1 . 6 . 0 _0
Host : 1 2 7 . 0 . 0 . 1 : 8 0 8 0
Accept : t e x t / html , image / g i f , image / jpeg , * ; q = . 2 , * / * ; q = .2
C o n n e c t i o n : keep−a l i v e
Conten t−Length : LENGTH_SERIALIZED_OBJECT

Format 2 Example of an HTTP Response

HTTP / 1 . 1 200 OK
Conten t−Type : t e x t / p l a i n
C o n n e c t i o n : keep−a l i v e
T r a n s f e r−Encoding : chunked
S e r v e r : T r u s t e d B i t T o r r e n t T r a c k e r
Date : Thu , 12 Aug 2010 0 8 : 1 2 : 1 4 GMT
. . .

EVENTVALUE . . . CONTENT_SERIALIZED_OBJECT

3.3.2 Peer-Wire Protocol

In jBitTorrent a message sender (MS) thread and a message receiver (MR) thread realize the
communication to another peer. For each peer relationship, separate sender and receiver are
started. Such a relationship is designed as download task (DT). One or more of these tasks
are managed by a download manager (DM). Sender and receiver communicate over input and
output streams of a TCP/IP socket connection from the standard Java net API. A Connection-

Listener (CL) is listening to TCP ports for incoming connections and creates sockets to remote
peers. The threads of a peer application (MS, MR, DT, DM, CL) mainly communicate asyn-
chronously. Java EventListener are applied, together with a LinkedBlockingQueue
between DT and MR. In the LinkedBlockingQueue, message objects are linked and or-
dered according to the first-in-first-out (FIFO) principle. Concurrent access and modification
may be performed, since it is thread-safe. The EventListener enables threads to exchange
events. Listening threads have to implement listener interfaces and provide their reference to
the threads that are creating events.

A static overview of the communication framework is depicted as class diagram in figure 8
on the next page. Several listeners interfaces extend from EventListener and declare pub-
lic methods that are implemented in concrete classes. All depicted concrete classes inherit
thread functionality. The DownloadManager is composed of a ConnectionListener, a

APPLICATION DEVELOPMENT Page: 53

«Thread»
:MessageSender

«Thread»
:MessageReceiver

«Thread»
:PeerUpdater

«Thread»
:ConnectionListener

«Interface»
:EventListener

«Thread»
:DownloadTask

«Thread»
:DownloadManager

«Interface»
:DTListener

+ taskCompleted(id: String, rsn: Int)
+ … others.

«Interface»
:PeerUpdaterListener

+ updatePeerList (list: LinkedHashMap)
+ updateFailed(error: int, msg String)

«Interface»
:OutgoingListener

+ connectionClosed()
+ keepAliveSent()

«Interface»
:ConListenerInterface

+ connectionAccepted(s: Socket)

«Interface»
:IncommingListener

+ messageReceived(m: Message)

1

11 1 1
1

0..*

Figure 8: Communication Framework of the Peer-Wire Protocol.

PeerUpdater and as many DownloadTasks as remote peers are connected. Each DownloadTask
is composed of a MessageSender and a MessageReceiver. They encapsulate the com-
munication to a TCP Socket. All depicted messages return void.

The communication between peers is defined by messages. The original peer-wire protocol
describes two messages types, handshake (HS) and peer protocol (PP). An additional type,
called trusted protocol (TP), is introduced to cover the messages described by the extended
PWP. With completion of the extended protocol, the complete content stream that is carried
over TCP, is encrypted. Sender and receiver are extended with encrypting and decrypting func-
tionality. Over this secured channel PP messages are exchanged, as well as, a HS message in
the last message (6) of the protocol extension.

Messages in jBitTorrent are polymorph. The communication components operate on an ab-
stract message, providing common interfaces and properties. Messages HS, PP and TP imple-
ment its interfaces generate and encrypt. With generate, the content of each message
is concatenated to a byte array and with encrypt the byte array is encrypted with the provid-
ed secret key. TP messages are not encrypted with the shared secret, since the secret key is not
available at that time. Decryption is done by the message receiver. The extension follows the
provided design of jBitTorrent. In future development, the design should be amended to become
symmetrical. That simplifies maintainability and understandability. E.g. messages may provide
reverse functions to generate and encrypt alike.

APPLICATION DEVELOPMENT Page: 54

Message Format

A handshake (HS) message consists of four fixed length values and the protocol name with a
variable length. The first byte is the length field indicating the length of the protocol name
field (maximum 28−1 bytes). jBitTorrent defines “BitTorrent protocol” as protocol, the extend-
ed version is named “tBitTorrent v0.1”. The next 8 bytes are reserved for future extensions
followed by fileID and peerID each with 20 bytes.

length protocol reserved fileID peerID

1 ... 8 20 20

Figure 9: Handshake (HS) Message Format.

With the peer protocol (PP) message an asynchronous cooperative communication between
peers is defined. PP messages are of variable length. All PP messages start with four bytes indi-
cating the overall length of the message in bytes excluding the length field. The length field
is followed by a fixed one byte id of the message and the variable payload (maximum 232−
1 − 1 bytes). Specified id’s in BitTorrent are 0=Keep_Alive, 1=Choke, 2=Unchoke,

3=Interested, 4=Not_Interested, 5=Have, 6=Bitfield, 7=Request,

8=Piece, 9=Cancel and 10=Port.

length id payload

4 1 ...

Figure 10: Peer Protocol (PP) Message Format.

The Trust Protocol (TP) messages are introduced according to the extended PWP definition.
Unlike PP and HS, the TP messages start with one byte id field. Except of message (6) each
message of the extended PWP is indicated by an own id. Implemented extended id’s are:

• 11=Trust_REQ1 for PWP message (1)

• 12=Trust_RES1 for PWP message (2)

• 13=Trust_REQ2 for PWP message (3)

The last message (6) is an encrypted HS message and not a TP message. The payload of these
TP messages contains fixed pairs of length and value (key, ticket, quote, peerID)
fields. If a value is not provided with the indicated message, the corresponding length field
(keyLength, ticketLength, quoteLength, peerIDLength) is set to zero. The
maximum size of all the value fields is 232 − 1. A complete capture of the network traffic of

APPLICATION DEVELOPMENT Page: 55

revision 47 and revision 55 can be found on the thesis DVD as described in section C.2 on
page XX.

id keyLength key ticketLength ticket quoteLength quote peerIDLength peerID

1 4 ... 4 ... 4 ... 4 ...

Figure 11: Trust Protocol (TP) Message Format.

3.4 Cryptography Integration

Previously, the implementation of the specified cryptographic protocol was described. It is based
on cryptographic keys and algorithms. All of the introduced cryptographic algorithms are inte-
grated from certain providers. Their functionality, called services, is accessed using the frame-
work of Java Cryptography Extension (JCE)[ORA-2010a] respectively Java Cryptographic Ar-

chitecture (JCA)[ORA-2010a]. Additionally, the IAIK TSS (iaik.tc.tss [IAI-2010b]) library and
the TPM [INF-2010] provide cryptographic keys and algorithms.

3.4.1 Architecture

The framework defines a general architecture for common cryptographic functionality. Several
providers may implement their own solutions, but offering the same interfaces respectively
services. Programmers may choose the service of a provider according to specific requirements.
Within this thesis, services of the providers IAIK JCA/JCE[IAI-2010a], SunJSSE, SunJCE, Sun
and SunRSASign are applied. Each service is provided by a so called engine class:

• Cipher: Provide algorithms for encryption and decryption of data. It is initialized with
keys and configured with an algorithm type: e.g. several types are available for symmetric
and asymmetric systems.

• KeyGenerator: Creates a secret key according to the specified key size and algorithm.

• KeyAgreement: Computes a shared secret between two communication parties. It is
based on previously exchanged public keys and parameters.

• KeyPairGenerator: This service is used to create key pairs (public and private) accord-
ing to a specified asymmetric crypto system.

• AlgorithmParameterGenerator: Creates a set of parameters according to the specified
algorithm (e.g. DH).

APPLICATION DEVELOPMENT Page: 56

• MessageDigest: Provides algorithms to calculate hashes of the given data.

• Signature: Offers signing and verification. They are initialized with a private or a public
key.

3.4.2 Application

Within the developed application, several engines and keys are integrated. The table 3 provides
implementation details to the keys that are specified within both protocols. For each kind of key,
the size, format and engine are shown. A summary of all applied services is shown in table 4
on the following page. For each service the applied algorithm details and the used engine is de-
picted. The provider configuration for each key and service definition depends on the respective
revision. It can be found in appendix B. It has to be noted, that default key lengths are used as
far as possible. They are configurable throughout the application. The key-length has a strong
influence on the protection level of the data. The longer the key, the harder it is to break (e.g.
by brute force) it. On the other hand, performance decreases with longer keys. The integrated
keys and algorithms represent reference values. For each operational environment it must be
decided, whether this configuration is adequate. This might depend on many factors e.g. how
valuable the content is or how long the content must be protected.

Keys Size(bit) Type Format Engine
St
pub, S

t
priv 512 Asymmetric RSA KeyPairGenerator

Ki
pub, K

i
priv 1024 Asymmetric DH KeyPairGenerator

Ki
pub, K

i
priv - Parameter DH AlgorithmParamGen

Ki,j 56 Symmetric DES KeyAgreement
Ri,j 128 Symmetric AES KeyGenerator

AIKCertica - Certificate X509 AIKCertificate
AIKi

pub, AIK
i
priv 2048 Asymmetric RSA TPM

Cca
pub, C

ca
pub 512 Asym. RSA KeyPairGenerator

Table 3: Applied Cryptographic Keys.

APPLICATION DEVELOPMENT Page: 57

Services Format, Algorithm, Mode Engine

quote{} RSA TPM

ver{quote} RSA TSS - TcCrypto

hash SHA1 MessageDigest

enc/dec{}R AES/ECB/PKCS5Padding Cipher

enc/dec{}Spub
RSA Cipher

enc/dec{}K DES/ECB/PKCS5Padding Cipher

sig/ver{} SHA1withRSA Signature

ver{AIKCertica} X509 X509Certificate

Table 4: Applied Cryptography Services.

3.4.3 TPM & TSS

Trusted Computing Systems implement a hardware based security anchor, the TPM. Sever-
al applications and interfaces are available to access its services. During this thesis, platform
dependent and independent versions are applied. In a development environment, where no
hardware TPM is available, the emulator of the ETH Zurich [STR-2010] can be used. The
access to a TPM is described in the specification of a Trusted Software Stack (TSS) by TCG.

TCG Application

(TSP) TSS Service Provider
(TCS) TSS Core Service

Crypto Service Provider

(TDD) TSS Device Driver Library
TPM

Figure 12: Trusted Software Stack (TSS).

Between application and TPM, it defines the
four layers Crypto Service Provider, TSS Ser-

vice Provider (TSP), TSS Core Service (TCS)
and TSS Device Driver Library. Crypto ser-
vice providers implement the stack accord-
ing to the specified APIs. Software for each
layer can be obtained from different provider.
For the tBitTorrent application, the IAIK TSS
[IAI-2010b] is used during development. For
measurement in the laboratory (see next chap-
ter), the IAIK TSS Wrapper v.0.4 beta [IAI-2010b] provides access to the TSP layer. The wrap-
per accesses the platform dependent TCS layer. This is part of the operating system installation.

3.5 Conclusion

An application could be realized that demonstrates usability of the extended protocols. It ap-
proves the concept of trustworthy resource exchange in a BitTorrent based network. Peers can
communicate with other peers and trackers using trustworthy protocols and a TPM. Commu-
nication between enhanced entities and original entities is not possible anymore. The enhance-

APPLICATION DEVELOPMENT Page: 58

ments describe new protocols. Trackers do not yet provide management functionality that would
meet operational requirements. It is limited to a laboratory scale environment as described in
the next chapter. Due to the complexity of the BitTorrent application, only a very limited level
of quality can be assured within this thesis. An extensive testing phase, including scenarios of
many participating peers in different states is required. However, this is neither intended nor
done within this thesis. The solution integrates cryptographic functionality according to the
java cryptographic architecture. As a consequence, algorithms and formats can be configured
according to the requirements that are expected from different operational environment.

4 Performance Evaluation

With the implemented protocol extensions, cryptographic techniques are applied to P2P com-
munication. It is expected, that this will lead to a broader acceptance and application of the
P2P data distribution in commercial environments. The applicability of such a trustworthy P2P
technology depends upon other requirements, on its performance. It is of importance that rele-
vant use cases like the establishment of a connection, download, update, etc. are still performed
within an acceptable time. The goal of this evaluation is to gain performance characteristics of
the extended protocols by measuring its processing time. Time consuming areas are identified to
provide a basis for further development and optimization. Results are compared with measures
of the original jBitTorrent. Since protocols are under test, dedicated application evaluation like
stress- or load testing is not performed.

All experiments are conducted in a new physical (laboratory) environment that was not used
for measurement before. No simulators or emulators are involved. Therefore, the results are
expected to be comparable to a production like environment. Within this chapter the components
of the laboratory, including their current configuration, measurement technique and experiment
scenarios, are described in detail. Measurement results are presented and discussed.

4.1 Experiment Process

Experiments are created in the development environment by an experimenter. Thereafter, they
are transferred to the experiment environment. The experimenter initiates the automatic execu-
tion. Results are collected and transferred back to the development environment. Now they can
be computed and analysed.

In order to develop an experiment (scenario), the experimenter has to do the following:

• Define measurement points within the program code in the development environment.

• Compile the applications to run in the experiment environment.

• Configure/prepare the applications according to the experiment scenario.

• Create experiment description (ED): interpretable by measurement framework.

• Transfer all files to the experiment controller (EC).

• Instruct the EC to execute the experiment.

• Collect results from EC and transfer them to development environment.

• Analyse results and compute measures from measurement points.

PERFORMANCE EVALUATION Page: 60

4.2 Measurement Configuration

Experiments are conducted in a physical laboratory. In order to interpret the experiment re-
sults, the configuration of all relevant (strongly influencing) components within the laboratory
has to be taken into account. Furthermore, the configuration description should be sufficient to
reproduce and verify the measured results up to an acceptable degree.

4.2.1 Network

Experiments are conducted in a separated TCP/IP based network as depicted in figure 13. Ten
nodes are physically connected to a router. They are logically grouped to the IP network 151.
The workstation in network 150 is connected to the router as well. It serves as an experiment
controller according to the framework description below. Development workstations are con-
nected to the router via the intranet. Access to the experiment controller and each node is avail-
able via the Secure Shell (SSH) [RFC-4250] protocol. In that way the experiment controller
may be instructed to initiate an experiment. Experiment traffic and control traffic are currently
transported over the same network. But measures of the applied measurement technique (see
section 4.3) are independent from the network.

N 1,4

N 1,2

N 1,3

N 1,1 .21

.22

.50

10.148.151.255

10.148.150.255

N 1,5

N 1,7

N 1,8

N 1,9

N 1,6

N 1,10

EC Intranet

TP/HTTP

.24

PWP/TCP

TP/HTTP

.23

.25

Peer

Peer

Tracker

Intranet

.26

.27

.28

.29

.30

XMPP,SSH/TCP/IP

XMPP, SSH
TCP/IP

SSH
TCP/IP

DevWS

Figure 13: Network setup.

PERFORMANCE EVALUATION Page: 61

4.2.2 Framework

In order to create reproducible and comprehensible experiments an external control, manage-

ment and measurement framework (OMF [RAK-2010]) is applied. It provides a set of tools that
have to be installed on each participating network node. They are used to instrument experi-
ments, execute them and collect the results. Network nodes are connected by OMF applications
using the extensible messaging and presence protocol (XMPP [RFC-3920 - RFC-3923]). The
framework is developed and maintained by a cooperation of NICTA [NIC-2010] and Winlab
[RUT-2010].

Experimenters create experiment descriptions (ED) in a language, called OMF Experiment

Description Language (OEDL), that is based on the scripting language Ruby [RUB-2010]. De-
scriptions contain definitions of the nodes that are participating in the experiment, applications
to be loaded and executed on each node and the execution procedure. Within context of OMF,
nodes are regarded as resources. Measurement points may be defined using the OMF measure-
ment library. The experiment description is submitted to the experiment controller (EC). It inter-
prets the description and initiates the execution of the experiment. Applications, e.g. BitTorrent
binaries, are transferred to the resource controller (RC) of the specified nodes. According to the
execution procedure, measurement results are collected at each node and transferred back to the
experiment controller. Results may be accessed and analysed during or after completion of the
experiment.

4.2.3 Nodes

Hardware

Each node of the experimental network consists of the same physical hardware components.
These are: an Intel Atom Z530 (CPU) 1.60 GHz (Clock rate) with a single core / two threads
and 32-bit instruction set (Word Size), 2GB DDR2 RAM (Memory), Infineon IFX Chip Version
1.2.1.2 (TPM)[INF-2010] operating from a 33 MHz clock, Intel 82574L Gigabit Network Con-
nection (Network) and a SAMSUNG M6 Series HM320JI hard disk drive with 5400 revolutions
per minute.

Software

On all nodes the operating system Ubuntu 4.4.1 with kernel version 2.6.31.22 is installed. Addi-
tional software applications are: IAIK/OpenTC jTSS Wrapper version 0.4beta (TSP), Trousers
version 0.3.1-7ubuntu3 (TSS) and OMF Resource Controller 5.2.324 (OMF). The node 1,1
additionally serves as HTTP gateway, but it will not take part in the following experiments.
The application under test will be executed within a Java Virtual Machine (JVM): Java version

PERFORMANCE EVALUATION Page: 62

1.6.0_0 (OpenJDK Runtime environment (IcedTea6 1.6.1) (6b16-1.6.1-3ubuntu1), OpenJDK
Server VM (build 14.0-b16, mixed mode). The OMF resource controller application is installed
and active on each node. For each experiment a list of processes per node is inquired from the
operating system and stored in the corresponding logfile.

Java virtual machine

The JVM has a major influence to the processing time of applications. The current settings of
each experiment is inquired at startup on each node and stored in the corresponding logfile. A
typical configuration is shown in appendix A.3 on page VI. All experiments are conducted ac-
cording to this configuration. Especially, the Just-in-Time compiler (JIT) and garbage collection
is active for all experiments.

4.3 Measurement Technique

The processing time of two extended protocols, the PWP and theTP, has to be measured. These
protocols are implemented as described in chapter 3. It is intended to reveal areas of low per-
formance. Therefore, a detailed measurement of each protocol step is necessary. Some well
known open source network measurement tools could be used for this measurement. Howev-
er, they seem not to be applicable if more detailed measurement of the algorithms (e.g. SML
verification, TPM operations, key creation) is required. Hence, measurement points within the
application itself are introduced.

4.3.1 Method

At each measurement point a time stamp is obtained and printed to the standard out stream
which is read by OMF and written to an experiment log file. The time stamp represents the time
at which an event is recorded by the measurement system, not the time when the event occurred.
However, this deviation is expected to be acceptable since accuracy in milliseconds is required.

The OMF framework provides time stamps in seconds (s). Initial experiments showed that
this precision is not sufficient, since the processing time of protocol steps varies from millisec-

onds14 (ms) to seconds. Instead, the timestamps provided by the java virtual machine (JVM) are
used. Java offers timestamps represented as milliseconds (function currentTimeMillis of
System class) elapsed from the 1.1.1970 and represented as nanoseconds (function nanoTime
of System class) elapsed from an arbitrary point of time. Since the precision of nanoseconds15

14A millisecond is a thousandth of a second (10−3s). One second will be represented in milliseconds as 1, 000ms.
Thousands are separated by a colon.

15A nanosecond is a billionth (US) of a second (10−9s). One second will be represented in nanoseconds as
1, 000, 000, 000ns. Thousands are separated by a colon.

PERFORMANCE EVALUATION Page: 63

(ns) is higher and the current date which can be derived from the milliseconds is not relevant in
this context, measuring is done in nanoseconds. However, the accuracy in nanoseconds is not
guaranteed16. The provider just claims that values of the most precise available system timer
are provided. This may vary for each platform. Based on the description of the measured plat-
form (section 4.2.3) it is assumed, that the most precise time values are derived from the CPU
instruction clock. The current clock rate of 1.6GHz, is expected to provide 1.6 tick counts per
nanosecond.

An example measurement is shown in algorithm 1. Time stamps are obtained and sent to
the standard out stream where they are captured by the OMF. The time elapsed between two
measurement points (e.g. MP00TTPSEND and MP00TTPRCVD) is computed simply by sub-
tracting a value from another, which is taken thereafter. But this is done by an evaluation process
after the experiment is finished. Hence, it will not affect measuring. During measurement, the
logging framework log4j is disabled. It was observed, that it affects the performance signifi-
cantly.

Algorithm 1 Example measurement points

System . o u t . p r i n t l n (System . nanoTime () + " " + Measure . MP00TTPSEND)

/ / . . . t h e code t o be measured . . .

System . o u t . p r i n t l n (System . nanoTime () + " " + Measure . MP00TTPRCVD)

Distortion

Each measurement technique consumes processing time and, therefore, extends the measured
processing time itself. In order to quantify that influence, the experiment A.4.1 (see appendix)
was conducted. With that experiment 1,002 measurement points were created at the target sys-
tem. Afterwards the elapsed time between the first and the last measurement point was com-
puted. The result is a processing time of 0,167ms (MEAN) for 1,000 respectively 0.167ms per
measurement point. Additionally, it has to be taken into account that values equal and greater
than 0.5ms are rounded up to 1ms. Therefore, a measured processing time with more than ≈ 3
measurement points in between would lead to different results for a resolution in ms. But that
assumption is rather a worst case assumption. The results show that the mean per measurement
point decreases with a decreasing number of measurement points taken. In a typical experiment
(see A.4.3) the maximum amount of measurement points per node is 20.

16“Returns the current value of the most precise available system timer, in nanoseconds. ... This method provides
nanosecond precision, but not necessarily nanosecond accuracy. No guarantees are made about how frequently
values change. Differences in successive calls that span greater than approximately 292 years (263 nanosec-
onds) will not accurately compute elapsed time due to numerical overflow.”[SUN-2010]

PERFORMANCE EVALUATION Page: 64

4.3.2 Measure Definition

Within this evaluation several types of measures have to be distinguished. First of all, basic
measures are to be computed by subtraction of timestamps. They indicate the elapsed process-
ing time of an algorithm within an application (e.g. generating a key, measuring TPM quote,
creating a response to a request, etc.). Where applicable basic measures are composed to aggre-
gated measures (e.g. processing time for protocol steps are summarized). Statistical measures
are computed on the basis of measurement sets of basic measures (procTime in figure 14). With
the algorithm processing time (AlgPT) two measurement points are computed, that are defined
within a step of the protocol (e.g. procT ime0 in figure 14, right).

{
}

{
}

{

caller responder

(req)

(res)

(req)

(res)

Measurement point at time (i).

Processing time of an interval.

Pre-processing, previous to the protocol.

Processing, part of the protocol.

mp -t1

mp -t0

mp -t3

mp -t5

mp -t7

mp -t9

- mp t2

- mp t4

mp -ti

- mp t6
- mp t7

- mp t0

responder

(req)

(res)

- mp t1
- mp t2

- mp t3

} 0procTime
1procTime

3procTime

0procTime

2procTime

jprocTime

4procTime

Figure 14: Measurement Points and Processing Time.

The experiments are conducted in a not completely controlled environment. Many soft and
hardware components as well as their physical environment are influencing the experiments.
In practice, such experiments can never be repeated exactly. An idealized environment must be
assumed. As a consequence there will always be a deviation in the results of equally conducted
experiments. The deviation is very important for the interpretation of the results. In order to
measure it, experiments are repeated {exp1, exp2, ..., expn} up to an acceptable sample size n.
Then statistical measures can be computed. For all measures a sample size of 100 is defined.
With the given sample size, the experiments of the main scenario take about 800 minutes. The
execution of experiments is automated and scheduled to run out of the usual working houres in
order to minimize external influences.

A list of timestamps, at certain measurement points {mpt0 ,mpt1 , ...,mptk}, is evaluated dur-
ing each experiment (figure 14). A measurement point mp represents a timestamp as integer
value. By subtraction of appropriate measurement points the measure m = mpt+1 − mpt is
computed. According to experiment definition a list of measures {m1,m2, ...,mj} is the result

PERFORMANCE EVALUATION Page: 65

of each experiment. Since experiments are repeated n-times, a sample set of values for each
measure seti = {mi1 ,mi2 , ...,min} is collected. Based on these sets, several statistical mea-
sures are calculated.

4.3.3 Statistical Measures

For a general set of valuesX = {x1, x2, ..., xn} (wheremi = x) statistical measures are defined
as follows:

• The minimum MIN = min(x1, x2, ..., xn) is the smallest value within the sample set.

• The maximum MAX = max(x1, x2, ..., xn) is the largest value within the sample set.

• The medianMED =

xn+1
2

nuneven

1
2

(
xn

2
+ xn

2
+1

)
n even

is a numeric value, separating lower

and higher half of an ordered sample set.

• The arithmetic average MEAN = x1+x2+...+xn

n
= µ is the sum of all sample values

divided by the number of samples.

• The standard deviation is defined as STD =
√

1
n

∑n
i=1(xi − µ2). It indicates that round

about 68 percent of the values within the set can be found in the interval [µ− σ, µ+ σ].
A small deviation indicates stable measures whereas a large deviation indicates unpre-
dictable (random) behavior.

• A percentile PCT (p) =


Xi + d (Xi+1 −Xi) for 0 < i < n

X1 for i = 0

Xn for i = n

is an estimated value,

that separates an ascending ordered set of measurements in a set of smaller and a set of
greater values. The pth percentile is a value, PCT (p), such that at most (100p)% of the
measurements are less than this value and at most 100(1 − p)% are greater. The 50th
(P50, p = 0.5) percentile is called the median. Percentiles are estimated according to the
description in [NIS-2003, Section 7.2.5.2. (EXCEL)]. At first i+ d = 1 + p(n− 1) with
0 < p < 100 is computed. The result is a value, divided in an integer part i and a decimal
part d. Now, PCT(p) can be computed as shown above.

Statistical measures are calculated after completion of the experiment. This is supported by
implemented scripts and java classes. The implementation of the statistical measures MEAN

and STD can be found in file StandardDeviation.java (package trustedBittorrent.example.test).

PERFORMANCE EVALUATION Page: 66

MeasuresMIN ,MAX ,MED and PCT (p) are calculated in OpenOffice 17 version 3.1. Float-
ing point values can be computed with accuracy up to 15 digits.

Aggregated measures

An aggregated measure is the service processing time (SrvPT). It represents the time, the serving
instance is occupied by processing the protocol (e.g. procT ime1 + procT ime2 + procT ime3

in figure 14 on page 64). Even the “waiting” times are included where the counter party is
actively processing. Sometimes a response is sent and thereafter (during the waiting time) re-
lated tasks are computed until the next message is received. This measure excludes the network
transmission time of messages. Statistical measures of aggregated measures are calculated as
described above except that each value of the set is the sum of the aggregated processing times
(xi =

∑z
j=1(procT imej).

4.4 Experiments

The experiments reflect basic scenarios derived from the BitTorrent protocols and the exten-
sions. Scenarios are excluded from measurement if no security relevant information is ex-
changed or processed. That applies for all Peer Protocol (PP) messages of the PWP and fol-
lowing events (completed, stopped, empty) of the TP. Their encryption is the only difference
to the original protocols. If necessary, it seems to be sufficient to estimate these delays based
on reference values. Experiments within this chapter are based on the application described in
chapter 3. Some experiments are repeated in chapter 5 to evaluate the results of an optimized
application or protocol. Experiments are conducted completely automated and the result evalu-
ation is performed mostly automated. All scripts and detailed results can be found as described
in the appendix A.

4.4.1 Application Scenario

The extended protocol will be applied in a commercial platform for content distribution. In
context of this thesis a business model with three involved parties is assumed, an internet service

provider (ISP), many content providers (CP) and many customers.

• The ISP is responsible for the production, distribution and maintenance of platforms.
Additionally the ISP may serve as the certification authority (CA) providing digital sig-
natures for the TPM based platforms of the network participants.

17A reference for the definition of the calculation of these measures could not be found. However, manual calcu-
lation according to the definition above showed equal results.

PERFORMANCE EVALUATION Page: 67

• The CPs introduce content to their distribution network based on the underlying network
of platforms. They operate the trackers. In case of a central tracker approach, the trackers
are located at the CP site. For each content, described by the metafile, a more or less
dynamic overlaying network (swarm) can be established. The CPs operate a file server
(e.g. an HTTP web server) providing the metafiles to customers. Additionally, the CPs
operate a customer’s platform. On that platform the complete content is stored. Customers
can connect to and download from that platform using the extended peer-wire protocol.

• Customers can participate in this content distribution. With the provided Peer-to-Peer
based platform they can consume content, store it or even share it with other customers.
But in this business model, it is assumed that active sharing and storing is managed by
the content provider.

Strong mechanisms are required to ensure authenticity, authorization and integrity of the par-
ticipating platforms, since the platforms are located at the customer’s site. Obviously, a higher
vulnerability can be assumed in such an “uncontrolled” environment. Hardware based securi-
ty mechanisms and the extended protocols are introduced as countermeasure. But introducing a
higher level of security will typically lead to decreased performance, since additional tasks have
to be performed for the same use case. The main question is: Will the loss of performance be
in an acceptable range? In order to answer this question, it has to be evaluated where and how
often the extended tasks have to be performed. A representative scenario is required.

Download Use Case

As already stated, the ISP is responsible for the maintenance of all platforms. A maintenance
use case could be an upgrade of a software component. In this use case the ISP behaves as a CP
for update images as well. However, the same use case would apply for a CP of e.g. multimedia
content, except that the download would be initiated by the customer. In the current scenario,
the ISP management instructs a platform to download an update image using the BitTorrent
application. Therefore the ISP provides a unified resource locator (URL) referring to a metafile

at the CP’s file server. This metafile contains the address of the tracker platform and information
referring to the update image.

As shown in figure 15 on the following page the CP operates the peer (pB), a central tracker
and a file server. The complete update image is stored at pB and is offered for downloading. The
tracker keeps tracking swarms and the file server offers the metafiles. Peer pB must already be
connected to the tracker by the tracker protocol. Furthermore the ISP has ensured that tracker
and peer platforms are equipped with proper public-key certificates. This may be done during
the creation or delivery process of platforms.

PERFORMANCE EVALUATION Page: 68

Customer

- updated

peer pA peer pB tracker t

announce(resourceID)
response(peerList)

hs(resourceID, peerID)
hs(resourceID, peerID)

res(peerWireMsg)
req(peerWireMsg)

res(Piece)
req(Piece)

complete

fileServer

get(reference)
response(.torrent)

download(reference)

CP

Figure 15: Download use case (functional view without extension).

In order to download the update image via BitTorrent, the customer’s platform peer (pA) has
to inquire the metafile from the CP’s file server. This metafile contains the address of the tracker
platform and information referring to the update image (e.g. resourceID). Peer pA transmits the
responseID of the update image to the tracker via the TP. The tracker responds with a list of
peers sharing the requested image. In this scenario the list contains pB only.

After pA has updated the local list of peers, pB is contacted via the PWP. With the initial
handshake it is confirmed, that the intended resource from the intended peer is requested. Ac-
cording to the PWP, both peers coordinate the download by asynchronous messages. One or
more pieces of the update image are exchanged until pA has received the complete image.

Occurrence of Extensions

For the communication between peer and tracker as well as between peers, extended protocols
are applied. They are subject to measurement. Communication to other instances, like the file
server, is not in focus of measurement. Both protocol extensions are embedded in the first two
steps of the original protocols. As a result, the extended protocols accomplish original and
extended tasks at once.

Tracker Protocol. With the tracker protocol, a list of peers is transmitted to pA. After
completion of the extended tracker protocol the following tasks are accomplished additionally:

PERFORMANCE EVALUATION Page: 69

• Mutual authentication of both parties.

• Integrity (software) of the peer platform is validated.

• An encrypted communication is established (shared secret exchanged).

• A download authorization token (called ticket) is exchanged.

The extended-tracker protocol has to be performed, at least, once for each peer/tracker relation-
ship. That would be once for each peer and for the tracker as often as the number of partici-
pating peers. When such a relationship was initially established, not all of the tasks have to be
performed in subsequent requests for the same or another resource. In fact, only the creation of
the tickets will cause additional processing time. However, the validity of each accomplished
task should be limited to proper intervals.

Peer-Wire Protocol. When peer pA has received a list of peers sharing the same image, a
connection to peer (pB) can be established via the PWP is performed. After completion of the
extended PWP the following tasks are accomplished additionally:

• Mutual authentication of both parties.

• The download authorization token (called ticket) is verified.

• An encrypted communication is established (shared secret exchanged).

• Download of the image.

The extended PWP has to be performed, at least, once for each peer/peer relationship. For peer
pA, that would be the number of provided peers from the tracker. For the contacted peers, it
would be only once in this scenario. It might be many times, if the update applies to many peers
of the distribution. When such a relationship was initially established, not all of the tasks have
to be performed in subsequent requests again. For authentication and encrypted communica-
tion the shared secret can be reused. Only the verification of the ticket will cause additional
processing time.

4.4.2 Download Experiment Scenario

Purpose. The performance of the extended protocols and the original protocols shall be mea-
sured and compared. The conducted experiment scenario mainly represents the download use
case. It is assumed to be representative for an operative application.

PERFORMANCE EVALUATION Page: 70

Preconditions. Within an operative environment two peers (pA, pB), one tracker (t), one file
server and one CA are required. However, the web server and the CA are not subject to
measurement and therefore not set up as separate instances respectively network nodes (see
appendix A.1). Instead, a metafile nada_customer_02_app.torrent is already
created and distributed to pA and pB before experiment execution. It refers to the tracker and
the image nada_customer_02_app.img stored at pB.

Configuration. Apart from the definition of the experiment scenario the configuration of the
application has a major influence to the results of the experiments. If not stated different, the
following configuration is applied:

• pA SML=4 (for details see the respective experiment referred in appendix)

• pA KHL=3 (for details see the respective experiment referred in appendix)

• Cryptographic algorithms/schemes, (see description in chapter 3)

Description. During the experiment, peer pB (CP) performs the extended TP with the tracker.
Before pA performs the TP, pA and the tracker generate and exchange the keys St

pub and
AIKCertpca (see protocol 4 on page 43). In practice, this might be done by the CA of the ISP.
These steps are not part of the protocol itself, but necessary preprocessing for each platform.
Within experiment logfiles and reports, the steps are referred to as step 0 and step -1 (see
appendix A.2).

Actions. There is no interaction defined for this experiment. All activities are defined in the
experiment description and the configuration of the applications. The experimenter only has to
start the experiment. It will automatically be finished after the scenario is completed.

4.5 Results

On the following pages the results of two experiment sets A.4.2(appendix) and A.4.3(appendix)
are presented. Each is based on 100 experiments. However, these are not the final results. They
rather provide a basis or benchmark for further analysis and optimization, described in the
next chapter. For all experiments the corresponding software version (revision) is provided. All
experiment details (data sets, logs, calculations, scripts, reports, etc.) can be found as described
in appendix C.2. For both protocols, an initial protocol execution and a subsequent protocol
execution from the same entity is considered. Finally, some measures are analysed further and
some parameters that significantly influence performance measures are discussed.

PERFORMANCE EVALUATION Page: 71

4.5.1 Initial announce-started for a resource (Tracker Protocol)

With the initial announce (event started) a peer pA announces to the tracker, that he wants
to become member of a swarm. Therefore the resourceID is transmitted. In response he receives
a list of swarm members. After completion of the trustworthy protocol the following tasks are
accomplished: authentication, attestation, encrypted connection and authorization (by token).

In figure 16 the results of two experiments shown. Figure (a) depicts the result of the extended
BitTorrent application whereas figure (b) depicts the results of the original BitTorrent applica-
tion. The measures are computed as previously described. They are displayed in milliseconds

(ms)18.

5,543 ms

0,770 ms

1,210 ms

0,294 ms

0,146 ms

{
}

{
}

{

0,008 ms

0,070 ms

0,031 ms

{

{

peer pA tracker t

(1)

(3)

(4)

(6)

(2)

(5)

- updated

peer pA tracker t

- updated
(5) =
(2) = 0,067 ms

0,056 ms

announce (resID)

response(peerList(1))

(a) tBittorrent Tracker-Protocol (b) jBittorrent Tracker-Protocol

- preproc. - preproc.

Figure 16: Comparing initial announce-started for a resource (MEAN, 1s = 1, 000ms).

(a) tBitTorrent

The extended tracker protocol (tBitTorrent) is performed between pA and the tracker. It requires
(see protocol 4 on page 43) four transmissions {(1) , (3) , (4) , (6)} and two processing steps
{(2) , (5)}. In context of this scenario, pA completes the protocol at measurement point updated.

In table 5 on the following page the results for each measure are shown.

18A millisecond is a thousandth of a second (10−3s). One second will be represented in milliseconds as 1, 000ms.
Thousands are separated by a colon.

PERFORMANCE EVALUATION Page: 72

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,646 5,543 17,786 4,517 3,558 10,372

RECV(1) SEND(3) 0,596 0,770 0,935 0,780 0,073 0,853

RECV(3) SEND(4) 1,042 1,210 2,282 1,189 0,154 1,321

RECV(4) SEND(6) 0,198 0,294 0,441 0,287 0,050 0,366

RECV(6) updated 0,131 0,146 0,226 0,137 0,019 0,174

BEG(2) END(2) 0,038 0,067 0,112 0,074 0,020 0,090

BEG(5) END(5) 0,049 0,056 0,104 0,056 0,007 0,063

Table 5: (a) Tracker protocol results of tBitTorrent (1s = 1, 000ms).

(b) jBitTorrent

The original tracker protocol (jBitTorrent) is performed between pA and the tracker. It requires
two transmissions (announce and response). In context of this scenario, pA completes the pro-
tocol at measurement point updated. In table 6 the results for each measure are shown.

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(ann) 0,007 0,008 0,031 0,007 0,003 0,008

RECV(ann) SEND(res) 0,057 0,070 0,108 0,070 0,007 0,081

RECV(res) updated 0,026 0,031 0,039 0,032 0,002 0,035

Table 6: (b) Tracker protocol results of jBitTorrent (1s = 1, 000ms).

Comparing (a) and (b)

Both experiments can be compared, if the measures for peer pA and tracker are aggregated as
described in section 4.3.2.Table 7 shows the aggregated measures.

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 4,055 7,965 20,138 6,956 3,524 12,769

SrvPT t tBitTorrent 1,992 2,275 3,315 2,261 0,155 2,427

SrvPT pA jBitTorrent 0,091 0,110 0,143 0,109 0,009 0,123

SrvPT t jBitTorrent 0,057 0,070 0,108 0,070 0,007 0,081

Table 7: Comparing (a) and (b) tracker protocol performance (1s = 1, 000ms).

PERFORMANCE EVALUATION Page: 73

Interpretation

The comparison of jBitTorrent and tBitTorrent clearly shows a significant rise of processing
time that is caused by the extension of both protocols. Peer pA (tBitTorrent) completes the
protocol after nearly 8 seconds (MEAN) in which the tracker (tBitTorrent) takes more than 2
seconds (MEAN). Most of the processing time of SrvPT pA occurs during preprocessing of
the protocol (preproc, SEND(1)). For this measure a strong deviation of more than 3 sec-
onds (STD) is observed. It is caused by a cryptographic library (see further analysis). However,
preprocessing time doesn’t seem to be a critical measure, since it may be done at any time in ad-
vance of the protocol execution. Other measures provide an acceptable deviation, even if some
exceptional values are measured (e.g. MAX of (RECV (3), SEND(4))). The key measure of
the tracker protocol is SrvPT t, since many peers are expected to contact a single tracker and
therefore it has to be executed often.

4.5.2 Subsequent announce-started for a resource (Tracker Protocol)

With the subsequent announce (event started) a peer announces to the tracker, that he
wants to become member of an additional swarm. Since the trustworthy protocol was already
performed once before (initial for another resource), it is not necessary to perform the related
protocol steps again. The request should be encrypted with the shared key. This request is neither
specified, nor implemented or evaluated. Since only tickets have to be created it can be assumed,
that the processing time will correlate to the corresponding time of the initial request 4.5.1.

4.5.3 Initial handshake for a resource (Peer-Wire Protocol)

With the initial handshake a peer requests to share a resource with a certain peer. The exten-
sion accomplishes the tasks: authentication, authorization, secure connection.

4,205 ms

0,977 ms

1,092 ms

0,080 ms

{
}

{
}

0,041 ms

0,009 ms

{

peer pA peer pB

(1)

(2)

(3)

(5) (4)(4)

- updated

peer pA peer pB

- updated

pB (4) =
pA (4) = 0,032 ms

0,024 ms

hs(resID, peerID)

hs(resID, peerID)

(a) tBittorrent Peer-Wire-Protocol (b) jBittorrent Peer-Wire-Protocol

Figure 17: Comparing initial handshake for a resource (MEAN, 1s = 1, 000ms).

PERFORMANCE EVALUATION Page: 74

(a) tBitTorrent

The extended peer-wire protocol (tBitTorrent) is performed between pA and pB. It requires
(see protocol 4 on page 43) four transmissions {(1) , (2) , (3) , (5)} and two processing steps
{pA (5) , pB (5)}. In context of this scenario, pA completes the protocol when the handshake is
received. Thereafter both parties communicate asynchronous. The decryption of the last mes-
sage is excluded from measuring. In table 8 the results for each measure are shown.

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,419 4,205 23,834 3,086 3,726 7,408

RECV(1) SEND(2) 0,946 0,977 1,020 0,975 0,014 0,997

RECV(2) SEND(3) 0,974 1,092 1,897 1,059 0,157 1,142

RECV(3) SEND(5) 0,070 0,080 0,130 0,077 0,010 0,091

BEGpA(4) ENDpA(4) 0,020 0,032 0,063 0,032 0,004 0,037

BEGpB(4) ENDpB(4) 0,023 0,024 0,047 0,024 0,003 0,025

Table 8: (a) Peer-Wire protocol results of tBitTorrent (1s = 1, 000ms).

(b) jBitTorrent

The original tracker protocol (jBitTorrent) is performed between pA and pB. It requires two
transmissions (hs-request and hs-response). In context of this scenario, pA completes the pro-
tocol when the handshake is received. In table 9 the results for each measure are shown.

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(hs) 0,021 0,041 0,080 0,040 0,009 0,050

RECV(hs) SEND(hs) 0,005 0,009 0,025 0,007 0,004 0,015

Table 9: (b) Peer-Wire protocol results of jBitTorrent (1s = 1, 000ms).

Comparing (a) and (b)

Both experiments can be compared, if the measures for peer pA and tracker are aggregated as
described in section 4.3.2. Table 10 on the following page shows the aggregated measures.

PERFORMANCE EVALUATION Page: 75

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,525 6,356 25,900 5,257 3,727 9,640

SrvPT pB tBitTorrent 2,015 2,150 2,942 2,118 0,154 2,209

SrvPT pA jBitTorrent 0,031 0,050 0,097 0,050 0,011 0,062

SrvPT pB jBitTorrent 0,005 0,009 0,025 0,007 0,004 0,015

Table 10: Comparing (a) and (b) peer-wire protocol performance (1s = 1, 000ms).

Interpretation

All measures of the extended application (tBitTorrent) are with less performance than the orig-
inal application (jBitTorrent). This is caused by the security extensions of the PWP. A strong
deviation (STD) of more than 3 seconds can be observed for the measure SrvPT pA. It oc-
curs during preprocessing of the protocol (updated, SEND(1)) and it is caused by the same
cryptographic library that is used during tracker protocol execution (see further analysis). Some
exceptional values occur (e.g. MAX of (RECV (2), SEND(3))), however the standard devia-
tion (STD) and the 90% percentile (P90) indicate stable resp. predictable measures. The SrvPT
of peer pB is considered as the key measure for the PWP since the calling peer can’t complete
its tasks until pB is finished. However, it can’t be stated that one peer pB must be frequented
very often. That is characteristically for the Peer-to-Peer model and contrary to the client-server
model.

4.5.4 Subsequent Communication for a resource (Peer-Wire Protocol)

Once the initial handshake of the extended PWP is performed, two peers have established a pro-
tected communication channel. In the original and the extended version the same messages are
exchanged, then. Information about available pieces of a resource (bitfields) is synchronized and
pieces are exchanged. This is still the typical BitTorrent processing as specified in [COH-2008]
and implemented in jBitTorrent. Additional workload can be expected just for encryption and
decryption. These operations vary with the applied algorithms of each provider and key lengths.
The configuration is described in table 4 on page 57 and appendix B. The processing time is
expected to be similar to other well known and measured cryptographic applications. Hence, no
additional effort is spent on measuring these operations. An example performance analysis of
data encryption algorithms can be found in [TAM-2008].

PERFORMANCE EVALUATION Page: 76

4.5.5 Further Analysis

Diffie-Hellman parameter generation

Measures of both protocols indicate a strong deviation during preprocessing. It is assumed that
a single cryptographic library causes them. During preprocessing of both protocols DH param-
eters are generated in order to exchange freshly generated keys. Parameter generation is real-
ized by the generator DHParameterGenerator from the library iaik.security.dh

(version 3.16) of the provider IAIK. The processing time of this generator is measured as well.
Therefore, the previously described experiment (A.4.3) already includes the two additional mea-
surement points DHGen(B) and DHGen(E). The measured code is a single line:

AlgorithmParameters params = paramGen.generateParameters();

Both measurement points are located between preproc. and SEND(1) of the tracker protocol
and between updated and SEND(1) of the peer-wire protocol. The results are shown in table 11.

Tracker Protocol:
mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,646 5,543 17,786 4,517 3,558 10,372

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

DHGen(B) DHGen(E) 0,344 4,223 16,428 3,238 3,564 9,052

Peer-Wire Protocol:
mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,419 4,205 23,834 3,086 3,726 7,408

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

DHGen(B) DHGen(E) 0,342 4,127 23,769 3,018 3,731 7,338

Table 11: Measuring the Diffie-Hellman parameter generator (1s = 1, 000ms).

Now the results of both measures can be compared for each protocol. Similar values of the
MEAN and the STD confirm that the observed deviation in both protocols is caused by the
measured generator.

Swarm size

Previously described experiments are based on a scenario with only two participating peers.
But in scenarios, close to operational environments, much more peers are expected to share
one resource. Such a large swarm would affect the processing time of the tracker protocol.
Especially, the processing time SrvPT of the tracker t would increase during creation of message

PERFORMANCE EVALUATION Page: 77

(6). This is due to the fact that, according to the swarm size, many tickets have to be created.
As a result, the peer must wait longer until the tracker has completed its task. During protocol
post processing, the peer may contact many peers what obviously consumes more time. But the
amount of peers, that have to be contacted at once, is subject to the peer configuration.

In order to quantify the elapsed time during ticket creation two additional measurement points
are introduced. TCrea(B) indicates the beginning of the ticket creation for a given list of peers
(currently 1) and TCrea(E) indicates its end. Conducting the previously described experiment
(see A.4.3) leads to the following results:

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT t tBitTorrent 1,992 2,275 3,315 2,261 0,155 2,427

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

TCrea(B) TCrea(E) 0,025 0,043 0,094 0,043 0,012 0,061

Table 12: Measuring the ticket creation time (1s = 1, 000ms).

The values shown in table 12 describe the processing time for a list of peers with size one (1
ticket). If a linear development is assumed for an increasing list of peers, a significant influence
to the processing time can be expected even for small sizes. A list of peers with a size of 10
would be expected to be processed in more than 400ms (MEAN). That becomes significant in
relation to the SrvPT t with a MEAN of 2,275ms for a peer list of one. Therefore, a deeper
analysis of the current code and additional effort for optimization is recommended.

SML&KHL size

The previously described experiment scenario is based on a certain SML (size 4) and KHL (size
3) configuration. It is expected, that the size of both lists significantly influences the processing
time of both participants of the tracker protocol. Both lists are used during attestation of a peer.
Therefore a peer transmits its SML to a tracker where it is validated. Each entry of the SML
(name and hash) is validated against a list of known (valid) values. Additionally, an expected
PCR value is calculated that can be compared to the PCR of the peer, thereafter. Following
measures are affected:

• Peer measure (preproc, SEND(1)), loading and serialization.

• Tracker measure (RECV (1), SEND(3)), deserialization (and storing).

• Tracker measure (RECV (4), SEND(6)), validation.

PERFORMANCE EVALUATION Page: 78

The size and content of an SML varies for each system as well as the content and size of
the KHL. As an approach to an operational environment it is expected, that the KHL necessar-
ily contains, at least, as much entries as the SML. Otherwise, the SML would always contain
unknown entries (assuming that each SML value is unique). Example SMLs from the IBM In-

tegrity Measurement Architecture (IMA) [SAI-2006](ssd_ima.measurements.html) are used to
estimate an SML of an operational environment. The referred example installation of this IMA
system produces 68 SML entries previous to the kernel and 349 entries during startup of the
operating system. Together, an SML of about 400 entries and necessarily a minimal KHL of
400 entries are expected to come close to an operational environment.

With this configuration an additional experiment was conducted (version R53, see A.4.6). In
order to measure the processing time of the SML validation, two additional measures were intro-
duced (SMLV al(B), SMLV al(E)) between the measurement pointsRECV (4) and SEND(6)

of the TP. The measured value of 5,810ms (MEAN) is greater than the previously measured
SrvTP of the tracker. Therefore, additional effort is to be spent in optimization. Further analysis
and optimization is described in the next chapter.

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SMLVal(B) SMLVal(E) 5,674 5,810 6,051 5,809 0,074 5,913

Table 13: Measuring the SML validation time with KHL&SML size of 400 (1s = 1, 000ms).

4.6 Conclusion

Within this chapter an evaluation of the previously enhanced application is presented with the
main intension to quantify its performance. Therefore, relevant scenarios are identified and dis-
cussed. A controlled physical environment (laboratory) for measurements is described, as well
as an appropriate measurement technique. The process of measuring is completely automated
and the process of data evaluation is automated except of some report formatting tasks. Hence,
each experiment is reproducible and traceable. Measures are defined for each protocol step,
each communication party, selected algorithms and external components. Statistical measures
are introduced to increase the informative value and the quality of the presented results. From
these results it can be concluded that:

• The enhancements cause a significant increase of processing time (from milliseconds to
few seconds) compared to the original protocol implementation.

• Most of the processing time is located in uncritical (preprocessing) areas.

• Areas of low performance exist. They are subject to further improvement.

PERFORMANCE EVALUATION Page: 79

• An external library is causing strong deviation, however in areas that are expected to be
uncritical (preprocessing).

• Apart from the environment and the integrated software components (e.g. crypto algo-
rithms), the results depend on the variables swarm size, KHL and SML.

5 Performance Optimization

“The First Rule of Program Optimization: Don’t do it. The Second Rule of Program
Optimization (for experts only!): Don’t do it yet - that is, not until you have a
perfectly clear and unoptimized solution.” - Michael A. Jackson [JAC-1975,
Preface vii]

This chapter focuses on perfomance optimization of the implemented and evaluated Peer-

Wire Protocol (PWP) and Tracker Protocol. If not already done in the previous chapter, con-
cepts for optimization are introduced, implemented and measured as far as it is possible within
this thesis. The resulting application will not be optimal, but it should serve as an indicator
that allows to approximate an “optimal” operative application. However, in future development
different requirements may be evaluated for different business models resulting in different “op-
timal” applications. Furthermore, it should confirm or disprove the protocol design decisions.
As suggested by Jackson [JAC-1975, Preface vii], the optimization will be limited and based on
an unoptimized and even evaluated version from the previous chapters.

5.1 Approach and Focus

Each optimization intension must focus on at least one key aspect that is subject to optimiza-
tion. Typical aspects are resource (memory, diskspace, bandwidth, power, etc.) consumption,
resource usage, processing time, security or others. This chapter focuses on performance re-
spectively the processing time of the protocol implementation. It has to be noted, that usually
the optimization of one aspect will require a trade-off with another aspect in return. Therefore,
an application that is optimal in only one aspect is rather unrealistic. Typical trade-offs for an
optimized performance might be: increasing code, loss of code- and design comprehensibility,
increasing resource consumption, decreasing maintainability, and others. On the contrary this
thesis provides evidence for the performance loss in exchange to an increased security level.

Once the focus is fixed on one aspect like processing time and trade-offs to other aspects
are accepted, it has to be decided where to optimize. In general, the processing time depends
more or less on every involved hard and software component as well as on involved remote
(network communication) components. Furthermore, for software components the compiling
process and the runtime environment (e.g. JVM) have to be taken into account. Therefore, a
valid approach would be to systematically analyse each involved component and suggest ap-
propriate optimizations. However, this could not be accomplished within this thesis. Therefore,
the decision towards performance optimization are based on peculiar measurement results from
the previous chapter. Futhermore, the focus is narrowed to “new”, extended functionality.

PERFORMANCE OPTIMIZATION Page: 81

Optimization Process

The evaluation technique presented in the previous chapter is reused for the optimization of the
application and the protocols. It serves as a definition of experiments and benchmark for further
optimization. Figure 18 depicts the applied process cycle.

Optimize

Analyse

Measure

(re-)Define

Evaluate

Measure

Figure 18: Optimization Process.

• (re)-Define: Initially some definitions have to be created. Measures have to be defined as
well as the application configuration, one or more scenarios and a detailed description of
the environment. This is initially done within the previous chapter.

• Measure: Based on the definitions, experiments are conducted. The results of the current
version serve as benchmarks for an enhanced version of the application.

• Analyse: The collected measures may now be analysed with respect to the intended op-
timization (here processing time). Areas of low performance (e.g. hot spots/bottle necks)
may be identified.

• Optimization: The insight from the analysis is used to develop concepts and designs for
optimization. They are implemented and a new version of the application is created.

• Measure: Followed by the optimization, the amended application resp. protocol is mea-
sured again.

• Evaluation: Results of the second measurement can be compared with the initially mea-
sured benchmarks. It might present a gain or loss in performance and reveil trade-offs.
Further decisions are based upon that comparison. Modifications can be accepted or re-
jected.

With the evaluation one cycle is completed. Now, it might be necessary to redefine some as-
sumptions, measures, configuration etc. In that case an additional measurement has to follow. If
definitions are kept, the following steps are conducted again. That is repeated until an acceptable
result is achieved.

PERFORMANCE OPTIMIZATION Page: 82

5.2 Application Optimization

5.2.1 Serialization

As described in section 3.3.1, messages of the tracker protocol are serialized and thereafter,
transmitted over HTTP. During the evaluation of the communication framework it was ob-
served, that the introduced (previous to the thesis) serialization mechanism has a rather poor
performance. Further analysis showed, that each message is serialized to a large XML file. Dur-
ing message creation of each step, the serialized message is written to the file system. Even
worse, before sending it must be load from file system. It is expected that optimization of these
routines would siginificantly increase the performance of peer and tracker.

Solution

Messages are represented as serializable objects. Before transmission they are serialized to a
byte array using the java.io ObjectOutputStream and, thereafter, the byte array is
converted to a hex string. Thereby, each byte is converted to two characters (e.g. byte ’1’ →
String ’01’ and byte ’-1’→ String ’ff’). Only the values 0-1 and a-f are valid. The hex string
representation prevents interpretation failures in lower layers. These strings are not written to the
filesystem anymore. Consequently, they don’t have to be loaded from filesystem. Instead they
are kept in memory until the message is sent. The recipient of the transmission converts the hex
string back to a byte array. As a counterpart to the ObjectOutputStream, the java.io
ObjectOutputStream converts the byte array back to an object that is casted to the original
message class.

Evaluation

Another experiment, equal to the one described in chapter 4.4, was conducted in order to mea-
sure the effect of the optimization (see A.4.3). The results of that application (revision 50),
containing optimized code, is compared to the results of experiment A.4.3 with application (re-
vision 48). Nearly all measures, depicted in table 14 on the next page, indicate a siginificant
performance gain. Just the MAX and STD of ServTP pA show less performance. However, this
seems to be due to few exceptional experiments.

PERFORMANCE OPTIMIZATION Page: 83

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA R48(TP) 4,055 7,965 20,138 6,956 3,524 12,769

SrvPT t R48(TP) 1,992 2,275 3,315 2,261 0,155 2,427

SrvPT pA R50(TP) 2,534 6,563 33,763 5,401 4,695 10,263

SrvPT t R50(TP) 1,484 1,764 2,237 1,755 0,132 1,949

Table 14: Comparing original with optimized serialization (1s = 1, 000ms).

5.2.2 SML Validation

As described in section 4.5.5, SMLs and KHLs with sizes that can be expected in operational
environments, cause an unacceptable processing time of the tracker protocol. It is assumed
that an optimization of the SML validation would significantly decrease processing time of the
tracker measure (RECV (4), SEND(6)) for large SML/KHL sizes. Furthermore the validation
may be computed in parallel to the protocol processing. A similar approach is described in
section 5.3.2 “Concurrent Computing of the Shared Secret”.

Algorithm optimization

The implemented SML validation algorithm is derived from the project Ethemba [BRE-2008].
Mainly it validates that the hash and the name of each value in the SML matches the hash and
the name of a KHL entry. Furthermore, a PCR is calculated on the basis of the hashes within the
SML. That value is compared to the PCR received in message (4) after SML validation. During
analysis of the relevant code it could be identified that unnecessary operations are performed
for the validation of each SML entry:

• KHL is loaded from file system.

• 2nd search operation over KHL is performed (1st for hash, 2nd for name).

As an optimization to the validation, these unnecessary operations were removed. In order to
measure the difference, two measurement points (SMLV al(B), SMLV al(E)) are introduced
and the experiment described in the previous chapter was executed again. The SML is config-
ured to 400 values and the KHL is configured to 400 values, too. Now the previous version R53
(A.4.6) and the optimized version R54 (A.4.7) can be compared. Results are shown in table 15
on the following page. They clearly point out, that the optimized SML validation is with higher
performance. Same performance gain can be observed for the corresponding SrvPT measures.

PERFORMANCE OPTIMIZATION Page: 84

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SMLVal R53(TP) 5,674 5,810 6,051 5,809 0,074 5,913

SMLVal R54(TP) 0,095 0,124 0,153 0,126 0,010 0,133

Table 15: Measuring the SML validation time (1s = 1, 000ms).

Concurrent computing

The enhanced tracker protocol defines to transmit the SML with the first message (1) to the
tracker. Subsequently the SML must be validated. However, the results of this validation are
not needed until processing of message (4). This is similar to the situation described in section
5.3.2. That implemented optimization is based on concurrent computing of the corresponding
task. According to that solution, concurrent computing of the SML validation is applied as an
optimization here. The task is submitted at the end of message (1) processing and the result is
accessed (synchronization) at the end of message (3) processing (see figure 19). It is performed
by the callable SMLValidator class, now.

peer p tracker t

(1)

(3)

(4)

(6)
(5)

- updated

(a) Previous processing

- preproc.

peer pA peer pB

(1)

(2)

(3)

(5)
(4)

- updated

(b) Optimized processing

(SML validation)

Task

(SML validation)

Figure 19: Sequence diagram concurrent SML validation.

This solution is realized in application version R55. In order to measure its performance, a set
of experiments is executed according to the description in chapter 4. It can be compared to the
previous version as shown in table 16 on the following page. Both experiments are configured
with a SML of size 400 and a KHL of size 400. As expected, the SrvPT t is performed faster
because SML validation is processed during the time the tracker is waiting for message (4).
However, this gain of performance can be expected to decrease with an increasing amount of
simultaneous requests from different peers. If the operative system is equipped with multiple
CPU’s, the validation could already be executed with the recipience of message (1). Message
processing and validation would be executed in paralled (“ideally”) without competition.

PERFORMANCE OPTIMIZATION Page: 85

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT t R54(TP) 1,752 2,126 3,030 2,116 0,222 2,323

SrvPT t R55(TP) 0,678 1,881 3,204 1,876 0,248 2,047

Table 16: Comparing concurrent SML validation (1s = 1, 000ms).

Dependency from SML/KHL

As already stated, the processing time of the tracker protocol depends on the size of SML and
KHL. In general, it depends on the SML and the validation mechanism applied. This protocol
might be applied in an area where the SML is validated against a list of known malicious
applications. For that reason each differing mechanism should be evaluated separately. Still, for
the current mechanism it is of interest how the processing time will behave for an increasing
size of the SML and for an increasing size of the KHL.

• SML: Initially the KHL is loaded. For each SML entry an amount of single operations
on hash and program name strings (e.g. comparing, conversion, concatenation, ...) is per-
formed. For each SML entry the appropriate entry in the KHL has also to be found.
Independent of the applied search algorithm, it would result in a processing time that is
linearly increasing with the size of the SML (fix KHL). Apart from validation the same
applies for the serialization mechanism, that will take more processing time for an in-
creasing SML.

• KHL: An increasing KHL would increase the processing time for each SML entry. As-
suming that an efficient search algorithm is used (e.g. binary search) with a KHL that is
sorted in advance, the complexity would be not more (worst case) than O(log n) where
n is the size of the KHL. The current application is based on search algorithms derived
from java.util Hashtable.

Finally, according to the operative environment it might be possible to substitute the transmis-
sion and validation of the SML. That would be the case if the ISP can define a limited set of
valid SMLs, since all of the delivered platforms can be expected to run similar or same software.
Then it would be sufficient to transmit a hash value of the SML in message (1). If it matches a
hash of a predefined SML, no validation and calculation of the PCR might be necessary. It can
be done in advance for each defined SML.

PERFORMANCE OPTIMIZATION Page: 86

5.3 Protocol Optimization

5.3.1 Replacing public key encryption

The Tracker Protocol defines the initial message as values that are encrypted by a symmetric key.
The asymmetric public key encryption of the applied RSA crypto system is known to provide
lower performance than typical symmetric key encryption systems. After the first decade of
Public-Key cryptography research, Diffie [DIF-1988] stated, that the RSA system is running
with lower performance (DES is thousend times faster) than DES and uses keys that are much
larger (ten times larger) than DES. This is still valid until today, even if the performance gap has
become smaller. The RSA lab states [RSA-2010, Chapter 3.1.2 How fast is the RSA algorithm?]
that DES is generally 100 times faster than RSA, if it is implemented in software. Modern
algorithms like AES are even faster than DES.

Solution

Diffie [DIF-1988] suggested to use hybrid crypto systems, where RSA is applied for key man-
agement and symmetric cryptography for encryption. This is nowadays a common approach
which is applied for the Tracker Protocol, too. It is already implemented in chapter 3. The peer
encrypts the message by a freshly generated symmetric key R. This symmetric key is encrypted
by the tracker’s public key St

pub. The resulting cyphertexts of both operations are transmitted to
the tracker. At first the tracker must recover the encrypted symmetric key R using its private
key St

priv. Now, the recovered symmetric key can be utilized to decrypt the message.

• enc {message}St
pub

is replaced by enc {message}R,enc {R}St
pub

and subsequently

• dec {Cm}St
priv

is replaced by dec {CR}St
priv

, dec {Cm}R .

Evaluation

Measures are provided in all experiments starting from revision 48 (see appendix A.4.3). How-
ever, both variants are not compared. In general it can be stated that the advantage of the applied
solution increases with the length of the message. Currently it is assumed, that the message at
least includes one large value of variable length, the SML. This solution ensures computing
with good performance even for increasing sizes of the SML.

5.3.2 Concurrent Computing (Shared Secret)

The extensions of the PWP, as well as the Tracker Protocol include tasks for the creation of a
shared secret between both communication parties. These secret keys are not needed until the
end of the protocol. Currently they are computed during processing of the response to a recent

PERFORMANCE OPTIMIZATION Page: 87

request. But it would bring more performance to compute them, in parallel , during the waiting
time until the next incoming message arrives. Especially platforms with more than one core
processors would profit from that optimization.

Concept

Such an optimization is applied to task (2) of the TP and peer pB’s task (4) of the PWP (see
sequence diagram 20). Task two is concurrently computed after the tracker completed sending
of message (3). Tracker t and Task must be synchronized with the encryption of message (6)
at the latest. But the Task might be completed earlier. The same concept applies for peer pB’s
Task (4) of the PWP. The tasks (5) of the TP and peer pA’s Task (4) of PWP are computed af-
ter message sending anyway. Therefore a modification is not necessary for the current platform
with one core processor.

peer p tracker t

(1)

(3)

(4)

(6)(5)

- updated

(a) tBittorrent Tracker-Protocol

- preproc.

peer pA peer pB

(1)

(2)

(3)

(5)
(4)

- updated

(b) tBittorrent Peer-Wire-Protocol

Task

(2)

Task

(4)

Figure 20: Sequence Diagram: Concurrent computing of a shared secret.

Design

The thread, representing the asynchronous task and the main thread are configured to run with
the same priority, called normal priority (Thread.NORM_PRIORITY), which is a default of
this Java environment. It implies that both threads compete for processing time of the underlying
CPUs. Thus, it might result in better performance if the asynchronous task is prioritized lower.
However, the meaning and consequences of the priority setting in Java is often referred to as
vague and not reliable [ULL-2009, Chap. 11.3.10] . That is why no additional effort is spent
in prioritization and its measurement so far. Instead, an asynchronous call is placed at the end
of the current requests processing. It is assumed, that the asynchronous task will be performed
during the time waiting for the next call or response.

The realized solution is depicted in the class diagram 21 on the next page. Basically two
threads compete for processing time, a FutureTask and an Object as a representative

PERFORMANCE OPTIMIZATION Page: 88

of the appropriate tracker and peer class. With the DHSecretKeyGenerator, a callable
class is introduced that provides the functionality of secret key generation in a call function.
This function is required by the parametrized Callable interface that is bound to the type
SecretKey. Each Object submits an instance of the DHSecretKeyGenerator genera-
tor and receives a FutureTask in response. Now the task is executed until completion. The
result can be accessed by its parametrized get function that is bound to SharedSecret, too.
If the result is not available yet, the calling thread is blocked until completion of the task.

«bind»
<SecretKey>

«bind»
<SecretKey>

«Interface»
:Callable<T>

+ call(): <T>

:DHSecretKeyGenerator

+ DHSecretKeyGenerator(prvKey: PrivateKey,
pubKey: PublicKey, type: String): void

- prvKey: PrivatKey
- pubKey: PublicKey
- type: String

«Interface»
:Future<T>

+ get(): <T>

«Interface»
:ExecutorService

+ submit(sectetKeyGenerator: Callable<T>): Future <T>

1

«Thread»
:Object

1

«Thread»
:FutureTask<T>

Appropriate tracker class
and appropriate peer class.

:ThreadPoolExecutor
1

1

«bind»
<SecretKey>

Figure 21: Class Diagram: Concurrent computing of a shared secret.

Evaluation

Complete measurement results of both protocols can be found in R51 (A.4.5). It can be com-
pared to the experiment set of the previous application version R50 (A.4.4). R50 does not con-
tain this optimization. The processing time of the shared secret computing is small, compared
to the overall processing time. In revision 50 it took 0,069 ms (MEAN) to compute task (2)
and 0,032 ms to compute peer pA’s task (4). Hence, it is not surprising that the SrvPT of t an
pB does not show much less processing time. The processing time of the tasks is within the
standard deviation (STD) of the SrvPT.

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT t R50(TP) 1,484 1,764 2,237 1,755 0,132 1,949

SrvPT pB R50(PWP) 2,014 2,144 2,898 2,125 0,130 2,230

SrvPT t R51(TP) 1,481 1,737 2,581 1,719 0,185 1,863

SrvPT pB R51(PWP) 2,009 2,167 2,978 2,126 0,164 2,243

Table 17: Comparing optimized secret creation to previous version (1s = 1, 000ms).

PERFORMANCE OPTIMIZATION Page: 89

Finally, it has to be mentioned that concurrent computing does not have to decrease the pro-
cessing time if more than one peer is calling at a time. If there are many peers requesting to
perform the protocol at once, then there might be no more waiting time.

5.3.3 Multiple Hash Attestation

According to Strumpf [STU-2008] and confirmed by the performance evaluation, the quote
operation consumes a lot of the protocols processing time. As depicted in table 18, a quote op-
eration takes about 400 ms in the mean within the current laboratory environment. Unfortunate-
ly, quotes are computed sequentially by the TPM. That would be crucial if many simultanous
quotes arrived at a trusted computing system. Consequently, the processing time for a quote
request becomes a multiple, according to the number of previously received and not completed
quote requests. The described problem might occur in the considered field of business, too.

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

Quote(pA) R55(TP) 0,386 0,453 0,551 0,414 0,064 0,544

Quote(pA) R55(PWP) 0,368 0,384 0,414 0,384 0,009 0,394

Quote(pB) R55(PWP) 0,370 0,413 0,558 0,394 0,049 0,536

Table 18: Measures of TPM quotes (1s = 1, 000ms).

One of Stumpf’s suggested solutions is the multiple hash attestation. The main idea is, that
nonces of simultaneously received quote-requests are stored in a buffer. Then they are collec-
tively computed by the TPM. That approach requires some extensions to the current protocols.

Tracker Protocol Design

One quote operation is defined by the tracker protocol. It is performed by the calling peer.
Unless the peer doesn’t need to request many resources at once, this quote operation seems to
be uncritical. For the current business model, a peer is expected to perform the tracker protocol
only once or twice at a time.

Peer-Wire Protocol Design

It is very likely, that in some scenarios many peers connnect to a single peer at once. E.g. if
the single peer shares a rare resource. This protocol has to be performed for each resource,
since each permission (ticket) must be verified in a new session. If multiple peers request one
resource from a single peer, the single peer has to perform the protocol multiple times at once.
Each calling peer has to process the protocol only once.

PERFORMANCE OPTIMIZATION Page: 90

A solution is the extension of the PWP (see protocol 6 on page 48). Instead of a single
nonce, multiple nonces are quoted. Protocol 7 shows the suggested extension. Both quotes of
the protocol are treated in the same way. Though the described problem might not occur for the
second quote, a consistent processing is preferable. Messages (2) and (3) of the PWP have to be
amended and multiple nonces have to be collected in additional steps 2 and 4.

Protocol 7 PWP with Multiple Hash Attestation (extension only)
2. PWP: Peer pB stores nonces.

pB : nListpB :=
{
hash(KpA

pub||K
pB
pub) ||hash(K

pI
pub||K

pB
pub) ||hash(K

pN
pub||K

pB
pub)
}

3. PWP: Peer pB sends a response.
pB → pA : KpB

pub , quote {hash(nListpB), PCRnone}AIKpB
priv

, nListpB (2)

4. PWP: Peer pA stores nonces.
pA : nListpA :=

{
hash(KpB

pub||K
pA
pub) ||hash(K

pI
pub||K

pA
pub) ||hash(K

pN
pub||K

pA
pub)
}

5. PWP: Peer pA sends a request.
pA→ pB : quote {hash(nListpA), PCRnone}AIKpA

priv
, nListpA (3)

(2) Previously to this step, peer pB has received requests from several peers {pA, pI, pN} for
one resource at once. For each peer, a nonce is computed according to the PWP. Nonces are
stored in a local nonce list nListpB before they are quoted. An appropriate storage interval has
to be provided. It might either be realized as a tri-state ring buffer as described by Stumpf
[STU-2008] or by the TPM itself (e.g. synchronized by a semaphor). The nonce list is a
variable, concatenated string of nonces.

(3a) In this step, peer pB computes the quote. The hash value of the nonce list nListpB is
provided as a nonce to the quoting operation of the TPM. Peer pB sends its public key KpB

pub ,
the quote and the nonce list to peer pA.

(3b) Peer pA receives the response. The quote has to be verified as follows: At first peer pA
calculates the expected nonce hash(KpA

pub||K
pB
pub). Then peer pA has to verify, that the expected

nonce is included in the nonce list nListpB. If that is true, peer pA performes a quote
validation according to the PWP.

(4&5) Steps 4 and 5 are processed in the same manner as previously described. Now, peer pA
keeps a list of nonces and peer pB performs the verification.

Evaluation

An evaluation could not be performed, yet. It is expected, that the processing time for a single
execution of the protocol is slightly increased. This is due to the extensions. On the other hand,

PERFORMANCE OPTIMIZATION Page: 91

the described bottleneck is removed. Results are expected to be similar to the evaluation of
Strumpf [STU-2008].

5.3.4 Passive Attestation

The Multiple Hash Attestation (see section 5.3.3 on page 89) is an adequate solution for the
performance bottleneck that is caused by the sequential processing of TPM quote operations.
Strumpf [STU-2008] suggests two additional solutions, “Timestamped Hash-Chain Attestation”
and “Tickstamp attestation”. Contrary to the multiple hash attestation, they can be classified as
passive attestation mechanisms. Main idea is that, independent from current attestation requests,
the attester frequently creates nonces and subsequently computes quotes.

Timestamped Hash-Chain Attestation

Within the Timestamped Hash-Chain Attestation a trusted third party provides an initial nonce
to the attester. The attesting service performes frequently quotes and provides them to apprais-
ers. For the initial quote, the nonce of the trusted third party is applied. For all further quotes
the hash of the respective previous nonce is appied (hash chain). Some additional mechanisms
ensure the integrity of the process (see [STU-2008]). An appraiser could validate the nonces if it
can resolve the initial nonce. However, Strumpf suggests an implicit method where the attesting
service is measured by the TPM. That can be validated by the appraiser according to the typical
remote attestation mechanisms.

Tickstamp attestation

The Tickstamp Attestation is similar to the previous mechanism. Quotes are frequently per-
formed using locally created nonces. This approach however, relies on the TPM_Current_Ticks

operation. TPM ticks are utilized to confirm the time of creation. Initially, at any point of time,
the appraiser verifies an attestation token. That may be obtained from the attester or a third party.
In following attestation requests, the current token can be compared to the initial (or previous)
token. Modifications of the attested TCS can be recognized.

Approach

Though these solutions promise faster performance than the Multiple Hash Attestation, the are
incompatible to the current PWP and Tracker Protocol design. This is due to the fact that an
additional function is bound to nonces of the current protocols. They are used to confirm the
authenticity of public keys. More precisely, nonces are represented by public keys and the keys
are singed during the quote operation. In order to take advantage of the suggested solutions, a

PERFORMANCE OPTIMIZATION Page: 92

new mechanism is required to ensure authenticity of public keys. That seems to have a large
impact to the protocol design, since a fundamental concept is changed. Such a modification is
expected to lead to new protocols which is not in scope of this thesis.

5.3.5 Peer-Level Shared Secrets

The current version of the PWP defines that the protocol has to be performed for each resource
and each peer. Even if the same peer is requested to share several resources, for each resource
the protocol has to be performed. But it seems to be unnecessary and inefficient to exchange
many secrets between two peers. A single shared secret could be reused for the exchange of all
resources. However, there are some reasonable counter-arguments. They imply, that an advan-
tage might not be expected in the considered field of business.

Counter-Arguments

The recognized lack of performance doesn’t have to be expected in context of the considered
field of business. Instead, it must be assumed, that resources are properly distributed in the
network. This is an elementary property of BitTorrent content delivery (contrary to e.g. broad-
casting) in practice. Two peers that are sharing more than one resource becomes increasingly
improbable, with an increasing network size. Some mechanisms enforce this behavior. An ex-
ample is the creation of a peer list by the tracker. Typically, that list is limited to an applicable
size. E.g. for a swarm of 1000 peers, only 50 may randomly be included in the response list.
The receiver of the list may not connect all received peers. Another limited amount of e.g. 20
randomly selected peers will be connected. Out of these, some may refuse a connection if they
have already reached their limit of connections. As long as this common BitTorrent approach is
applied, it becomes unlikely that two peers exchange many resources within a reasonable period
of time (e.g. days).

Relevant advandages could only be expected, if several resources are exchanged within a
small period of time. If e.g. one peer would like to receive ten different resources from a sin-
gle other peer, the protocol must be executed ten times. According to experiment A.4.9 on
page XVII, the mean SrvPT for the calling peer is 6,601 seconds. Hence, an overall time of
more than one minute can be expected for ten sequentially processed connections. In this case
an optimization could be 10 times faster. In general, as many times as different resources are
exchanged with the same peer.

Approach

After an initial execution of the PWP between two peers, a shared secret key is established.
A subsequent request between the same peers for another resource could be performed in a

PERFORMANCE OPTIMIZATION Page: 93

different way (see protocol 8). As a consequence, the tracker must be able to manage shared
secrets per peer and not per swarm. It might become necessary to establish a socket between
the peers, in order to prevent confusion of messages for different resources.

Protocol 8 Limited Peer-Wire Protocol
0. Setup previous to protocol.

pA : (AIKpA
pub, AIK

pA
priv) ,

datai+1 :=
(
AddresspB, AIKCert

pB
ca , ticketi+1

)
, KpA,pB

pB : (AIKpB
pub, AIK

pB
priv) , KpB,t, KpA,pB

1. Peer pA sends the initial request (handshake).
pA→ pB : peerIDpA , Knone

pub ,
ticketi+1 := enc

{
AIKCertpAca , resourcei+1, time

}
KpB,t

(1)

2. Peer pB sends the final encrypted response (handshake).

pB → pA : enc {Contenti+1}KpA,pB (2)

1a) Peer pA initiates a limited PWP execution with peer pB. It includes the received ticket for
another resource. Transmission of a key is not necessary. However, the key field is kept to
provide a common interface.

1b) Peer pB can recognize the limited execution, if it compares the delivered peerID with a list
of connected (shared secret available) peerID’s. During the limited PWP execution only the
first and the last message of the PWP have to be exchanged.

2a) Peer pB answers with an encrypted content according to the usual processing. The shared
secret from the previous protocol execution is applied.

2b) Peer pA (and only peer pA) is able to decrypt the message. The shared secret from the
previous protocol execution is applied.

5.4 Conclusion

Within this chapter, concepts for the optimization of performance are presented. As a result,
an application with better performance and appropriate measures are provided. Some concepts
apply to the currently implemented application and others to the introduced protocols and there-
with, to similar applications in general. In the current state of the software, most of the gained
performance could be achieved by elimination of low quality algorithms of the application. That
is essentially the result of quality assurance which could be expected from an initial software
version. Since the current version is intended to be only a demonstrator, more effort on qual-
ity assurance is not reasonable. Hence, more performance issues on application level can be
expected, when the application is intensively used in more dynamic scenarios.

PERFORMANCE OPTIMIZATION Page: 94

Some optimizations apply to the protocols, but not all of them could be implemented. Some
are just discussed and recommended not to be implemented, because of a bad performance gain
to trade-off ratio. Nevertheless, there is currently no observed bottleneck left that would seri-
ously prevent an introduction of these protocols in practice. Latest experiments (see appendix
A.4.9) indicate a mean SrvPT t (Tracker Protocol) and a mean SrvPT pB (Peer-Wire Proto-
col) of about 2 seconds each.

As initially stated, further optimization in one direction (e.g. performance) will in general be
possible. Furthermore, the introduced protocols are still subject to scientific research. It can be
expected that further development and application in different business scenarios will lead to
modifications. Especially optimations must be put into question if requirements are changing.

6 Conclusion and Outlook

6.1 Results

This thesis describes an implementation, evaluation and optimization of a trustworthy P2P com-
munication system that allows controlled and protected distribution of data. Cryptographic pro-
tocols using hardware based security functionality (TPM) are applied to a certain exemplary
P2P system (BitTorrent).

Implementation. The application demonstrates the fundamental use case of a trustworthy data
distribution between peers that are located at the customer’s site. The thesis describes a
practicable way to extend a broadly used P2P communication system in order to allow control
of the distribution of content. Cryptographic protocols are implemented that rely on a trusted
platform module and integrated libraries. Other cryptographic engines and formats can be
configured. Scientific concepts and practically approved technologies are integrated.

Evaluation. An empirical study is provided that evaluates the performance of the
cryptographic protocols. A measurement technique could be defined and applied in a new
laboratory that was not used for measurement before. The laboratory setup, experiment setup
and scenarios are defined in detail. Hence, experiments are easily reproducible.

Optimization. Some concepts could be developed to improve the performance behavior of the
application and the protocols. Several could be implemented and approved. A solution for the
problem of piling up TPM requests could be adapted to the suggested protocols.

6.2 Conclusion

The implemented demonstrator approves, that the proposed protocols can be applied on the
basis of state of the art technologies. These protocols provide a solution to security concerns that
scientists address to the commercial application of P2P networks. It has to be noted however,
that the demonstrator cannot be applied in the given business field without the context of a NaDa
like system. The NaDa system is now equipped with one of its main components that allows to
study basic scenarios.

The protocols can be expected to be performed in about 2 seconds each, assuming the pa-
rameters described in this thesis. Further optimization is possible, but the TPM performance
seems to set a minimum for the overall performance. For example the peer, involved in the TP
processing, has to wait a minimum of about 450 ms (Quote(pA)) of the overall SrvPT t of about
2 seconds to complete the protocol. During the PWP, two quotes have to be performed. Hence,
the minimum processing time is about twice as much as the TP.

CONCLUSION AND OUTLOOK Page: 96

6.3 Outlook

Development of a prototype. Next step in direction to an operative system would be a fully
functional prototype. Concepts that are only described in the previous chapters should be
implemented and the quality of the whole application should be assured by an extensive
functional- and stress testing phase. Additionally, a prototype would require evaluating
interfaces to other components of the NaDa system (management, virtualization, storage, user
interfaces, monitoring, billing, policies and others). They have to be specified in detail or
implemented if possible. The available high level architecture is not sufficient [KUN-2009] for
this purpose. A proper interface to the management component would have to provide more
than just BitTorrent functionality as it is currently implemented. Further insight can be
expected from ongoing integration activities with a project partner. A graphical management-
and monitoring interface that reflects the state and ongoing processing of each network
component, would be a valuable component.

Other Fields of Business. Now that a trustworthy P2P protocol is successfully implemented,
it might be studied, if the results can be applied in other areas. Similar integration of the
trustworthy protocols may be considered for areas where P2P communication is already
applied (e.g. networks like VoIP, Car-to-Car, Car-to-X, Energy and others). It has to be
evaluated whether the achieved security goals are desirable in these areas.

Further research. Though the standalone P2P communication demonstrator provides
acceptable measures, the whole NaDa system has to be taken into account for the commercial
application. Measures of that system, containing all relevant components, would be valuable.
An initial integration with management components of a project partner is ongoing.
Furthermore, the applied protocols are not formally verified and analyzed. That is
recommended in order to prevent certain security issues in practice. The current work does not
address advanced management of a P2P network. Currently, communication to single
centralized trackers is evaluated. In the last years however, systems have been successfully
deployed that apply a distributed P2P management. An initial concept for a trustworthy
distributed tracker is proposed in [KUN-2010] and further effort in this field of research is
spent during an ongoing thesis of Lincke [LIN-2010].

Appendix A Measurement

The most important artefacts of the measurement process are the experiment description and
the experiment report. They are provided for each set of experiments. Examples are depicted on
the following pages.

Appendix A.1 Experiment Description

The experiment description can be interpreted by the OMF framework. It describes the invoca-
tion and termination of each participating component.

1 # −−
2 # F i l e : e x p R u n E x t e n d e d B i t t o r r e n t . rb
3 # Author : korn
4 # Date : 100419
5 # Desc . : Three a p p l i c a t i o n s (t r a c k e r , c l i e n t 1 , c l i e n t 2) a r e s t a r t e d by OMF.
6 # At f i r s t , c l i e n t 2 communica tes wi th t h e t r a c k e r ove r t h e
7 # t r a c k e r p r o t o c o l . T h e r e a f t e r c l i e n t 1 communica tes wi th t h e t r a c k e r
8 # ove r t h e t r a c k e r p r o t o c o l . C l i e n t 1 r e c e i v e s t h e a d d r e s s o f c l i e n t 2
9 # from t h e t r a c k e r . Then c l i e n t 1 i n i t i a t e s t h e communica t ion v i a t h e

10 # PWP wi th c l i e n t 2 . At t h e end of t h e e x p e r i m e n t c l i e n t 1 s h o u l d
11 # have downloaded an image from c l i e n t 2 .
12 # Modif . : 100419 korn c r e a t i o n
13 # −−
14
15 # −−
16 # − D ef in e V a r i a b l e s
17 # −−
18 t r a c k e r I P = " 1 0 . 1 4 8 . 1 5 1 . 2 5 "
19 env ="EXP"
20 p a t h _ t o r r e n t F i l e = " / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / c l i e n t 2 /

nada_cus tomer_02_app . t o r r e n t "
21 p a t h _ d o w n l o a d F o l d e r = " / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / c l i e n t 2 / "
22 p a t h _ l o g F i l e = " / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / c l i e n t 2 / l o g f i l e . l o g "
23
24 # −−
25 # − D ef in e A p p l i c a t i o n s
26 # −−
27 d e f A p p l i c a t i o n (’ a p p _ t r a c k e r ’ , ’ t r a c k e r ’) { | app |
28 app . s h o r t D e s c r i p t i o n = " B i t T o r r e n t T r a c k e r "
29 app . b i n a r y R e p o s i t o r y = " T r u s t e d B i t T o r r e n t B I N . t a r "
30 app . p a t h = (" / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / t r u s t e d _ b i t t o r r e n t . sh

#{ env } t r a c k e r ")
31 }
32 d e f A p p l i c a t i o n (’ a p p _ c l i e n t 1 ’ , ’ c l i e n t 1 ’) { | app |
33 app . s h o r t D e s c r i p t i o n = " B i t T o r r e n t Pee r (Se e de r) "
34 app . b i n a r y R e p o s i t o r y = " T r u s t e d B i t T o r r e n t B I N . t a r "
35 app . p a t h = (" / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / t r u s t e d _ b i t t o r r e n t . sh

#{ env } c l i e n t 1 #{ t r a c k e r I P } ")
36 }
37 d e f A p p l i c a t i o n (’ a p p _ c l i e n t 2 ’ , ’ c l i e n t 2 ’) { | app |
38 app . s h o r t D e s c r i p t i o n = " B i t T o r r e n t Pee r (Downloader) "
39 app . b i n a r y R e p o s i t o r y = " T r u s t e d B i t T o r r e n t B I N . t a r "

Page: II

40 app . p a t h = (" / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / t r u s t e d _ b i t t o r r e n t . sh
#{ env } c l i e n t 2 #{ t r a c k e r I P } ")

41 }
42
43 # −−
44 # − D ef in e Groups
45 # −−
46 defGroup (’ g r p _ t r a c k e r ’ , [[1 , 5]]) { | node |
47 node . a d d A p p l i c a t i o n (’ a p p _ t r a c k e r ’)
48 }
49 defGroup (’ g r p _ c l i e n t 1 ’ , [[1 , 4]]) { | node |
50 node . a d d A p p l i c a t i o n (’ a p p _ c l i e n t 1 ’)
51 }
52 defGroup (’ g r p _ c l i e n t 2 ’ , [[1 , 3]]) { | node |
53 node . a d d A p p l i c a t i o n (’ a p p _ c l i e n t 2 ’)
54 }
55
56 # −−
57 # − Run E x p e r i m e n t s
58 # −−
59 whenAllUp () { | node |
60
61 # − p r e p a r e
62 p u t s " [EXPERIMENT] p r e p a r i n g e x p e r i m e n t "
63 p u t s " [EXPERIMENT] REVISION (s e e s v n _ r e v i s i o n _ i n f o r m a t i o n . t x t) "
64 p u t s " [EXPERIMENT] c l e a n b e f o r e s t a r t "
65
66 # − t r a c k e r
67 w a i t 5
68 p u t s " [EXPERIMENT] s t a r t i n g g r p _ t r a c k e r "
69 group (’ g r p _ t r a c k e r ’) . s t a r t A p p l i c a t i o n s
70
71 # − c l i e n t _ 1
72 w a i t 5
73 p u t s " [EXPERIMENT] s t a r t i n g g r p _ c l i e n t 1 "
74 group (’ g r p _ c l i e n t 1 ’) . s t a r t A p p l i c a t i o n s
75
76 # − c l i e n t _ 2 (! t o r r e n t i s e x p e c t e d i n . t a r)
77 p u t s " [EXPERIMENT] w a i t i n g f o r g r p _ c l i e n t 1 "
78 w a i t 140
79 p u t s " [EXPERIMENT] s t a r t i n g g r p _ c l i e n t 2 "
80 group (’ g r p _ c l i e n t 2 ’) . s t a r t A p p l i c a t i o n s
81
82 # − end
83 p u t s " [EXPERIMENT] w a i t i n g f o r g r p _ c l i e n t 2 "
84 w a i t 250
85 p u t s " [EXPERIMENT] i n q u i r e c p u l o a d "
86 a l l G r o u p s . exec (’ ps ’ , [’−eo ’ , ’ pcpu , pid , u se r , a rgs ’])
87 w a i t 5
88 p u t s " [EXPERIMENT] s t o p p i n g a l l a p p l i c a t i o n s "
89 a l l G r o u p s . s t o p A p p l i c a t i o n s
90 w a i t 3
91 p u t s " [EXPERIMENT] r e a d i n g SML (measurement p a r a m e t e r) "
92 a l l G r o u p s . exec (’ c a t ’ , [’ / v a r / l o g / nada_sml ’])
93
94 w a i t 3

Page: III

95 p u t s " [EXPERIMENT] removing f i l e s f o r c l e a n n e x t s t a r t "
96 a l l G r o u p s . exec (’mv’ , [’ / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / c l i e n t 2 /

nada_cus tomer_02_app . img ’ , ’ / tmp / nada_cus tomer_02_app . img ’])
97 a l l G r o u p s . exec (’ l o c a t e ’ , [’ p e e r s . xml ’])
98 a l l G r o u p s . exec (’mv’ , [’ / workspace / T r u s t e d B i t T o r r e n t / b i n / t r u s t e d B i t t o r r e n t / example / t r a c k e r /www

/ f i l e s / p e e r s . xml ’ , ’ / tmp / p e e r s . xml ’])
99 w a i t 3

100 Exper imen t . done
101 }

Page: IV

Appendix A.2 Experiment Report

Within the experiment report (.xls), data of all single experiments is collected. Basic calculations
are processed within the sheet, advanced calculations are processed in java classes.

������������������

������������ ���

���� ���������� ���� ���� �������� ��� ���� ��� ������ ��� ������

����� ������������� � ��� ������������� ����� ����� ������ ����� ����� ������

����� ������������� � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ ��� � ������������ ����� ����� ������ ����� ����� ������

����� ������������� � � ������������ ����� ����� ����� ����� ����� �����

���� ���������� ���� ���� �������� ��� ���� ��� ������ ��� ������

����� ������������� � � ������������ ����� ����� ������ ����� ����� �����

����� ������������� � � ������������ ����� ����� ����� ����� ����� �����

����� ������������� � � ������������ ����� ����� ����� ����� ����� �����

����� ������������� � � ������������ ����� ����� ����� ����� ����� �����

����� ������������� � ��� ������������� ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������� ��� � ������������ ����� ����� ������ ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

����� ������������ � � ������������ ����� ����� ����� ����� ����� �����

�������������

���� ���������� ���� ���� �������� ��� ���� ��� ������ ��� ������

�������������������������� ����

����� ������������� �� � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� �� � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ �� � �������������

����� ������������� � � ������������ �������� �������� ��������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � ��� ������������� �������� �������� �������� �������� �������� ��������

����� ������������� ��� � ������������

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � ������������

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � �� ������������

������������ ��

����� ������������ �� � �������������

����� ������������� � � ������������ �������� �������� ��������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � � ������������ �������� �������� �������� �������� �������� ��������

����� ������������ � � �������������

����� ������������� � ��� ������������� �������� �������� �������� �������� �������� ��������

����� ������������� ��� � ������������ �������� �������� ��������� �������� �������� ��������

����� ������������ � � ������������

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

���������������� �������������������������������������

��������������������

����������������������������

�����������

���� ���� ����

���� ���� ����

Page: V

����� ������������ � � ������������

����� ������������ � �� ������������ �������� �������� �������� �������� �������� ��������

������������ ��

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ������������ � � ������������ �������� �������� �������� �������� �������� ��������

������������ �

����� ����������������� ������������������������� �������� �������� �������� �������� ��������

�����������������

����� ����������������� ������������������������� �������� �������� �������� �������� ��������

�����������������

����� ������������� ������������� �������� �������� ��������� �������� �������� ��������

�������������

����� ������������� ������������� �������� �������� ��������� �������� �������� ��������

�������������

����� ������������� ������������� �������� �������� ��������� �������� �������� ��������

�������������

����� �������������������� ��������������������������� �������� �������� �������� �������� ��������

��������������������

����� �������������������� ��������������������������� �������� �������� �������� �������� ��������

��������������������

����� ������������� ������������� �������� �������� �������� �������� �������� ��������

�������������

����� ������������� ������������� �������� �������� �������� �������� �������� ��������

�������������

����� ������������� ������������� �������� �������� �������� �������� �������� ��������

�������������

����� ������������� ������������� �������� �������� �������� �������� �������� ��������

�������������

����� ������������ ������������ �������� �������� �������� �������� �������� ��������

������������

����� ������������ ������������ �������� �������� �������� �������� �������� ��������

������������

����� ������������ ������������ �������� �������� �������� �������� �������� ��������

������������

����� ������������ ������������ �������� �������� �������� �������� �������� ��������

������������

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

���� ���� ����

Page: VI

Appendix A.3 JVM Configuration

Excerpt of the logfile RESULT_sorted.txt of experiment 100814_ExpSet100_TBT_Standard_R58.
1 # −−
2 # − MEASUREMENT − JAVA SYSTEM PROPERTIES :
3 # −−
4 ’ j a v a . r u n t i m e . name : OpenJDK Runtime Environment ’
5 ’ sun . boo t . l i b r a r y . p a t h : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / i386 ’
6 ’ j a v a . vm . v e r s i o n : 16.0−b13 ’
7 ’ j a v a . vm . vendor : Sun Mic rosys t ems I n c . ’
8 ’ j a v a . vendor . u r l : h t t p : / / j a v a . sun . com / ’
9 ’ p a t h . s e p a r a t o r : : ’

10 ’ j a v a . vm . name : OpenJDK S e r v e r VM’
11 ’ f i l e . e n c o d i n g . pkg : sun . io ’
12 ’ sun . j a v a . l a u n c h e r : SUN_STANDARD’
13 ’ u s e r . c o u n t r y : US’
14 ’ sun . os . p a t c h . l e v e l : unknown ’
15 ’ j a v a . vm . s p e c i f i c a t i o n . name : Java V i r t u a l Machine S p e c i f i c a t i o n ’
16 ’ u s e r . d i r : / workspace / T r u s t e d B i t T o r r e n t ’
17 ’ j a v a . r u n t i m e . v e r s i o n : 1 . 6 . 0 _18−b18 ’
18 ’ j a v a . awt . g r a p h i c s e n v : sun . awt . X11GraphicsEnvi ronment ’
19 ’ j a v a . e n d o r s e d . d i r s : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / endorsed ’
20 ’ os . a r c h : i386 ’
21 ’ j a v a . i o . t m p d i r : / tmp ’
22 ’ l i n e . s e p a r a t o r : ’
23 ’ ’
24 ’ j a v a . vm . s p e c i f i c a t i o n . vendor : Sun Mic rosys t ems I n c . ’
25 ’ os . name : Linux ’
26 ’ sun . j n u . e n c o d i n g : ANSI_X3.4−1968 ’
27 ’ j a v a . l i b r a r y . p a t h : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / i 386 / s e r v e r : / u s r / l i b / jvm / j ava−6−

open jdk / j r e / l i b / i 386 : / u s r / l i b / jvm / j ava−6−open jdk / j r e / . . / l i b / i 386 : / u s r / l o c a l / jTssWrapper /
o u t p u t / l i b : : / u s r / j a v a / p a c k a g e s / l i b / i 386 : / u s r / l i b / j n i : / l i b : / u s r / l i b ’

28 ’ j a v a . s p e c i f i c a t i o n . name : Java P l a t f o r m API S p e c i f i c a t i o n ’
29 ’ j a v a . c l a s s . v e r s i o n : 5 0 . 0 ’
30 ’ sun . management . c o m p i l e r : HotSpot T i e r e d Compi le rs ’
31 ’ os . v e r s i o n : 2.6.31−22− g e n e r i c ’
32 ’ u s e r . home : / r o o t ’
33 ’ u s e r . t i m e z o n e : ’
34 ’ j a v a . awt . p r i n t e r j o b : sun . p r i n t . P S P r i n t e r J o b ’
35 ’ f i l e . e n c o d i n g : ANSI_X3.4−1968 ’
36 ’ j a v a . s p e c i f i c a t i o n . v e r s i o n : 1 . 6 ’
37 ’ j a v a . c l a s s . p a t h : / u s r / l o c a l / jTssWrapper / e x t _ l i b s / i a i k _ j t s s _ t s p . j a r : / u s r / l o c a l / jTssWrapper /

e x t _ l i b s / i a i k _ j t p m t o o l s . j a r : / u s r / l o c a l / jTssWrapper / o u t p u t / j a r s / i a i k _ j t s s _ w r a p p e r _ s w i g . j a r
: / u s r / l o c a l / jTssWrapper / o u t p u t / j a r s / i a i k _ j t s s _ w r a p p e r . j a r : / u s r / l o c a l / jTssWrapper / o u t p u t /
j a r s / : b i n / t r u s t e d B i t t o r r e n t / e x t / groovy . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / tpmj . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / i a i k _ j t s s _ t c s _ s o a p . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / i a i k _ j c e . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / kxml . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / i a i k _ x s e c t . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / i a i k _ t c c e r t . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / x a l a n . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / x e r c e s . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / i a i k _ j t s s _ t s p . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / s i m p l e _ u p l o a d −4 . 1 . 1 5 . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t /
i a i k _ j t s s _ t s p _ s o a p . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / xml−a p i s . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t /
j axen−jdom . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / jdom . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / i a ik_xkms . j a r :
b i n / t r u s t e d B i t t o r r e n t / e x t / s a x p a t h . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / i a i k _ j c e _ f u l l . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / a n t . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / j axen−c o r e . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / s imple−xml −2 . 1 . 7 . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / f r e e m a r k e r . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / i a i k _ j t p m t o o l s . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / l o g 4 j −1 . 2 . 1 5 . j a r : b i n /

Page: VII

t r u s t e d B i t t o r r e n t / e x t / v e l o c i t y . j a r : b i n / t r u s t e d B i t t o r r e n t / e x t / r o u t i n g . j a r : b i n /
t r u s t e d B i t t o r r e n t / e x t / i a i k _ j t s s _ t c s . j a r : b i n : ’

38 ’ u s e r . name : r o o t ’
39 ’ j a v a . vm . s p e c i f i c a t i o n . v e r s i o n : 1 . 0 ’
40 ’ j a v a . home : / u s r / l i b / jvm / j ava−6−open jdk / j r e ’
41 ’ sun . a r c h . d a t a . model : 32 ’
42 ’ u s e r . l a n g u a g e : en ’
43 ’ j a v a . s p e c i f i c a t i o n . vendor : Sun Mic rosys t ems I n c . ’
44 ’ j a v a . vm . i n f o : mixed mode ’
45 ’ j a v a . v e r s i o n : 1 . 6 . 0 _18 ’
46 ’ j a v a . e x t . d i r s : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / e x t : / u s r / j a v a / p a c k a g e s / l i b / ex t ’
47 ’ sun . boo t . c l a s s . p a t h : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / r e s o u r c e s . j a r : / u s r / l i b / jvm / j ava−6−

open jdk / j r e / l i b / r t . j a r : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / s u n r s a s i g n . j a r : / u s r / l i b / jvm /
j ava−6−open jdk / j r e / l i b / j s s e . j a r : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / j c e . j a r : / u s r / l i b / jvm /
j ava−6−open jdk / j r e / l i b / c h a r s e t s . j a r : / u s r / l i b / jvm / j ava−6−open jdk / j r e / l i b / r h i n o . j a r : / u s r / l i b
/ jvm / j ava−6−open jdk / j r e / c l a s s e s ’

48 ’ j a v a . vendor : Sun Mic rosys t ems I n c . ’
49 ’ f i l e . s e p a r a t o r : / ’
50 ’ j a v a . vendor . u r l . bug : h t t p : / / j a v a . sun . com / cg i−b i n / b u g r e p o r t . cg i ’
51 ’ sun . i o . u n i c o d e . e n c o d i n g : U n i c o d e L i t t l e ’
52 ’ sun . cpu . e n d i a n : l i t t l e ’
53 ’ sun . cpu . i s a l i s t : ’

Page: VIII

Appendix A.4 Experiment Results

Within this section a summary of each set of experiments is given. They are referred and ex-
plained in context of the thesis. A high level overview of the test results is given below. All
experiment sets consist of 100 single experiments.

Software Configuration Optimization
Application & Scenario Environment (fix) Implemented MEAN(ms)

J
B

T

T
B

T

R
e

v

M
o

n
th

D
a

y

S
w

a
rm

s

S
w

a
rm

-s
iz

e

S
M

L
-s

iz
e

K
H

L
-s

iz
e

S
im

u
lt

a
n

e
o

u
s

 c
a

lls

K
e

y
-s

iz
e

J
IT

L
o

g
g

in
g

H
W

C
o

n
c

u
rr

e
n

t
D

H

Y N 19 6 26 1 0 - - 1 - - ON ON fix fix N N N N 0,070 0,009
N Y 45 6 27 1 1 4 3 1 fix fix ON OFF fix fix N N N N 2,395 2,170
N Y 48 7 24 1 1 4 3 1 fix fix ON OFF fix fix N N N N 2,275 2,150
N Y 50 7 30 1 1 4 3 1 fix fix ON OFF fix fix Y N N N 1,764 2,144
N Y 51 7 31 1 1 4 3 1 fix fix ON OFF fix fix Y Y N N 1,737 2,167
N Y 53 8 5 1 1 400 400 1 fix fix ON OFF fix fix Y Y N N 7,685 2,148
N Y 54 8 6 1 1 400 400 1 fix fix ON OFF fix fix Y Y Y N 2,126 2,152
N Y 55 8 7 1 1 400 400 1 fix fix ON OFF fix fix Y Y Y Y 1,881 2,139
N Y 58 8 14 1 1 400 400 1 Sun Sun ON OFF fix fix Y Y Y Y 1,943 2,197

SrvPT

C
ry

p
to

g
ra

p
h

ic

A
lg

o
ri

th
m

s

O
S

 &
 E

n
v.

A

p
p

li
c

a
ti

o
n

s
S

e
ri

a
liz

a
ti

o
n

w

it
h

o
u

t
X

M
L

&
F

S

O
p

ti
m

iz
e

d
 S

M
L

va

li
d

a
ti

o
n

C
o

n
c

u
rr

e
n

t
S

M
L

va

li
d

a
ti

o
n

S
rv

P
T

 t

(T
ra

c
k

e
r

P
ro

to
c

o
l)

S
rv

P
T

 p
B

(P

e
e

r
W

ir
e

 P
ro

t.
)

Appendix A.4.1 Experiment: Experiment_nada_2010_07_28_18_59_34.tar.gz

• Results are based on a set of 100 experiments.

• Measuring the distortion that is caused by the measuring technique (1s = 1, 000ms).

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

MT 0 MT 101 0,012 0,023 0,054 0,015 0,012 0,044

MT 0 MT 501 0,061 0,093 0,136 0,094 0,016 0,113

MT 0 MT 1001 0,126 0,167 0,211 0,169 0,018 0,188

Page: IX

Appendix A.4.2 Experiment: 100626_ExpSet100_JBT_Standard_R19.tar.gz

• Results are based on a set of 100 experiments.

• Measuring the original java BitTorrent application.

Original Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA jBitTorrent 0,091 0,110 0,143 0,109 0,009 0,123

SrvPT t jBitTorrent 0,057 0,070 0,108 0,070 0,007 0,081

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(ann) 0,007 0,008 0,031 0,007 0,003 0,008

RECV(ann) SEND(res) 0,057 0,070 0,108 0,070 0,007 0,081

RECV(res) updated 0,026 0,031 0,039 0,032 0,002 0,035

Original Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA jBitTorrent 0,031 0,050 0,097 0,050 0,011 0,062

SrvPT pB jBitTorrent 0,005 0,009 0,025 0,007 0,004 0,015

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(hs) 0,021 0,041 0,080 0,040 0,009 0,050

RECV(hs) SEND(hs) 0,005 0,009 0,025 0,007 0,004 0,015

Page: X

Appendix A.4.3 Experiment: 100724_ExpSet100_TBT_Standard_R48

• Results are based on a set of 100 experiments.

• SML includes 4 and KHL include 3 values.

• Initial (evaluated) version without optimization.

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 4,055 7,965 20,138 6,956 3,524 12,769

SrvPT t tBitTorrent 1,992 2,275 3,315 2,261 0,155 2,427

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,646 5,543 17,786 4,517 3,558 10,372

RECV(1) SEND(3) 0,596 0,770 0,935 0,780 0,073 0,853

RECV(3) SEND(4) 1,042 1,210 2,282 1,189 0,154 1,321

RECV(4) SEND(6) 0,198 0,294 0,441 0,287 0,050 0,366

RECV(6) updated 0,131 0,146 0,226 0,137 0,019 0,174

BEG(2) END(2) 0,038 0,067 0,112 0,074 0,020 0,090

BEG(5) END(5) 0,049 0,056 0,104 0,056 0,007 0,063

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

DHGen(B) DHGen(E) 0,344 4,223 16,428 3,238 3,564 9,052

TCrea(B) TCrea(E) 0,025 0,043 0,094 0,043 0,012 0,061

SMLVal(B) SMLVal(E) 0,005 0,011 0,040 0,008 0,009 0,028

Page: XI

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,525 6,356 25,900 5,257 3,727 9,640

SrvPT pB tBitTorrent 2,015 2,150 2,942 2,118 0,154 2,209

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,419 4,205 23,834 3,086 3,726 7,408

RECV(1) SEND(2) 0,946 0,977 1,020 0,975 0,014 0,997

RECV(2) SEND(3) 0,974 1,092 1,897 1,059 0,157 1,142

RECV(3) SEND(5) 0,070 0,080 0,130 0,077 0,010 0,091

BEGpA(4) ENDpA(4) 0,020 0,032 0,063 0,032 0,004 0,037

BEGpB(4) ENDpB(4) 0,023 0,024 0,047 0,024 0,003 0,025

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

DHGen(B) DHGen(E) 0,342 4,127 23,769 3,018 3,731 7,338

TCrea(B) TCrea(E) 0,025 0,043 0,094 0,043 0,012 0,061

Page: XII

Appendix A.4.4 Experiment: 100730_ExpSet100_TBT_Standard_R50

• Results are based on a set of 100 experiments.

• SML includes 4 and KHL include 3 values.

• Serialization and deserialization is optimized.

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,534 6,563 33,763 5,401 4,695 10,263

SrvPT t tBitTorrent 1,484 1,764 2,237 1,755 0,132 1,949

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 0,648 4,654 32,014 3,478 4,705 8,471

RECV(1) SEND(3) 0,179 0,326 0,431 0,337 0,059 0,393

RECV(3) SEND(4) 0,985 1,161 1,661 1,142 0,118 1,302

RECV(4) SEND(6) 0,153 0,276 0,365 0,278 0,044 0,338

RECV(6) updated 0,129 0,144 0,207 0,139 0,014 0,165

BEG(2) END(2) 0,037 0,069 0,124 0,075 0,021 0,095

BEG(5) END(5) 0,044 0,056 0,097 0,055 0,006 0,061

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,728 6,385 15,720 5,604 2,862 9,984

SrvPT pB tBitTorrent 2,014 2,144 2,898 2,125 0,130 2,230

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,604 4,241 13,677 3,503 2,893 7,892

RECV(1) SEND(2) 0,943 0,971 1,022 0,969 0,014 0,990

RECV(2) SEND(3) 0,980 1,089 1,863 1,062 0,129 1,147

RECV(3) SEND(5) 0,070 0,082 0,127 0,080 0,010 0,094

BEGpA(4) ENDpA(4) 0,025 0,032 0,044 0,032 0,003 0,036

BEGpB(4) ENDpB(4) 0,023 0,025 0,062 0,024 0,006 0,025

Page: XIII

Appendix A.4.5 Experiment: 100731_ExpSet100_TBT_Standard_R51

• Results are based on a set of 100 experiments.

• SML includes 4 and KHL include 3 values.

• Computing of the shared secret is performed concurrently.

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,553 6,941 26,051 5,776 4,356 12,331

SrvPT t tBitTorrent 1,481 1,737 2,581 1,719 0,185 1,863

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 0,632 5,040 24,342 3,962 4,383 10,475

RECV(1) SEND(3) 0,135 0,260 0,415 0,268 0,061 0,324

RECV(3) SEND(4) 1,007 1,203 2,075 1,177 0,183 1,321

RECV(4) SEND(6) 0,171 0,273 0,385 0,269 0,043 0,327

RECV(6) updated 0,148 0,164 0,220 0,160 0,012 0,176

BEG(2) END(2) 0,037 0,065 0,133 0,067 0,021 0,092

BEG(5) END(5) 0,041 0,049 0,070 0,049 0,003 0,054

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,658 6,042 16,201 5,122 3,121 10,439

SrvPT pB tBitTorrent 2,009 2,167 2,978 2,126 0,164 2,243

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,500 3,875 14,066 3,050 3,118 7,796

RECV(1) SEND(2) 0,964 0,990 1,026 0,989 0,013 1,011

RECV(2) SEND(3) 0,984 1,116 1,945 1,070 0,162 1,171

RECV(3) SEND(5) 0,047 0,060 0,121 0,056 0,011 0,073

BEGpA(4) ENDpA(4) 0,022 0,029 0,054 0,028 0,005 0,037

BEGpB(4) ENDpB(4) 0,023 0,027 0,065 0,026 0,005 0,031

Page: XIV

Appendix A.4.6 Experiment: 100805_ExpSet100_TBT_Standard_R53

• Results are based on a set of 100 experiments.

• SML and KHL include 400 values each.

• The validation algorithm is derived from Ethemba project[BRE-2008].

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 8,877 12,875 24,964 12,061 3,209 17,485

SrvPT t tBitTorrent 7,324 7,685 8,739 7,677 0,186 7,875

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,211 5,024 17,333 4,144 3,189 9,356

RECV(1) SEND(3) 0,312 0,469 0,628 0,466 0,064 0,553

RECV(3) SEND(4) 1,010 1,217 2,180 1,209 0,152 1,348

RECV(4) SEND(6) 5,832 5,998 6,206 6,003 0,078 6,103

RECV(6) updated 0,147 0,165 0,215 0,159 0,014 0,184

BEG(2) END(2) 0,035 0,053 0,112 0,041 0,018 0,077

BEG(5) END(5) 0,043 0,049 0,071 0,049 0,004 0,055

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SMLVal(B) SMLVal(E) 5,674 5,810 6,051 5,809 0,074 5,913

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,681 6,486 18,947 5,671 3,406 11,693

SrvPT pB tBitTorrent 2,026 2,148 3,219 2,108 0,160 2,237

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,468 4,338 16,889 3,566 3,400 9,355

RECV(1) SEND(2) 0,961 0,991 1,041 0,989 0,016 1,015

RECV(2) SEND(3) 0,986 1,096 2,134 1,062 0,158 1,170

RECV(3) SEND(5) 0,046 0,060 0,101 0,058 0,010 0,076

BEGpA(4) ENDpA(4) 0,021 0,029 0,040 0,028 0,004 0,036

BEGpB(4) ENDpB(4) 0,023 0,026 0,036 0,026 0,002 0,029

Page: XV

Appendix A.4.7 Experiment: 100806_ExpSet100_TBT_Standard_R54

• Results are based on a set of 100 experiments.

• SML and KHL include 400 values each.

• The validation algorithm is optimized.

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 3,416 7,096 26,290 6,068 3,480 11,512

SrvPT t tBitTorrent 1,752 2,126 3,030 2,116 0,222 2,323

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,137 4,801 24,132 3,670 3,496 9,232

RECV(1) SEND(3) 0,325 0,482 0,616 0,484 0,058 0,557

RECV(3) SEND(4) 1,006 1,240 2,171 1,203 0,196 1,401

RECV(4) SEND(6) 0,257 0,402 0,509 0,405 0,058 0,482

RECV(6) updated 0,150 0,167 0,216 0,160 0,016 0,200

BEG(2) END(2) 0,034 0,049 0,127 0,040 0,017 0,075

BEG(5) END(5) 0,044 0,049 0,057 0,049 0,003 0,054

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SMLVal(B) SMLVal(E) 0,095 0,124 0,153 0,126 0,010 0,133

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,501 6,630 25,300 5,505 3,981 11,090

SrvPT pB tBitTorrent 2,020 2,152 2,784 2,117 0,119 2,303

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,417 4,477 22,998 3,326 3,972 9,037

RECV(1) SEND(2) 0,950 0,992 1,062 0,992 0,017 1,014

RECV(2) SEND(3) 0,984 1,100 1,758 1,068 0,117 1,230

RECV(3) SEND(5) 0,045 0,059 0,094 0,059 0,009 0,068

BEGpA(4) ENDpA(4) 0,022 0,030 0,060 0,028 0,005 0,036

BEGpB(4) ENDpB(4) 0,020 0,026 0,052 0,026 0,004 0,031

Page: XVI

Appendix A.4.8 Experiment: 100807_ExpSet100_TBT_Standard_R55

• Results are based on a set of 100 experiments.

• SML and KHL include 400 values each.

• The validation algorithm is performed concurrently.

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,877 7,237 28,157 5,989 4,059 12,347

SrvPT t tBitTorrent 0,678 1,881 3,204 1,876 0,248 2,047

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 0,507 5,190 26,293 3,964 4,057 10,164

RECV(1) SEND(3) 0,369 0,493 1,412 0,492 0,110 0,557

RECV(3) SEND(4) 1,008 1,202 2,256 1,200 0,169 1,395

RECV(4) SEND(6) 0,145 0,197 0,350 0,196 0,026 0,226

RECV(6) updated 0,150 0,167 0,239 0,159 0,017 0,195

BEG(2) END(2) 0,037 0,054 0,092 0,046 0,017 0,078

BEG(5) END(5) 0,044 0,050 0,067 0,051 0,003 0,055

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SMLVal(B) SMLVa(E) 0,103 0,154 0,270 0,139 0,040 0,215

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 1,035 5,658 13,883 5,482 2,349 8,761

SrvPT pB tBitTorrent 1,035 2,139 3,022 2,120 0,182 2,268

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,385 3,553 11,776 3,293 2,321 6,723

RECV(1) SEND(2) 0,556 0,982 1,036 0,984 0,045 1,003

RECV(2) SEND(3) 0,984 1,108 1,982 1,074 0,143 1,235

RECV(3) SEND(5) 0,046 0,060 0,188 0,056 0,016 0,074

BEGpA(4) ENDpA(4) 0,022 0,030 0,049 0,028 0,005 0,037

BEGpB(4) ENDpB(4) 0,020 0,026 0,048 0,026 0,003 0,031

Page: XVII

Appendix A.4.9 Experiment: 100814_ExpSet100_TBT_Standard_R58

• Results are based on a set of 100 experiments.

• Services and keys are used from one provider (all from Sun, see section B).

Extended Tracker Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 3,688 7,174 21,955 6,337 3,194 11,145

SrvPT t tBitTorrent 1,671 1,943 2,763 1,940 0,147 2,061

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

preproc. SEND(1) 1,669 5,110 19,988 4,339 3,192 9,149

RECV(1) SEND(3) 0,413 0,536 0,658 0,541 0,054 0,603

RECV(3) SEND(4) 1,044 1,224 1,997 1,205 0,133 1,336

RECV(4) SEND(6) 0,145 0,182 0,232 0,185 0,015 0,201

RECV(6) updated 0,095 0,120 0,259 0,111 0,029 0,143

BEG(2) END(2) 0,074 0,105 0,179 0,077 0,036 0,161

BEG(5) END(5) 0,080 0,093 0,168 0,090 0,015 0,099

Extended Peer-Wire Protocol (1s = 1, 000ms)

measure application MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

SrvPT pA tBitTorrent 2,523 6,601 18,619 5,605 3,693 11,286

SrvPT pB tBitTorrent 2,059 2,197 2,997 2,157 0,149 2,314

mpt mpt+i MIN(ms) MEAN(ms) MAX(ms) MED(ms) STD(ms) P90(ms)

updated SEND(1) 0,426 4,403 16,491 3,454 3,691 9,216

RECV(1) SEND(2) 1,003 1,028 1,129 1,024 0,020 1,052

RECV(2) SEND(3) 0,995 1,112 1,889 1,075 0,148 1,235

RECV(3) SEND(5) 0,047 0,057 0,099 0,056 0,008 0,066

BEGpA(4) ENDpA(4) 0,073 0,085 0,162 0,082 0,013 0,090

BEGpB(4) ENDpB(4) 0,072 0,079 0,140 0,078 0,007 0,084

Appendix B Cryptography Integration

Appendix B.1 Applied Configuration

Up to revision 57, the default (chosen by runtime environment) configuration of engines for
each provider is used. It is not evaluated in detail. With revision 58 the provider for each engine
is set to a fixed value as shown in the following tables (keys and services). Corresponding mea-
surement results can be found in section A.4. The applied provider versions are: SunJSSE 1.7,
SunJCE 1.7, SunRsaSign 1.7, Sun 1.6, IAIK/JCE 3.16 and Infineon 1.2. The key performance
indicator show similar results.

Appendix B.1.1 Keys

Keys Size(bit) Type Format Engine Provider

St
pub, S

t
priv 512 Asym. RSA KeyPairGenerator SunJSSE

Ki
pub, K

i
priv 1024 Asym. DH KeyPairGenerator SunJCE

Ki
pub, K

i
priv - Param DH AlgParameterGen SunJCE

Ki,j 56 Sym. DES KeyAgreement SunJCE

Ri,j 128 Sym. AES KeyGenerator SunJCE

AIKCertica - Cert X509 AIKCertificate IAIK

AIKi
pub, AIK

i
priv 2048 Asym. RSA TPM Infineon

Cca
pub, C

ca
pub 512 Asym. RSA KeyPairGenerator SunJSSE

Appendix B.1.2 Services

Services Format,Algorithm,Mode Engine Provider

quote{} RSA TPM Infineon

ver{quote} RSA TSS TcCrypto IAIK

hash SHA1 MessageDigest SUN 1.6

enc/dec{}R AES/ECB/PKCS5Padding Cipher SunJCE

enc/dec{}Spub
RSA Cipher SunJCE

enc/dec{}K DES/ECB/PKCS5Padding Cipher SunJCE

sig/ver{} SHA1withRSA Signature SunRsaSign

ver{AIKCertica} X509 X509Certificate IAIK

Page: XIX

Appendix B.2 Certificate Example

This example certificate is used as a basis for the implemented protocols. It is created by the
integrated Ethemba application[BRE-2008].

1 S e r i a l number : 20100814123714103
2 S i g n a t u r e a l g o r i t h m : sha1WithRSAEncrypt ion

(1 . 2 . 8 4 0 . 1 1 3 5 4 9 . 1 . 1 . 5)
3 I s s u e r : CN= F r a u n h o f e r SIT ,OU=NaDa ,O= F r a u n h o f e r SIT , C=DE
4 V a l i d n o t b e f o r e : S a t Aug 14 1 2 : 3 6 : 1 4 CEST 2010
5 n o t a f t e r : Sun Aug 14 1 2 : 3 6 : 1 4 CEST 2011
6 S u b j e c t :
7 RSAES−OAEP p u b l i c key (2048 b i t s) :
8 p u b l i c e x p o n e n t : 10001
9 modulus : a 8d ba 94 2 a8 f3 b 80 68 5 90 76 93 a d f 77 4 ec 3 f d 33 d9 de 8 2e f f 1 5e d0 ec e

10 5 f9392ebd1962b72188179129d9c40d71a21da5f56e0c94831dd96dcbb45c68
11 ead5823cbbebb132d6b86c557f5dd48c13dcd4dda81c44317aa054033620a59
12 db28cdb50831bb06f5 f771ae21a8f22 f0e17805d9cdfaae9890954652b46fb9
13 db20070630d9a6d3d5e11786590e626ee77be08f f07605accf10abd44926bca
14 b6ce66f99340ae f33e53023ca681b3bead6e6ca6 f0ebdfe9a283360e520d641
15 7 d9f fa1747c2bbc6acce54eb452d9ec43bd266a2b19196e97b81d9f7be7322d
16 dd7c51c8e4f302d47c9044a033728175a916275c001d0781d4f7accbfed6600
17 36 f7acc00d1c48537
18 p a r a m e t e r s :
19 Hash a l g o r i t h m : SHA (1 . 3 . 1 4 . 3 . 2 . 2 6)
20 Mask g e n e r a t i o n a l g o r i t h m :
21 MGF1 (1 . 2 . 8 4 0 . 1 1 3 5 4 9 . 1 . 1 . 8) wi th p a r a m e t e r P
22 Source a l g o r i t h m : p
23 S p e c i f i e d (1 . 2 . 8 4 0 . 1 1 3 5 4 9 . 1 . 1 . 9) wi th p a r a m e t e r
24 C e r t i f i c a t e F i n g e r p r i n t (MD5) :
25 AA: E1 : A7 : C6 : 4 E : EF :CA: C4 : 1C : 0 0 : 8 1 : 0 F : A2 : 4B : F2 : B7
26 C e r t i f i c a t e F i n g e r p r i n t (SHA−1) :
27 B6 : 7 2 : 0A: E3 : 5 2 :AD: F0 :AC: A5 : 0 1 : D2 : 5 7 : 1 6 : EB: 0 E :DD: 4C :DC: 5C: 1B
28 E x t e n s i o n s : 5

Appendix C Thesis DVD (back side of the cover)

Appendix C.1 Folder Structure

Not all practical work results of this thesis can be provided in this appendix. This is due to
the large amount of files and the size of the files. All related files are stored on a DVD that is
provided with this thesis. In the followging, the folder structure on the DVD is depicted and
described up to a depth of three (3rd-Level).

File System Structure (1st-Level) Description
• Experiments All experiment results in different versions.
• ProjectFiles All project files and sources in different versions.
• References All Internet references within the Thesis.pdf file.
Masterarbeit_RomanKorn.pdf Final thesis in Portable Document Format.

Appendix C.2 Experiments

The folder Experiments contains result files of all referenced experiments. Its content may
differ for each revision. The final structure is depicted in the next section (folder
ProjectFiles/Revision_Final_tBittorrent/experiments). The naming con-
vention is: <YYMMDD>_ExpSet<SIZE>_<APPLICATION>_<SCENARIO>_<REVISION>.
Each single experiment within a set of experiments is stored as (tar.gz) compressed folder. It
can be extracted using the tar command in Unix or using several zip (e.g. http://www.7-zip.de/)
tools in Windows based environments.

File System Structure (2nd-Level) Description
• Experiments

• 100626_ExpSet100_JBT_Standard_R19 Result files of particular experiment.
• 100724_ExpSet100_TBT_Standard_R48 Result files of particular experiment.
• 100730_ExpSet100_TBT_Standard_R50 Result files of particular experiment.
• 100731_ExpSet100_TBT_Standard_R51 Result files of particular experiment.
• 100805_ExpSet100_TBT_Standard_R53 Result files of particular experiment.
• 100806_ExpSet100_TBT_Standard_R54 Result files of particular experiment.
• 100807_ExpSet100_TBT_Standard_R55 Result files of particular experiment.
• 100809_ExpSet100_TBT_MTech_R55 Result files of particular experiment.
• 100814_ExpSet100_TBT_Standard_R58 Result files of particular experiment.
• CapturesOfNetworkTraffic Captures of the wirewhark tool.

Page: XXI

Appendix C.3 Project Files

The folder ProjectFiles contains all project related sources and other files including: ap-
plication files, external files, experiment files. Several versions of the project are provided.

File System Structure (2nd-Level) Description
• ProjectFiles Files from different versions of the project.

• Revision_00_BaptisteDubuis Original jbittorrent-v1.1 sources (not runnable).
• Revision_09_ImranKhalid Initial project setup by Imran Khalid (not runnable).
• Revision_19_jBitTorrent Runnable jBitTorrent version for measurement.
• Revision_47_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_48_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_50_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_51_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_53_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_54_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_55_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_58_tBitTorrent Runnable tBitTorrent version for measurement.
• Revision_Final_tBitTorrent Final trustworthy BitTorrent version.
• OtherSources PCA, WebServer, TPMEmulator, jTSSWrapper, ...
SVN_Changes.log Complete project change-log from revision 1 to final.

Page: XXII

File System Structure (3rd-Level) Description
• Revision_Final_tBittorrent

• bin All binaries (structure according to folder src).
• experiments All experiment related files and scripts.

• ExperimentSet Files and scripts for measure calculation.
• calc Results of calculations.
• Experiments Experiment (.tar files) from OMF-Laboratory.
ExperimentReport.xls Calculation sheet of current experiment.
calcMeanSigma_SrvPT.sh Calculate mean and sigma of SrvPT.
calcMeanSigma.sh Calculate mean and sigma of all measurement sets.
clean.sh Script to clean the environment.
collectDataSets.sh Collect measurement sets from experiments.

• Scenario_1 OMF scripts for current experiment scenario.
• scripts

create.sh Create Experiment (.tar) and send to EC.
exec-kill.rb Kill all left over processes in OMF.
ext.sh Extract Experiment (.tar) on EC.
infrastructure.sh Prints environment information.
log.sh Collecting experiment log files and formatting.
mps.sh Collecting measurement points from log files.
run.sh Run given number of experiments (sequential).
schedule.sh Run given # of experiments in given # of seconds.

expRunExtendedBittorrent.rb Runnable OMF experiment definition.
RESULT_* Single experiment result/log files.

• src Java source files.
• trustedBittorrent Trusted bittorrent application.

• app External application sources.
• example Example application files and storage directory.
• ext External libraries (OMF-Laborartory).
• ext-dev External libraries (development environment).
• jBittorrentAPI Peer functionality.
• jTPMtools TPM related tools.
• messages Tracker Protocol messages.
• net Network definitions and entities.
• trackerBT Tracker functionality.
• types Commonly used types.
• utils Commonly used utilities.
HowTo.txt How to run each program.
Settings.java Some global settings of all applications.

Abbreviations

AES Advanced Encryption Standard
AIK Attestation Identity Key
AlgPT Algorithm Processing Time
API Application Programming Interface
ARPANET Advanced Research Projects Agency Network
BIOS Basic Input/Output System
CA Certificate Authority
CBC Cipher Block Chaining
CFB Cipher Feedback
CL Connection Listener
CORDIS Community Research and Development Information Service
CP Content Provider
CPU Central Processing Unit
CRTM Core Root of Trust for Measurement
DDR Double Data Rate
DES Digital Encryption Standard
DH Diffie-Hellman
DHT Distributed Hash Table
DM Download Manager
DNS Domain Name System
DSA Digital Signature Algorithm
DT Download Task
EC Experiment Controller
ECB Electronic Code Book
ED Experiment Description
EK Endorsement Key
et al. et alii
FIFO First-In-First-Out
GHz Gigahertz
HTTP Hypertext Transfer Protocol
HS Handshake
IAIK Institute for Applied Information Processing and Communication
IMA Integrity Measurement Architecture
IP Internet Protocol
IPL Initial Program Load
IPTV Internet Protocol Television
ISP Internet Service Provider
ITU International Telecommunication Union
I/O Input/Output
jBitTorrent Java BitTorrent
JCA Java Cryptographic Architecture
JCE Java Cryptographic Extension
JDK Java Development Kit

ABBREVIATIONS Page: XXIV

JIT Just-in-time
JVM Java Virtual Machine
KHL Known Hash List
MAC Message Authentication Code
MBR Master Boot Record
MED Median
Mgnt Management
MHz Megahertz
MR Message Receiver
MS Message Sender
ms Milli Seconds
MTM Mobile Trusted Module
NaDa NanoDataCenters
nonce Number Used Once
ns Nano Seconds
OAEP Optimal Asymmetric Encryption Padding
OEDL OMF Experiment Description Language
OFB Output Feedback
OMF cOntrol and Management Framework
PC Personal Computer
PCR Platform Configuration Register
PCT Percentile
RFC Request for Comments
PKCS Public Key Cryptography Standard
PKI Public Key Infrastructure
PWP Peer Wire Protocol
PP Peer Protocol
P2P Peer-to-Peer
P90 90th Percentile
RAM Random Access Memory
RNG Random Number Generator
ROM Read Only Memory
RPC Remote Procedure Call
RSA Rivest, Shamir, Adleman
RTR Root of Trust for Reporting
RTM Root of Trust for Measurement
RTS Root of Trust for Storage
SHA Secure Hash Algorithm
SML Stored Measurement Log
SRK Storage Root Key
SrvPT Service Processing Time
SSH Secure Shell
STD Standard Deviation
TBB Trusted Building Block
tBitTorrent Trustworthy BitTorrent

ABBREVIATIONS Page: XXV

TC Trusted Computing
TCB Trusted Computing Base
TCG Trusted Computing Group
TCP Trusted Computing Platform
TCP Transmission Control Protocol
TCS Trusted Computing System
TCS TSS Core Service
TOS Trusted Operating System
TP Trustworthy Protocol
TPM Trusted Platform Module
TP Tracker Protocol
TSP TSS Service Provider
TSS Trusted Software Stack
TTP Trusted Third Party
TV Tele Vision
UGC User Generated Content
URL Unified Resource Locator
UUID Universally Unique Identifier
VM Virtual Machine
VoD Video on Demand
VoIP Voice over IP
WWW World Wide Web

XMPP Extensible Messaging and Presence Protocol

References

[AYY-2010] Ayyasamy, S.; Sivanandam, S.N.: Trust Based content Distribution for Peer-To-

Peer Overlay Networks. In: International Journal of Network Security & Its Ap-
plications (IJNSA), Volume 2, Number2, April 2010.

[BAL-2005] Balfe, Shane; Lakhani, Amit D.; Paterson, Kenneth G.: Securing Peer-to-Peer

Networks Using Trusted Computing . In: Trusted Computing (Edited by Chis
Mitchell), IEE Press, 2005, pages 271-298.

[BRE-2008] Brett, Andreas; Leicher, Andreas: Ethemba : Trusted Host Environment Main-
ly Based on Attestation. http://ethemba.info/ethemba/ethemba.pdf, created at
24.12.2008, accessed at 23.07.2010

[BUC-2008] Buchmann, Johannes: Einführung in die Cryptographie . Vierte, erweiterte Au-
flage Heidelberg: Springer Verlag, 2008.

[CHA-2009] Chang, Hyunseok; Jamin, Sugih;Wang, Wenjie. Live streaming performance of

the zattoo network. In: IMC ’09: Proceedings of the Ninth ACM SIGCOMM In-
ternet Measurement Conference 2009, pages 417–429, New York.

[COH-2008] Bram Cohen: The BitTorrent Protocol Specification : Version 11031 .

http://bittorrent.org/beps/bep_0003.html, created at 28.02.2008, accessed at
13.04.2010.

[COK-2010] Coker, George; Guttman, Joshua: Principles of Remote Attestation : International
Journal of Information Security, accepted 2010.

[DIF-1988] Diffie, Whitfield: The First Ten Years of Public-Key Cryptography. In: Proceed-
ings of the IEEE, 1988, Pages 560-577.

[DUB-2007] Dubuis, Baptiste: JBittorrent . http://jbittorrent.sourceforge.net, crated at
19.09.2007, accessed at 22.07.2010.

[EUC-2009] Eurpean Commision Community Research and Development Information Ser-
vice: CORDIS : ICT : Projects : NANODATACENTERS : Nano data centers

. http://cordis.europa.eu/fetch?CALLER=PROJ_ICT&ACTION=D&DOC=17&
CAT=PROJ&QUERY=012ad7528bbd:a7be:792ee0e0&RCN=86610, created at
03.03.2009, accessed at 03.09.2010.

[ECK-2008] Eckert, Claudia: IT-Sicherheit : Konzepte - Verfahren - Protokolle. 5. Auflage
München: Oldenburg Verlag, 2008.

REFERENCES Page: XXVII

[GAL-2002] Gallagher, Niall: Simple . http://sourceforge.net/projects/simpleweb, created at
12.09.2002, accessed at 22.07.2010.

[HUA-2007] Huang, Cheng; Li, Jin; Ross, Keith W.: Can Internet Video-on-Demand be Prof-

itable?. In: Proceedings of the 2007 conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, 2007, pages 133-
144.

[IAI-2010a] Institute for Applied Information Processing and Communication (IAIK):
JCA/JCE . http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits/JCA-JCE,
created in 2010, accessed at 23.07.2010.

[IAI-2010b] Institute for Applied Information Processing and Communication (IAIK): Java

Trusted Computing Software Stack (jTSS). http://trustedjava.sourceforge.net, cre-
ated in 2010, accessed at 23.07.2010.

[INF-2010] Infineon Technologies AG: Trusted Platform Module.
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab68
1d0112ab6921ae011f, created in 2010, accessed at 16.08.2010.

[JAC-1975] Jackson, Michael: Principles of Program Design. Academic Press, London and
New York, 1975.

[KUN-2009] Kuntze, Nicolai; et al.: Trust in the P2P Distribution of Virtual Goods. In: Alapan
Arnab and Jürgen Nützel, editors, Virtual Goods 2009, pages 109-123.

[KUN-2009a] Kuntze, Nicolai; Rudolph, Carsten; Trust in Distributed small sized Data Cen-

ters. In: Proceedings of the 2009 Symposia and Workshops on Ubiquitous, Auto-
nomic and Trusted Computing, 2009, pages 28-33.

[KUN-2010] Kuntze, Nicolai; Rudolph, Carsten; Fuchs, Andreas: Trust in Peer-to-Peer content

distribution protocols. In: Lecture Notes in Computer Science 6033 2010, pages
76-89.

[LEG-2006] Legout, Arnaud; Urvoy-Keller G.; Michiardi, P.: Rarest First and Choke Algo-

rithms Are Enough. In: 6th ACM SIGCOMM, 2006, pages 203-216.

[LEI-2009] Leicher, Andreas; Kuntze, Nicolai; Schmidt, Andreas U.: Implementation of a

Trusted Ticket System. In: Proceedings of the IFIP Security, 2009.

[LIN-2010] Lincke, Nico: Entwicklung eines Konzepts für ein sicheres Peer-to-Peer System mit

dezentralem Management. Ongoing thesis declared at the University of Applied
Sciences Darmstadt, department of computer science, 2010.

REFERENCES Page: XXVIII

[MAG-2007] [MAG-2007] Magharei, Nazarin; Rejaie, Reza: Mesh or Multiple-Tree: A Com-

parative Study of Live P2P. In: IEEE INFOCOM, May 2007.

[MAR-2008] Martin, Andrew: The ten-page introduction to Trusted Computing .

www.comlab.ox.ac.uk/files/1873/RR-08-11.PDF, created in November 2008,
accessed at 03.06.2010.

[MAH-2007] Mahlmann, Peter; Schindelhauer, Christian: Peer-to-Peer-Netzwerke: Algorith-

men und Methoden. Berlin: Springer-Verlag, 2007.

[MAY-2002] Maymounkov, Peter; Mazières, David: Kademlia: A Peer-to-peer Informaiton

System Based on the XOR Metric. In: 1st International Workshop on Peer-to-peer
Systems (IPTPS), 2002.

[MUE-2008] Müller, Thomas: Trusted Computing Systeme : Konzepte und Anforderungen.

Heidelberg: Springer-Verlag, 2008.

[NIC-2010] Australia’s Information and Communications Technology Centre of Excellence:
NICTA Home . http://nicta.com.au, created in 2010, accessed at 21.05.2010.

[NIS-2003] National Institute of Standards and Technology: Engineering Statistics Handbook

. http://www.itl.nist.gov/div898/handbook/index.htm, created in 2003, accessed at
28.07.2010.

[OMG-2010] Object Management Group: Unified Modeling Language (UML).

http://www.uml.org, created in 2010, accessed at 21.09.2010.

[ORA-2010a] Oracle Corporation: Java Cryptography Architecture (JCA) Reference Guide .
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html,
created in 2010, accessed at 23.07.2010.

[RAK-2010] Rakotoarivelo, Thierry: OMF Developer Portal . http://mytestbed.net, created at
06.04.2010, accessed at 21.05.2010.

[RAT-2001] Ratnasamy, Sylvia; et al.: A Scalable Content-Addressable Network. In: Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication,
ACM New York, 2001, pages 161-172.

[RSA-1999] RSA Laboratories: PKCS #5 v2.0: Password-Based Cryptography Standard

. http://rsa.com/rsalabs/node.asp?id=2127, created at 25.03.1999, accessed at
04.10.2010.

REFERENCES Page: XXIX

[RSA-2002] RSA Laboratories: PKCS #1 v2.1: RSA Cryptography Standard.
http://rsa.com/rsalabs/node.asp?id=2125, created at 14.06.2002, accessed at
04.10.2010.

[RSA-2010] RSA Laboratories: Public-Key Cryptography Standards (PKCS) .
http://rsa.com/rsalabs/node.asp?id=2124, created in 2010, accessed at 19.08.2010.

[RUB-2010] Ruby Visual Identity Team: Ruby Programming Language . http://ruby-lang.org,
created in 2010, accessed 21.05.2010.

[RUT-2010] Rutgers, The State University of New Jersey: WINLAB : Home .

http://www.winlab.rutgers.edu, created in 2010, accessed at 21.05.2010.

[SAI-2006] Sailer, Reiner; et al IBM Research: Integrity Measurement Architec-

ture (IMA). IBM Research, http://domino.research.ibm.com /comm/re-
search_people.nsf/pages/sailer.ima.html, created in 2006, accessed at 04.08.2010.

[SAN-2005] Sandu, Ravi; Zhang, Xinwen: Peer-to-peer access control architecture using

trusted computing technology. In: Proceedings of the tenth ACM symposium on
Access control models and technologies, 2005, pages 147-158.

[SCH-1996] Schneider, Bruce: Applied Cryptography . Second Edition: John Wiley & Sons,
1996.

[SHE-2009] Sherman, Alex; et al.: Adding Trust to P2P Distribuion of Paid Content. In: Lec-
ture Notes in Computer Science, 2009, Volume 5735/2009, 2009, pages 459-474.

[SIT-2010a] Fraunhofer-Institut für Sichere Informationstechnologie (SIT): Welcome to the

Nanodatacenters Project . http://www.nanodatacenters.eu/, created in 2010, ac-
cessed at 24.06.2010.

[STE-2005] Steinmetz, Ralf; Wehrle, Klaus: Peer-to-Peer Systems and Applications . Heidel-
berg: Springer-Verlag, 2005

[STO-2001] Stoica, Ion; et al.: Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications. In: IEEE/ACM Transactions on Networking, Vol. 11, pages 17-32,
Febuary 2003.

[STR-2010] Strasser, Mario; Stamer, Heiko; Molina, Jesus: Software-based TPM Emulator .
http://tpm-emulator.berlios.de, created in 2010, accessed at 23.08.2010.

REFERENCES Page: XXX

[STU-2008] Stumpf, Frederic; et al: Improving the Scalability of Platform Attestation. Pro-
ceedings of the 3rd ACM workshop on Scalable trusted computing, 2008, pages
1-10.

[SUN-2010] SUN Microsystems Inc. : System (Java Platform SE 6) .

http://java.sun.com/javase/6docs/api/java/lang/System.html#nanoTime(), cre-
ated at 18.12.2009, accessed at 29.07.2010.

[TAM-2008] Tamami, A. A.: Performance Analysis of Data Encryption Algorithms.
http://www.cs.wustl.edu/~jain/cse567-06/ftp/encryption_perf/index.html, created
in 2008, accessed at 01.10.2010.

[TCG-2010] Trusted Computing Group: Trusted Computing Group : Home.
http://www.trustedcomputinggroup.org/, created in 2010, accessed at 13.04.2010.

[TCG-2005] Trusted Computing Group: TCG PC Client Specif-

ic TPM Interface Specification (TIS) : Version 1.2 FINAL.
http://www.trustedcomputinggroup.org/files/resource_files/87BCE22B-1D09-
3519-ADEBA772FBF02CBD/TCG_PCClientTPMSpecification_1-20_1-
00_FINAL.pdf, created at 07.11.2005, accessed at 23.08.2010.

[TCG-2007] Trusted Computing Group: TCG Software Stack (TSS): Specifica-
tion Version 1.2. http://www.trustedcomputinggroup.org/resources/
tcg_software_stack_specification_tss_12_faq, created at 07.03.2007, accessed at
25.09.2010.

[TEC-2010] Technicolor S.A.: Technicolor - Creation, Management and Delivery of content.
www.thomson.net, created in 2010, accessed at 05.07.2010.

[THO-2010] Thompson (Project NanoDataCenters): Deliverable D1.2 Evaluation of

the energy efficiency of distributed vs. centralised content distribution.

http://www.nanodatacenters.eu/index.php?view=article&catid=48%3Aarchitecture
&id=77%3Aevaluation-of-the-energy-efficiency-of-distributed-vs-centralised-
content-distribution&format=pdf&option=com_content&Itemid=67, created
30.01.2010, accessed at 20.09.2010.

[THO-2010b] Thompson (Project NanoDataCenters): Deliverable 2.1 Measurement-

based characterisation of application and user behaviour.

http://nanodatacenters.eu/index.php?option=com_phocadownload&view=category
&id=3:measurement&Itemid=66, created 30.01.2010, accessed 04.09.2010.

REFERENCES Page: XXXI

[ULL-2009] Ullenboom, Christian: Java ist auch eine Insel : Programmieren mit der Java Stan-
dard Edition Version 6. 8.aktualisierte Auflage, Bonn: Gallileo Press, 2009.

[VAR-2008] Varvello, Matteo; et al.: Is There Life in Second Life?. In: International Conference
On Emerging Networking Experiments And Technologies, 2008, 1st article.

[VTT-2010] VTT Technical Research Centre of Finland: P2P Next . http://www.p2p-next.org/,
created in 2010, accessed at 03.09.2010.

REQUEST FOR COMMENTS (IETF)

[RFC-1122] Braden, R.: Requirements for Internet Hosts – Communication Layers. RFC1122,
1989.

[RFC-1831] Srinivasan, R.: RPC: Remote Procedure Call Protocol Specification Version 2.

RFC1831, 1995.

[RFC-2616] Fielding, R.; et al.: Hypertext Transfer Protocol – HTTP/1.1. RFC2616, 1999.

[RFC-2631] Rescorla, R.: Diffie-Hellman Key Agreement Method. RFC2631, 1999.

[RFC-3920] Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core.

RFC3920, 2004.

[RFC-3921] Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Instant

Messaging and Presence. RFC3921, 2004.

[RFC-3922] Saint-Andre, P.: Mapping the Extensible Messaging and Presence Protocol

(XMPP) to Common Presence and Instant Messaging (CPIM). RFC3922, 2004.

[RFC-3923] Saint-Andre, P.: End-to-End Signing and Object Encryption for the Extensible

Messaging and Presence Protocol (XMPP). RFC3923, 2004.

[RFC-4250] Lehtinen, S.; et al.: The Secure Shell (SSH) Protocol Assigned Numbers.
RFC4250, 2006.

[RFC-5280] Cooper, D.: Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile. RFC5280.

