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Abstract: Wide area motion imagery (WAMI) facilitates the surveillance
of several tens of square kilometers while using only one airborne sen-
sor platform. Typical applications such as automatic behavior recognition,
scene understanding, or traffic monitoring depend on precise multiple ob-
ject tracking. Therefore, moving object detection is generally used as initial
step. However, reliable moving object detection for WAMI is challenging
as imprecise image alignment, low object resolution and a large number of
moving objects lead to split, merged, and missing detections. In the con-
text of this report, a detailed overview of existing methods for moving ob-
ject detection proposed for WAMI is given. Ten existing methods as well
as a novel combination of short-term background subtraction and suppres-
sion of image alignment errors by pixel neighborhood consideration are sys-
tematically evaluated on the WPAFB 2009 dataset that contains more than
160,000 ground truth detections. Parameters that contribute most to the per-
formance of each method, the influence of related pre-processing steps as
well as the impact of varying traffic density and scenery on the performance
are discussed.

1 Introduction

In recent years, wide area motion imagery (WAMI) has been attracting an in-
creased amount of research attention as WAMI enables large area surveillance
while using only one airborne sensor platform. The sensor is comprised of a
matrix of multiple cameras. Images of neighboring cameras with partially over-
lapping field of view are stitched to form the image with large ground coverage.
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The stitched images are typically collected at 1-2 Hz due to the large volume
(up to 100 megapixels). As WAMI data like the publicly available WPAFB 2009
dataset [U.S09] cover several tens of square kilometers and can contain thou-
sands of moving objects per frame, applications such as driver behavior analysis
or traffic monitoring are facilitated at large scale. These applications generally
depend on multiple object tracking and consequently on object detections that
are used at different stages in the tracking algorithm such as track initialization or
object-to-track association [BTX+14]. Object detections are obtained by object
segmentation approaches based frame differencing or background subtraction.

However, moving object detection in WAMI is very challenging: The moving
objects are typically in the order of 10x20 pixels due to the low spatial reso-
lution. Thus, detection approaches based on appearance features and machine
learning are unreliable in WAMI so far [PM14]. The object detection is further
complicated by weak contrast between object and background, shadows and oc-
clusions that can lead to missed detections. Although image alignment is applied
for camera motion compensation, residual errors of the alignment process as well
as parallax effects can result in false positive detections. Additional challenges
are sudden changes in camera gain and seam artifacts due to image stitching.
Seam artifacts are caused by radiometric changes across different sensors and
can produce false positive detections as sweeping seams can cause bands of large
difference in the difference image [KGS13]. All these challenges can affect the
performance of moving object detection. Nevertheless, there exists no systematic
evaluation of moving object detection in WAMI so far even though missed detec-
tions emerge the need for track linking or false positive detections can cause the
initialization of false positive tracks.

In this report, several moving object detection methods that are presented in
WAMI literature are summarized and extended by a novel combination of short-
term background subtraction and suppression of image alignment. In total, eleven
methods are systematically evaluated on four image regions of the WPAFB 2009
dataset that comprises 1,025 frames. The different image regions contain more
than 160,000 ground truth detections and offering different challenges such as
traffic density and varying scenery.

2 Object Detection Methods

Object classification methods that are applied on WAMI data can be distinguished
into frame differencing and background subtraction. As frame differencing re-
quires less frames, residual errors of the alignment process are reduced compared
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to background subtraction [SS13]. A drawback of frame differencing compared
to background subtraction is the sensitivity to detect slow moving objects whose
positions partially overlap in consecutive frames and consequently can lead to
missed detections. Further approaches that are widely used in aerial videos such
as methods based on optical flow vectors and appearance feature based methods
are not applicable [APK14] or unreliable [PM14], respectively. Thus, only frame
differencing and background subtraction approaches that are presented in WAMI
literature are summarized and discussed in the following subsections.

2.1 Frame Differencing

Moving object detection methods based on frame differencing can be classified
into two-frame and three-frame differencing. Two-frame differencing calculates
the pixel-wise intensity difference between two consecutive frames by:

D(x, y) = |It(x, y)− Ît−1(x, y)|,

where D(x, y) is the intensity value difference at pixel (x, y) and It and Ît−1

denote the intensity values of frame t and the aligned frame t−1. The difference
image for three-frame differencing is given by the minimum of the differnece
image between frame t and t − 1 and the difference image between frame t and
t+ 1:

D(x, y) = min(|It(x, y)− Ît−1(x, y)|, |It(x, y)− Ît+1(x, y)|)

As two-frame differencing requires only two consecutive frames, the residual
errors of the alignment process are minimal. However, each moving object pro-
duces two motion blobs in the difference image. One blob represents the object
position in the current frame and an additional one represents its position in the
previous frame. Saleemi and Shah [SS13] applied two-frame differencing on
WAMI data and proposed to handle this so called ghosting effect by rejecting
blobs with smaller mean gradient magnitude and intensity standard deviation in
the current frame compared to the previous frame. Xiao et al. [XCSH10] applied
instead three-frame differencing to avoid multiple blobs for each moving object.
Additional residual errors caused by the alignment process can be suppressed by
using the minimum differences of each pixel in small neighborhoods as proposed
by Pollard and Antone [PA12]. Keck et al. [KGS13] extended three-frame dif-
ferencing by applying a box filter to the difference image to reduce false positive
detections caused by seam artifacts.
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2.2 Background Subtraction

In general, moving object detection based on background subtraction is per-
formed by calculating the difference image D(x, y) between an image It and
its corresponding background model IBG :

D(x, y) = min(|It(x, y)− IBG(x, y)|)

A straightforward method to acquire a background model is to calculate the
pixel-wise intensity median of consecutive frames. The number of frames used
for background modeling applied on WAMI data range from 8 [LLB+13] to
16 [PDM11] and is thus clearly higher than the number of frames required for
frame differencing. Incorporating background gradient information can be used
to suppress noise in the difference image caused by parallax effects or residual
errors due to the alignment process. Reilly et al. [RIS10] proposed to subtract
the background gradient magnitudes from the difference images whereas Liang
et al. [LLB+13] modified this approach by replacing the subtraction with an ad-
ditional threshold operation. Pixels that corresponding background magnitude
exceeds a given threshold are expected as noise and set to 0 in the difference
image.

Calculating the pixel-wise intensity mean of consecutive frames is not consid-
ered as this approach requires four times the number of frames than median
background modeling for comparable results [RIS10]. Kent et al. [KMP+12]
proposed an alternative mean background approach. Instead of calculating the
pixel-wise intensity mean of consecutive frames, Kent et al. [KMP+12] proposed
to calculate the running mean and the standard deviation with a recursive filter.
Pixels considered as moving are detected by comparing the difference between
the intensity value It and the local mean µ to a local threshold which is given by
the standard deviation multiplied with a set scaling factor.

More sophisticated approaches such as Gaussian mixture models are inapplicable
for object detection in WAMI due to the high number of required frames [RIS10]
as well as the sensitivity to illumination changes [SS13], parallax and registration
drift [PA12]. Pollard and Antone [PA12] replaced the traditional GMM with an
Interval Gaussian Mixture Model (IGMM). Each pixel is described as an interval
limited by a minimum value µmin and maximum value µmax , instead of model-
ing each pixel as a mixture of Gaussians. The interval boundaries for each pixel
are continuously updated by incorporating the minimum and maximum intensity
values in a small neighborhood around the pixel in the current frame. Pixels that
deviate more than a single global standard deviation value σ from this interval
are considered as pixels belonging to a moving object.
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A static background model based on an inpainting algorithm is proposed by
Aeschliman et al. [APK14] Therefore, pixels assigned as objects by an initial
difference image between the current and the previous image as well as pixels
that correspond to objects in the previous frame are replaced based on directional
and smoothness constraints to complete the background model.

2.3 Proposed Method

The combination of median background modeling and neighborhood considera-
tion is expected to be a powerful approach that has not been reported yet. Pre-
liminary experiments indicated good recall values in case of median background
subtraction even for sequences with slow moving objects whose positions par-
tially overlap between consecutive frames. However, median background mod-
eling causes a high number of false positive detections due to parallax effects and
the image alignment process. Neighborhood consideration seems to be an appro-
priate alternative for incorporating background gradient information to suppress
false positive detections as noise caused by parallax effects as well as image
alignment are in the order of a few pixels. Thus, the intensity value difference
D(x, y) between the current frame It and the corresponding median background
model IBG is given by the minimum difference between pixel (x, y) in the cur-
rent frame and all pixels (xi, yj) in a given neighborhood N of the background
model:

D(x, y) = min
i,j

(|It(x, y)− IBG(xi, yj)|)

3 Experimental Results

In total, eleven object detection methods are considered for the evaluation. An
overview of these methods is listed in Table 3.1. The performance of the selected
methods is evaluated on four image regions of the WPAFB 2009 dataset [U.S09].
The image regions are selected with regard to the image regions evaluated by
Basharat et al. [BTX+14] and Keck et al. [KGS13]. The WPAFB 2009 dataset
comprises 1,025 frames with annotated GT. In the context of this report, stopping
and parked objects are removed from the GT in order to determine the correct
number of missing detections. The four image regions shown in Fig. 3.1 consist
of 2,278×2,278 pixels and represent different challenges such as traffic density
and varying scenery. The performance of each method is evaluated by means of

precision =
TP

FP + TP
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Source Object Detection Method
Saleemi [SS13] 2-frame Differencing + Ghost Handling
Xiao [XCSH10] 3-frame Differencing
Keck [KGS13] 3-frame Differencing + Box Filter
Pollard [PA12] 3-frame Differencing + Neighborhood
Pollard [PA12] Interval Gaussian Mixture Model
Shi [SLBH12] Median Background
Reilly [RIS10] Median Background + Gradient Magnitude Suppression
Liang [LLB+13] Median Background + Gradient Magnitude Thresholding
Kent [KMP+12] Mean Background + Local Thresholding
Aeschliman [APK14] Inpaint
Proposed Median Background + Neighborhood

Table 3.1: Evaluated methods for moving object detection.

Prior to moving object detection, the camera motion is compensated by image
alignment. After image alignment global histogram matching (HM) [GW02] is
used to adjust camera gain and illumination variation, followed by local Gaus-
sian mean filtering (MF) [SKS14] to reduce seam artifacts. Fig. 3.2 shows the
impact of histogram matching and Gaussian mean filtering exemplarily for two-
frame differencing by means of difference images. Large intensity differences
are markedly reduced by HM (Fig. 3.2(b)) compared to no HM (Fig. 3.2(a)).
However, the left image region still exhibits large differences in intensity. The
reason for these differences is intensity discontinuities in the images due to stitch-
ing. These so called seam artifacts are suppressed by additional MF as depicted
in Fig. 3.2(c). The impact of HM and MF on the performance is illustrated in

and

recall =
TP

TP + FN
,

where TP, FP and FN are the number of true positive, false positive and false
negative detections. In order to be consistent with the literature, the centroid of
each blob is considered as a detection. Thus, each detection is represented by a
point. Detections with annotated GT within a radius of 20 pixels are defined as
TP otherwise as FP. GT objects without associated detection are defined as FN.
The distance is set to 20 pixel, since GT annotations can differ from the center of
the object. Furthermore, the blob centroid is often shifted from the annotated GT
position due to appendant shadows.
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(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Figure 3.1: Image sections offering different challenges such as traffic density and varying
scenery used for evaluation.

Fig. 3.3(a). As thresholding is used to distinguish pixels into objects and non-
objects, it is expected that the threshold value has the highest impact on the per-
formance. Thus, the shown precision-recall curves are generated by varying the
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(a) no HM/MF (b) HM (c) HM+MF

Figure 3.2: Difference images for two-frame differencing without global histogram
matching (HM) and local Gaussian mean filtering (MF) (a), with HM (b) and with HM
and MF (c).

threshold value. The performance without HM and MF is considerably increased
by applying HM whereas HM is outperformed by additional MF. Similar results
are obtained for the other object detection methods as well for all scenes.

The performance of each object detection method is influenced by several pa-
rameters. The influence of relevant parameters is separately evaluated and op-
timized for each object detection method with regard to precision and recall.
Thus, precision-recall curves are generated by varying the threshold value. In
the following the parameters that contributed most to the performance are dis-
cussed. The corresponding precision-recall curves are given in Fig. 3.3(b)-3.3(f)
exemplarily by means of scene 1.

In addition to the threshold value, all methods are affected by the minimum blob
size. The minimum blob size is the minimal object size in pixels that is ex-
pected. Thus, detections with fewer pixels are associated as false detections and
are rejected. The impact of the blob size on the performance of three-frame dif-
ferencing is shown in Fig. 3.3(b). More false positives due to noise are rejected
for larger minimum blob sizes. Consequently, the precision is increasing with
increasing minimum blob sizes. In contrast, the recall is decreasing, since more
small objects or partially detected objects are discarded.

The further parameters that are discussed are only relevant for particular methods.
Methods based on median background modeling are affected by the number of
frames used for modeling the median background. The precision-recall curve for
various number of frames is depicted in Fig. 3.3(c). The precision is increasing
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Figure 3.3: Variation of pre-processing steps (a) and optimization of parameters that con-
tributed most to the object detection performance: (b) minimal blob size (in pixels), (c)
number of frames used for median background modeling, (d)-(e) neighborhood size (in
pixels) in case of 3-frame differencing and median background subtraction and (f) gradient
magnitude threshold value δ in case of median background subtraction.



162 Lars Sommer

with fewer frames as the number of false positive detections caused by parallax
effects or image alignment is reduced. The recall is almost the same for 6 to 10
frames. However, even less frames result in more missed detections. Reason for
this is an inadequate estimated background especially in areas with dense traffic
or intersections.

False positive detections caused by parallax effects or image alignment can be
suppressed by neighborhood consideration. The impact of the applied neigh-
borhood size on the performance of three-frame differencing and median back-
ground subtraction is shown in Fig. 3.3(d) and Fig. 3.3(e), respectively. More
false positive detections are suppressed with increasing neighborhood sizes.
However, the recall is decreasing with increasing neighborhood sizes as more
small objects or partially detected objects are suppressed as well. Practical
sizes are in the range of 3×3 to 5×5 pixels in case of three-frame differenc-
ing and slightly larger in case of median background subtraction as more errors
are accumulated due to the number of used frames.

Background gradient information can be used to suppress false positive detec-
tions caused by parallax effects or image alignment as well. The impact of the
gradient magnitude threshold δ on the performance of median background sub-
traction is illustrated in Fig. 3.3(f). As described in Section 2.2 gradient magni-
tudes above this threshold are expected to be caused by parallax and alignment
errors and set to 0. The precision increases with lower threshold values as more
errors are suppressed. In contrast, the recall is almost constant for threshold val-
ues between 40 and 80, but decreases considerably for lower threshold values as
more objects are suppressed.

Fig. 3.4 shows the precision-recall curves of all methods for Scene 1-4. The pa-
rameters optimized for Scene 1 are adjusted for all Scenes. Median background
subtraction without suppression of errors due to parallax effects or image align-
ment exhibits the worst performance of all methods for Scene 1,2,4. In contrast,
the best performances are achieved for methods based on background subtraction
that suppress these errors. Median background subtraction with neighborhood
consideration outperforms both background gradient information based methods.
Three-frame differencing with neighborhood consideration exhibits worse per-
formance for Scene 1-3, whereas the performance is slightly better for Scene 4.
The reason for the better performance is that Scene 4 showing a residential area
densely covered with buildings and tree is more error prone to image alignment
and parallax effects that are accumulated by the number of used frames. The
weaker recall for Scene 1 indicates instead that median background models are
more effective to detect slow moving objects especially in dense traffic. The
other frame differencing methods show markedly worse performance compared
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(d) Scene 4

2-frame [SS13]
3-frame [XCSH10]
3-frame + BF [KGS13]
3-frame + N [PA12]
Median BG [SLBH12]
Median BG + GMS [RIS10]

Median BG + GMT [LLB  13]
Median BG + N
IGMM [PA12]
Mean BG [KMP  12]
Inpaint [APK14]

+

+

Figure 3.4: Precision-recall curves of all object detection methods for all four image
regions.

to Three-frame differencing with neighborhood consideration. The impact of the
locally applied box filter to suppress seam artifacts is marginal since these arti-
facts are partially suppressed during the pre-processing. The performance of the
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further background subtraction based methods is comparable to the frame dif-
ferencing methods without neighborhood consideration except for Scene 3. The
precision of IGMM for Scene 3 that is expected to be less challenging is consid-
erably worse. The adaptive interval model and the fixed standard deviation used
to segment pixels in object and non-object is not able to compensate for severe
illumination changes and consequently results in a large number of false positive
detections. The same difficulty is observed for the running mean approach which
shows even poorer performance for this Scene.

4 Conclusion

In the context of this report, eleven object detection methods were evaluated on
four different challenging image regions of the WPAFB 2009 dataset. For this
purpose, the impact of pre-processing steps as well as parameters contributing
most to the performance was discussed. The performance can be considerably
increased by applying histogram matching and local Gaussian mean filtering to
adjust camera gain and illumination variation and to suppress seam artifacts. The
strong impact of various parameters on the object detection performance exhibits
that the adjustment of these parameters is not neglible with regard to the fol-
lowing applications. The best performance overall is achieved by median back-
ground subtraction with neighborhood consideration that slightly outperforms
other approaches for the suppression of errors caused by imprecise image align-
ment and parallax effects. The fact that other methods exhibit considerably worse
performance indicates the importance of the suppression of these kinds of er-
rors. Nevertheless, the impact of optimized moving object detection on existing
multiple object tracking algorithms itself has to be analyzed.
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