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Abstract

Capture-recapture (CR) models have been proposed as an objective method for
controlling software inspections. CR models were originally developed to esti-
mate the size of animal populations. They have also been used to estimate the
number of defects in an inspected artifact. Armed with this estimate, one can
decide whether the artifact requires a reinspection to ensure that a minimal in-
spection effectiveness level has been attained. Little evaluative research has
been performed thus far on the utility of CR models for inspections with two
inspectors. Furthermore, these studies have focused on the relative error of the
defect content estimates exclusively. In this paper we report on an extensive
Monte Carlo simulation that evaluated six capture-recapture models for two
inspectors assuming a code inspections context. In addition to relative error,
we evaluate the accuracy of the reinspection decision. The latter is more con-
gruent with the manner in which these models would be used in practice. Our
results indicate that the most appropriate capture-recapture model for two in-
spectors is an estimator originally developed by Chapman that allows for in-
spectors with different capabilities. This will have a relatively high decision ac-
curacy and will perform better than the default decision of no reinspections.
Furthermore, we identify the conditions under which this estimator will per-
form best.

Copyright © Fraunhofer IESE 1999






Table of Contents

1 Introduction 1
2 Background 4
2.1 Reinspections in Software Engineering Practice 4
Two-Inspector Inspections 5
3 Overview of CR Models 6
3.1 Types of CR Models 7
3.2 Evaluation of Capture-Recapture Models 9
3.3 Objective of Our Simulation 11
34 Previous Simulation Studies 11
4 Research Method 14
4.1 Study Points 14
4.2 Evaluation Criteria 19
4.2.1 Bias, Failures and Dispersion 19
4.2.2  Decision Accuracy 20
4.2.3  Relationship Between Relative Error and Relative Decision
Accuracy 22
5 Results 25
5.1 Evaluation of Relative Error 25
5.1.1 Extent of Overlap 27
5.1.2  Extent of Heterogeneity (CV) 27
5.1.3  Extent of Inspector Capability Differences 27
51.4 Model MO 28
515 Model MtMLE 30
5.1.6 Model MhJE 32
5.1.7 Model MtCh 33
5.1.8 Model MhCh 34
5.1.9 Model MthCh 35
5.1.10 Conclusions On Relative Error 37
52 Evaluation of Dispersion 37
5.3 Evaluation of Decision Accuracy 44
5.3.1 High Capability Inspection Teams 45
5.3.2  Low Capability Inspection Teams 45
5.3.3  Selection of the Appropriate Model 46

6 Discussion and Conclusions 48

Copyright © Fraunhofer IESE 1999 V||



7 Acknowledgements 50

8 References 51

VIII Copyright © Fraunhofer IESE 1998



Introduction

1 Introduction

A recent literature review found that, on average, software inspections find
only 57% of defects in code and design documents [8]. Given the substantial
defect detection cost savings that can be accrued by increasing the effective-
ness'! of inspections [8], contemporary research has focused on improved
reading techniques (e.qg., see [33][3][19][41]) and on reinspections (e.q., see
[24]) for maximizing effectiveness. The focus of this paper is on maximizing in-
spection effectiveness through reinspections.

Reinspections can be considered part of the general problem of when to stop
inspections. As is the case with testing, one needs a criterion by which to de-
cide whether a document should be inspected anew, or whether it can pass to
the subsequent phase.

Most organizations have not institutionalized procedures for deciding when to
stop software inspections. Those that do have utilized, for example, historical
norms so that if too many defects are found compared to the norm then this is
taken as evidence of a poor document, while too few are taken as evidence of
a poor inspection [24]. However, this approach assumes that variations among
reviews are larger than variations among documents. If this is not the case
then this can lead to reinspections of high quality documents, and low quality
documents may easily pass.

To address these potential problems, one can use Capture-Recapture (CR)
models. CR models were initially developed to estimate the size of animal
populations (e.g., see [38][51]). In a software engineering context, they have
been applied in controlling the testing process [4][30][36][21][37], and more
recently they have been used in controlling the inspection process [23][24].

When applied to software inspections, CR models can be used to estimate the
number of defects in the inspected document. Using this estimate and the
known number of defects found, the number of remaining defects in the in-
spected document can be estimated. Subsequently, armed with this informa-
tion, the inspection team can make the decision as to whether the document
should be reinspected to reduce its defect content before passing it on to the
next phase of the life cycle.

Researchers at Bell Labs first applied CR models for requirements and design
inspections [23][24][25]. However, in these studies the true number of defects

1 Effectiveness is defined as the proportion of defects in a document that were found during the inspection.
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was unknown and therefore an evaluation of their true efficacy was not possi-
ble. Later work consisted of a Monte Carlo simulation to evaluate the robust-
ness of different CR estimators to violations of their assumptions [50].

Objective empirical evaluation of CR models started with the study of Wohlin
et al. [53]. However, this study was conducted with non-software engineering
documents. Subsequent work used software engineering artifacts
[10][12][35][44]. All of the above work utilized models that were originally de-
veloped in wildlife research. Other researchers considered the incorporation of
Bayesian methods to estimate defect content [5], performed further evalua-
tions of assumption violations when using CR estimates [48], and evaluated the
applicability of CR models to perspective-based reading [12][49].

An alternative approach was proposed in [54], the Detection Profile Method
(DPM). The DPM is an intuitively appealing approach that can be easily ex-
plained graphically to nonspecialists. A later study suggested a method for se-
lecting between a CR model and the DPM [9], and this was subsequently fur-
ther evaluated in [39].

In addition to the experiences reported by the researchers at Bell Labs, the use
of the DPM at an insurance company in Germany was reported in [11], and the
application of CR models in telecommunications projects [1]. Therefore, there
is a growing adoption of defect content estimation models in industrial prac-
tice, and specifically CR models.

Little empirical investigation of the utility of CR models for inspections with
two inspectors has been conducted. Furthermore, these studies have exclu-
sively evaluated the accuracy with which CR models can predict the number of
defects in an artifact or the accuracy of the estimated number of remaining de-
fects. However, given that the objective is to make a reinspection decision, it is
also necessary to evaluate the decision accuracy using a CR model.

In this paper we present the results of an extensive Monte Carlo simulation
that evaluates the relative error, dispersion, failure rate, and decision accuracy
of biological CR models? for two-person inspections. The advantage of a
simulation is that we can obtain a general picture of the utility of CR models
with two inspectors. The simulation defined 48 study points that varied defect
difficulty, inspector capability, and the proportion of difficult defects in an in-
spected artifact. The objectives of the simulation were twofold:

* |dentify the best performing CR model in terms of decision accuracy

2 We do not consider other approaches such as the DPM and its extensions here since our concern in this
study is capture-recapture models with biological origins. Furthermore, the DPM as it is defined would be
difficult to apply with data from only two inspectors.
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* |dentify the impact of assumption violation on the decision accuracy of the
different CR models.

To our knowledge, this is the first comprehensive Monte Carlo evaluation of all
biological CR models for two person inspections. Furthermore, it is the first
study that explicitly evaluates the reinspection decision accuracy.

Our results indicate that the best CR model for making the reinspection deci-
sion is one that was originally devised by Chapman. This estimator allows for
inspectors with different capabilities and has low failure rates. Furthermore, it
has a relatively high decision accuracy and performs better than the default de-
cision of always passing a document to the next phase without a reinspection.
We also identified the conditions under which this estimator would work best.

The paper is organized as follows. Section 2 presents background information
about two-person inspections and reinspections in practice. In Section 3 we
provide an overview of CR models. In Section 4 we specify our simulation pa-
rameters, and describe how the results were evaluated. Our results are pre-
sented in Section 5. We conclude the paper with a summary and directions for
future work in Section 6.
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2 Background

This section provides the background for our study in terms of reinspections
and two-person inspections. We first illustrate that performing reinspections is
not a common practice in software engineering. Therefore, the default prac-
tice is to pass all documents after fixing defects found during a single inspec-
tion. Later in this paper we evaluate whether using CR models is better than
such common practice. Following that we review the evidence illustrating that
performing inspections with two inspectors, as opposed to a single or greater
than two inspectors, can be cost effective. This indicates that two-person in-
spections are indeed an effective inspection team size.

2.1 Reinspections in Software Engineering Practice

A reinspection, as used in this paper, is intended to scrutinize an inspected
document anew. The purpose is to identify defects that have been missed
during the initial inspection. It is not to focus on the changes made due to the
initial inspection.

Some inspection implementations involve a follow-up phase at the end of the
inspection process. Fagan [27] reports that this inspection phase aims at veri-
fying whether the author has taken some remedial action for each issue,
problem, and concern detected. He also states that the follow-up phase is an
optional one in the inspection process and that it cannot be considered a rein-
spection.

In their book on software inspections, Strauss and Ebenau [47] describe the
reinspection stage. However, the focus of this is to concentrate on the changes
made after the initial inspection, their interfaces and dependencies. This is dif-
ferent from performing a reinspection to identify defects that have been
missed.

It seems, however, that some companies or projects regard the follow-up
phase as a way to mitigate the risk of remaining defects without spending the
effort on a reinspection. Shirey, for example, presents some results from a sur-
vey at Hewlett-Packard [46]. He found that over half of those questioned had
never reinspected anything. But even if the collected inspection data indicated
a need for a reinspection, it is not performed in each and every case. Barnard
and Price [2] present inspection results from AT&T in which modules were not
reinspected although the inspection data recommended it. They state that this
finding needs further investigation but provide no additional explanation.
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Therefore, it is reasonable to conclude that in practice few organizations have
institutionalized procedures for deciding when to stop inspecting. Even when
reinspections are clearly warranted, this is not systematically performed.

2.2  Two-Inspector Inspections

In this paper, we focus on two inspector inspections. This means that two per-
sons independently scrutinized the software artifact for defects before the in-
spection meeting takes place. This does not necessarily imply a limit to the
overall inspection team size since other people may be involved in the inspec-
tion process, such as an independent moderator. However, the quality of the
inspection process as well as the quality of the artifact after inspection is pri-
marily determined by those people who scrutinize the artifact for defects (i.e.,
the inspectors).

Involving only two inspectors is in line with suggestions in Fagan’s original
work on software inspection [27]. He states that four people (i.e., the inspec-
tion moderator, the author, and two inspectors) constitute a good-sized in-
spection team, although circumstances may dictate otherwise. Such circum-
stances may be, for example, that a requirements document is inspected in-
stead of a code artifact. Since the requirements cannot be checked against a
preceding specification, a requirements inspection often involves more inspec-
tors than other inspection types [28]. For code inspections, however, empirical
evidence suggests that adding inspectors does not necessarily pay-off in terms
of more detected defects. In a controlled experiment, Porter et al. [42] investi-
gated 1, 2, and 4 inspector inspections. They found little difference in the in-
spection effectiveness of 2 and 4 inspectors. However, both were significantly
more effective than 1 inspector inspections. There is also some evidence from
academic environments that limiting the overall inspection team size to two
people is an effective approach. In this case one inspector and the author, who
also acts as an inspector. It was found that such a team constellation decreases
inspection cost while maintaining inspection effectiveness [7][31].

Based on the suggestions and the available empirical findings in the inspection
literature, we can conclude that a two inspector approach represents an ap-
propriate number of inspectors.3

3 A similar conclusion was also drawn by Glass based on his overview of the literature [29].
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3 Overview of CR Models

In biology, capture-recapture studies are used to estimate the size of an animal
population. In doing so, animals are captured, marked, and then released on
several trapping occasions. The number of marked animals that are recaptured
allows one to estimate the total population size based on the samples’ overlap.
When many marked animals are recaptured, one can argue that the total
population size is small and vice versa.

The capture-recapture principle in biology can be transferred to inspections:
each inspector draws a sample from the population of defects in the inspected
software artifact. In this way, an inspector is equivalent to a particular trapping
occasion in biology. A defect discovered by one inspector and rediscovered by
another is said to be recaptured. Based on estimators similar to the ones used
in biology, the total number of defects in the software artifact can be esti-
mated.

The basic idea behind a CR model can be illustrated with reference to Table 1
(see [52]). Here we have the defects found by both inspectors. The value n,
is the number of defects found by both inspectors. The values in parantheses
are unknown. Therefore we do not know n,, which is the number of defects
not found by either of the inspectors.

Found by Inspector 2

Yes No
Found by Inspector 1 Yes n,, n,, n,,
No N, (ny,) (n,.)
n, (n.)  (N)
Table 1: Incomplete contingency table with observed values of defects found from two inspectors.

The odds ratio can be estimated by:

. n,.n
4= 117722

Egn. 1
n12n21

Under independence, the odds ratio has a value of 1. Therefore, by rearrang-
ing Egqn. 1, we can obtain an estimate of n,,:

n.,n
A — 1272
n,, =—— Egn. 2
n11
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The total number of defects in the document can be obtained by:

= M2l _ NNy,
N = N, +tn, +n, =
Ny Ny

Egn. 3

Egn. 3is known as the Lincoln-Petersen estimate, and is commonly used in
practice to estimate the size of animal populations. This estimator makes the
assumption that all defects have the same probability of being detected. There
are other types of models that relax this assumption, and/or invoke further as-
sumptions. These are reviewed below.

3.1 Types of CR Models

The different types of CR models that have been proposed in a biological con-
text make different assumptions about capture probability (see Pollock [40] and
Seber [45] for overviews). This means the probability of an animal being
caught and the probability of catching an animal in a specific trapping occa-
sion.

The first type of models assume that there is a time response. In biology, it
models the fact that on different days the capture probabilities of animals
might vary. For example, small mammals tend to stay in their dry homes during
rainy weather. Therefore, the probability of capturing a small mammal is higher
for days with fine weather than for days with rainy weather. For inspections
this can be used to model inspectors with different abilities to detect defects.
For example, experienced inspectors find more defects than inexperienced in-
spectors and therefore have a higher probability of detecting defects.

The second type of models assume that there is heterogeneity. In biology, it
models the fact that different animals vary in their capture probability. For ex-
ample, older animals are less mobile than younger ones and stay more often in
their homes. Therefore, the probability of capturing an old animal is smaller
than of capturing a young animal. For inspections this can be used to model
defects that differ in their detection probability. For example, defects that are
hard to detect have a lower detection probability than defects that are easy to
detect.

The above two types of models can account for the fact that defect detection
probability can be affected by both inspectors and defects. Inspectors may
have different detection capabilities due to variation in their ability to detect
defects (due to experience, education, or reading technique used) and defects
may have different detection probabilities when there are defects that are
easier to detect than others.

Copyright © Fraunhofer IESE 1999 7
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Table 2:

Four capture-recapture models can therefore be formulated. Model MO as-
sumes that none of these sources of variation exist, Model Mt and Mh account
for exactly one source of variation, and Model Mth accounts for both sources
of variation. When the analogy is made to inspections, these models make the
following assumptions about inspectors and defects:

1. Model MO - No variation: All different defects have the same detection
probability, and all inspectors have the same detection capability.

2. Model Mh - Variation by heterogeneity: Different defects can vary in their
detection probability, but all inspectors have the same detection capability.

3. Model Mt - Variation by time response: All different defects have the same
detection probability, but the inspectors have different detection capabili-
ties. Hence, with this source of variation accounted for, a model allows for
inspectors with differing “general ability”. Note that this “general ability”
affects all defects.

4. Model Mth - Two sources of variation are combined: time response and
heterogeneity. This allows for different detection probabilities for the differ-
ent defects and inspectors.

In addition to these sources of variation, Otis et. al. [38] and White et. al [51]
consider variations due to behavioral or trap response. This reflects the fact
that an animal may change its behavior due to the process of being captured
and marked. For example, when using baited traps, the probability to get
caught for the first time is less than the probability for subsequent captures.
For instance, this is because animals can get fascinated by traps, so marked
animals are more likely to get caught than unmarked animals. In inspections,
this may be usable to model the fact that defects captured by more than one
inspector have usually a higher probability of being detected. However, the es-
timators for this source of variation depend on the order of trapping occasions
(i.e., inspectors). Since no ordering of inspectors seems reasonable in the con-
text of inspections, this type of model is not considered adequate for a soft-
ware engineering context. Table 2 summarizes the models considered here:

Model Source(s) of Variation

MO Defects are equal with respect to their probability of being detected.
The probability of detecting defects among inspectors is the same.

Mt Defects are equal with respect to their probability of being detected.
The probability of detecting defects among inspectors varies.

Mh Defects have different probabilities of being detected.
The probability of detecting defects among inspectors is the same.

Mth Defects have different probabilities of being detected.
The probability of detecting defects among inspectors varies.

Assumptions of the Capture-Recapture models.
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When applying capture-recapture models for estimating the number of de-
fects, suitable estimators are necessary. While the model defines the assump-
tions made about detection probabilities, the corresponding estimator is a for-
mula that actually performs the estimation based on the model’s assumptions.
In order to derive these estimators, the models’ assumptions have to be cast
into a stochastic form. Using estimation techniques, such as maximum likeli-
hood estimation (MLE), estimators can be derived. For one model several esti-
mators can be derived by applying different estimation techniques. Table 3
summarizes the estimators that have been considered in software engineering
for each type of model.

Model Estimator Notation
MO Maximum Likelihood Estimator [38] MO
Mt Maximum Likelihood Estimator [38], MtMLE4
Chao’s Estimator [17
ao’s Estimator [17] MtChS
Mh Jackknife Estimator [13] MhJE®
Chao’s Estimator [15][16] MhCh
Mth Chao’s Estimator [18] MthCh
Table 3: Relevant capture-recapture models and considered estimators. /

In our study we consider all of the above models.® For ease of presentation, in
this paper we will refer to them by the notation in Table 3 (e.g., the MtMLE
model rather than the Mt model with the ML estimator).

3.2 Evaluation of Capture-Recapture Models

At the outset, we define the following notation:

A

N The estimate of the number of defects in the document

N The actual number of defects in the document.

4 For two inspectors this is the same as the well known Lincoln-Peterson estimator shown earlier.

5 For two inspectors, this estimator is the same as the one proposed by Chapman [14]. He noted that with
small sample sizes the traditional Lincoln-Peterson estimator can be biased, and therefore his estimator
corrects for such biases.

6 1n our study we used the testing method in [13] for selecting an appropriate order of the jackknife estima-
tor up to the fifth order.

7 See [12] for a description of the data that would need to be collected during an inspection for each of
these types of models and estimators.

8 |t should be noted that, to our knowledge, ours is the first study that evaluates model MthCh for two in-
spectors. The reason being that Chao provided three estimators under this model. Only the third estima-
tor is implemented in the software that has been most commonly used in previous studies (the software is
described in [43]). The third estimator, by definition, always fails with two inspectors because it encoun-
ters a divide by zero. For our study we use the second estimator that has been provided by Chao.
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10

n, The number of defects found by inspector i, where i=1,2
D The number of unique defects found by the inspection team.
f/ The number of defects found i times, where i=1,2

To date, all previous empirical evaluations of CR models (and the DPM) have
compared the predicted number of defects in an artifact with the actual num-
ber of defects (or variations such as the number of estimated remaining de-
fects with the number of actual remaining defects), for example see
[10][9][48][39][49][44][50]. To be specific, many articles use the relative error
defined as follows:

RE :u Egn. 4

N

Using relative error to evaluate CR models is useful for understanding the be-
havior of the CR models, especially the extent of over/under- estimation in
software engineering contexts. However, relative error is not sufficient for
evaluating how CR models will perform in practice. This is elaborated upon
below.

Relative error is not congruent with the manner in which it has been suggested
that CR models be used in an inspections context. For example, it has been
stated that “The [capture-recapture] method is based on the review informa-
tion from the individual reviewers and through statistical inference, conclusions
are drawn about the remaining number of defects after the review. This would
allow us to take informed and objective decisions regarding whether to con-
tinue, do rework, or review some more.” [54][53], and “One approach to op-
timize the effectiveness of inspections is to reinspect an artifact that is pre-
sumed to still have high defect content. The reinspection decision criterion
could be based on the number of remaining defects after an inspection, which
can be estimated with defect content models.” [10]. Therefore, the current
literature describes a binary decision being made using the estimates: pass or
reinspect. By using the relative error, one is actually imposing harder require-
ments on the performance of CR models. This is illustrated below.

Let us say that an inspection was performed on a document with 30 defects,
and that the inspection found 20 of these. Therefore the inspection effective-
ness is 0.66. Also, let the effectiveness threshold imposed by the organization
be 0.57. This means that the organization wants to ensure that its inspections
attain at least 57% effectiveness. We have a CR model that underestimates
systematically by 20%. In this case, the model would estimate that the docu-
ment has 24 defects, giving an estimated effectiveness of 0.833. The decision
based on the model’s estimate would be to pass the document to the next
phase since the inspection attained the minimal effectiveness. Therefore, even
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though the CR model exhibits underestimation of 20%, it still gives the correct
decision.

As another example, we consider the case of extreme outliers. Some of the CR
evaluation literature has shown a concern with extreme outliers [9]. The con-
cern was based on the argument that if a model exhibits extreme outliers then
inspectors using that model will have a diluted confidence in all of its esti-
mates. Let us say that the CR model has extreme overestimates, say 300%.
The estimated effectiveness when only 10 defects out of 30 are found is 0.11.
The actual effectiveness is 0.33. For an effectiveness threshold of 0.57, the
model that exhibits extreme overestimation still gives the correct decision: rein-
spect.

The above exposition makes clear that evaluating the relative error of a CR
model is insufficient to inform us about the reinspection decision accuracy that
one would expect in practice. It is therefore also necessary to evaluate the de-
cision accuracy of CR models directly.

3.3  Objective of Our Simulation

The objectives of our simulation were twofold:
 |dentify the best performing CR model in terms of decision accuracy

 |dentify the impact of assumption violation on the decision accuracy of the
different CR models.

To our knowledge, this is the first comprehensive Monte Carlo evaluation of all
biological CR models for two person inspections. Furthermore, it is the first
study that explicitly evaluates the reinspection decision accuracy.

Thus far, there has been only one published empirical study that evaluated the
performance (in terms of relative error) of CR models with two inspectors using
a data set from an experiment [10]. Therefore, for two person inspections this
previous study does not inform us about the general utility of CR models for
two inspectors. The authors concluded that none of the biological models that
were studied were applicable with two inspectors. Furthermore, model Mth
was not evaluated.

34 Previous Simulation Studies
There have been seven previous simulation studies that investigated the be-
havior of the biological CR models that we consider here, five were in a wildlife

context, and the remaining two were in a software engineering context. These
are reviewed below to elucidate the similarities and differences with our study.

Copyright © Fraunhofer IESE 1999 1 1
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The simulations conducted by Otis et al. [38] used actual values of N in the
range of 100 to 800. While these numbers may be appropriate in a biological
context, they are larger than the true number of defects that one would expect
in an inspected artifact. Although, some authors have noted that such simula-
tions use unrealistically high population sizes for many field studies in the bio-
logical sciences, where unrealistically high is defined as N >100 [34]. There-
fore, they may not even be appropriate for a biological context. A more realis-
tic value that we use, also used in [49], is 30 defects in a document. Further-
more, the relevant part of this simulation study focused on the accuracy of the
total population size estimate, whereas we are concerned with the reinspection
decision accuracy.

Chao [15][16] evaluated her Mh model estimator using a Monte Carlo simula-
tion where it was compared to the Jackknife. This simulation used population
sizes ranging from 200 to 400, and 5, 7 and 10 capture occasions, and very
low capture probabilities. As noted above, the typical N values in software
engineering would be expected to be smaller, and the studies do not indicate
performance with two captures (inspectors). Another simulation by Chao to
evaluate her model Mt estimator used N values of 500 and 1000 with 40 oc-
casions [17]. Finally, a larger simulation, also by Chao et al. [18], to evaluate
the performance of the Model Mth estimator used N values of 100, 200, and
400. As would be expected, none of the above simulations considered deci-
sion accuracy as a means of evaluating the performance of the estimators.

The fifth simulation was performed in [50] , and was performed in a software
engineering context. This focused on only two models, which are a subset of
the models that we consider in our simulation. The authors also focus on
evaluating the accuracy of the prediction of the number of remaining (undis-
covered) defects rather than on decision accuracy. Furthermore, the authors
assumed five inspectors in their simulation, while we focus on two inspectors.
Finally, these simulations assumed artifacts with 100 defects. For the reasons
cited above, we consider artifacts with only 30 defects.

The sixth simulation was reported in [49]. The objective of this was to evaluate
the suitability of CR models when one is using Perspective-Based Reading (PBR)
techniques. We do not focus on PBR in the current study, and assume a
Checklist-Based Reading approach. The rationale is based on the results
shown in a recent literature review, whereby the authors conclude that CBR is
the predominant reading technique in industry [32].

The simulation study of Menkens and Anderson [34] is the most similar to
ours, although they were not concerned with decision accuracy. The focus of
that study was the evaluation of CR models in studies with small-mammal
populations, which are usually small and their capture probabilities are less
than 0.30. They used values of N ranging from 50 to 100, and capture occa-
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sions of 5, 7, and 10. For the Chapman estimator (model MtCh in our study)
they pooled the observations from the different capture occasions into two oc-
casions, a situation very similar to ours. For the MtCh model, they found that
it generally underestimates and did not perform well when the data met the
assumptions of model Mh and when there was extreme heterogeneity, and/or
when the capture probabilities were low. However, when the data met the as-
sumptions of model Mt and capture probabilities were not extremely low, then
its negative bias decreased considerably.

Copyright © Fraunhofer IESE 1999 1 3
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4 Research Method

In this section we specify the study points for our simulation, and describe how
the different models were evaluated.

4.1 Study Points

14

For all of our simulations we set the population size to 30 defects. As noted
earlier, this is a more realistic value for a population size in a software engi-
neering document. Three sets of variables were manipulated during the simu-
lations: the distribution of defect difficulty, the probability of a defect being
found, and the inspector capability.

As was done in a previous software engineering simulation [50], we define two
classes of defects: those that are difficult to detect, defects of type A, and
those that are easy to detect, defects of Type B. We varied the distribution of
the 30 defects into one of these two classes as follows:

m {n, =0,n, =30}: all defects are of the easy type
m {n, =10,n, =20} two thirds of the defects are of the easy type
m {n, =20,n, =10}: one third of the defects are of the easy type

m {n, =30,n, =0}: all defects are of the difficult type

where n is the number of defects in class A, and n, is the number of defects
in class B.

The second variable that was manipulated was the probability of a defect be-
ing detected. For each of the two classes of defects that are mentioned above
we define these as P, and F, respectively. It is necessary that P, <F,. We

therefore define the following two possibilities as follows:

m {P, =0.1,P, =0.9}: extreme difference in detection probabilities

m {P, =0.4,P =0.6}: moderate difference in detection probabilities

The third variable that we manipulate is the general defect detection effective-
ness of the two inspectors themselves (i.e., their ability to detect defects),
which we denote as P, and R, for inspector X and Y respectively. These were

defined as follows:
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{P, =0.1,P, =0.9}: one inspector is much better than the other in defect
detection

{P, =0.25,P, =0.75}: one inspector is moderately better than the other
in defect detection

{P, =0.4,P, =0.6}: one inspector is marginally better than the other in
defect detection

{P, =0.3,P, =0.3}: both inspectors have the same low ability to detect
defects

{P, =0.8,P, =0.8}: both inspectors have the same high ability to detect
defects

{P, =0.5,P, =0.5}: both inspectors have the same average ability to de-
tect defects

By combining the possible values on these three variables, we end up with 48
study points. Table 4 gives a complete specification of the 48 study points.
Note that the study point numbers provided in this table are used later when
presenting the results. Also, in Table 4 we specify the probability model that is
assumed by each study point. For example, for study point (1) all defects are
easy therefore there is no variation in defect difficulty, but the inspectors vary
in their capability. Therefore, this is an Mt study point. The CV value in the ta-
ble is the coefficient of variation [18] which gives an indication of the extent of
variation in the probability of detecting a defect (i.e., heterogeneity). The
larger the value of CV the greater the heterogeneity.

For each study point 1000 inspections were simulated.

Assumed | CV Probability of both Probability of finding
Model inspectors finding a unique defect by
the same defect the inspection team.
(overlap)
(1) {n,=0,n, =30} Mt 0 0.0729 0.8271
{P,=0.1,P, =0.9)
{P,=0.1,P, =0.9)
2) {n, =10,n =20} Mth 0.595 0.0489 0.5844
{P,=0.1,P =0.9}
{P =0.1,P, =0.9)
3) {n, =20,n, =10} Mth 1.028 0.0249 0.3417
{P =0.1,P,=0.9)
{P =0.1,P =0.9)
@) {n =30,n,=0} Mt 0 0.0009 0.0991
(P =0.1,P,=0.9)
{P =0.1,P =0.9)
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() {n =0,n, =30} Mt 0 0.0324 0.5676
{P =0.4,P,=0.6}
(P =0.1,P =0.9}

®) {n =10,n, =20} Mth 0.176 0.0264 0.5069
{P =0.4,P,=0.6}
(P =0.1,P =0.9}

7y {tn =20,n, =10} Mth 0.202 0.0204 0.4462
{P =0.4,P,=0.6}
(P =0.1,P =0.9}

®) {n, =30,n, =0} Mt 0 0.0144 0.3856
{P =0.4,P,=0.6}
(P =0.1,P =0.9}

©) {n =0,n, =30} Mt 0 0.1518 0.7481
{P =0.1,P,=0.9}
{P, =0.25,P, =0.75)

oy{n =10,n =20} Mth 0.595 0.1018 0.5314
(P =0.1,P =0.9}
{P =0.25,P, =0.75}

11){n =20,n =10} Mth 1.028 0.0518 0.3147
(P =0.1,P =0.9}
{P =0.25,P, =0.75)

(12){n =30,n =0} Mt 0 0.0018 0.0981
(P =0.1,P =0.9}
{P =0.25,P, =0.75}

(13){n =0,n =30} Mt 0 0.0675 0.5325
(P =0.4,P =0.6}
{P =0.25,P, =0.75)

1ay(n =10,n =20} Mth 0.176 0.055 0.4783
(P =0.4,P =0.6}
{P =0.25,P, =0.75}

asytn =20,n =10} Mth 0.202 0.0425 0.4241
(P =0.4,P =0.6}
{P =0.25,P, =0.75)

(e){n =30,n =0} Mt 0 0.03 0.37
(P =0.4,P =0.6}
{P =0.25,P, =0.75}

17){tn =0,n =30} Mt 0 0.1944 0.7056
(P =0.1,P =0.9}
{P, =0.4,P, =0.6}

a8y{n =10,n =20} Mth 0.595 0.1304 0.5029
(P =0.1,P =0.9}
{P,=0.4,P, =0.6}

aoytn =20,n =10} Mth 1.028 0.0664 0.3002
(P =0.1,P =0.9}
{P, =0.4,P, =0.6}
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2o0y{n =30,n =0} Mt 0 0.0024 0.0976
(P =0.1,P =0.93
{P, =0.4,P, =0.6}

21){n =0,n =30} Mt 0 0.0864 0.5136
(P =0.4,P =0.6}
{P, =0.4,P, =0.6}

22){n =10,n =20} Mth 0.176 0.0704 0.4629
(P =0.4,P =0.6}
{P, =0.4,P, =0.6}

23){n =20,n =10} Mth 0.202 0.0544 0.4122
(P =0.4,P =0.6}
{P,=0.4,P, =0.6}

4){tn =30,n =0} Mt 0 0.0384 0.3616
(P =0.4,P =0.6})
{P, =0.4,P, =0.6}

@5){n =0,n =30} MO 0 0.0729 0.4671
(P =0.1,P =0.93
{P, =0.3,R, =0.3}

@6){n =10,n =20} Mh 0.595 0.0489 0.3311
(P =0.1,P =0.9}
{P,=0.3,R, =0.3}

7){n =20,n =10} Mh 1.028 0.0249 0.1951
(P =0.1,P =0.93
{P, =0.3,R, =0.3}

28){n =30,n =0} MO 0 0.0009 0.0591
(P =0.1,P =0.93
{P,=0.3,R, =0.3}

29){n =0,n =30} MO 0 0.0324 0.3276
(P =0.4,P =0.6}
{P, =0.3,R, =0.3}

30){n =10,n =20} Mh 0.176 0.0264 0.2936
{P, =0.4,P =0.6}
{P =0.3,P, =0.3}

31){n, =20,n =10} Mh 0.202 0.0204 0.2596
{P,=0.4,P =0.6}
{P =0.3,R, =0.3}

(32){h, =30,n =0} MO 0 0.0144 0.2256
{P,=0.4,P =0.6}
{P =0.3,R, =0.3}

33){n, =0,n =30} MO 0 0.5184 0.9216
{P,=0.1,P =0.9}
{P, =0.8,P, =0.8}

34){n, =10,n =20} Mh 0.595 0.3477 0.6656
{P,=0.1,P =0.9}
{P, =0.8,P, =0.8}
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Table 4:
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35){n, =20,n =10} Mh 1.028 0.177 0.4096
{P,=0.1,P =0.9}
{P, =0.8,P, =0.8}

@6){n, =30,n =0} MO 0 0.0064 0.1536
{P,=0.1,P =0.9}
{P, =0.8,P, =0.8}

37){n, =0,n =30} MO 0 0.2304 0.7296
{P,=0.4,P =0.6}
{P, =0.8,P, =0.8}

@8){n, =10,n =20} Mh 0.176 0.1877 0.6656
{P,=0.4,P =0.6}
{P, =0.8,P, =0.8}

39){n, =20,n =10} Mh 0.202 0.145 0.6016
{P,=0.4,P =0.6}
{P, =0.8,P =0.8)

@o){n, =30,n =0} MO 0 0.1024 0.5376
{P,=0.4,P =0.6}
{P, =0.8,P, =0.8}

@1){n,=0,n =30} MO 0 0.2025 0.6975
{P,=0.1,P =0.9}
{P, =0.5,P, =0.5}

@2){n, =10,n =20} Mh 0.595 0.1358 0.4975
{P,=0.1,P =0.9}
{P, =0.5,P, =0.5}

@3){n, =20,n =10} Mh 1.028 0.0691 0.2975
{P,=0.1,P =0.9}
{P, =0.5,P, =0.5}

@a)(n, =30,n =0} MO 0 0.0025 0.0975
{P,=0.1,P =0.9}
{P, =0.5,P, =0.5}

@s)in,=0,n =30} MO 0 0.09 0.51
{P,=0.4,P =0.6}
{P, =0.5,P, =0.5}

@6){n, =10,n =20} Mh 0.176 0.0733 0.46
{P,=0.4,P =0.6}
{P, =0.5,P, =0.5}

@7){n, =20,n =10} Mh 0.202 0.0566 0.41
{P,=0.4,P =0.6}
{P, =0.5,P, =0.5}

@8){n, =30,n =0} MO 0 0.04 0.36
{P,=0.4,P =0.6}
{P, =0.5,P, =0.5}

Probabilities associated with the 48 study points.
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4.2 Evaluation Criteria

4.2.1 Bias, Failures and Dispersion

For all our simulations we first compute the median relative error for each
model across all simulated inspections (denoted med(RE)). The med(RE) gives
an indication of a model’s bias. As noted earlier, this would allow us to under-
stand the behavior of the CR models and help interpret the results of the deci-
sion accuracy evaluations. Furthermore, we compute the number of times a
model fails to provide an estimate. This occurs, for example, due to divisions
by zero. Finally, we also evaluate the inter-quartile range (IQR) of the relative
error. This provides us an indication of the dispersion in the relative error val-
ues (i.e., whether the extent of over/underestimates is consistent). For both
the med(RE) and the IQR calculations, case wise deletion of missing values was
performed. Missing values occurred when an estimator fails.

Initially we interpreted the bias and dispersion results manually by looking for
patterns. This is potentially error prone as for each of the med(RE) and IQR re-
sults there are 288 values that need to be interpreted and relevant patterns of
behavior identified. We therefore constructed regression trees to model the
patterns in the results [6]. The unit of observation for this tree construction
process is the study point (i.e., n=48). The regression tree is constructed by re-
cursively creating binary partitions of the observations. The splits are selected
to minimize deviance, defined as:

d=5(y, -y e

where y. is either the med(RE) or IQR value and y is the mean value. The use
of trees has three advantages:

» They can act as a confirmation of our manual search for patterns

* They did indeed identify subtle patterns that were not identified manually
(the reason being that trees can take into account complex interactions)

» They provide a convenient way of presenting the interpretation of the re-
sults

During the tree construction process we did not perform any automatic prun-
ing. The reason being that we wanted to identify all patterns, and therefore
the trees served more of a descriptive intent rather than a predictive one. In a
few cases a tree was manually pruned to remove branches that were of no in-
terpretive value (i.e., they conveyed a pattern that was already identified fur-
ther up the tree or the RE/IQR difference at the terminal nodes was minor). All
trees are presented in the results section.
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4.2.2 Decision Accuracy

20

Following on from the discussion in Section 3.2, here we illustrate how the de-
cision accuracy can be evaluated.

CR models are used to make a binary reinspection decision. For controlling in-
spections, this decision would be based on whether the effectiveness of the in-
spection is above a specified threshold. The effectiveness threshold is set to
ensure a high quality inspection that does indeed detect most detectable de-
fects in the software artifact. Since we do not know the actual effectiveness,
we use the CR estimate to calculate the estimated effectiveness.

Let Q, be the threshold effectiveness set by the organization, then the deci-
sion can be stated in terms of the following inequality:

D
Qp = ﬁ Egn. 6
where % is the estimated inspection effectiveness. If this inequality is satisfied,

then an artifact is passed on to the following phase. If it is not satisfied, then
the artifact should be reinspected.

One can define the whole decision for controlling inspection effectiveness
across many inspections as follows:

51 , /\A/SE Egn. 7
A=0 i %

o, N>—

& Qr

where A is the decision based on the CR model, and is one (pass) if the esti-
mated effectiveness is higher than or equal to a certain threshold, and zero
(reinspect) if it is lower than the threshold.

In evaluating decision accuracy, one can compare the decision based on the es-

timates, A, with the decision that would be made if the CR model was per-
fectly accurate (i.e., always made the correct decision), which we will denote as
A:

51 , /\/SE Egn. 8
A=0 %

o, N>—

= p
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The results of an evaluation study over M inspections can be placed in a
confusion matrix as shown in Table 5.

A
0 1
A 0 My, mi, M.
1 m,, my, M,
M., M., M

Notation for a confusion matrix with the CR model’s decision.

The M value is 1000, which is the number of simulation runs. We define the
decision accuracy in terms of the proportion of correct decisions that would be
made using the estimates:

Decision Accuracy = DA = % Eqn. 9
However, this definition of accuracy does not take into account the improve-
ment due to the use of the CR model estimates. It was noted in Section 2.1
that reinspections are rarely performed in practice. Hence, the “no reinspec-
tion” decision can be considered the default one. If this default decision is the
correct one say 90% of the time and the use of CR model estimates also re-
sults in achieving the correct decision 90% of the time, then using the CR
model estimates does not add any value. Thus, even though correct decisions
90% of the time for CR estimates may seem impressive, under the above con-
dition they are simply an overhead. It is therefore also necessary to consider
the default decision.

We propose the following definition of Relative Decision Accuracy (RDA) that
accounts for improvements over the default decision:®

RDA = DA - A, Eqn. 10

where A, is the accuracy obtained when using the default decision, which in
our case is always pass. More precisely, A, can be defined with reference to
the following confusion matrix:

9 1n this equation we do not normalise by the default accuracy because in many cases the default accuracy
can be zero. This will occur if the threshold is set very high, and therefore the correct decision is always to
reinspect the document. For our purposes, however, this does not change the conclusions that are drawn
during the study.
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Table 6:

Default Decision

0 1
A 0 0 my, M,
1 0 m,, M.,
0 M M

Notation for a confusion matrix with the default decision.

and:

— 22
A, = Eqn. 11

The definition in Egn. 10 indicates how much better a CR model estimate is
beyond the default decision making criterion. It is positive if the CR model de-
cision is better, zero if they are the same, and negative if the CR model deci-
sion is worse than the default decision.

If, during our simulation, there was an instance of failure of an estimator (for
example, this can happen due to a divide by zero) we assign the estimator’s
decision to be the same as the default decision. This is intended to mimic what
would occur in actual practice, and also to ensure that we remain on the con-
servative side while evaluating the CR models.

Since our study is focused on the applicability of CR models to code inspec-
tions, we use two thresholds obtained from an extensive and careful literature
review [8]. During that study it was found that the average effectiveness of
code inspections in practice was 0.57, and the most likely value was 0.7. We
use these two values for Q during our study. The lower threshold is intended

to ensure “above average” defect detection effectiveness, and the higher
threshold is intended to ensure “best in class” effectiveness.

4.2.3 Relationship Between Relative Error and Relative Decision Accuracy

22

Here we demonstrate through examples that a simplistic consideration of the
relationship between the RE and the RDA can cause misleading conclusions
about decision accuracy if med(RE) is used as the only evaluative criterion. We
conclude that explicit evaluation of RDA provides a more realistic picture of the
performance of CR models for making the reinspection decision.

Egn. 6 can be reformulated as follows:

D _1
RE<—0H—-1
N Qp Egn. 12
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If this inequality is satisfied then the decision is to pass the document, other-
wise it should be reinspected.

The expected value for % is given in the last column of Table 4. For the sake

of our examples we will assume that its variance is negligibly small. This as-
sumption simplifies the presentation but does not affect the conclusion.

We can, a priori, determine the expected value for the right hand of Eqn. 12
for both our thresholds. For example, for study point (1) and the threshold of
0.57, the expected value for the right hand side of Egqn. 12 is 0.45. The 0.45
value represents the maximum value of RE in order to pass the document. We
can then determine whether a model with a given med(RE) will make the cor-
rect or incorrect decision. We illustrate this through an example.

Say that the med(RE) of our CR model is —0.15 and the %E—I(;— —1 value is —

p
0.1. This means that at least 50% of the time the RE value will be equal to or
smaller than —0.15, and therefore at least 50% of the time the decision will be
to pass. This happens to be the incorrect decision'© and to also be the default
decision. By considering only the med(RE) and the expected value in Table 4
one would be tempted to conclude that this model will perform badly on this
study point. The RDA for only these lower 50% of observations happens to be
zero.

Now, let us say that for the remaining 50% of the observations, the RE value is
always larger than —0.05. In those cases the inequality of Egn. 12 is not satis-
fied and the decision would be to reinspect the document, which is the correct
decision. The default decision is still to pass the document and is still incorrect.
The RDA for all the observations then would be 0.5, which is a respectable
value. Therefore, consideration of the total RDA provides a more accurate pic-
ture of how well the model is performing for a particular study point, while the
use of the med(RE) would have provided a misleading picture in this case.

Extending the example, consider another CR model for the same study point
that has the same med(RE), but where the top 50% of the observations have
an RE smaller than —0.1. Then the RDA for this model would still be zero.
Therefore, even though this model has the same med(RE) as the model above,
the decision accuracy conclusion is quite different.

D _1
0 Z0—-1is negative that means that the actual effectiveness is below the threshold, and there-

P
fore the correct decision is to reinspect.
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24

The above examples illustrate that using the med(RE) only to draw conclusions
about decision accuracy may provide misleading results. The reason is that de-
cision accuracy is affected by the precision (i.e., dispersion) of the RE and not
only by its central tendency. It becomes important, then, to also evaluate and
compare the performance of CR models using the decision accuracy when the
context is making the reinspection decision.
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5 Results

We first present the results in terms of the relative error and number of fail-
ures. Then we present the dispersion results in terms of the RE IQR. We follow
that with a detailed presentation of the RDA analysis results.

5.1 Evaluation of Relative Error

In Table 7 are the median relative error values for each of the six models for
each of the 48 study points. Also, the table includes the number of times out
of the 1000 runs the model failed to estimate.

Below we first describe three general patterns, followed by the behavior of
each model. For each model we also provide the regression tree that was con-
structed as an aid to understanding the model’s behavior. The variables used
for the tree construction are explained below. Model MO has the most com-
plex behavior and therefore its explanation is the most involved.

We explain the notation for the regression trees with reference to Figure 1.
The squares are terminal nodes and the circles are non-terminal nodes. On
each branch there is condition. If the condition is true then take that branch.
Within each node is the mean med(RE) value for all observations within that
node. This provides a general indication of the bias for the study points that
match the conjunctiuon of conditions leading up to that node. For example,
for the top rightmost terminal node we can say that the study points with
OVERLAP greater than 0.0104 and Tdiff greater than 0.65 have a mean
med(RE) value of 0.576. The value below a node is the deviance for the tree
up to that node.
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MO MTMLE MHJE MTCH MHCH MTHCH
Median No Median No Median No Median No Median No Median No
RE Failures RE Failures RE Failures RE Failures RE Failures RE Failures
1. Mt 1.433 104 -0.133 104 0.166 0 -0.1 0 3.433 104 5.2 89
2. Mth 0.766 216 -0.366 216 -0.2 0 -0.366 0 2.033 216 2.5 234
3. Mth -0.166 473 -0.633 473 -0.566 0 -0.633 0 0.433 473 0.75 421
4. Mt -0.866 977 -0.866 977 -0.9 194 -0.9 0 -0.733 977 -0.833 970
5. Mt 0.833 363 -0.3 363 -0.233 0 -0.233 0 2.7 363 3.079 389
6. Mth 0.633 437 -0.366 437 -0.3 0 -0.333 0 2.266 437 2.406 484
7. Mth 0.433 533 -0.466 533 -0.4 0 -0.4 0 1.433 533 1.77 538
8. Mt 0.1 640 -0.516 640 -0.5 0 -0.5 0 1.033 640 1.22 661
9. Mt 0.266 8 -0.1 8 0 0 -0.066 0 0.9 8 0.227 5
10. Mth -0.1 26 -0.366 26 -0.3 0 -0.333 0 0.433 26 0.027 37
11 Mth -0.466 173 -0.633 173 -0.6 0 -0.6 0 -0.133 173 -0.466 189
12 Mt -0.866 948 -0.866 948 -0.9 207 -0.9 0 -0.733 948 -0.9 944
13 Mt 0.233 113 -0.166 113 -0.3 0 -0.166 0 1.033 113 0.282 124
14 Mth 0.1 162 -0.233 162 -0.366 0 -0.2 0 1.033 162 0.313 230
15 Mth 0.033 261 -0.3 261 -0.433 0 -0.3 0 0.666 261 0.137 277
16 Mt -0.066 389 -0.366 389 -0.516 0 -0.333 0 0.666 389 0.066 392
17 Mt 0.033 4 -0.066 4 -0.1 0 -0.033 0 0.4 4 -0.144 0
18 Mth -0.266 13 -0.333 13 -0.366 0 -0.316 0 0.033 13 -0.340 12
19 Mth -0.566 110 -0.6 110 -0.633 0 -0.6 0 -0.3 110 -0.587 107
20 Mt -0.9 925 -0.9 925 -0.9 186 -0.866 0 -0.833 925 -0.833 938
21 Mt -0.033 73 -0.1 73 -0.333 0 -0.133 0 0.633 73 -0.066 70
22 Mth -0.1 109 -0.166 109 -0.4 0 -0.2 0 0.466 109 -0.106 111
23 Mth -0.166 174 -0.233 174 -0.466 0 -0.233 0 0.433 174 -0.187 189
24 Mt -0.166 303 -0.3 303 -0.533 0 -0.3 0 0.366 303 -0.194 320
25 MO -0.1 106 -0.166 106 -0.4 0 -0.166 0 0.45 106 -0.155 109
26 Mh -0.433 209 -0.466 209 -0.6 0 -0.433 0 0.033 209 -0.4 241
27 Mh -0.733 449 -0.766 449 -0.766 7 -0.7 0 -0.566 449 -0.737 481
28 MO -0.933 971 -0.933 971 -0.9 449 -0.933 0 -0.933 971 -0.9 972
29 MO -0.3 360 -0.333 360 -0.566 0 -0.333 0 0.366 360 -0.3 375
30 Mh -0.433 435 -0.466 435 -0.633 0 -0.433 0 0.066 435 -0.4 447
31 Mh -0.466 518 -0.566 518 -0.666 0 -0.5 0 -0.083 518 -0.5 556
32 MO -0.566 641 -0.6 641 -0.733 2 -0.566 0 -0.166 641 -0.533 642
33 MO -0.033 0 -0.033 0 0.066 0 0 0 0.066 0 -0.358 0
34 Mh -0.266 0 -0.3 0 -0.233 0 -0.266 0 -0.2 0 -0.507 0
35 Mh -0.566 2 -0.566 2 -0.533 0 -0.533 0 -0.433 2 -0.656 1
36 MO -0.766 808 -0.766 808 -0.833 37 -0.733 0 -0.566 808 -0.75 839
37 MO -0.033 1 -0.033 1 -0.066 0 -0.033 0 0.3 1 -0.222 1
38 Mh -0.066 4 -0.066 4 -0.166 0 -0.1 0 0.3 4 -0.24 2
39 Mh -0.066 10 -0.1 10 -0.233 0 -0.1 0 0.4 10 -0.212 14
40 MO -0.066 34 -0.1 34 -0.3 0 -0.133 0 0.466 34 -0.155 43
41 MO -0.033 2 -0.033 2 -0.1 0 -0.033 0 0.316 2 -0.212 0
42 Mh -0.3 10 -0.333 10 -0.366 0 -0.333 0 0 10 -0.406 11
43 Mh -0.566 103 -0.6 103 -0.633 0 -0.566 0 -0.3 103 -0.635 101
44 MO -0.866 924 -0.866 924 -0.9 181 -0.85 0 -0.733 924 -0.833 925
45 MO -0.1 62 -0.1 62 -0.333 0 -0.133 0 0.466 62 -0.155 71
46 Mh -0.166 103 -0.166 103 -0.4 0 -0.2 0 0.433 103 -0.187 96
47 Mh -0.166 168 -0.266 168 -0.466 0 -0.233 0 0.366 168 -0.202 165
48 MO -0.266 282 -0.3 282 -0.533 0 -0.3 0 0.366 282 -0.25 291
Table 7: Median relative error and number of failures for each of the models and study points.
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5.1.1 Extent of Overlap

When the inspection team has low capability, then it is expected that the
overlap in defect detection between the two inspectors approaches zero quite
frequently (i.e., f, - 0). In the decision trees this is exemplified by low values
of the variable OVERLAP. In all decision trees the variable OVERLAP was se-
lected, indicating that it is an important one for explaining the behavior of the
CR models. In all six trees, whenever there is a split on the OVERLAP variable
the lower OVERLAP value branch underestimates. For example, in Figure 1 the
split at the root shows that the low OVERLAP branch (left branch) has a much
larger underestimation (node value of —0.866) than the high OVERLAP branch
(right branch with node value —0.07). This indicates that low OVERLAP leads to
underestimation, and can be confirmed by inspecting Table 7.

For study points with the lowest probability of inspectors finding defects in
common (OVERLAP) all of the models will underestimate considerably (see
study points (4), (12), (20), (28), (32), (36), and (44)). Furthermore, models MO,
MtMLE, MhJE, MhCh, and MthCh will have large numbers of failures under
these conditions, making them clearly unusable when the inspectors find few
defects in common.

5.1.2 Extent of Heterogeneity (CV)

We would expect that heterogeneity would have a minimal impact on the RE
values of models MhJE, MhCh, and MthCh. However, this is not the case.
Models MhCh and MthCh are affected by heterogeneity, whereas MhJE is not.
This is evident in the respective decision trees (see Figure 5 and Figure 6).
However, for the former two models the impact of CV is secondary to the
impact of OVERLAP and inspector capability differences.!’

Whenever CV is high (high heterogeneity) the tendency is for the RE value to
decrease (i.e. tending towards a negative bias). For example, in Figure 1 the
split on the CV value of 0.8115 indicates that the lower CV branch (left
branch) has a much smaller underestimation than the high CV branch (right
branch).

5.1.3 Extent of Inspector Capability Differences

We define the variable “Tdiff” as the difference in the expected defect
detection probability between the two inspectors. For example, for stuy point
(1) this would be 0.8. We would expect that models MtMLE, MtCh, and
MthCh would be minimally impacted by differences in inspector capabilities.

11 This is because the splits on CV occur below the splits on the other variables.
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However, for model MthCh Tdiff is the most important variable that explains
its behavior, indicating a strong sensitivity to inspector capability differences.
This can be seen by looking at the top 8 study points in Table 7 and comparing
them to the other study points.

Inspection of the decision trees indicates that as inspector capability differences
increase, CR models that are affected by this variable tend to have a larger RE
(i.e., tending towards a positive bias). For example, in Figure 1 the split on the
Tdiff value of 0.65 indicates that the lower Tdiff branch (left branch) has a
negative bias, whereas the higher Tdiff branch (right branch) has a positive
bias.

5.1.4 Model MO

28

The regression tree for model MO is shown in Figure 1. Study points that meet
the assumptions of model MO or that depart minimally from them (i.e. zero or
low Tdiff and zero or low CV) and where the probability of both inspectors
finding a defect (OVERLAP) is relatively high, then MO will estimate relatively
accurately (see study points (33), (37), (40), and (41)). For MO study points,
model MO tends to fail frequently and has large underestimation with rela-
tively low defect overlap (see study points (25), (29), (45), and (48)).

The behavior of model MO for non-MO study points is affected by the three
factors mentioned above as follows:

» As the number of defects found by both inspectors (overlap) decreases, so
does the extent of underestimation of this model.

e As the CV increases, so will the extent of underestimation of this model.

e As the differences in the capabilities of the inspectors increase, so does the
extent of overestimation of this model.

When there exist combinations of the above (e.g., high CV and low defect
overlap) then the model’s bias is in the direction predicted above if the combi-
nation results in bias in the same direction, or if the combination has biases in
different directions, then, in general, it will tend to overestimate. We consider
some examples to illustrate the point.

Mh study points with low CVs and relatively high probability of overlap will
have a small negative bias (see study points (38) and (39)). When the CVs are
low and the probability of overlap is relatively low MO will underestimate (see
study points (30), (31), (46) and (47)), that have high CVs and a relatively high
probability of overlap, MO will still underestimate (see study points (34), (35),
(42)), or that have a high CV and a relatively low probability of overlap will also
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underestimate (see study point (26), (27), and (43)). Therefore, any combina-
tion of the first two factors leads to underestimation.

For Mt study points the tendency is to overestimate, especially as the differ-
ence in inspector capability increases. However, this is balanced by the magni-
tude of the probability of overlap, which can cause MO to underestimate. For
example, study point (24) has a mild difference in inspector capabilities and a
low probability of overlap. This leads to underestimation. Study point (5) has a
large difference in inspector capability and also a low probability of overlap.
This leads to overestimation.

The behavior of model MO under Mth study points is the most dependant on
the above three factors. For example, if the difference in inspector capability is
low and CV is low, but the probability of overlap is also low then it will under-
estimate (see study points (22) and (23)). If CV is high and the probability of
overlap is also high, then it will also underestimate (see study point (18)).
When the differences in inspector capabilities increases and CV decreases, then
it overestimates (see study points (6) and (7)).

From this exposition we can see that model MO only works well when its as-
sumptions are met (i.e., no differences in the probability of finding defects and
no differences in inspector capabilities) and when the probability of defect
overlap high. Under other conditions, its exact behavior can vary dramatically
depending on the extent of departure from MO assumptions and the extent of
defects found by both inspectors. Such sensitivity does not recommend its use
unless its assumptions are known to be met.
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Figure 1:

5.1.5 Model MtMLE

Decision tree explaining the relative error of model MO.

The regression tree for model MtMLE is shown in Figure 2. As the OVERLAP
decreases, the model MtMLE tends to underestimate considerably, even when
its assumptions are met (see study points (1), (5), (8), (9), (13), (16), (21), and
(24)). When CV is zero or low and OVERLAP is high then the bias of model
MtMLE approaches zero. Therefore, for a subset of MO study points model
MtMLE works well (see study points (33), (37), and (41)). In other situations

30
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this model will have a nonnegligible negative bias due to a large CV, even if

OVERLAP is large.

Results

Therefore, when the assumptions model MtMLE are violated it underestimates
considerably. Even if its assumptions are not violated, if OVERLAP is not suffi-
ciently large it will still underestimate.
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Figure 2:
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Decision tree explaining the relative error of model MtMLE.
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5.1.6 Model MhJE

The regression tree for model MhJE is shown in Figure 3. Similar to other mod-
els, the Jackknife estimator exhibits negative bias when OVERLAP is small. This
is compensated for when the difference between inspectors increase (as noted
earlier, larger Tdiff leads to overestimation). As the OVERLAP increases MhJE
performs well for MO and Mt study points (for example see study points (33),
(37), (41), (9), and (17)). Otherwise, the Jackknife estimator will in general un-
derestimate. Even for Mh study points with a large OVERLAP, this estimator
exhibits large underestimation (see study points (34), (38), and (42)). In gen-
eral, if CV is not zero it will underestimate. This is surprising as it indicates that
this model would work well when its assumptions are violated (Mt study
points), but underestimates when its assumptions are met.

Bahavor of WhJE

OWERLAP=D.O071ES
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Figure 3: Decision tree explaining the relative error of model MhJE.
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5.1.7 Model MtCh

The regression tree for model MtCh is shown in Figure 4. This Chao estimator
never fails, which is quite different from all of the estimators considered
above'2. It will, however, generally underestimate defect content. When
OVERLAP is low this underestimation increases in general for all types of study
points. For MO and Mt study points that have a high OVERLAP, model MtCh
does perform reasonably well with its relative error approaching zero (e.g., see
study points (9), (17), (33), (37), and (41)). For Mh study points the best per-
formance was obtained when CV was low (study points (38) and (39)), but de-
teriorated when CV was large and/or when the probability of overlap was low
(study points (26), (27), (30), (31), (34), (35), (42), (43), (46), and (47)). These
results are consistent with the findings from the simulation in [34].

12 The reason is that the closed form for this model with two inspectors does not entail a divide by zero
when no defects are found in common:

| — (n1 +1)><(n2 +1)
ey
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Figure 4:

B hauor of IECHh
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Decision tree explaining the relative error of model MtCh.

5.1.8 Model MhCh

34

The regression tree for model MhCh is shown in Figure 5. In general, this
model exhibits overestimation. Its RE is affected primarily by the differences in
inspector capability. Differences in inspector capability violate the assumptions
of this model. Therefore, when Tdiff is large the overestimation can be con-
siderable. If the differences are small but the OVERLAP is also small, then
MhCh tends towards underestimation. Surprisingly, under the moreorless ideal
conditions of a relatively high OVERLAP and a small Tdiff, this model is affected
by differences in CV. If heterogeneity is large then this model performs better.
If heterogeneity is subtle then it overestimates considerably.
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Figure 5:

5.1.9 Model MthCh

The regression tree for model MtCh is shown in Figure 6. This model has a
general tendency for underestimation. Its behavior, however, is consistent
with the patterns that we have seen above. It will overestimate if the differ-
ences between the capabilities of the two inspectors are large, otherwise its

Results
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Decision tree explaining the relative error of model MhCh.

bias will tend towards a negative direction, and eventually as the differences in
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capability disappear, it will underestimate. For low OVERLAP study points its
underestimation will tend to increase.'3

Buhavor of MhCh
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Figure 6: Decision tree explaining the relative error of model MthCh.

13 Note that the lowest right terminal node in the regression tree of Figure 6 may give the impression that
for high OVERLAP and Tdiff the RE is small. However, this is not the case as this node combines study
points with positive and negative med(RE), and when averaged this gives a value close to zero.
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5.1.10 Conclusions On Relative Error

By considering the results above on the relative error of CR models with two
inspectors, one would be forgiven for concluding that CR models are not us-
able for two inspectors. Most models tend to exhibit gross over/under estima-
tion, and in some cases fail more than half the time.

We can also compare these results with the results from a previous study that
evaluated CR models with two inspectors which used an actual data set [10].
There it was found that all models (except MthCh, which was not evaluated)
underestimate. Our results indicate that the CR models sometimes over and
sometimes under estimate with two inspectors, depending on a number of
other factors. This highlights the importance of performing simulation studies
to understand the general behavior of such models.

5.2 Evaluation of Dispersion

The values of inter-quartile range for all of the models across all study points
are shown in Table 8. We would expect that as a model’s assumptions are
met, its bias will become more consistent and it will have lower IQR. Further-
more, we would expect assumption violations to increase IQR. We would also
expect that increases in OVERLAP will lead to reductions in the IQR.

In general we observe that at low or high values of OVERLAP, the dispersion
tends to be low. Whereas at moderate values of OVERLAP, the IQR tends to be
at its highest. This behavior is consistent across all models.

Another consistent behavior across all models is that smaller values of CV leads
to increases in the IQR. For models that attempt to capture heterogeneity
(models of type Mh and Mth) this is likely an indicator that these models re-
quire large differences in defect detection probabilities in order to produce
consistent estimates when there are only two inspectors. However, for the
other models this behavior is counter-intuitive because a smaller CV would be
closer to their assumptions.

The above points make clear that, even if we select the appropriate model for
a particular situation, we may not be ensuring that the bias is consistent.

By consideration of all the regression trees, we can state that Tdiff and
OVERLAP are the most important variables in explaining dispersion because
they are the ones used for the root node split.

In the following exposition, we will focus on patterns that add to the general
ones discussed above.
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Table 8:
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MO MTMLE MHJE MTCH MHCH MTHCH
1. Mt 1.233 0.2 0.133 0.233 3.525 10.079
2. Mth 1.033 0.166 0.133 0.233 2.7 7.074
3. Mth 0.566 0.1 0.1 0.141 1 1.501
4. Mt 0.133 0.066 0.033 0.1 0.266 0.2
5. Mt 0.8 0.3 0.166 0.466 2.4 5.715
6. Mth 0.8 0.283 0.166 0.4 2.1 4.386
7. Mth 0.833 0.266 0.2 0.433 2.1 3.225
8. Mt 0.7 0.233 0.166 0.4 1.466 2.699
9. Mt 0.466 0.3 0.166 0.3 0.966 0.981
10. Mth 0.4 0.266 0.133 0.233 0.866 0.888
11 Mth 0.333 0.166 0.1 0.2 0.766 0.552
12 Mt 0.041 0.041 0.033 0.166 0.1 0.15
13 Mt 0.866 0.483 0.2 0.433 1.833 1.411
14 Mth 0.8 0.5 0.2 0.433 1.666 1.256
15 Mth 0.7 0.5 0.166 0.408 1.6 1.075
16 Mt 0.666 0.466 0.166 0.433 1.366 1.031
17 Mt 0.3 0.266 0.166 0.266 0.6 0.385
18 Mth 0.3 0.266 0.133 0.266 0.666 0.344
19 Mth 0.233 0.233 0.133 0.2 0.6 0.3
20 Mt 0.133 0.1 0.033 0.166 0.266 0.15
21 Mt 0.633 0.5 0.166 0.433 1.266 0.684
22 Mth 0.566 0.533 0.166 0.433 1.366 0.745
23 Mth 0.666 0.466 0.166 0.466 1.366 0.722
24 Mt 0.6 0.5 0.166 0.466 1.066 0.522
25 MO 0.566 0.533 0.166 0.408 1.366 0.709
26 Mh 0.466 0.366 0.166 0.333 0.766 0.504
27 Mh 0.2 0.2 0.133 0.266 0.366 0.266
28 MO 0.033 0.033 0 0.066 0.1 0.1
29 MO 0.458 0.433 0.166 0.433 0.833 0.570
30 Mh 0.5 0.366 0.133 0.366 0.966 0.45
31 Mh 0.383 0.366 0.166 0.4 0.766 0.447
32 MO 0.266 0.3 0.133 0.333 0.633 0.337
33 MO 0.1 0.1 0.1 0.1 0.166 0.1
34 Mh 0.1 0.1 0.133 0.1 0.166 0.110
35 Mh 0.133 0.133 0.133 0.133 0.233 0.134
36 MO 0.3 0.166 0.1 0.2 0.433 0.197
37 MO 0.3 0.266 0.166 0.266 0.533 0.303
38 Mh 0.3 0.3 0.166 0.266 0.633 0.347
39 Mh 0.366 0.4 0.166 0.3 0.8 0.426
40 MO 0.466 0.466 0.166 0.4 1.033 0.538
41 MO 0.3 0.3 0.166 0.266 0.633 0.330
42 Mh 0.266 0.266 0.166 0.233 0.5 0.292
43 Mh 0.2 0.233 0.133 0.2 0.566 0.286
44 MO 0.166 0.133 0.033 0.166 0.366 0.097
45 MO 0.5 0.5 0.166 0.433 1.033 0.576
46 Mh 0.6 0.5 0.166 0.433 1.166 0.606
47 Mh 0.633 0.5 0.2 0.466 1.3 0.622
48 MO 0.566 0.5 0.166 0.5 1.166 0.535

The inter-quartile range for all study points.
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The regression tree summarizing the results for model MO is shown in Figure 7.
The RE dispersion of this model is most sensitive to the differences in inspector
capability. As inspector capability differences increase, this model will have a
greater RE dispersion (see study points (1), (2), (3), (5), (6), (7), and (8)). In
general as OVERLAP decreases, the dispersion will also decrease (see study
points (4), (12), (20), (28)), and also as it reaches high values dispersion will de-
crease (see study points (33) and (34)). It can be seen that MO study points do
not necessarily have the lowest dispersion, and that reduction in dispersion of
these study points is more a consequence of OVERLAP.
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Figure 7: Decision tree showing the IQR behavior of model MO.
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Figure 8:

40

The regression tree for model MtMLE is shown in Figure 8. The RE dispersion
of this model is affected strongly by OVERLAP. If OVERLAP is not too small
(greater than 0.0104) then higher values of CV will tend to have a smaller dis-
persion. This is counterintuitive as a high CV is a violation of this model’s as-
sumptions (for example, compare study points (2) and (3) with study points (6)

and (7)).
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The regression tree for model MhJE is shown in Figure 9. In general we can see
from Table 8 that model MhJE consistently has the smallest dispersion for all
study points. It is interesting to note that when this model’s assumptions are
violated in the form of Mt study points, the dispersion is not dramatically dif-
ferent from study points that conform to its assumptions. Otherwise, the RE
dispersion behavior follows the same general pattern identified above.
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Figure 9: Decision tree showing the IQR behavior of model MhJE.

The regression tree for model MtCh is shown in Figure 10. The RE dispersion
behavior follows the same general pattern identified above.
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Figure 10:
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Decision tree showing the IQR behavior of model MtCh.

The regression tree for model MhCh is shown in Figure 11. As would be ex-
pected for this model, the greater the differences in inspector capabilities (a
violation of its assumptions), the greater the RE dispersion. This is evident by
inspecting study points (1), (2), (3), (5), (6), (7), and (8).
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Figure 11: Decision tree showing the IQR behavior of model MhCh.

The regression tree for model MthCh is shown in Figure 12. The RE dispersion
of this model is dependent mainly on the differences in inspector capabilities,
and increases as this difference increases. This can be seen from study points
(1), (2), (3), (5), (6), (7), and (8). Although not evident in the regression tree,
inspection of Table 8 indicates that study points with low OVERLAP tend to
also have a low dispersion compared to other study points with similar charac-
teristics (see study points (4), (12), (20), (28), and (44)), and so do study points
with a high OVERLAP (see study points (33) and (34)).
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Figure 12:
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Decision tree showing the IQR behavior of model MthCh.

In general, we can conclude that model MhJE has the lowest dispersion, and
that models MO, MtMLE, and MtCh exhibit counterintuitive behavior in that
their RE dispersion increases the more their assumptions are met. \We have

also identified the general patterns for increases and decreases in dispersion.

Evaluation of Decision Accuracy

The decision accuracy results for both thresholds are provided in Table 9. This
includes the DA and RDA results. We only consider models MhJE and MtCh
since the other models can have such large failure rates that they cannot be se-
riously recommended for practical usage with two inspectors, even if their
med(RE) and IQR values did exhibit favorable values. For the RDA results, we
have bolded the entries in these table that exhibit performance as good as or
better than the default decision.

It is convenient to separate the discussion into those study points that have ex-

pected effectiveness above the threshold (see the last column in Table 4), and
those that have an expected frequency below the threshold.
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5.3.1 High Capability Inspection Teams

When the team capture probabilities (see Table 4) are high (i.e., the team is
highly effective), then the correct decision is more frequently to pass the
document to the next phase. This means that the default decision is correct
more frequently. This presents a bigger hurdle for a CR model to overcome in
order to provide value beyond the default decision.

For the lower threshold, study points (1), (9), (17), (33), (34), (37), (38), (39),
and (41) have expected effectiveness that are above it. Similarly, for the higher
threshold study points (1), (9), (17), (33) and (37) have expected effectiveness
that are above it. When the CR models are applied to inspections with these
characteristics they tend to exhibit performance that is as good as or worst
than the default decision. This is exemplified by the RDA values of zero or less.

The reason is that for these study points, CR models that are perfectly accurate
(med(RE)=0) or that exhibit underestimation will frequently make the correct
decision. Or, if the CR models overestimate slightly then they will still make
the correct decision. It will be seen that this is the case for all of the above
study points. Since the correct decision is the same as the default decision the
RDA will be close to zero.

The DA values for these study points are, however, very large, indicating a
good decision accuracy. This is true for both CR models and both thresholds.

5.3.2 Low Capability Inspection Teams

When the inspection team has low capability (below the threshold), then CR
models that are accurate (i.e., med(RE)=0)) or that overestimate will frequently
make the correct decision (i.e., reinspect). Conversely, if a CR model underes-
timates then it could also make the correct decision. But this depends on three
factors, the extent of underestimation, the dispersion and the CHALLENGE.
We define CHALLENGE as the difference between the expected effectiveness
and the threshold. If the difference is large then it is a bigger challenge for the
inspection team to attain an effectiveness as high as the threshold. If the dif-
ference is small then it is a smaller challenge for the inspection team to attain
an effectiveness as high as the threshold.

As would be expected, the smaller the underestimation the more likely that the
model will make the correct decision. If the dispersion is large, then a larger
proportion of the model’s underestimates will not be as extreme. Therefore,
greater dispersion will in general improve decision accuracy. As the
CHALLENGE increases, then underestimation will still lead to the correct deci-
sion. We can interpret the DA results in terms of these patterns.
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As we saw earlier, when OVERLAP is low model MhJE and MtCh exhibit ex-
treme underestimation, and therefore their decision accuracy will tend to be
low. This is exemplified by study points (4), (8), (12), (20), (28), (36), (44).
Model MtCh has a larger dispersion than model MhJE, therefore its decision
accuracy will tend to be better for these study points. However, these differ-
ences are diluted as the underestimation increases. For these study points,
model MtCh still performs considerably better than the default decision, as ex-
emplified by the RDA values.

On study points where the dispersion of MtCh is high and the CHALLENGE is
large, the decision accuracy tends to increase. For example, for the lower
threshold compare study points (16), (24), (26), (29), (30), (31), (32), and (48)
with study points (10), (11), (18), (19), (35), (42). In the former both IQR and
CHALLENGE were large, whereas for the latter both were low.

5.3.3 Selection of the Appropriate Model

46

Based on the above discussion, and with the knowledge about bias and disper-
sion that we gained from the previous results, we can say that the greatest de-
cision accuracy will be gained when:

* Underestimation is not too extreme: avoid small OVERLAP and CV is small
e IQRis large: medium OVERLAP and CV is small
e CHALLENGE is large: setting challenging thresholds

Furthermore, it is clear that model MtCh is a big improvement over MhJE in
terms of decision accuracy. Even though the decision accuracy of MtCh is not
always very high, it will consistently provide a decision that is better than the
default decision. When the above conditions are met model MtCh will differ-
entiate well between inspections that are above/below the thresholds. There-
fore, out of all the six CR models the MtCh model is the one recommended for
making the reinspection decision with two inspectors.

To attain the above conditions, the two inspectors should not be looking for
different defects (e.g., as in perspective-based reading) since this will poten-
tially lead to a small OVERLAP. Furthermore, the inspectors should not have
the same specialization in terms of the defects that they look for (otherwise
there will be a large OVERLAP). In addition, there should not be great discrep-
ancies in the difficulty of the defects that exist in the document or the distribu-
tion of defect difficulty should not be uniform (i.e., CV should not be very
large).
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Results

Lower Threshold (0.57) Higher Threshold (0.7)
MhJE MtCh MhJE MtCh

DA RDA DA RDA DA RDA DA RDA
1. Mt 1 0.000 0.928 -.072 0.934 -.060 0.811 -.164
2. Mth 0.532 0.000 0.533 .001 0.064 .006 0.23 .190
3. Mth 0 0.000 0.167 167 0 0.000 0.182 184
4. Mt 0 0.000 0.079 .079 0.238 .238 0.237 .237
5. Mt 0.437 0.000 0.46 .023 0.104 .012 0.405 .367
6. Mth 0.195 0.000 0.368 173 0.032 .006 0.407 421
7. Mth 0.068 0.000 0.381 .313 0.007 .004 0.427 445
8. Mt 0.017 0.000 0.419 402 0.001 .001 0.441 .451
9. Mt 0.977 0.000 0.902 -.075 0.801 -.002 0.674 -.083
10. Mth 0.248 0.000 0.299 051 0.015 0.000 0.272 .269
11 Mth 0 0.000 0.182 .182 0 0.000 0.287 .289
12 Mt 0 0.000 0.159 .159 0.206 .206 0.451 .451
13 Mt 0.296 0.000 0.431 135 0.053 .002 0.594 .621
14 Mth 0.127 0.000 0.431 .304 0.009 0.000 0.63 .659
15 Mth 0.034 0.000 0.471 437 0.004 0.000 0.656 .674
16 Mt 0.011 0.000 0.537 .526 0 0.000 0.688 .695
17 Mt 0.926 0.000 0.832 -.094 0.61 .001 0.523 .008
18 Mth 0.136 0.000 0.233 .097 0.009 0.000 0.367 .376
19 Mth 0 0.000 0.199 .199 0.001 .001 0.402 402
20 Mt 0 0.000 0.2 .200 0.222 222 0.554 .554
21 Mt 0.229 0.000 0.435 .206 0.031 0.000 0.702 711
22 Mth 0.092 0.000 0.457 .365 0.003 0.000 0.734 747
23 Mth 0.033 0.000 0.527 494 0.001 0.000 0.778 .790
24 Mt 0.005 0.000 0.607 .602 0 0.000 0.818 .823
25 MO 0.098 0.000 0.487 .389 0.008 0.000 0.769 .780
26 Mh 0.002 0.000 0.417 415 0 0.000 0.692 .695
27 Mh 0 0.000 0.347 .347 0.018 .018 0.578 .578
28 MO 0 0.000 0.05 .050 0.272 272 0.343 .343
29 MO 0.001 0.000 0.62 .619 0 0.000 0.835 .837
30 Mh 0.001 0.000 0.622 .621 0 0.000 0.828 .830
31 Mh 0 0.000 0.597 .597 0 0.000 0.809 .810
32 MO 0 0.000 0.6 .600 0.015 .015 0.799 799
33 MO 1 0.000 1 0.000 1 0.000 0.997 -.003
34 Mh 0.946 0.000 0.945 -.001 0.379 0.000 0.38 .005
35 Mh 0.003 0.000 0.019 .016 0 0.000 0.064 .066
36 MO 0 0.000 0.427 427 0.09 .090 0.709 .709
37 MO 0.957 0.000 0.894 -.063 0.72 0.000 0.585 -.038
38 Mh 0.835 0.000 0.743 -.092 0.419 0.000 0.472 .169
39 Mh 0.585 0.000 0.532 -.053 0.164 -.001 0.51 428
40 MO 0.292 0.000 0.431 139 0.059 0.000 0.671 .649
41 MO 0.914 0.000 0.82 -.094 0.563 0.000 0.5 .055
42 Mh 0.123 0.000 0.224 101 0.007 0.000 0.378 .388
43 Mh 0 0.000 0.2 .200 0 0.000 0.441 442
44 MO 0 0.000 0.189 .189 0.223 223 0.567 .567
45 MO 0.194 0.000 0.434 .240 0.03 .001 0.72 717
46 Mh 0.093 0.000 0.471 .378 0.003 0.000 0.738 .745
47 Mh 0.027 0.000 0.505 478 0 0.000 0.775 779
48 MO 0.003 0.000 0.597 .594 0 0.000 0.824 .828

Table 9: Decision accuracy and relative decision accuracy results for both effectiveness thresholds.
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Discussion and Conclusions

Capture-recapture models have been proposed as a means for controlling the
effectiveness of software inspections, and in general that they can be used to
decide when to stop inspections. In this paper we reported on an extensive
Monte Carlo simulation that evaluated the accuracy of CR models for two in-
spectors in the context of code inspections. This study examined in detail the
bias in terms of relative error, failure rates, dispersion of relative error, decision
accuracy, and relative decision accuracy. For each of these we identified the
conditions under which these evaluative measures will increase/decrease. Fur-
thermore, we were able to draw conclusions about which of the models is
most usable for making the reinspection decision, what accuracy to be ex-
pected from its use in general, and under what conditions it will perform the
best.

The model that we found suitable is MtCh. This model accounts for differ-
ences in inspector capability but assumes that defects are of the same diffi-
culty. The estimator is that of Chao [17], but was originally suggested by
Chapman [14]. Compared to other models, this one did not fail to provide an
estimate under any of the conditions we studied, and therefore is generally us-
able. It will tend to underestimate if the two inspectors find few or no defects
in common and if there are large variations in defect difficulty. Its bias will not
be adversely affected if there are large differences in inspector capability. If
the inspectors find too few or too many defects in common the dispersion of
its relative error will tend to decrease, and if the variation in defect difficulty is
large its relative error dispersion will tend to decrease. We did not find evi-
dence that differences in inspector capabilities affect its relative error disper-
sion. If the organization defines a minimal effectiveness threshold for its in-
spections, then compared to other models, this model will differentiate well
between inspections that exceed the threshold and those that are below the
threshold, hence making it conducive to deciding when to stop inspections.
When an inspection has an effectiveness that is larger than the threshold, then
its underestimation is an advantage in that it will make the correct decision al-
most all the time. If the inspection is below the threshold, then its large rela-
tive error dispersion is an advantage in that it will frequently make the correct
decision, and this will always be better than the default decision of always
passing a document to the next phase. This model will perform the best in
terms of making the correct reinspection decision if the inspectors do not find
too many or too few defects in common, if there is not a large variation in de-
fect difficulty, and if the organization sets challenging thresholds for itself.
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Our conclusions are inconsistent with an earlier study that evaluated CR mod-
els with two inspectors using data from an experiment where the accuracy of
CR models was evaluated [10]. In that study the authors concluded that cap-
ture-recapture models are not usable with two inspectors, whereas we can
conclude that model MtCh is a reasonable choice. We attribute this difference
to the use of Monte Carlo simulation, which allowed us to study more condi-
tions (whereas in [10] only one condition was examined) and therefore draw
more general and stronger conclusions.

While these results are encouraging for the use of capture-recapture models
for making the reinspection decision, admittedly, they are not fully satisfying.
First, at a conceptual level taking advantage of bias and lack of precision to
make the correct reinspection decision seems cumbersome and lacks parsi-
mony. Furthermore, the decision accuracies, while better than the default de-
cision of always passing the document to the next phase, are frequently below
the “psychological” threshold of 70% accuracy. In fact, examining the ob-
tained decision accuracies suggests much room for improvement. We there-
fore strongly encourage further work on improving capture-recapture models
for two inspectors, and using model MtCh as the basis. Specifically, two
promising avenues are worthy of consideration.

The first avenue is improving the bias and relative error dispersion of model
MtCh. One approach that can be pursued is a Bayesian one. A recent study
found that subjective estimates by professional inspectors of their personal ef-
fectiveness is very accurate (median relative error of zero), and showed how
this information can be used to estimate the defect content for an inspection
team [26]. Therefore, there is a basis for using subjective estimates in a Baye-
sian framework.

The second avenue that ought to be pursued is evaluating the probability of
the defect content being greater/smaller than a specific threshold value: a hy-
pothesis testing approach. At least, under these circumstances the inspection
team can obtain an indication of uncertainty in the decision of reinspection or
otherwise, and a hypothesis testing approach seems more parsimonious with
making a binary decision.

Finally, we also encourage the evaluation of decision accuracy in future studies
of CR models since this provides greater insight into the utility of capture-
recapture models for making the reinspection decision.
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