
A High Speed Asynchronous Multi Input Pipeline
for Compaction and Transfer of Parallel SIMD Data

Christoph Hoppe, Jens Döge, Peter Reichel, Patrick Russell, Andreas Reichel and Peter Schneider
Fraunhofer Institute for Integrated Circuits IIS, Germany

E-mail: christoph.hoppe@eas.iis.fraunhofer.de

Abstract—Image sensors with programmable, highly parallel
signal processing, so called Vision-Systems-on-Chip, perform
computationally intensive tasks directly on the sensor itself.
Therefore it is possible to limit the amount of output data to
relevant image features only. Reading out such features presents
a major challenge, since the position and number of features often
is not known. Conventional synchronous buses as well as special
event-based readout paths are unsuitable for such a system, since
both continuous data, e.g. complete images, and sparse data,
like feature coordinates, have to be transfered. A readout path
based on an asynchronous pipeline is presented, which supports
both readout modes with high speed. Furthermore, a method is
introduced that, by serialization, allows for arbitrary data word
widths without storing any control information within the data
stream. The developed circuit components were measured on a
proof-of-concept test chip in a 180 nm CMOS technology and
were compared with implementations of asynchronous pipelines
found in literature. In addition, the use of the pipeline in a Vision-
System-on-Chip, which is still in production, is demonstrated.

Index Terms—asynchronous pipeline, SIMD, sparse data, low
latency, high speed, Vision-System-on-Chip, VSoC

I. INTRODUCTION

Image sensors with programmable, highly parallel signal
processing allow for performing computationally intensive
tasks directly on the sensor. Thus, the output is not necessarily
an image, but e.g. the positions and distinctive properties of
certain features within the image. Typically, the number of
features, as well as their position and time of occurrence,
are unknown. A variety of sensors have been proposed in
the literature, which are optimized specifically for event-based
readout and, in most cases, provide parallelism on pixel level
[1], [2], [4]. In order to facilitate feature-based readout, the
readout path, instead of being restricted to scanning data
sequentially, must be capable of reacting to and propagat-
ing events. The Vision-System-on-Chip (VSoC) presented by
Döge et al. [3] makes use of a conventional synchronous
bus to readout column-parallel data from a Single-Instruction-
Multiple-Data (SIMD) [5] unit. Operating at a frequency of
up to 40 MHz, it allows for sequential data readout of either
all columns of the SIMD array, or at least a consecutive area.
However, extracting features may result in sparse data as well
as continuous data streams with varying word length. This is
why such an approach is not suitable for certain applications,
especially if only a few of the SIMD unit’s processor elements
(PE) actually supply any data. Readout schemes proposed in
the literature are based on either continuous data streams, or
spatially encoded events, but there is no system that may be

PS2

PS1
PS1

PE PE PE PE PE PE

N Pipeline Stages and Process Elements

M
St

ag
es

B

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1
B

Figure 1: Structure of the Readout Path

applied in both scenarios alike. The proposed asynchronous
pipeline is not only supposed to enable high-speed sparse data
readout, but also allows for transferring continuous data.

The remainder of this paper is structured as follows. In Sec-
tion II, the structure of the readout path is presented and certain
readout modes are discussed. The hardware implementation is
discussed in detail in Section III. Results of a test chip are
evaluated and compared to the state of the art in Section IV.
Finally, Section V provides a conclusion.

II. STRUCTURE OF THE READOUT PATH

The readout path (Figure 1) is divided into two parts. The
first part is a linear pipeline consisting of M stages (PS1)
within each PE, serving as a data buffer for the corresponding
PE. A second N -stage pipeline runs orthogonally. Each PE is
assigned a dedicated pipeline stage with two inputs (PS2),
which can take data both from the PE’s local data buffer
and from the previous PS2. The data bus width B is the
same for all elements. One could also imagine a readout path
which is organized in a tree structure. This would lead to
minimal latency for reading out a single PE. Unfortunately,
this requires long distance connections of several millimeters
between the pipeline stages and a way more complicated and
area consuming routing. This is why this method was not given
preference.

In a VSoC, three readout modes are imaginable:

1) Each PE provides data. All data are read out sequentially
and in order.

2) An unknown number of PEs provides data, which is read
until the pipeline no longer supplies data.

PE

PS2

PE PE PE PE PE PE

PS2

PE PE

PS2

PE PE PE

PS2

PE

PS2

PE PE

PS2

PE PE PE

PS2

Step 1: SIMD PEs have data Step 2: data is given to PSs Step 3: data gets compacted

PS2PS2PS2PS2PS2 PS2PS2PS2PS2 PS2PS2

Figure 2: Readout Procedure with Sparse Data

D0

D1 D1 D1 D0 D0 D1

Step 1: SIMD PEs have data Step 2: data is given to PSs Step 3: data gets compacted

D0 D0

D1 D1 D0

D0
D1

D0
D1

D0
D1

Figure 3: Readout Procedure with Sparse Data of Double Word
Length

3) An unknown number of PEs provides data, which are
continuously readout. Data streams from different pro-
cessing steps of the PEs can mix.

The first mode is required when complete image information
is to be readout. This mode requires the output data to be in
order. In the second and third mode, there are sparse data,
e.g. coordinates of a detected feature. Figure 2 exemplarily
shows the readout process in the second case. Data provided
by some PEs in the first step are transferred to the respective
PS2s (step 2) and then finally compacted (step 3). The pipeline
now holds a continuous data stream of unknown length, which
can be readout through a corresponding interface at the end
of the pipeline.

If data words of a multiple of the pipeline bit width B
are to be output, the trivial solution would simply be to
increase the bit width. However, this results in higher area and
energy consumption, since more storage elements are required.
The bit width B should thus be selected in such a way that
minimal data throughput requirements given by the intended
application are met. Given a fixed bit width B, larger word
widths (2B, 3B, etc.) are serialized before being readout as
packets. For this purpose, each PE stores up to M elements in
its local buffer, which must then remain contiguous during the
transfer to the readout path. Figure 3 exemplarily illustrates the
compaction of words of twice the pipeline bit width. In the
first step, each PE provides two data elements. In the second
step, data are transferred to the respective PS2s. Finally, in the
third step, the contiguous data packets are compacted.

The proposed pipeline structure can be implemented both
synchronously and asynchronously. However, especially for
compaction as well as for readout mode 3, an asynchronous
implementation is preferable for several reasons:

• There is no need for a global high speed clock signal
(~1GHz). Routing such a signal with low skew requires
large buffer trees and considerable power consumption.

• In contrast to a synchronous implementation, the energy
requirement is lower in the average case, since it is data-
dependent (inherent clock gating).

La
tc
he
s

PC PC PC
req
rdy

le

La
tc
he
s

La
tc
he
s

nn-1 n+1

PS1PS1

(a) Linear Pipeline

aC
aC

req_o

rdy_i

le

req_i

rdy_o

τ
M1

M2

(b) Schematic of the Linear Pipeline Controller

Figure 4: Linear Pipeline and the Corresponding Pipeline
Controller

• Current consumption is distributed continuously over
time rather than concentrated on a global clock edge.

The last two points are especially important for large pipeline
lengths (e.g. N > 100), as they occur in a VSoC.

III. HARDWARE IMPLEMENTATION

Hardware implementation requires all developed compo-
nents to be placed and routed in a column grid of 8.75 µm.
This means that a realization with standard cells is only
possible with a large area overhead. Therefore a full-custom
implementation is used.

A. Linear Pipeline

The basic structure of an asynchronous pipeline stage con-
sists of a pipeline controller (PC) and an associated data
path. A pipelined structure is formed by concatenation of
several stages. For example, a three-stage pipeline is shown
in Figure 4a. Data transfered through the pipeline are held in
latches, which are controlled by the respective PC.

Asynchronous pipelines are characterized by the fact that
there is no global synchronization by means of a clock signal,
but local synchronization via handshaking signals between
successive pipeline stages. Generation and processing of the
handshaking signals is carried out by the PC. A lot of
implementations are proposed in the literature, with Nowick
and Singh [7] giving a good overview. The differences are
essentially the choice of the handshaking protocol, the require-
ment of timing constraints, the choice of data encoding and
the logic style used. The pipeline proposed in this paper is
based on the so-called single rail bundled data concept, due to
lower wiring and logic complexity for the data path compared
to dual rail encoding. The handshaking protocol is a 4-phase
protocol. The 4-phase protocol was chosen because it does
not require phase conversion when applying control signals
or when joining two different pipelines with different phase.
In the MOUSETRAP [10] pipeline, for example, additional
XOR gates are required to perform phase conversion, which
increases latency and area consumption. In the context of the
readout path, fast compaction of sparse data is to be made
possible, necessitating low forward latency of the pipeline
controller. Forward latency is defined by the time required
to propagate data from one stage to the next. Furthermore,
the storage time within the pipeline is not known in advance,

which is why purely dynamic logic is not applicable. The
High Capacity (HC) pipeline, an implementation with very low
forward latency, but based on dynamic logic, was presented
by Singh and Nowick [11]. The controller presented in this
work is, however, designed for static latches. Its function is
explained first using a linear controller, before expanding it to
a pipeline controller with two inputs.

The PC required for the operation of linear pipelines,
see Figure 4b, consists of three gates, two asymmetrical C-
elements M1 and M2, as well as an inverter. A C-element
[9] is a common gate in asynchronous circuits, e.g. for state
encoding, similar to a flip-flop in synchronous implementa-
tions. The output of the C-element is 1, if all positive inputs
and unlabeled inputs are in state 1 and it is 0, if all negative
inputs and unlabeled inputs are in state 0. In all other cases,
the output remains unchanged.

The request signal req_i (Figure 4b) indicates the arrival of
new data, with state 1 meaning new data from the previous
pipeline stage has arrived, whereas state 0 indicates that no
new data is available. The signal req_i of stage n must not
change into state 1, until all data of the n − 1-th stage are
stable at the latches of the n-th stage. This condition is, in the
case of a pipeline without combinatorial logic inside the data
path, i.e. in the case of a FIFO, usually fulfilled by default,
while in the case of pipelines with higher data path delays,
it is achieved by introducing an additional delay element τ
into the request signal. The request signal req_o signals the
presence of new data to the n+ 1-th stage. It is set when the
n-th stage has received and accepted new data, i.e. if req_i has
been set before and rdy_o is in state 1. The signal is generated
by the C-element M1. The request of the n-th stage remains
active, until it is acknowledged by the n + 1-th stage with a
falling edge of rdy_i. The C-element M2 ensures that the rdy_i
signal was in state 1 between two transfers, i.e. that indeed
the falling edge is evaluated. After being acknowledged, the
request signal req_o changes again to state 0 and the n-th
stage becomes ready for a new transfer.

For the pipeline controller to operate correctly, several –
fortunately easily satisfiable – timing constraints have to be
met. The first constraint (1) ensures that the data path is faster
than the control path, with tM1, tdelay, tskew and tDQLatch being
the delay of C-element M1, the delay of delay element τ ,
the skew of the latch-enable buffers and the data delay of a
transparent latch, respectively.

tM1 + tdelay + tskew > tDQLatch (1)

The second constraint (2) defines a minimum pulse length
at the gate input of the latches tGLatch, which ensures correct
sampling of the latches, with tinv being the delay of the
inverter.

tM1 + tinv ≥ tGLatch (2)

The third and final constraint (3) ensures that C-element M2
must have recognized that rdy_i had been in state 1 before it
returned to state 0.

tM1 + tinv > tM2↓ (3)

le

do

di

di
do

(a) Latch with One Data
and Select Input

le_a

do

le_b

di_a

di_a

di_b

di_b
do

(b) Latch with Two Data and Select Inputs

Figure 5: Latch Implementations for the Data Path

La
tc
he
s

PC

leBleA

La
tc
he
s

PC

La
tc
he
s

PCreqA

rdyA

diA
diB

re
qB

rd
yB

PS2 PS2

Figure 6: Multi Input Pipeline

In (1) it is specified that the delay time of the latches
must be shorter than the one of the control path. Since the
control path only has a delay equivalent to one C-element,
this condition can not be realized with conventional C²MOS
latches. Furthermore, in order to avoid additional multiplexers,
latch implementations that are easily expandable by a second
input, should be given preference. Figure 5a shows such
a latch implementation consisting of a differential pair and
two feedback inverters. By adding a second differential pair,
this implementation can be easily modified into a latch with
two inputs, as shown in Figure 5b. The delay time of the
latches corresponds to that of two inverters and is, if sized
appropriately, faster than a C-element’s delay time of at least
two inverter stages.

B. Multi Input Pipeline

Starting from the linear pipeline controller, as it is used
inside the PEs to provide contiguous packets, it is now ex-
panded by arbitration to support multiple inputs. The structure
of the resulting pipeline is shown in Figure 6. It consists of
N + 1 inputs and one output for N stages (cf. Figure 1). An
arbiter selects either input A or input B, depending on which
of the two inputs provides new data. The channel selection
is not changed, until no successive data are available for a
given duration, i.e. a continuous transfer was interrupted. This
allows for the realization of contiguous packets without having
to evaluate special control information within the data words.

The arbiter, see Figure 7, consists of an element enforcing
mutual exclusion (MUTEX), which, in case of competing re-
quests, selects one of the two channels in a glitch-free manner.

The MUTEX consists of a NAND RS flip-flop followed by a
metastability filter – a well-established implementation, that is
also frequently used in other applications [6], [13]. The addi-
tional OR gates at the input hold the actual channel selection
for a certain time. The induced slowdown is insignificant, since
the NAND and OR gate can be combined into a single-stage
CMOS gate. The hold time is set using delay elements and
should be chosen somewhat larger than the cycle time of a
pipeline stage. If the selected delay elements do not propagate
rising edges considerably faster than falling ones, incoming
request signals may be too short to be recognized at the output
of the delay element. This can be accomplished using a chain
of inverters combined with NAND respectively NOR gates. As
long as no active channel has been selected, the delay time of
the arbiter has a direct influence on the forward latency of
the pipeline controller. However, this cannot be avoided due
to unknown temporal relations between the incoming request
signals.

Figure 8 depicts the pipeline controller with two inputs.
The outgoing request signal req_o is once again generated
by the C-element M1. The additional logic at M1’s positive
input makes sure that the outgoing request is only set, if the
condition (reqa ∧ sela ∧ rdya) ∨ (reqb ∧ selb ∧ rdyb) is
fulfilled. This means that a request from channel A is accepted
only if the arbiter has selected channel A and the latches in the
data path sample data from channel A. The same conditions
hold for channel B, in a similar fashion. As this constraint may
easily be integrated into the NMOS paths of the C-element,
there are in fact no additional gates required, as suggested
by the principle circuit in Figure 8. After setting the signal
req_o in the n-th stage, as in the case of the linear controller,
the signal rdy_i is set to 0 by the n + 1-th stage. Following
that, the signal req_o in the n-th stage is set to 0 as well.
The latch enable signals le_a or le_b are logically linked by
AND gates with the signals sel_a or sel_b, respectively. The
signals rdy_a and rdy_b are generated in a similar manner.
The channel select signals sel_a or sel_b once again decide
whether rdy_a or rdy_b must be set. C-elements must be used
at this point, because the ready signals must not change their
state during channel switch. Otherwise, the previous pipeline
stage may enter an invalid state.

For the controller to operate correctly, timing constraints
have to be taken into account, as well. The constraints given
in (1) to (3) for linear controllers apply to multi input pipeline
controllers in a similar fashion, with the term tM1 + tinv now
being replaced by tM1. This is explained by the fact that, for
the linear controller, all latches are transparent if the pipeline
stage does not hold valid data. However, in the case of the
extended pipeline controller, the latches are not transparent
because the channel to be used is not selected yet. This is
why the constraints given in (2) and (3) are somewhat more
difficult to meet. No further timing constraints are necessary.

C. Multi Input Pipeline without MUTEX

If the readout mode 3, i.e. the continuous readout of data
from different processing steps of the PEs, is not required,

MUTEX

sel_a

sel_b
τreq_b

τreq_a

combined

Figure 7: Arbiter for Channel Selection with Channel Hold
Function

aC

aC

req_o

rdy_i

sel_a

sel_ble_b

le_a

combined in C-Element

sel_a

sel_a

sel_b

sel_b

req_a

req_b

rdy_a

rdy_b

M1

M2

τ

M3b

M3a
aC

aC

rdy_a

rdy_b

Figure 8: Schematic of the Two-Input Pipeline Controller

it is possible to omit the MUTEX. This is only needed if
a priori is not known when which of the two inputs must
be selected. In readout modes 1 and 2, however, it is clear
that first data has to be read from the local pipelines of the
PEs and then only data from the previous horizontal pipeline
stage. This can be used by first forcing channel B at the
start of the readout process and keeping it selected until the
PE’s local pipeline no longer contains any data. Then there
is a change to channel A which will be kept selected for the
rest of the reading process. This variant offers the advantage
that the additional delay introduced by the MUTEX when
a channel is changed is eliminated and instead a maximum
of one channel selection per readout process takes place. To
implement this function, a token-based channel selection is
used instead of the MUTEX, as shown in Figure 9. The flip-
flop stores the current channel selection and can be set to
channel B (select_local = 1) by a rising edge of the start
signal. However, this happens only as long as at least one
of the local request signals (req0, . . . , reqM-1) is active. As
soon as none of the request signals and thus local_available
is no longer set and the PS2 pipeline controller no longer
carries out a transfer (req_o = 0), the flip-flop is reset and
channel A is selected. This selection remains until the next
start edge. In addition to the start signal, a reset of the channel
selection can be forced by using reset. Care must be taken
with the generation of the local_available signal. The method
shown here is only valid if no new data is generated in the

D Q

QR
C

start

reset

select_local

...

req
0

req
M-1

local_available

PS2-PC

sel_a

sel_b

req_oreq_b
rdy_b rdy_i

req_a
rdy_a

select_global

req
0

Figure 9: Schematic of an Alternative Channel Selector

PE while the pipeline is readout. Otherwise, there could be a
race-condition when new data arrives in the PE while the PS2
stage is sampling local_available.

D. Initialization

So far, two pipeline controllers, the corresponding data path
latches and two possible channel arbitration schemes have
been presented. The very important aspect of initializing the
pipeline, however, has not been covered at all. Similar to
synchronous circuits, a reset signal is used for this purpose.
This signal, which resets all C-elements at once, may be real-
ized by expanding each C-element by just a single transistor.
Controlling data transfer from the PEs’ data buffers to the
output path is another important aspect. This necessitates an
additional AND gate controlled by a global start signal to be
added to the request signals between PEs and PS2s. Otherwise,
data elements from the PEs would be immediately fed into
the readout pipeline. In this way, it would not be possible to
readout the pipeline and build up new data in the PEs’ data
buffers at the same time. For the Multi Input Pipeline without
MUTEX, this data flow control is already included and does
not need to be provided separately. In case of a long pipeline,
the start and reset signals must be fed in either via a buffer
tree or in the opposite direction to the pipeline data flow. This
is comparable to the supply of a clock signal with long shift
registers.

IV. TEST RESULTS AND COMPARISON

A. Proof-of-Concept

The presented pipeline controllers were demonstrated to
operate correctly using a test chip in a 180 nm low-power
CMOS technology. The test chip includes a 14-stage asyn-
chronous pipeline with an 8-bit data path. The inputs and
outputs can be read or written via synchronous interfaces.
Two of the 14 pipeline controllers have been replaced by
controllers with arbitration, i.e. the pipeline has a total of three
inputs. The two additional inputs are equipped with one buffer
stage each. Furthermore, the pipeline can be connected as a
ring structure, in order to circulate a defined number of data
elements. Handshaking was monitored by using strong buffers
to output selected request and ready signals to bond pads. A
schematic representation of the structure is given in Figure 10.

Pipeline
Design

Cycle
Time in ns

Throughput in
Giga Items per

Second

Logic
Style

Process
Node

PS0 [12] 1.98 0.51 static 0.18µ HP
LPsr2/2 [12] 0.76 1.31 dynamic 0.18µ HP
LPsr2/2 [12] 0.65 1.55 dynamic 0.18µ HP

HC [11] 0.57 1.75 dynamic 0.18µ HP
this work 1.1 0.91 static 0.18µ LP

Table I: Comparison of Different Asynchronous Pipelines

In total, there are four test modes available:

• In test mode 1, all pipeline elements are filled in a defined
order and these are subsequently read out. Arbitration and
correctness of the readout data can be checked.

• In test mode 2, data are written only to the additional
pipeline inputs. This makes it possible to check whether
the compaction delivers correct data at the output.

• In test modes 3 and 4, the pipeline is connected as a ring,
i.e. all items that were inserted in the first place, keep
circulating within the pipeline. In this mode, the pipeline
controllers’ forward latency as well as their cycle time
can be measured. The forward latency is determined by
inserting exactly one element. In the case of 14 pipeline
elements and assuming that all of them are approximately
equal in speed, the forward latency results from the
rotation time of the data item according to (4).

tForward ≈ tRing1/14 (4)
tCycle ≈ tRing13/14 (5)

Similarly, the cycle time of the pipeline controllers can
be determined by inserting 13 elements into the pipeline
according to (5). In this case, there is exactly one pipeline
stage without a valid data item. In Figure 11, the measured
forward latency as well as the cycle time depending on the
supply voltage are shown. As expected, the controllers’ speed
increases with higher supply voltage. Even at a supply voltage
of only 0.7 volts, some of the test chips are still functional. In
addition, the power consumption was measured for the case
that only one element circulates in the ring (Figure 12).

Table I shows the delay of the presented pipeline controllers
compared to variants in the literature. Compared to the HC
pipeline [11], the implementation presented here is only about
half as fast, which is, on the one hand, due to the use
of static logic in the data path, on the other hand due to
different process technologies. Furthermore, the values given
in the literature only apply to linear pipelines. Because of the
delay induced by the arbiter, the multi-input pipeline presented
is inevitably a little slower. The measured forward latency
is 520 ps at a nominal operating voltage of 1.8 V. This
corresponds to an equivalent clock frequency of 2 GHz for
a synchronous implementation, which is not feasible with the
chosen 180 nm technology. Under the same test conditions, a
cycle time of 1.1 ns was measured. This corresponds to the
throughput of the pipeline when all stages hold a data element.

PS
1

sync
IF

sync
IF

serial data

handshaking signals

PS
1

PS
1

PS
1

PS
1

PS
1

PS
2

PS
1

PS
1

PS
2

PS
1

PS
1

PS
1

PS
1

PS
1

PS
1

PS1: 1-input stage
PS2: 2-input stage

(a) Circuit Structure

IN+PS1 IN+PS1

1xPS2
6xPS1

1xPS2
6xPS1

IN OUT

100µm

Testlogic

(b) Chip Photograph

Figure 10: Proof-of-Concept Test Chip

0

500

1000

1500

2000

2500

3000

1,1 1,3 1,5 1,7 1,9 2,1 2,3

D
el

ay
 in

 p
s

Supply Voltage in V

Forward Latency

Cycle Time

Figure 11: Measured Forward Latency and Cycle Time as a
Function of Supply Voltage

0

500

1000

1500

2000

2500

3000

1,1 1,3 1,5 1,7 1,9 2,1 2,3

Po
w

er
 in

 µ
W

Supply Voltage in V

Figure 12: Measured Power Consumption as a Function of
Supply Voltage

Parameter Synchronous Bus in
[3]

Asynchronous
Pipeline in this work

PE interface bitwidth 2x8 8
bus bitwidth 32 8+1

local data buffers 2x8 Bit 4x8 Bit
possible packet

length 8, 16 8, 16, 24, 32

maximum operating
frequency at output 40 MHz 114 MHz*

maximum throughput
continuous data 1.3 GBit/s 7.3 GBit/s*

maximum latency for
a single element read

6.4 µs (8 Bit)
12.8 µs (16 Bit) 0.5 µs*

possibility to
compact sparse data no yes

area PE interface 480 µm² 590 µm²
area local data buffer 280 µm² 300 µm²

total area 1040 µm² 1790 µm² (4 buffers)
1190 µm² (2 buffers)

maximum energy per
transfered byte 500 pJ/byte 690 pJ/byte*

energy per complete
row (1024 Byte) 512 nJ 356 nJ*

*) based on measurements of proof-of-concept test chip

Table II: Comparison Synchronous Bus vs. Asynchronous
Pipeline in a VSoC

PS2

PS1
PS1

PE PE PE PE

1024 PS2 stages and PEs

4
st

ag
es

9

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1

PS2

PS1
PS1

PS1

ASIP

PS1 PS1 PS1 PS1

ctrl

NoC
Router

NoC
Router

9:72
Deserializer

Output
Control

ASIP

72

LV
DS

 O
ut

pu
ts

(u
p

to
 8

 G
Bi
t/

s)

JTAG

start

8

Figure 13: Multi Input Pipeline in a VSoC

B. Implementation in a VSoC
After validating the functionality in a proof-of-concept

design, the pipeline was implemented on full scale in a VSoC.
It consists of N = 1024 PS2 stages and M = 4 PS1 stages
in the local PEs. The bit width is B = 9 for the PS2 stages
and B = 8 for the local PS1 stages. By default, the MSB
is set to ’0’ by the local pipelines and can only be set at
the beginning of the horizontal pipeline. It is used to mark
the end of a line. In contrast to the proof-of-concept, PS2
stages without MUTEX are used in this design. In addition,
the pipeline is embedded in a complete system consisting of an
application-specific instruction-set processor (ASIP), a SIMD
unit, a LVDS (low voltage differential signaling) output and
a network on chip (NoC). In contrast to the proof-of-concept,
this allows considerably more extensive tests, which can be
completely defined in software. In the VSoC, data output from
the pipeline are combined at the output into 72 bit packets
for subsequent processing in a synchronous design with a
moderate clock frequency of up to 125 MHz. Combining
the data is also asynchronous and uses the featured pipeline
controllers and latches. The aggregated data can either be
routed outwards via a parallel LVDS interface or read back
by the ASIP via an asynchronous network on chip [8]. The
start of readout, the packet length used and the output data
are controlled by the ASIP, which has access to the PEs of
the SIMD unit. It can also control the readout of the pipeline
via the NoC integrated in the VSoC. Figure 13 shows the
embedding of the pipeline and the peripheral components
required for the tests in the VSoC. Compared to a previous
implementation as a synchronous bus by Döge et al. [3], the
asynchronous readout path yields a number of advantages,
which are summarized in Table II. Since the VSoC is not
physically available yet, the measurement results were approx-
imated from the proof-of-concept test chip. The comparison
shows that the asynchronous pipeline achieves continuously
six times more data throughput, although the bus width is
only a quarter of the synchronous implementation. There is
a clear difference in the maximum latency to read a single
data element. In the case of 16 bit data with 0.5 µs latency
this is 25-times lower than in the synchronous version. The
area requirement for the same data buffer size is about 15 %
higher for the asynchronous implementation. The maximum
energy requirement per transmitted byte is slightly higher with
the asynchronous implementation with 690 pJ than with the
synchronous variant with 500 pJ. However, for a complete
readout of an entire row, the asynchronous variant is about
30 % more energy efficient and requires 356 nJ.

V. SUMMARY

This work proposes a readout path for a Vision-System-on-
Chip, which is capable of serially outputting parallel data of a
column-parallel SIMD unit. The readout path is implemented
as an asynchronous pipeline and therefore enables both very
fast compaction of sparse data and readout of continuous
data streams. Through clever arbitration, it is possible to
transmit contiguous data packets, and thus variable word

widths, without additional control information. The circuit
components presented were successfully tested on a proof-
of-concept chip in a 180 nm CMOS technology. With 520 ps
measured forward latency at nominal operating voltage, the
proposed asynchronous pipeline has been found to equal a cor-
responding synchronous implementation clocked at 2 GHz for
the compacting operation. The measured cycle time of 1.1 ns
equals a clock frequency of 910 MHz for the readout of com-
pacted data. The readout path shows a 25-times improvement
in readout latency compared to a previous implementation as
a synchronous bus while taking 15 % more area and 30 %
less energy consumption when a whole image row is readout.

ACKNOWLEDGEMENT

This work was supported by the German Federal Ministry
of Education and Research (BMBF) within the Innovation Ini-
tiative "Entrepreneurial Regions", project consortium 3Dsensa-
tion, project cSoC-3D, grant number 03ZZ0427E. The authors
of this paper are solely responsible for its content.

REFERENCES

[1] Raphael Berner, Christian Brandli, Minhao Yang, S-C Liu, and Tobi
Delbruck. A 240x180 120db 10mw 12us-latency sparse output vision
sensor for mobile applications. In IEEE International Image Sensor
Workshop, pages 41–44, 2013.

[2] Gaozhan Cai, Bart Dierickx, Bert Luyssaert, Nick Witvrouwen, and
Gerlinde Ruttens. Imaging sparse events at high speed. In IEEE
International Image Sensor Workshop, 2015.

[3] Jens Doege, Christoph Hoppe, Peter Reichel, and Nico Peter. A 1
Megapixel HDR Image Sensor SoC with Highly Parallel Mixed-Signal
Processing. In IEEE International Image Sensor Workshop, 2015.

[4] A Dupret, B Dupont, M Vasiliu, B Dierickx, and A Defernez. CMOS
image sensor architecture for high-speed sparse image content readout.
In IEEE International Image Sensor Workshop, pages 26–28, 2009.

[5] Michael J Flynn. Very high-speed computing systems. Proceedings of
the IEEE, 54(12):1901–1909, 1966.

[6] Yu Liu, Xuguang Guan, Yang Yang, and Yintang Yang. An asynchronous
low latency ordered arbiter for network on chips. In 2010 Sixth
International Conference on Natural Computation, volume 2, pages
962–966. IEEE, 2010.

[7] Steven M Nowick and Montek Singh. High-performance asynchronous
pipelines: an overview. IEEE Design & Test of Computers, 28(5):8–22,
2011.

[8] Patrick Russell, Jens Doege, Christoph Hoppe, Thomas B Preusser,
Peter Reichel, and Peter Schneider. Implementation of an asynchronous
bundled-data router for a GALS NoC in the context of a VSoC. In
Design and Diagnostics of Electronic Circuits & Systems (DDECS),
2017 IEEE 20th International Symposium on, pages 195–200. IEEE,
2017.

[9] Montek Singh and Steven M Nowick. High-throughput asynchronous
pipelines for fine-grain dynamic datapaths. In Advanced Research in
Asynchronous Circuits and Systems, 2000.(ASYNC 2000) Proceedings.
Sixth International Symposium on, pages 198–209. IEEE, 2000.

[10] Montek Singh and Steven M. Nowick. MOUSETRAP: Ultra-high-speed
transition-signaling asynchronous pipelines. In Computer Design, 2001.
ICCD 2001. Proceedings. 2001 International Conference On, pages 9–
17. IEEE, 2001.

[11] Montek Singh and Steven M Nowick. The design of high-performance
dynamic asynchronous pipelines: high-capacity style. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 15(11):1270–1283,
2007.

[12] Montek Singh and Steven M Nowick. The design of high-performance
dynamic asynchronous pipelines: lookahead style. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 15(11):1256–1269, 2007.

[13] J Sparso. Asynchronous Circuit Design - A Tutorial. Chapters 1-8 in
Principles of asynchronous circuit design-A systems Perspective’, pages
1–152, 2006.

