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Modeling the annealing of dislocation loops in
implanted c-Si solar cells

F. A. Wolf, A. Martinez-Limia, D. Stichtenoth, and P. Pichler, Senior Member, IEEE

Abstract—This paper is motivated by the question of how resid-
ual implantation damage degrades solar cell performance. In or-
der to avoid such degradation, annealing processes of implanted
c-Si solar cells use high thermal budgets. Still, implantation-
induced dislocation loops may survive these processes. We derive
two models for the annealing kinetics of dislocation loops that
are suitable for the study of high thermal budgets: A model
that is able to describe the parallel ripening of faulted and
perfect dislocation loops, and a model that explicitly implements
the conservative and non-conservative processes associated with
Ostwald ripening. Both models lead to better agreement with
experiment than what has been published before.

I. INTRODUCTION

STUDIES of implanted solar cells carried out within recent
years showed that significantly higher thermal budgets

than in microelectronics are needed to achieve satisfactory
cell performance [1, 2, 3, 4]. Typically, for such annealing
conditions (> 950 ◦C, > 10 min), the primary implant damage
evolves into a defect configuration in which only dislocation
loops survive. Such loops were found to correlate with the
emitter saturation current [5, 6] although also other hypotheses
exist [1, 6]. Recently, the causation of implantation-related
performance degradation by dislocation loops, likely decorated
with metallic impurities, could be substantiated [7, 8].

The agglomeration of implantation-induced self-interstitials
(Is) via the formation of small interstitial clusters (SMICs) and
their transformation to {311} defects and even small loops has
been addressed by a variety of models, e.g. [9, 10, 11, 12, 13,
14, 15], and is well described by them. This does not hold true
for the high thermal budgets of solar cell fabrication. As we
will show later (Sec. II), even the latest of them, the model of
Zographos et al. [15] implemented in Sentaurus Process [16],
fails then to reproduce two important qualitative aspects

(i) The predicted dissolution velocity at high temperatures
is by orders of magnitude too high.

(ii) The simulated growth of the mean loop radius does not
saturate for long annealing times at high temperatures,
as would be expected from theory and experiment.

Point (i) implies that for almost all relevant annealing condi-
tions, the model of Zographos et al. [15] predicts a complete
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dissolution of loops. Thus, it cannot be used to establish cor-
relations between processing conditions and cell performance.
Point (ii) is more subtle and of lower priority: A quantitatively
wrong prediction of the mean loop radius translates directly
into a likewise wrong prediction of the proportionally related
dislocation-line density, which directly correlates to the re-
combination activity of loops [17, 18]. Two other loop models
[13, 19] implemented in Sentaurus Process [20] suffer from
even more severe problems for annealing processes with high
thermal budgets. For an in-depth discussion of the modeling of
dislocation loops the interested reader is referred to the review
article of Claverie et al. [21] and the dissertation of one of the
authors (F.A.W) [22].

In this paper, we extend the model of Zographos et al.
[15] to overcome problem (i) (Sec. III). We succeed in doing
so by accounting for the parallel ripening of faulted and
perfect dislocation loops. The new model is able to provide
meaningful information about the local densities and sizes of
insufficiently annealed dislocation loops [7, 8]. Subsequently,
we analyze the late stages of Ostwald ripening, which leads us
to sketch a model that is able to resolve problem (ii) (Sec. IV).
Finally, we conclude the paper (Sec. V). We start with a brief
discussion of the model of Zographos et al..

II. THE MODEL OF ZOGRAPHOS et al.

Zographos et al. [15] model the mean concentration of loops
DL and the concentration of self-interstitials (Is) CL comprised
in these loops by

∂tCL = R311
L +RI

L, (1a)

∂tDL = R̃311
L + R̃I

L. (1b)

These distributions depend on time and position. The reaction
terms that describe the unfaulting reaction from {311} defects
to loops are given by

R311
L = k311

L C311C311, (2a)

R̃311
L = k311

L k̃311
L C311D311, (2b)

where D311 and C311 denote the concentration of {311}
defects and the concentration of Is bound in {311} defects,
in complete analogy to the meaning of DL and CL. k311

L is
described by an Arrhenius law [20]. Zographos et al. [15] set
k̃311

L = 1
2 , which means that {311} defects with twice the

mean size unfault to loops.
The interaction of loops with free Is is described by

RI
L = kI

L2π2rLDI(CI − C∗
I,L)DL, (3a)

R̃I
L = −kI

L2π2rLDIC
∗
I,L
DLDL

CL
= −k

I
L2πDI

rLnL
C∗

I,LDL, (3b)
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where CI is the concentration of free Is, kI
L is a calibration

constant and DI the diffusion coefficient of Is. The mean loop
radius rL and the equilibrium concentration of Is in the vicinity
of a loop C∗

I,L are defined by

rL =

√
CL

DLnLπ
and C∗

I,L = C∗
I e

∆EL(rL)/kT , (4)

where nL is the atomic areal density in the close-packed {311}
planes. For the formation energy per I in faulted dislocation
loops ∆EL(rL), Zographos et al. [15] used the definition

∆EL(rL) =
γΩ

b
+

GbΩ

4πrL(1− ν)
ln(8rL/b). (5)

Therein, γ is the stacking-fault energy per unit volume, Ω the
atomic volume, b the modulus of the Burger’s vector of the
loop, G the shear modulus of Si and ν its Poisson ratio. With
these equations, the loop model is completely defined.

In the present paper, the focus is on the phase of the
annealing process in which the last step of the I cluster
nucleation process, the unfaulting reaction from {311} defects
to loops, is completed. At this point, almost all {311} defects
have vanished, so that R311

L ' 0 and R̃311
L ' 0, and one is left

to discuss, instead of Eqs. (1), the equations ∂tCL = RI
L and

∂tDL = R̃I
L.

A. Dissolution velocity of dislocation loops

The first fundamental problem that arises from the model
of Zographos et al. [15] is a qualitative overestimation of
the dissolution velocity of loops. This is illustrated in Fig. 1
for the areal density of loops NL =

∫ tW

0
dxDL(x), where

we integrated over the wafer thickness tW. We empirically
checked that this problem cannot be resolved by recalibrating
the value [16] of the sole free parameter kI

L in Eqs. (3).
Fig. 1(a) shows that the model yields satisfying results for
temperatures up to 950 ◦C. But at 1000 ◦C and 1050 ◦C,
the simulated dissolution is much too rapid. In the case of
Fig. 1(b), where many more implantation-induced Is have been
produced, the dissolution velocity is qualitatively wrong even
at 950 ◦C.

B. Late stages of Ostwald ripening

The other fundamental problem of the model of Zographos
et al. [15] concerns the time evolution of the mean loop radius
rL. From Eq. (4), the time evolution of rL is obtained using
Eqs. (1) and Eqs. (3) as

drL

dt
=
kI

LπDI

nL
CI. (6)

Now consider the case CI ' C∗
I , i.e. the time during annealing

at which the number of loops has considerably decreased. The
remaining ones are so large that they can gain relatively few
energy by exchanging Is. In this situation, Eq. (6) predicts a
linearly diverging time evolution of rL while, in reality, the
loop radius growth is much weaker [25, 23]. As soon as the
surface and other sinks for Is become dominant, loops finally
start shrinking again, although slowly, as Ostwald ripening
ensures that rather the number of loops decreases, than their
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Fig. 1. Time evolution of the areal loop density NL during annealing. (a)
Rapid thermal annealing (RTA) after a Ge implant of 2·1015 cm−2 at 150 keV,
experimental data from [23]. (b) RTA after a B implant of 1·1015 cm−2 at
30 keV, experimental data from [24]. Symbols depict experimental results,
lines simulation results. Simulations were done with the model of Zographos
et al. [15] in the implementation of [16].

size. The described phenomenon is illustrated in Fig. 2. For all
the experiments shown, temperatures are sufficiently high and
annealing times sufficiently long so that Ostwald ripening is in
its final stage. In all panels of Fig. 2, the experiments shown
indicate a saturation of the loop radius with time. By contrast,
the solid lines calculated using the model of Zographos et al.
[15] display a diverging radius evolution.

III. PARALLEL RIPENING OF FAULTED AND PERFECT
LOOPS

The model of Zographos et al. [15] describes faulted loops
(FLs) and makes correct predictions for experiments with low
thermal budgets, while failing for high temperatures and ex-
tended annealing times. This failure can be explained with the
following experimental observation. For low thermal budgets,
mainly FLs are observed [27, 28, 29, 30]. For high thermal
budgets, during which loops undergo strong Ostwald ripening
and grow considerably, almost only perfect loops (PLs) are
observed [31, 32, 28, 33, 34, 29]. This behavior is due to
the well-known fact that for large loop sizes, perfect loops are
more stable than faulted loops. Our model extends Zographos’
model to describe not only FLs, but to also include PLs. While
modeling FLs is still necessary to correctly describe the early
stages of a high-thermal-budget process, modeling the different
reaction dynamics of PLs allows to describe the late stages.
Hence, our new model needs to physically describe both types
of loops.
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Fig. 2. Time evolution of the mean loop radius rL during annealing. (a) RTA
after an Si implant of 1·1015 cm−2 at 50 keV, experimental data from [26]. (b)
RTA after a B implant of 1·1015 cm−2 at 30 keV, experimental data from [24].
Symbols depict experimental results, lines simulation results. Solid lines were
calculated with the model of Zographos et al. [15] in the implementation of
[16]. Dashed lines were calculated with the same parameters using the model
presented in Sec. IV.

For intermediate thermal budgets, a transition from the state
with more faulted loops to the state with more perfect loops
takes place. This transition has traditionally been assumed
to result from an unfaulting reaction [35], meaning that a
faulted loop, in our cases always a Frank partial dislocation,
reacts with a Shockley partial dislocation to produce a perfect
dislocation loop. In contradiction to that, several authors have
observed independent time evolutions of the FL and the PL
ensembles, clearly identifying two different Ostwald ripening
mechanisms [28, 27, 29]. This observation suggests that a
second explanation for the FL-PL transistion is more likely:
Rather than by a direct unfaulting reaction, the transition
occurs as the two ensembles of different loop types exchange
Is among each other. Our model is based on this second
explanation.

A. Energy of faulted and perfect dislocation loops

The energy associated with a dislocation loop consists of the
elastic energy of the surrounding strain fields, its core energy
and a potential stacking-fault energy. The faulted loops most
frequently observed in Si are Frank partial loops, which lie
in {111} planes and have a Burger’s vector bFL = a

3 [111]
with a = 5.43 Å denoting the size of the silicon unit cell.
Perfect loops in fcc lattices also lie in {111} planes but have
a Burger’s vector of bPL = a

2 [110]. Their respective elastic

energies are [35, 27]

Eel
FL =

rLGb
2
FL

2(1− ν)
ln(r1/r0), b2FL =

a2

3
, (7a)

Eel
PL =

rLGb
2
PL

2(1− ν)

(
1− ν

6

)
ln(r1/r0), b2PL =

a2

2
. (7b)

Linear elasticity theory is only valid at some distance away
from the core. This distance is characterized by r0 for which
we assume r0 = bFL/4 [27]. For r1, roughly characterizing the
extent of the lattice distortions, we assume r1 = 2rL [36, 35].

The energy Ecore stored in the core can only be accessed
by atomistic calculations, albeit with a low precision. The
stacking-fault energy of faulted loops is γ ' 70 mJ/m2 per
atomic volume. Adding these terms to Eqs. (7a) and (7b), one
obtains

EFL = γπr2
L +

rLGb
2
FL

2(1− ν)
(ln(8rL/bFL)− 1 +AFL), (8a)

EPL =
rLGb

2
PL

2(1− ν)

(
1− ν

6

)
(ln(8rL/bFL)− 1 +APL). (8b)

The constants AFL,PL have been introduced to represent
the core energy via Ecore

FL = AFL
rLGb

2
FL

2(1−ν) and Ecore
PL =

APL
rLGb

2
PL

2(1−ν)

(
1− ν

6

)
, respectively. Their values will be discussed

in more detail below. The constant −1 was introduced in
the last expressions in brackets to account for a frequent
convention in the literature, ensuring a stress-free boundary at
the upper integration limit for the elastic energy r1 [37, 38].

Although the functional form of the expressions (8) is
undebated, the numerical values for the integration boundaries
r1, r0 and the core energy Ecore are only roughly known [39].
If, in addition, the loop is not ciruclar but shaped like an n-
sided regular polygon, which can be a reasonable assumption
for PLs, a further constant has to be added to AFL,PL [40].
One should therefore be satisfied with specifying a numerical
range of meaningful values for these parameters. Surveying the
literature, one finds the following values (We abbreviate AFL,PL
with AL.): Some authors choose AL = 0 [15, 23, 19, 38, 41]
and others AL = 1 [27, 35] and all of these either choose
r0 = b/4 or r0 = b. Again others employ a very different
expression AL = 2ν−1

4ν−4 [42, 13]. Having made the choice
for r0 = b/4 and r1 = 2rL in Eqs. (8), all uncertainty is
accommodated in AL. Assuming that the true value of r0 is
in the range r0 ∈ [b/4, 4b] [43, 35, 44] and that the true
core-energy-related component of AL is in the range [0, 1],
one obtains the following range of meaningful values for
AL ∈ [−2.77, 1].

B. Energy per self-interstitial in a dislocation loop

The energy necessary to incorporate one I in a loop is
∆EL = dE

dN = 1
nL2πrL

dE
drL

. Using Eq. (8), we obtain

∆EFL = γΩ/bFL +
GbFLΩ

4πrL(1− ν)
(ln(8rL/bFL) +AFL), (9a)

∆EPL =
(6− ν

4

) GbFLΩ

4πrL(1− ν)
(ln(8rL/bFL) +APL). (9b)

The result of Eqs. (9) is shown in Fig. 3(a) for AFL = 0 and
APL = 0. The stability inversion occurs for loop sizes around
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Fig. 3. Comparison of FL and PL formation energy (a) and I supersaturation
in the vicinity of a loop (b). Parameters are given in the text.

30 nm, which is similar to the results of [27] and [29]. The pa-
rameters used for this calculation are given by γ = 70 mJ/m2,
Ω = 2× 10−23 cm3, G = 63.28× 105 N/cm2, ν = 0.28, and
bFL = 0.3135 nm. With that, Esf = γΩ/bFL = 0.0279 eV and
GbFLΩ

4π(1−ν) = 0.274 eV nm. The even more interesting quantity is
given by C∗

L,I = C∗
I e

∆E(rL)/kT , see Eq. (4) and Fig. 3(b).
Here, the stability inversion of Fig. 3 is amplified to an
exponential behavior. C∗

L,I is responsible for the dissolution
of loops due to interactions with external sinks or the other
loop ensemble.

C. Summary of model equations

The equations for the parallel evolution of ensembles of
FLs and PLs read, in complete consistence with the model
presentation for only faulted loops in Sec. II,

∂tCFL = R311
FL +RI

FL, (10a)

∂tDFL = R̃311
FL + R̃I

FL, (10b)

∂tCPL = R311
PL +RI

PL, (10c)

∂tDPL = R̃311
PL + R̃I

PL. (10d)

where the functional forms of the terms R311
FL , R̃311

FL , R311
PL and

R̃311
PL have been defined in Eqs. (2) for a general loop. All of

these terms contain either the reaction rate k311
FL or k311

PL , which
determine the unfaulting rate of {311} defects to loops. In
agreement with the experimental observation that PLs are only
observed for higher temperatures, we choose k311

FL to have a
lower activation energy than k311

PL . The terms R̃311
FL and R̃311

PL

contain furthermore the factors k̃311
FL and k̃311

PL , respectively. In
agreement with the experimental observation of Stowe [29],

that perfect loops nucleate at a larger mean radius than faulted
loops, we choose k̃311

PL = 0.05 in comparison to k̃311
FL = 0.5 [15]

for faulted loops. Finally, it should be kept in mind that the
expressions of the formation energies per I Eqs. (9) to be used
for C∗

I,L are different for faulted and perfect loops.
As the result of a calibration based on a variety of ex-

periments, we set k311
FL = 9 · 10−5 · e−4.2 eV/kT cm3/s for

faulted loops while keeping k̃311
FL , kI

FL and AFL = 0 as in
Sentaurus Process [16]. For perfect loops, we set k311

PL = 4 ·
105 ·e−6 eV/kT cm3/s, k̃311

PL = 0.05, kI
PL = 1.5·10−7 ·e1.5 eV/kT ,

and APL = −2.65.

D. Comparison with the experiment

We note that for low temperatures or short annealing times,
the model extension presented gives virtually the same results
as the original model of Zographos et al. [15]. Thus, we only
discuss high temperatures and extended times. The implanta-
tion conditions for these experiments were modeled with the
native Monte Carlo implantation simulator of Sentaurus Pro-
cess, using the default parameters [20]. Sentaurus Process then
accounts for amorphization and solid-phase epitaxial regrowth
by setting the concentration of implantation-induced Is and
Vs in amorphized regions to zero. Only Is that remain behind
the amorph-crystalline boundary can therefore contribute to
the formation of dislocation loops. In Fig. 4, simulations for
1000 ◦C are compared to experiments. At this temperature,
perfect loops become relevant for the implantation conditions
of [28] and they dominate the total density of loops for times
exceeding about 4 min. Due to the stability inversion, PLs
dissolve slowlier and have a larger mean radius than FLs.
Fig. 5 provides a further example for different implantation
conditions. Fig. 6 compares our model with experiments for
a wide range of temperatures, showing good agreement in
contrast to the results obtained with the model of Zographos
et al. shown in Fig. 1.

While the preceding experimental conditions comprised the
well-studied conditions of amorphizing Si and Ge implants,
for solar cells, we are also interested in non-amorphizing B
implants. For the example of a B implant of 1·1015 cm−2 at
30 keV annealed for 15 min at 900 ◦C, Fig. 7 shows simula-
tions of the as-implanted and annealed boron concentrations.
It also compares simulated and experimentally measured val-
ues for the depth dependence of the dislocation-line density
ρL = 2πrLDL. While the experimental values correspond to a
mean value for FLs and PLs, the dislocation-line densities for
both types are resolved in the simulations.

Fig. 8(a) and (b) show the time evolution of loop densities
during RTA and furnace anneals after B implantation. Our
model reasonably compares with experiment, in contrast to
the model of Zographos et al. [15], see Fig. 1.

IV. MODELING THE SATURATION OF OSTWALD RIPENING

While the model of the preceding section for the first time
enables the simulation of dislocation loops in the parameter
regime of solar cell processes, this section is devoted to a more
subtle and weaker effect that arises for these processes. In
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Fig. 4. Loop evolution during RTA annealing at 1000 ◦C following a Si
implant of 1·1016 cm−2 at 50 keV. Experimental data from [28].
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Fig. 5. Loop evolution during RTA annealing at 1000 ◦C following a Ge
implant of 2·1015 cm−2 at 150 keV. Experimental data from [45].

Fig. 2 and the respective discussion, we showed that the model
of Zographos et al. predicts a linearly diverging loop radius
while experiments indicate a much weaker increase if not
reduction. As the mean loop radius enters the disloction line
density, which directly relates to the recombination activity
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densities) during annealing. (a) Rapid thermal annealing (RTA) after an Ge
implant of 2·1015 cm−2 at 150 keV, experimental data from [23]. Compare
this to Fig. 1. (b) RTA after an Si implant of 1·1015 cm−2 at 50 keV,
experimental data from [26].
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Fig. 7. The as-implanted and annealed B profile are shown on the left y-
axis. The dislocation-line densities for perfect (PL) and faulted loops (FL)
are shown on the right y-axis, together with experimental data for the mean
dislocation-line density. For this experiment a B dose of 1·1015 cm−2 was
implanted at 30 keV and annealed at 900 ◦C for 15 min. With this low thermal
budget, FLs can be seen to be still strongly dominant in the simulation. Only
for higher thermal budgets, as shown in Fig. 8(a), PLs start to dominate.
Experimental data from [29, p. 130].

of loops, this model artifact should reduce the quantitative
predicitive power of the model of Zographos et al.. We sketch
an idea that overcomes this artifact at the expense of an only
slightly more complicated model definition.

During annealing, Is will be exchanged among the extended
defects as well as between them and the surface or other
sources and sinks. The former processes is conservative and
leads always to an increase of the mean loop radius rL
of the ensemble. The latter process is non-conservative and
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increases or decreases rL. Although the distinction of these two
processes has been acknowledged for a long time [25], it has
never explicitly been taken into account by process simulation
models. By explicitly accounting for these processes, we
obtain a new loop model that gives rise to different loop-loop
and loop-I reaction dynamics than the model of Zographos et
al..

A. Model equation ansatz
We make the following ansatz for the time evolution of the

mean loop radius rL

drL

dt
= fnc(rL) + fc(rL), (11)

where fnc and fc are functions of rL that correspond to
the non-conservative and conservative contributions to loop
growth. The natural choice for fnc is known to be [19]

fnc(rL) =
kL

nL
(CI − C∗

I,L(rL)), (12)

where kL is a reaction rate. In the conservative regime, when
no other comparable sinks or sources but the loop ensemble
itself are present, fnc should be zero. This holds indeed true
as then CI ' C∗

I,L(rL).
For the conservative contribution to loop growth fc(rL), we

make the ansatz

fc(rL) =
kL

nL
(C∗

I,L(rL − σL)− C∗
I,L(rL + σL)) (13)
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Fig. 9. Comparison of the quantities C∗
I,L and fc ∝ (C∗

I,L(rL − σL) −
C∗

I,L(rL + σL)), see Eq. (13), which govern the non-conservative and the
conservative processes during the evolution of the loop ensemble, respectively.
Here, σL

rL
= 0.4.

where σL has the meaning of the variance of the loop-size
distribution. The choice is motivated as follows. Ostwald
ripening is due to the conservative exchange of Is from small
loops to large loops. In analogy to the ansatz of Burton
and Speights [25], who described the evolution of a loop
with radius rL as a result of the interaction with the mean I
concentration C∗

I,L(rL), Eq. (13) describes the radius evolution
of a loop with radius rL + σL as a result of the interaction
with the emitted I concentration of a smaller loop with radius
rL − σL. As the simulation cannot account for all processes
that occur between loops of the full loop-size distribution, we
assume that the exchange of Is between loops of size rL− σL
and rL +σL should be a representative approximation for these
processes. Note that also for the choice of fnc, we neglected
the details of the loop-size distribution.

In the early stages of the annealing process, when many
small loops are present, the conservative exchange of Is (13)
will govern the loop evolution, while, at a stage at which loops
have become large, the non-conservative contributions (12)
may become more important. Our choice for fc reflects this
transition: fc takes high values for low values of rL and tends
to zero for high values of rL, i.e. in the late-stage regime.
This behavior is obvious in Fig. 9. Furthermore, fc reflects
the fact that a loop-size distribution with a large size variance
σL displays faster Ostwald ripening than a distribution with a
small variance.

We note that we always choose σL ∝ rL. As the size
distribution function of loops, normalized to the mean loop
radius rL, is time-independent for conservative Ostwald ripen-
ing [46, 25] as well as in the early stage when the conservative
exchange of Is dominates, the normalized variance σL/rL of
the distribution must be time-independent, too. In the late-
stage phase, fc ' 0 holds and, by that, the value of σL
becomes unimportant. An additional equation for the time
evolution of σL, which corresponds to the third moment of the
loop-size distribution, is therefore unnecessary. Consequently,
the preceding definition of a two-moment model automatically
corresponds to a three-moment model.
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B. Summary of model equations and comparison to experi-
ment

Before, we obtained the time evolution of rL in Eq. (6)
from Eqs. (1) with RI

L and R̃I
L defined in Eqs. (3). Now we

use the expression for rL in Eq. (11) and the expression of
RI

L of Eqs. (3) to obtain an expression for R̃I
L. Adopting the

notation of [15], we set the constant kL = πkI
LDI and obtain

RI
L = kI

L2π2rLDI(CI − C∗
I,L(rL))DL, (14a)

R̃I
L = −k

I
L2πDI

rLnL
(C∗

I,L(rL − σL)− C∗
I,L(rL + σL))DL. (14b)

This is to be compared with the model equations of [15] given
in Eqs. (3). The difference between the model we propose and
the one of [15] is that instead of the term (C∗

I,L(rL − σL) −
C∗

I,L(rL + σL)) in the equation for R̃I
L, [15] employ C∗

I,L(rL).
We have already compared these terms in Fig. 9.

We compare the results of our model (14) with the results
of Zographos’ model in Fig. 2. Our model clearly allows to
identify the early and late stages of Ostwald ripening via the
observation of two time-scales in the reaction dynamics: In the
early stage, when the conservative exchange of Is dominates,
the loop radius increases strongly ∝

√
t [25], while for

long times where the non-conservative exchange dominates,
it increases only weakly or even saturates. Zographos’ model,
by contrast, leads to a strong loop-radius growth also for long
times when considering high temperatures.

For the calculation of Fig. 2 we used σFL/rFL = 0.4 with
all other parameters as in the preceding section. Only for k311

FL
the original value of [16] was used.

V. CONCLUSION

We presented a dislocation-loop model for the concurrent
growth of faulted and perfect dislocation loops and sketched
a model that reproduces the saturation of Ostwald ripening.
In comparison to established work, both approaches improve
the agreement with experiments particularly for high thermal
budgets. The model has already proven its viability for solar-
cell processing conditions [7, 8].
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[7] J. Krügener, F. A. Wolf, R. Peibst, F. Kiefer,
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