
A publication by Fraunhofer IESE

Component+ Methodology

Built-In Contract Testing: Method and Process

Author:
Hans-Gerhard Groß

In part supported by
Matteo Melideo, Engineering Informatica,
Rome, Italy
Franck Barbier, LIUPPA, Pau, France
and the Component+ Project Consortium.
under EC-IST-1999-20162

IESE-Report No. 030.02/E
Version 1.0
October 31, 2002

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Executive Summary

This report represents one of the two parts of the methodology and process of
Built-in Testing (BIT) technology that has been developed within the European
Union IST 5th Framework Programme in the project Component+ (EC-IST-1999-
20162).

The aim of this work is to devise a technology and methodology that can check
the pairwise interactions of components in component-based software con-
struction at integration and deployment time. Such pairwise interactions are also
defined as contracts. Built-in contract testing is based on building test function-
ality into components, in particular tester components on the client side and
testing interfaces on the server side of a pairwise contract. Since building test
software into components has implications with the overall component-based
development process, the technology is integrated and made to supplement an
existing component-based development methodology, the KobrA method. This
report initially outlines the concepts of the KobrA method that are important for
built-in contract testing, provides a step-by-step guide on how to devise built-in
contract testing artefacts on the basis of the KobrA method, and finally dis-
cusses further implications that built-in contract testing has on typical object and
component technology concepts.

Keywords: Built-in Testing, Component-based Development, Component Contract, UML
Model, Tester Component, Testing Interface, Development Process
vCopyright Fraunhofer IESE 2002

vi Copyright Fraunhofer IESE 2002

Table of Contents

1 Introduction 1
1.1 Contracts in Component-Based Development 1
1.2 Built-in Contract Testing 2
1.3 Software Components 2
1.3.1 Instance/Type Dichotomy of Components 2
1.3.2 Class/Module Dichotomy of Components 3
1.4 Overall Structure of this Report 3

2 Application Specification 5
2.1 Development Methods 6
2.2 Definition of a Quality Assurance Plan 7
2.3 Component Specification 8
2.3.1 Structural Specification 9
2.3.2 Functional Specification 10
2.3.3 Behavioural Specification 12
2.4 Component Realization 15
2.4.1 Realization Structural Specification 16
2.4.2 Realization Algorithmic Specification 17
2.4.3 Realization Interaction Specification 18
2.5 System Specification 19
2.5.1 Context Realization 21
2.5.2 Relation Between Specification and Realization in

Application Engineering 22

3 Test Case Selection Techniques 23
3.1 Functional Testing Techniques 25
3.1.1 Domain Analysis and Partition Testing 25
3.1.2 State-Based Testing 26
3.1.3 Method-Sequence-Based Testing 27
3.1.4 Message-Sequence-Based Testing 27
3.2 Structural Testing Techniques 27
3.3 Model-based Testing and Testing Techniques 28
3.3.1 Test case selection and test information extraction

techniques from models 28

4 Specification of the BIT Artefacts 31
4.1 Built-in Server Tester Components 31
4.2 Built-in Testing Interface 35
4.3 Associations between Components in Built-in Contract

Testing 38
viiCopyright Fraunhofer IESE 2002

4.3.1 Associations between Client Component and Tester
Component 38

4.3.2 Associations between Server Component and Testing
Interface 39

4.3.3 Associations between Tester Component and Testing
Interface 39

5 Development of the BIT Artefacts & Step-by-Step
Process 40

5.1 Identification of Tested Interactions - Step 1 40
5.2 Definition and Modeling of the Testing Architecture -

Step 2 45
5.3 Specification of the Testing Interfaces for the Identified

Associations - Step 3 47
5.4 Realization of the Testing Interfaces - Step 4 50
5.5 Specification of the Tester Component - Step 5 51
5.6 Realization of the Tester Components - Step 6 54
5.7 Integration of the Components - Step 7 55

6 Test-Suite Use and Reuse 58
6.1 Test Reuse at Development Time 59
6.2 Test Reuse at Configuration and Deployment Time 60
6.2.1 BIT Component Testers 60
6.2.2 Server Tester Components 61
6.2.3 Built-in Documentation through the Provided Tester

Components 61
6.3 Test Reuse at Operation Time 62
6.4 Test Reuse throughout Maintenance 62
6.5 Reuse of Standardised Tester Components 62

7 Configuration Management and Interfaces 64
7.1 Functional Configuration 64
7.2 Test Configuration 65

8 Built-in Contract Testing and Commercial
Off-the-shelf Components (COTS) 66

8.1 COTS Components with BIT Capability 66
8.2 COTS Components without BIT Capability 67
8.3 Extended COTS Components with Added Built-in

Contract Testing Capability 68

9 Built-in Contract Testing and Web-Services 70
9.1 Checking Web-Services through Contract Testing 71
9.2 Testing of Readily Initialized Server-Components 74
9.2.1 Possible Destruction of the Server through the Testing
viiiCopyright Fraunhofer IESE 2002

Client 74
9.2.2 Possible Destruction of the Testing Client through the

Server 75

10 Summary 76

11 References 77
ixCopyright Fraunhofer IESE 2002

x Copyright Fraunhofer IESE 2002

Introduction
1 Introduction

The vision of component-based development is to allow software vendors to
avoid the overheads of traditional development methods by assembling new
applications from high-quality, prefabricated, reusable parts. Since large parts of
an application may therefore be constructed from prefabricated components, it
is expected that the overall time and costs involved in application development
will be reduced, and the quality of the resulting applications will be improved.
This expectation is based on the implicit assumption that the effort involved in
integrating components at deployment time is lower than the effort involved in
developing and validating applications through traditional techniques. However,
this does not take into account the fact that when an otherwise fault-free com-
ponent is integrated into a system of other components, it may fail to function
as expected. This is because the other components to which it has been con-
nected are intended for a different purpose, have a different usage profile, or
are themselves faulty. Current component technologies can help to verify the
syntactic compatibility of interconnected components (i.e. that they use and
provide the right signatures), but they do little to ensure that applications func-
tion correctly when they are assembled from independently developed compo-
nents. In other words, they do nothing to check the semantic compatibility of
inter-connected components, so that the individual parts are assembled into
meaningful configurations. Software developers may therefore be forced to per-
form more integration and acceptance testing in order to attain the same level
of confidence in the system's reliability. In short, although traditional develop-
ment time verification and validation techniques can help assure the quality of
individual components, they can do little to assure the quality of applications
that are assembled from them at deployment time.

1.1 Contracts in Component-Based Development

The correct functioning of a system of components at run time is contingent on
the correct interaction of individual pairs of components according to the client/
server model. Component-based development can be viewed as an extension of
the object paradigm in which, following Meyer [Mey97], the set of rules govern-
ing the interaction of a pair of objects (and thus components) is typically
referred to as a contract. This characterizes the relationship between a compo-
nent and its clients as a formal agreement, expressing each party’s rights and
obligations. Testing the correct functioning of individual client/server interac-
tions against the specified contract therefore goes along way towards verifying
that a system of components as a whole will behave correctly.
1Copyright Fraunhofer IESE 2002

Introduction
1.2 Built-in Contract Testing

The testing approach described in this report is therefore based on the notion of
building contract tests into components so that they can validate that the serv-
ers to which they are "plugged" dynamically at deployment time will fulfill their
contract. Although built-in contract testing is primarily intended for validation
activities at deployment and configuration-time, the approach also has impor-
tant implications on the development phases of the overall software life-cycle.
Consideration of built-in test artefacts needs to begin early in the design phase
as soon as the overall architecture of a system is developed and/or the interfaces
of components are specified. Built in contract testing therefore needs to be inte-
grated with an overall software development methodology. In this report we
explain the basic principles behind built-in contract testing, and how they affect
component-based development principles, and show how it can be integrated
with, and made to complement, a mainstream development method that is
based on the creation of UML models.

1.3 Software Components

Since this work is mainly settled around the concepts of component based soft-
ware engineering, it is important that we define the way in which we use the
term component. For the sake of this report we choose to define a software
component as a unit of composition with explicitly specified provided, required
and configuration interfaces, plus quality attributes [Cmp+01]. This definition is
based on the well known definition of the 1996 European Conference on
Object-Oriented Programming [Szy99], that defines a component as unit of
composition with contractually specified interfaces and context dependencies
only, and that it can be deployed independently, and is subject to composition
by third parties. We have intentionally chosen a broader definition that is avoid-
ing the terminology “independently deployable”, since we are not specifically
restricting ourselves to contemporary component technologies such as CORBA,
.NET or COM. In this respect we are closer to Booch’s definition who sees a
component as a logically, cohesive, loosely coupled module that denotes a sin-
gle abstraction [Boo87]. From this it becomes apparent that components are
basically built upon the same fundamental principles as object technology. The
principles of encapsulation, modularity, and unique identities are all basic
object-oriented principles that are subsumed by the component paradigm
[Atk01].

1.3.1 Instance/Type Dichotomy of Components

Since we claim that components are not necessarily independently deployable,
we can be sloppy about the role of the instance/type dichotomy. A type is a
blueprint from which concrete instances can be created. In the object-oriented
2 Copyright Fraunhofer IESE 2002

Introduction
terminology types are typically referring to classes and instances to objects. Con-
sequently, components may be instances in concrete run-time environments
when they are deployed into a system, but they can also be development-time
incarnations when they act as blueprints. The only difference between run-time
and development-time incarnations is that the latter do not encapsulate states
nor offer invocable services. Over the course of this document we mean type if
we refer to a component, and we mean instance if we refer to a component
instance. In the scope of the Model Driven Architectures [OMG-MDA] types may
already be seen as representing instances since the instance is created through a
generative programming step. The same applies to source code components
that are readily deployable through existing compiler technology, for example
Java source code components that are easily translated into byte-code.

1.3.2 Class/Module Dichotomy of Components

Another important issue is whether components themselves present features
such as operations and attributes, or whether they only act as containers for ele-
ments that do present these features. This is concerned with the question of
whether components are class-like or module-like entities [Atk01]. The Compo-
nents that are considered in this document are both, they may be seen as a uni-
fication of a class and a module.

1.4 Overall Structure of this Report

Built-in contract testing is greatly facilitated if it is used as part of an overall
development process. A brief introduction to a sound development method is
therefore essential. Chapter 2 lays the foundations for applying built-in contract
testing technology properly, because it introduces specification techniques that
are all part of the KobrA development method [Atk01]. It describes the artefacts
that should ideally be available for a component if built-in contract testing will
be applied and it builts the basis for the way in which a built-in contract testing
architecture can be derived for an application. Because the principles of the con-
tract testing approach extend the model-driven development paradigm of the
KobrA method, and they extend this method in respect to testing, models mod-
eling and model driven test case generation are all fundamental to this report.
Chapter 3 discusses typical test case generation techniques that are ideal candi-
dates for test case generation in object technology and component-based devel-
opment. It also elaborates the main test case selection techniques that may be
used with built-in contract testing. The following chapters Chapter 4 and Chap-
ter 5 represent the core of this report. They concentrate on the main built-in
contract testing methodology. Chapter 4 defines the actual artefacts that must
be developed under the contract testing approach and describes how they are
related. It elaborates built-in testing interfaces and tester components. Chapter
5 describes the process in detail that must be followed for developing modeling
3Copyright Fraunhofer IESE 2002

Introduction
and designing the testing functionality out of the modeling and design of the
normal functionality of components. This may be seen as a step-by-step guide
for built-in contract testing development. All subsequent chapters are con-
cerned with the effects or implications that this technology imposes on other
typical component technologies. Chapter 6 discusses how built-in contract test-
ing supports the reuse paradigm of component-based software engineering.
Chapter 7 looks at how the technology affects configuration management and
configuration interfaces, and how these affect the technology. Chapter 8
describes how built-in contract testing may be used with commercially available
third party components, so called COTS, that typically provide restricted internal
access for testing purposes. Chapter 9 briefly discusses how built-in contract
testing may be used with Web-Services, and finally, Chapter 10 summarizes and
concludes this report.
4 Copyright Fraunhofer IESE 2002

Application Specification
2 Application Specification

The initial starting point for a software development project is undoubtedly a
system or application specification derived and decomposed from the system
requirements. Requirements are collected from the customer of the software.
They are decomposed in order to remove their genericity in the same way as sys-
tem designs are decomposed in order to obtain finer grained parts that are indi-
vidually controllable. These parts are implemented and later composed into the
final product. The decomposition activity is aiming to obtain meaningful, indi-
vidually coherent parts of the system, the components. It is also referred to as
component engineering or component development. The composition activity
tries to assemble already existing parts, that may have been already used in
other applications, into a meaningful configuration that reflects the predeter-
mined system requirements. To sum this up, component engineering or compo-
nent development is a top-down activity that decomposes a system into finer
grained parts. Application engineering or component assembly is a bottom-up
activity that builts up a complete system from readily available, prefabricated
parts.

In its purest form, component-based development is only concerned with the
second item, representing a bottom-up approach to development. This requires
that every single part of the overall application is already available in a compo-
nent repository in a form that exactly maps to the requirements of that applica-
tion. Typically, this is not the case, and merely assembling readily available parts
into a configuration will quite likely lead to a system that is not conformant with
its original requirements. Component-based development is therefore usually a
mixture of top-down decomposition and bottom-up composition. In other
words, the system is decomposed into finer grained parts, that means sub-sys-
tems or components, and these are attempted to be mapped to individual pre-
fabricated components. If no suitable components are found, decomposition is
continued. If partially suitable components are found, the decomposition is
repeated according to the needs of the candidate component. A found suitable
component represents a feasible and acceptable solution for the entire system
or the considered sub-system. The whole process is iterative and must be fol-
lowed until all requirements are mapped to corresponding components or until
the system is fully decomposed onto the lowest desirable level of abstraction. If
suitable third party components are found, they can be composed to make up
the system or sub-system under consideration. Such a process is always goal-ori-
ented in that it only accepts components that are fit for the purpose of the sys-
tem. This means that only such parts will be selected that somehow map to the
system specification. The outcome of such a development process is usually a
5Copyright Fraunhofer IESE 2002

Application Specification
heterogeneous assembly consisting of combinations of prefabricated parts plus
own implementations.

The decomposition process is based on the derivation of component specifica-
tions and realizations. The specification of a component comprises every infor-
mation that is necessary to fully describe what a system part does, and the real-
ization of a component contains full information that is necessary to implement
this part. Their development and the required artefacts are described in the fol-
lowing sub-sections. But initially, we need to have a look at development meth-
ods that support the decomposition and composition activities.

2.1 Development Methods

Every serious attempt of developing software professionally should be based on
a sound development method and process. Its role is to accompany the develop-
ment with guidelines and heuristics describing where, when and how advanced
development technologies such as object-oriented design or modeling should
be used [Atk01]. A method acts as a framework and a process in which the
development effort will be carried out. Additionally, it defines the intermediate
development artefacts, and it provides guidelines on how these should be used
as input to subsequent development cycles. It also ideally supports their verifica-
tion in some way. Applying a development method consequently leads to all the
necessary software documents that collectively make up the entire software
project.

One example for a sound development method is the KobrA method [Atk01]
that has been developed by Fraunhofer IESE. It draws its ideas from many of
today’s object-oriented and component-based methods, although it aims at
combining their advantages while trying to iron out their disadvantages or
shortcomings. The most influential methods that lend their concepts to the
KobrA method are OMT [RBP91], Fusion [Col94], ROOM [SGW94], HOOD
[Rob92], OORAM [RWL96], Catalysis [DW98], Select Perspective [AF98], UML
Components [CD00], FODA [KCN90], FAST [WL99], PuLSE [BFK99], Rational
Unified Process [JBR99,Kru00], OPEN [GHY97], and Cleanroom [MLH87].

The KobrA method uses the UML as primary notation. That means, most soft-
ware documents that are created during the development with this method are
UML models. However, there are other artefacts in natural language or in tabu-
lar form, but KobrA follows the concepts of OMG’s Model Driven Architectures,
so models are the primary development documents. Any other development
method, or even no development method at all may be used to come up with
the specification artefacts on which built-in testing is based. However, in the fol-
lowing sub-sections we describe the artefacts that are typically created in a
KobrA development project since this supports built-in contract testing in a very
natural way. All these specification artefacts may also be developed completely
6 Copyright Fraunhofer IESE 2002

Application Specification
arbitrarily, for instance in natural language. In fact, the Extensible Markup Lan-
guage (XML) is more and more being used to express graphical specification
artefacts such as models, for instance. XML is a tagged language that is often
used in component technologies (e.g. CORBA Components) and for generative
programming.

The following sub-sections concentrate on describing the specification artefacts
that are typically created for each individual component within a development
project. These are the products of the development method. How they are
obtained as part of a development process is not subject of this report, however.
Here, we concentrate merely on the software documents that represent the
basis for creating the built-in testing specifications and model artefacts. But
before that, we will discuss the importance of an overall quality assurance plan
for a development project that should be part of the development method.
Non-functional (quality) requirements are part of a quality plan, and they are
usually defined for both, the entire project, and each individual component.

2.2 Definition of a Quality Assurance Plan

An essential part of an application specification comprises quality requirements
that must be fulfilled in order to have an acceptable product. The specification
cannot simply state that the product should exhibit high quality, or low failure
rates, or the like. Such a terminology is too unspecific and it cannot be assessed.
Validation always implies a degree of goodness of an expected property, there-
fore the property must be measurable. Additionally, the properties that define
the expected degree of quality must be determined in the first place. Quality
may be defined through many differing attributes that a software product is
expected to exhibit.

In order to accommodate the various interpretations and requirements for the
term quality, and to identify concrete practices and techniques from these
abstract ideas, an effective quality assurance plan requires the following items
[Atk01]:

– A precise definition of what quality means for the considered development
project, and how it manifests itself in different kinds of products.

– A precise description of what quality aspects are important for different kinds
of products, and what quality levels are required.

– A systematic approach for judging the quality and improving it to the
required levels.

– A plan and process to put the previous items together.

This report develops a testing strategy and organization that applies built-in test-
ing artefacts in component-based systems. This means that it is part and out-
come of the considerations that must be taken when a quality assurance plan
7Copyright Fraunhofer IESE 2002

Application Specification
for a development project is devised. However, it is not in the scope of this
report to define and apply such a quality assurance plan for a particular software
development project. In this document we merely underpin the importance of a
concrete plan of which quality assurance techniques, or test adequacy criteria
should be applied to satisfy which quality attributes to the expected level. Built-
in testing is one such technique that can be used to control or assess the quality
of component-based systems.

One part of a quality assurance plan determines the set of quality assurance
techniques that should be applied in the software project, another part a set of
test case selection techniques or test adequacy criteria. These two are funda-
mentally different. The first is concerned with theoretical background, models,
and processes that will be applied and followed when a piece of software is
assessed qualitatively (e.g. stress testing, mutation testing, quality of service test-
ing, contract testing). The latter is concerned with defining the concrete values
for the input and the pre- and post-conditions of individual test cases according
to some testing criteria (test coverage criteria, random testing, equivalence parti-
tioning). Built-in contract testing is clearly belonging to the first class. Though,
since it requires and applies test suites, it has of course implications on the sec-
ond class.

There are many standard test case selection techniques that may be applied
within a development project. Which of these techniques will be used in a
project is subject to careful consideration, and this is typically part of defining
the quality assurance plan. We cannot provide guidelines on which test case
selection technique is the best for a particular system. This is clearly out of the
scope of this project and may be subject of a research project in its own right.
What we do provide, however, is a proposition on how the models that collec-
tively make up a system specification may be used to generate test suites for
built-in testing. This is laid out in a separate section of this report (Section 3).
There, we will focus on how test cases may be derived from the individual soft-
ware specification artefacts that are created throughout the software develop-
ment process. But now, we explain the specification artefacts in greater detail.

2.3 Component Specification

A specification is a collection of descriptive documents that collectively define
what a component can do. Typically, each individual document represents a dis-
tinct view on the subject, and thus only concentrates on a particular aspect of
what it can do. A component specification may be represented through natural
language, or through some graphical representations and formal languages.
Whichever notation is used, a specification should contain everything that is
necessary in order to fully use the component and understand its behaviour. As
such, the specification can be seen as defining the provided interface of the
component. Therefore, the specification of a component comprises everything
8 Copyright Fraunhofer IESE 2002

Application Specification
that is externally knowable of its structure (e.g. associated other components, in
form of a structural specification), function (e.g. provided operations, in form of
a functional specification), and behaviour (e.g. pre- and post-conditions, in form
of a behavioural specification). These parts are not mandatory and may change
from project to project or from component to component. They rather represent
a complete framework for a component specification. They are described in
detail in the following. Additionally, a specification should comprise non-func-
tional requirements, these represent the quality attributes stated in the compo-
nent definition. They are part of the quality assurance plan of the overall devel-
opment project or the specific component. This was outlined in the previous
sub-section. A complete documentation for the component is also desirable,
and a decision model that captures the built-in variabilities that the component
may provide. These variabilities are supported through configuration interfaces.

2.3.1 Structural Specification

The structural specification defines operations and attributes of the considered
subject component, and the components that are associated with the subject
(e.g. its clients and servers), as well as constraints on these associations. This is
important for defining the different views that clients of component instances
can have on the subject. Essentially, this maps to the prospective configurations
of the subject, and thus its provided configuration interfaces. A structural speci-
fication is traditionally not used in software projects. Only the advent of model
driven development approaches has increased its importance as specification
artefact. As a UML class or object model, the structural specification provides a
powerful means to defining the nature of the classes and relationships by which
a component interacts with its environment, it is also used to describe any struc-
ture that may be visible at its interface [Atk01].
9Copyright Fraunhofer IESE 2002

Application Specification
Figure 1:
UML-style structural
specification.

The structural specification in KobrA is represented through a collection of UML
class and object diagrams. An example for a class diagram is depicted in Figure
1. This displays the structure of the individual components that collectively make
up an bank ATM system. The ATM system is the component that is developed
from scratch, the other associated components are readily available third party
components (CashAcceptingUnit, CashDispensingUnit, Printer) or in-house
developments (TransactionManager, TouchScreen, CardReader).

2.3.2 Functional Specification

The purpose of the functional specification is to describe the externally visible
effects of the operations supplied by the component, this is its provided inter-
face. A template for a complete functional specification for one single operation
of a component is depicted in Table 1. The most important items of the list in
Table 1 are the “Assumes” and “Result” clauses which represent the pre- and
post-conditions for the operation. These are essential for testing the correctness
of an operation. The “Assumes” clause defines what must be true for the oper-
ation to guarantee correct expected execution, and the “Result” clause
describes what is expected to become true as a result of the operation if it exe-
cutes correctly. It is possible to execute the operation if its “Assumes” clause is
false, but then the effects of the operation are not certain to satisfy the post-
condition (compare with “design by contract” [Mey97]). The basic goal of the
“Result” clause is the provision of a declarative description of the operation in
terms of its effects. This means it describes what the operation does, and not
how. Pre- and post-conditions typically comprise constraints on the provided

«Subject»
ATM

withdrawMoney ()
depositMoney ()
performBankTransfer ()
printBalance ()
printStatement ()
insertCard ()

«Komponent»
TouchScreen

«Komponent»
Printer

«Komponent»
CashDispensingUnit

«Komponent»
TransactionManager

«Komponent»
CashAcceptingUnit

«Komponent»
CardReader

«Subject»
ATM

withdrawMoney ()
depositMoney ()
performBankTransfer ()
printBalance ()
printStatement ()
insertCard ()

«Komponent»
TouchScreen

«Komponent»
Printer

«Komponent»
CashDispensingUnit

«Komponent»
TransactionManager

«Komponent»
CashAcceptingUnit

«Komponent»
CardReader
10 Copyright Fraunhofer IESE 2002

Application Specification
inputs, the provided outputs, the state before the operation invocation (initial
state), and the state after the operation invocation (final state) [Atk01, Gre01].

Any notation for expressing pre- and post-conditions may be used depending
on the intended purpose and domain of the system. A natural choice for
expressing them is the Object Constraint Language (OCL) defined in the UML
standard [OMG00]. In the KobrA method, the functional specification is repre-
sented through a collection of operation specifications that are defined by the
template depicted in Table 1.

Table 1:
Operation specifica-
tion template based
on the Fusion
method [Atk01,
Col94].

The functional specification, that means the collection of all operation specifica-
tions, collectively define the provided interface of a component completely and
sufficiently, including function and behaviour. However, depending on the com-
plexity or the size of a component it may be difficult to understand and see the
individual interactions with its environment. The behavioural specification
defines this additional aspect of a component. It merely represents a different
view on the component’s specification (its operations), and in fact in the devel-
opment process, the two are typically used to refine each other [Atk01]. The
behavioural model shows a complete picture of the collection of all operation
specifications, but it concentrates on the “Assumes” and “Result” clauses (the
pre- and post-conditions) of all operation specifications.

Name Name of the operation

Description identification of the purpose of the operation, followed by an informal description of the
normal and exceptional effects

Constraints Properties that constrain the realization and implementation of the component

Receives Information input to the operation by the invoker

Returns Information returned to the invoker of the operation

Sends Signals that the operation sends to imported components (can be events or operation invo-
cations)

Reads Externally visible information that is accessed by the operation

Changes Externally visible information that is changed by the operation

Rules Rules governing the computation of the result

Assumes Weakest pre-condition on the externally visible state of the component and on the inputs
(in receives clause) that must be true for the component to guarantee the post condition
(in the result clause)

Result Strongest post-condition on the externally visible properties of the component and the
returned entities (returns clause) that becomes true after execution of the operation with
the assumes clause
11Copyright Fraunhofer IESE 2002

Application Specification
Table 2:
Example operation
specification for the
ATM component
operation withdraw-
Money.

2.3.3 Behavioural Specification

The object paradigm encapsulates data and functionality in one single entity,
the object. This is one of the most fundamental principles of object technology.
It leads to the notion of states, and the transitions between states, that typically
occur in objects when they are operational. The component paradigm subsumes
the principles of object technology as discussed before, and therefore it is based
on exactly these principles as well. Our components may have states. If a com-
ponent does not have states, it is referred to as functional object or functional
component, meaning it has no internal attributes that may be exhibited through
its provided interface. In other words, a pure functional component does not
exhibit externally visible states and transitions. It may, however, have internal
states that are not externally visible.

The purpose of the behavioural specification (or the behavioural model) is to
show how the component behaves in response to external stimuli [Atk01]. It
concentrates on the “Assumes” and “Result” clauses of the functional specifi-
cation that define the pre- and post-conditions of an operation (Table 1 and
Table 2). If the component has no states, then the pre- and post-conditions do
not define an initial state for which an operation invocation is valid, or a final
state in that an operation invocation results. In this case, we are only concerned
with distinct input with which the operation may be called, that results in a dis-
tinct output of the operation call. In this case, we do not necessarily need a
behavioural model. The cohesiveness of functional objects is entirely arbitrary,
because in object technology cohesion is defined through the data that the
operations mutually access and change. Object-technology is therefore more
focused on data cohesion whereas in traditional development we may refer to

Name withdrawMoney

Description On success: performs a withdrawal of a specified amount of cash from a specified bank
account and prints out receipt on the Printer if requested.
On failure: displays error message on TouchScreen, or locks CardReader

Constraints cardLockRequest from Card locks the CardReader.

Receives None.

Returns On success: CashDispenseRequest to CashDispenser. Receipt to printer if requested.
On failure: errorMessageto TouchScreen, and/or cardLock to CardReader

Sends On success: withdrawalTransaction to TransactionManager

Reads PinCode from TouchScreen.
CustomerDetails from CardReader.

Changes TransactionManager.
CardReader.
CashDispenserUnit.

Rules Specified in the respective sub-operations (see activity diagram).

Assumes Sufficient cash for CashDispenseRequest in CashDispenserUnit.

Result TransactionManager is updated by withdrawalTransaction.
CashDispensingUnit is updated by CashDispenseRequest.
12 Copyright Fraunhofer IESE 2002

Application Specification
functional cohesion, meaning functions are grouped into components or mod-
ules that have similar purpose. In any way, if the component is based on states,
and most components are, the behavioural model expresses a big deal of the
complexity of the pre- and post-conditions which are inherently defined in the
collection of all operation specifications.

The behavioural specification (or behavioural model) describes the behaviour of
the objects or instances of a component in terms of their observable states, and
how these states change as a result of external events that affect the compo-
nent instance [Gre01, Bin00]. A state is a particular configuration of the data
values of a component’s internal attributes. A state itself is not visible. What is
visible or externally observable is a difference in behaviour of the component
from one state to another when operations are invoked. In other words, if the
same message is sent to a component instance twice, the instance may behave
differently, depending on its original state before the message is received. A
transition, or change from one state into another, is triggered by an event,
which is typically a message arrival. A guard is a condition that must be true
before a transition can be made. Guards are used for separating transitions to
various states that are based on the same event [Gre01]. The behavioural speci-
fication in KobrA is represented through one or more UML state diagrams or
state tables. An example for a state diagram is depicted in Figure 2, one for a
state table is depicted in Table 3. Figure 2 displays the behavioural model for a
banking card software that validates whether the card is activated with the right
pin number. Table 3 represents the respective state table.

Figure 2:
Behavioural specifi-
cation in form of
state diagram.

C le a r e d

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n P in E r r o r

S e c o n d A t t e m p t

T h i r d A t t e m p t

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n P in E r r o r

L o c k e d
e n t r y / C a r d R e a d e r . lo c k ()

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n L o c k E r r o ru n lo c k C a r d (S e c u r it y P in)

[v a l id S e c u r it y P in]
/ r e t u r n C u s t o m e r D e t a i l s

v a l id a t e P in (P in) [v a l id P in]
/ r e t u r n C u s t o m e r D e t a i ls

v a l id a t e P in (P in) [v a l id P in]
/ r e t u r n C u s t o m e r D e t a i ls

v a l id a t e P in (P in)
[v a l id P in]

/ r e t u r n C u s t o m e r D e t a i ls

u n lo c k C a r d (S e c u r it y P in)
[in v a l id S e c u r it y P in]
/ r e t u r n S e c u r it y P in E r r o r

C le a r e d

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n P in E r r o r

S e c o n d A t t e m p t

T h i r d A t t e m p t

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n P in E r r o r

L o c k e d
e n t r y / C a r d R e a d e r . lo c k ()

v a l id a t e P in (P in)
[in v a l id P in]
/ r e t u r n L o c k E r r o ru n lo c k C a r d (S e c u r it y P in)

[v a l id S e c u r it y P in]
/ r e t u r n C u s t o m e r D e t a i l s

v a l id a t e P in (P in) [v a l id P in]
/ r e t u r n C u s t o m e r D e t a i ls

v a l id a t e P in (P in) [v a l id P in]
/ r e t u r n C u s t o m e r D e t a i ls

v a l id a t e P in (P in)
[v a l id P in]

/ r e t u r n C u s t o m e r D e t a i ls

u n lo c k C a r d (S e c u r it y P in)
[in v a l id S e c u r it y P in]
/ r e t u r n S e c u r it y P in E r r o r
13Copyright Fraunhofer IESE 2002

Application Specification
Table 3:
Behavioural specifi-
cation in form of a
state table.

The functional specification, that is the collection of all operation specifications,
should contain sufficient information for creating the behavioural specification
(see the specification the card operations in Table 4). Each specified operation
represents one or several events in the behavioural model. Asynchronous events
that affect the component as well also map to events in the state model. The
“Rules” section in Table 1 defines the rules that govern the outcome of an oper-
ation in the operation specification, and the “Results” section defines that out-
come. These rules define the different cases and input scenarios that affect the
outcome of the operation. They are implicitly defined through the “Rules”,
“Assumes” and “Result” clauses (pre- and post-conditions). However, there is
no standard process for developing an abstract state model from functional
specifications. In the current state-of-the-practice this is a highly innovative and
human-oriented activity. The development of a process for creating state-transi-
tion models represents a research project in its own right and is out of the scope
of this report, so we do not go into more detail here.

Table 4:
Functional specifica-
tion for the banking
card example (Figure
2).

Initial State Precondition Event Postcondition FinalState

Cleared [validPin] validatePin (Pin) return CustomerDetails Cleared

Cleared [invalidPin] validatePin (Pin) return PinError SecondAttempt

SecondAttempt [validPin] validatePin (Pin) return CustomerDetails Cleared

SecondAttempt [invalidPin] validatePin (Pin) return PinError ThirdAttempt

ThirdAttempt [validPin] validatePin (Pin) return CustomerDetails Cleared

ThirdAttempt [invalidPin] validatePin (Pin) return LockError Locked

Locked [validSecurityPin] unlockCard (SecurityPin) return CustomerDetails Cleared

Locked [invalidSecurityPin] unlockCard (SecurityPin) return SecurityPinError Locked

Name validatePin

Description Validates a given Pin and, on success, returns the stored customerDetails. After three
unsuccessful invocations (invalid Pin) the card is locked.

Constraints cardLockRequest from card locks the cardReader (card is not returned to customer)

Receives Pin: Integer

Returns On success: customer details.
On failure: invalid Pin error.

Sends None.

Reads None.

Changes None.

Rules Unless card is locked: return customer details.
After third unsuccessful invocation [invalid Pin AND card not locked]: lock the card.
After second unsuccessful invocation [invalid Pin AND card not locked]: allow one last
unsuccessful attempt.
After first unsuccessful invocation [invalid Pin AND card not locked]: allow two more unsuc-
cessful attempts.
After no unsuccessful invocations [invalid Pin AND card not locked]: allow three more
unsuccessful attempts.
One successful invocation clears the card from previous unsuccessful invocations.
14 Copyright Fraunhofer IESE 2002

Application Specification
2.4 Component Realization

A realization is a collection of descriptive documents that collectively define how
a component is realized. A realization should contain everything that is neces-
sary in order to implement the specification of a component. A higher-level
component is typically realized through a combination of lower-level compo-
nents that are contained within and act as servers to the higher-level compo-
nent. Additionally, the realization describes the items that are inherent to the
implementation of the higher-level component. This is the part of the function-
ality that will be local to the subject component and not implemented through
sub-components. In other words, the realization defines the specification of the
sub-components, this is the expected interface of the component, and addition-
ally it contains its own implementation. These items correspond to its private
design that the client of the component does not see. The overall meta-model
of a component with specification and realization is illustrated in Figure 6. This
also underlines the importance of a quality assurance plan and quality documen-
tation. However, these are not described in any further detail.

A component realization describes everything that is necessary in order to
develop the implementation of the specified component. This comprises the
specifications of the other server components upon which the subject compo-
nent relies, as well its internal structure, and the algorithms by which it performs
its specified functionality. Therefore, the realization comprises documents for
specifying its internal structure (described in sub-section “Realization Structural
Specification”), the algorithms by which it calculates its results (described in sub-
section “Realization Algorithmic Specification”), and the interactions with other

Assumes card not locked AND Number of unsuccessful attempts < 3

Result (card locked AND Number of unsuccessful attempts = 3) XOR (card not locked AND Num-
ber of unsuccessful attempts < 3)

Name unlockCard

Description Unlocks a previously locked card, so that it may be used again.

Constraints Only locked cards can be unlocked.

Receives Security Pin: Integer.

Returns On succes [valid SecurityPin]: CustomerDetails stored on the card.

Sends On failure [invalid SecurityPin]: Security Pin Error.

Reads None.

Changes None.

Rules On success [valid SecurityPin]: set card to cleared

Assumes Card locked AND (valid SecurityPin OR invalid SecurityPin).

Result (Card cleared AND valid SecurityPin) XOR invalid SecurityPin

Name validatePin
15Copyright Fraunhofer IESE 2002

Application Specification
components, these are its own associated servers (described in sub-section
“Realization Interaction Specification”).

2.4.1 Realization Structural Specification

The purpose of the realization structural model is to describe the nature of the
classes and their relationships out of which the component is made up (i.e. its
sub-components), and the internal architecture of the component. In general,
the structural model consists of a number of class and object diagrams [Atk01].
Figure 3 displays the UML class diagram representing the structure of an ATM
component.

Realization class diagrams describe the classes, attributes and relationships
between the classes out of which a component is made up. The component that
is the focal point of the diagram is augmented with the stereotype <<subject>>.
The realization class diagram is typically a refinement of the specification class
diagram, so it contains a superset of the information represented in the specifi-
cation class diagram. All elements that are displayed there, are also relevant to
the realization, but here they are described in more detail. Additionally, the real-
ization comprises elements that are not visible at the specification level, since
they are not important for using the component properly.

Figure 3:
Realization class dia-
gram for the ATM
component.

« S u b je c t»
A T M

w ith d ra w M o n e y ()
d e p o s itM o n e y ()
p e rfo rm B a n k T ra n sfe r ()
p r in tB a la n c e ()
p r in tS ta te m e n t ()
in se rtC a rd ()

« K o m p o n e n t»
T o u c h S c re e n

« K o m p o n e n t»
P r in te r

« K o m p o n e n t»
C a sh D isp e n s in g U n it

« K o m p o n e n t»
T ra n sa c t io n M a n a g e r

« K o m p o n e n t»
C a rd R e a d e r

C u sto m e rD e ta ils

« c re a te s»

B a n k T ra n sa c t io n
1

*

*

1

1

1

1

1

1

1

1

1

1

1

D e p o s it
M a n a g e r

W ith d ra w
M a n a g e r

T ra n sfe r
M a n a g e r

S ta te m e n t
M a n a g e r

« c re a te s»

*

« S u b je c t»
A T M

w ith d ra w M o n e y ()
d e p o s itM o n e y ()
p e rfo rm B a n k T ra n sfe r ()
p r in tB a la n c e ()
p r in tS ta te m e n t ()
in se rtC a rd ()

« K o m p o n e n t»
T o u c h S c re e n

« K o m p o n e n t»
P r in te r

« K o m p o n e n t»
C a sh D isp e n s in g U n it

« K o m p o n e n t»
T ra n sa c t io n M a n a g e r

« K o m p o n e n t»
C a rd R e a d e r

C u sto m e rD e ta ils

« c re a te s»

B a n k T ra n sa c t io n
1

*

*

1

1

1

1

1

1

1

1

1

1

1

D e p o s it
M a n a g e r

W ith d ra w
M a n a g e r

T ra n sfe r
M a n a g e r

S ta te m e n t
M a n a g e r

« c re a te s»

*

16 Copyright Fraunhofer IESE 2002

Application Specification
2.4.2 Realization Algorithmic Specification

The algorithmic specification is comprised of a number of activity specifications
that describe the algorithms by which the operations of a component are imple-
mented. A UML activity diagram is a special kind of statechart diagram in which
all the states are actions, these represent the nodes in a typical flow-graph nota-
tion, and all transitions are triggered by the completion of the actions. Figure 4
shows the UML activity diagram for the ATM’s operation withdrawMoney. This
represents a high-level of abstraction specification artefact, and it is quite likely
decomposed into finer grained parts (they are not displayed here). Essentially,
the activities in the diagram map to private individual procedures belonging to
the classes that are labeled in the UML “swimlanes”. These operations are typi-
cally further refined in subsequent activity diagrams that are related to the
respective objects.

Activities which are not operations of a component may also be refined and
specified through activity specifications that take the same form and shape of
operation specifications (example is displayed in Table 4).

Figure 4:
Activity diagram for
the operation with-
draw Money of an
ATM component.

Withdraw
Manager

CardReader Transaction
Manager

TouchScreen CashDispenser

getCustomer
Details

getAmount

store
Transaction

Printer

Receipt
Reqested

print
Receipt

[abort]

[else]

[yes]

return
Card

[no]

issue
Amount

Withdraw
Manager

CardReader Transaction
Manager

TouchScreen CashDispenser

getCustomer
Details

getAmount

store
Transaction

Printer

Receipt
Reqested

print
Receipt

[abort]

[else]

[yes]

return
Card

[no]

issue
Amount
17Copyright Fraunhofer IESE 2002

Application Specification
2.4.3 Realization Interaction Specification

Activity diagrams provide a flowchart-like picture of the algorithm for an opera-
tion and thus emphasize flow of control. Interaction models display similar infor-
mation, but from the perspective of instance interactions rather than control
flow [Atk01]. Interaction diagrams describe how a group of instances collabo-
rate to realize an operation, or a sub-activity thereof. Figure 5 displays a corre-
sponding UML collaboration diagram for the activity displayed in Figure 4.

For small activities it is typically not necessary to create both activity diagram and
interaction diagram because the algorithm may be quite clear. For larger activi-
ties it is often helpful to have both views available.

Figure 5:
Collaboration dia-
gram for the ATM
operation withdraw-
Money.

«subject»
:withdrawManager

«Komponent»
:CardReader

3: storeTransaction
(Widthdrawal, CustomerDetails, Amount)

«Komponent»
:TouchScreen

2: Amount = getAmount ()
4: ReceiptRq = receiptReq ()

«Komponent»
:TransactionManager

1: CustomerDetails = getCustomerDetails ()
6: returnCard ()

«Komponent»
:Printer

5: [ReceiptRq]
PrintReceipt (Amount)

«Komponent»
:CashDispenser

7: issue (Amount)

«subject»
:withdrawManager

«Komponent»
:CardReader

3: storeTransaction
(Widthdrawal, CustomerDetails, Amount)

«Komponent»
:TouchScreen

2: Amount = getAmount ()
4: ReceiptRq = receiptReq ()

«Komponent»
:TransactionManager

1: CustomerDetails = getCustomerDetails ()
6: returnCard ()

«Komponent»
:Printer

5: [ReceiptRq]
PrintReceipt (Amount)

«Komponent»
:CashDispenser

7: issue (Amount)
18 Copyright Fraunhofer IESE 2002

Application Specification
Figure 6:
Metamodel that
describes the con-
cepts of a Compo-
nent.

2.5 System Specification

Component realization and specification represent the overall logical compo-
nent that exists only in form of specification documents. In this case this is
mainly models plus the operation specifications. The realization is additionally
comprising a description of the physical component. This describes how the
individual component operations will be implemented and how these access the
associated server components whose individual interfaces are laid out in the
specification of the required interface. Each of these will be implemented as a
component in its own right with all the component specification artefacts that
have been introduced in the previous sections. This comprises everything that is
externally knowable of its structure (e.g. associated other components), function
(e.g. provided operations), and behaviour (e.g. pre- and post-conditions). Con-
sequently, component realizations map to sub-ordinate component specifica-
tions, and vice versa. The source code component implements the provided
interface and the operation calls to the required interfaces in the chosen pro-
gramming language, plus the code that realizes internal operations of the phys-
ical component. Such a source code component is implemented through a

Component

Physical
Component

Logical
Component

Component
Specification

Component
Realization

Provided
Interface

«defines»

Required
Interface

«defines»

Source Code
Component

«implements»

«defines»

«implements»

Quality
Assurance Plan

Quality
Documentation

1..*

1..*1

1

1

1..*

1

1

Binary Code
Component

«implements» 1..*

Quality
Assurance Plan

This defines the
provided contract
of the component.

This defines the
required contract

of the component.

Component

Physical
Component

Logical
Component

Component
Specification

Component
Realization

Provided
Interface

«defines»

Required
Interface

«defines»

Source Code
Component

«implements»

«defines»

«implements»

Quality
Assurance Plan

Quality
Documentation

1..*

1..*1

1

1

1..*

1

1

Binary Code
Component

«implements» 1..*

Quality
Assurance Plan

This defines the
provided contract
of the component.

This defines the
required contract

of the component.
19Copyright Fraunhofer IESE 2002

Application Specification
binary component. Figure 6 displays the meta model of a component that is
used under this context.

Specification and realization provide a precise and abstract description of what a
component does and how it works. Additionally, they define the provided and
required interfaces of the component. These represent the contracts of the com-
ponent on the basis of which it interacts with its environment (other associated
components). This is also concerned with other important relationships of com-
ponents, namely containment and clientship. These are important concepts that
describe how components are related to other components in a hierarchical
tree. Components are comprised of other sub-components that are comprised
of sub-ordinate server components. In effect a higher-level component is a sys-
tem in respect to the contained sub-components. A system and a component
are therefore the same thing in respect to which level of abstraction is consid-
ered. In other words, a component may be a single stand-alone entity, and in
this case referred to as a system in its own right, or it may only be part of a
larger grained component, and thus only be referred to as a component. This
follows the idea that sombody’s component may be somebody else’s system.

Containment The specification of a system/component is always subject to containment rules
relating a component to its parent component. A containment tree represents
the way in which such relations are established. The UML component diagram
in Figure 7 represents the containment hierarchy for a simple banking applica-
tion that uses a web-service. The root node in a containment hierarchy is typi-
cally the context of the application. In its simplest form the context is the main
method in a Java program that creates the instances of LookUpTable and Bank,
for example.

Clientship Clientship relations are the most fundamental associations between compo-
nents or objects. They are subdivided into relations in which the component acts
as a server, and relations in which the component acts as a client. The server
relationship determines the services that a component must provide and the
nature of the information that is passed through its provided interface. The cli-
ent relationship determines the services that a component expects to get from
other components and the nature of this interaction. The two are determined
through the specification and the realization of the component. On an inter-
component-level these relations are represented through UML style associations
with additional stereotypes that indicate the nature of client/servership. Figure 7
represents the client-server relations in a simple banking application. The rela-
tions are defined through the arrows, the component to which the arrow points
represents the server side of the relation, and the <<acquires>> stereotype. This
indicates that the client is given a reference to an existing server instance, rather
then creating its own server instance.
20 Copyright Fraunhofer IESE 2002

Application Specification
Figure 7:
Containment and
clientship relations
in a banking applica-
tion.

2.5.1 Context Realization

The previous sections have described the specification and realization of a com-
ponent, which when applied in alternation form the basis for an iterative devel-
opment process that is founded on recursive decomposition along the contain-
ment hierarchy. Every specification is defined in respect to an encapsulating
realization, and every realization is defined with respect to an associated specifi-
cation [Atk01]. This sub-section explains where this process initially starts.

The overall system, that means the collection of all components that make up an
application, is represented through a component containment tree (as described
earlier) whose initial root node represents the realization of the application’s
context or environment. This environment encapsulates the component or sys-
tem very much like a normal component, therefore the terminology context
realization. It provides interfaces (e.g. to the outside world of the component)
and expects services from the component. Typically the context of a component
or system is another system, a user interface or an existing business process into
which the new application will be embedded.

A context realization is comprising the same fundamental artefacts as a normal
component realization such as structural model, algorithmic model and interac-
tion model (see the section on Component Realization). Additionally, it has an
enterprise model. This model focuses on the nature of the enterprise for which
the system is built. It describes the relevant aspects of the enterprise in a way
that completely ignores that the system will be developed as a computer system
How to derive a context realization is detailed in [Atk01].

Bank Context Context

ConverterBankLook Up Table

Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»

Bank Context Context

ConverterBankLook Up Table

Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»
21Copyright Fraunhofer IESE 2002

Application Specification
2.5.2 Relation Between Specification and Realization in Application Engineering

Applications are made up of many interacting components. Each of these com-
ponents is defined by a full specification and a full realization. The specification
models collectively describe what a component provides to its clients, and the
realization models collectively describes how a component is implemented and
what it requires from other components.
22 Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
3 Test Case Selection Techniques

The previous chapter has introduced typical concepts and artefacts for specify-
ing a component-based application. This should also be supported by a process
that gives guidelines on when and how these concepts and artefacts should be
applied and produced. However, a description of such a process is not part of
this report. This may be found in the standard literature on development meth-
ods [RBP91, Col94, SGW94, Rob92, RWL96, DW98, AF98, CD00, KCN90,
WL99, BFK99, JBR99, Kru00, GHY97, MLH87, and Atk01]. This chapter intro-
duces the most important test case selection techniques that may be used with
the built-in contract testing approach. They are particularly aimed at compo-
nent-based application testing and suitable for model-based testing, but any
other testing methodology from the standard literature [Bei90, Bei95] may also
be applied. This of course depends upon the quality criteria that are defined in
the quality assurance plan for a component-based development project (see the
section on the Definition of a Quality Assurance Plan). An investigation on which
testing techniques are suitable under which circumstances is presented in
[Veg00].

Since the BIT technology is concentrating on software components, built-in con-
tract testing is primarily related to functional testing techniques, that is also
referred to as black-box testing. A better term for functional testing that actually
reflects its original definition is specification-based testing. These are test case
generation techniques that only concentrate on the externally visible function
and behaviour of components according to their specifications [IEEE99]. It
means that when we devise the test cases for a component we do not apply any
internal knowledge of its implementation. We cannot therefore base compo-
nent testing on structural testing criteria. This is quite natural for externally
acquired third party components (i.e. COTS components), anyway, because we
do not know their internals. Built-in contract testing is therefore initially devel-
oped for applications that are consisting of third party components, comprising
third party in-house developments.

However, larger grained components, from third parties or in-house develop-
ments, are made up out of smaller grained components. These are assembled
together in order to built the larger grained components just in the same way
using the same fundamental principles as for entire applications. The only differ-
ence between the two levels of abstraction (component level and application
level) is that the individual parts of the larger grained components will always
stay integrated together as encapsulated module once they have been devel-
oped. Contract testing may therefore be applied in order to integrate these indi-
vidual parts into meaningfully configured encapsulated components but once
23Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
this integration has been performed there is no need for constantly having the
contract testing artefacts built into the components. Figure 8 illustrates this. On
application level (inter-component level) we have two components A and B as
reusable assets that are assembled and put together. Component A contains
another tester component (in this case the class Component B Tester) that
checks the server component B. On component level (intra-component level) we
might have tester components as well, such as Y Tester in component B that
checks its server Y. Since in most organizations components are the primary
reuse artefacts, it is unlikely that they will change very often internally.

Figure 8:
Component-level
contract testing and
application level
contract testing.

Therefore, after all classes that are internal to component B have been put
together and checked through contract testing, and this in fact is a typical inte-
gration test although on an intra-component level, the built-in test software
becomes obsolete. Hence, the only difference between application level integra-
tion testing and component-level integration testing is that in the second case
the built-in test software should be removed after the integration test. Applica-
tion integration testing and component white-box testing are therefore essen-
tially the same under the contract testing paradigm. Tester components are
defined in Chapter 4 where the built-in contract testing artefacts are described
in greater detail.

The following sections introduce functional or black-box test techniques, and
after that, structural or white-box test techniques are considerd. An important
issue in object and component testing is that black and white box testing cannot
be separated strictly. Component engineering takes a fractal-like view on soft-
ware systems where components are made of components that are made of
components. The terminology of black and white boxes has only a meaning for
the level of abstraction that we are looking at. A white box test for a super-ordi-
nate component maps to a black box test for a sub-ordinate component and so
on. Therefore, in some sense in component engineering we are also only deal-

C o m p o n e n t B

C o m p o n e n t A

« a c q u i r e s »

C o m p o n e n t B
T e s t e r

V

W

X

Y

Y T e s t e r

« a c q u i r e s »

C o m p o n e n t B

C o m p o n e n t A

« a c q u i r e s »

C o m p o n e n t B
T e s t e r

V

W

X

Y

Y T e s t e r

« a c q u i r e s »
24 Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
ing with black-box test techniques. Real white-box testing in its traditional
meaning is only concerned with testing the code that the physical component is
providing by itself, and not the black-box specification that it contains to
describe its sub-components.

3.1 Functional Testing Techniques

Functional testing completely ignores the internal mechanism, of a system or a
component (its internal implementation) and focuses solely on the outcome
generated in response to selected inputs and execution conditions [IEEE99]. It is
also referred to as black-box testing, or specification-based testing, which is a
much more meaningful and unambiguous terminology.

Binder [Bin00] calls these techniques responsibility-based testing. This comes
from the notion of a contract [Mey99] between two entities that determines
their mutual responsibilities. For example, meeting the contracted pre-condition
assertion is the client’s responsibility, and meeting the post-condition is the
server’s responsibility, because this is what it promises to provide after complet-
ing a request [Bin00]. Functional testing is primarily concerned with how test
cases are derived from functional specifications, and there are several standard
techniques that are briefly introduced in the following.

3.1.1 Domain Analysis and Partition Testing

Domain analysis may be used as input selection technique for all other subse-
quently introduced test case generation techniques. Domain analysis techniques
are mainly applied in typical numerical processing software applications. It
replaces the common heuristic method for testing extreme values and limit val-
ues of inputs [Bei95]. A domain is defined as a subset of the input space that
somehow affects the processing of the tested component. Domains are deter-
mined through boundary inequalities, algebraic expressions that define which
locations in the input space belong to the domain of interest [Bei95]. Domain
analysis is used for and sometimes also referred to as partitioning testing.

Equivalence
Partitioning

Most functional test case generation techniques are based upon partition test-
ing. Equivalence partitioning is a strategy that divides the set of all possible
inputs into equivalence classes. The equivalence relation defines the properties
for which input sets are belonging to the same partition, for example equivalent
behaviour (state-transitions). Proportional equivalence partitioning, for example,
allocates test cases according to the probability of their occurrence in each sub-
domain.

Category Parti-
tioning

Category partitioning is traditionally used in industry to transform a design spec-
ification into a test specification. It is based on the identification of the smallest
25Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
independent test units, and their respective input domains. Categories that may
be considered in category partitioning are for example operand values, operand
exceptions, or memory access exceptions, and the like.

3.1.2 State-Based Testing

State-based testing concentrates on checking the correct implementation of the
component’s state model. Test case design is based on the individual states and
the transitions between these states. In object-oriented or component-based
testing effectively any type of testing is state-based as soon as the object or
component exhibits states, even if the tests are not obtained from the state
model. In that instance, there is no test case without the notion of a state or a
state-transition. In other words, pre- and post-conditions of every single test
case must consider states and behaviour. Binder [Bin00] presents a very thor-
ough investigation of state-based test case generation, and he also proposes to
use so-called state reporter methods that effectively access and report internal
state information whenever invoked. These are essentially the same as the state
information operations used in this report that are described later on (state
checking operations). The major test case design strategies for state-based test-
ing are described in the following:

Piecewise cover-
age

Piecewise coverage concentrates on exercising distinct specification pieces, for
example coverage of all states, all events, or all actions. These techniques are
not directly related to the structure of the underlying state machine that imple-
ments the behaviour, so it is only accidentally effective at finding behaviour
faults. It is feasible to visit all states and miss some events or actions, or produce
all actions without visiting all states or accepting all events. Binder discusses this
in greater detail [Bin00].

Transition cover-
age

Full transition coverage is achieved through a test suite if every specified transi-
tion in the state model is exercised at least once. As a consequence, this covers
all states, all events and all actions. Transition coverage may be improved if every
specified transition sequence is exercised at least once, this is referred to as n-
transition coverage [Bin00], and it is also a method sequence based testing tech-
nique (see Section 3.1.3).

Round-trip path
coverage

Round-trip path coverage is defined through the coverage of at least every
defined sequence of specified transitions that begin and end in the same state.
The shortest round-trip path is a transition that loops back on the same state. A
test suite that achieves full round-trip path coverage will reveal all incorrect or
missing event/action pairs. Binder discusses this in greater detail [Bin00].
26 Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
3.1.3 Method-Sequence-Based Testing

This test case generation technique concentrates on the correct implementation
of a component’s combinations, or sequences of provided operations. Test case
design is based on the behavioural model, such as a UML state chart diagram.
Here, the paths through the state model are checked. This may also include mul-
tiple invocations of the same operation. Essentially, this applies all state-based
testing coverage criteria that have already been introduced in the previous sec-
tion (see Section 3.1.2). Table 5 shows feasible test cases that are derived based
on method sequences for the banking card behavioural model displayed in Fig-
ure 2. This particular example is based on round-trip path coverage (for the first
round-trip: from state Cleared back to state Cleared, Figure 2).

Table 5:
Test case design
based on method
sequences according
to the behavioural
model of the bank-
ing card.

3.1.4 Message-Sequence-Based Testing

This checks the collaborations between different objects. Test case design is
based on interaction models, such as the UML sequence or interaction dia-
grams. Message-sequence-based testing is particularly important and advanta-
geous for checking real-time applications [Chu99].

3.2 Structural Testing Techniques

Structural testing takes into account the internal mechanism of a system or com-
ponent for generating test cases. It is also referred to as white-box or glass-box
testing, or more expressively as implementation-based testing [IEEE99, Bin99].
Implementation-based testing evaluates observable behaviour with respect to a
test model that is derived from the realization or implementation of the compo-
nent. There is a vast number of structural testing techniques in the standard lit-
erature [Bei90], however, for component-based application engineering its ben-

Initial State Precondition Event Postcondition FinalState

1 Cleared [validPin] validatePin (Pin) return CustomerDetails Cleared

2 Cleared [invalidPin] validatePin (Pin) return PinError

[validPin] validatePin (Pin) return CustomerDetails Cleared

3 Cleared [invalidPin] validatePin (Pin) return PinError

[invalidPin] validatePin (Pin) return PinError

[validPin] validatePin (Pin) return CustomerDetails Cleared

4 Cleared [invalidPin] validatePin (Pin) return PinError

[invalidPin] validatePin (Pin) return PinError

[invalidPin] validatePin (Pin) return PinError

[invalidSecurityPin] unlockCard (SecurityPin) return SecurityPinError

[validSecurityPin] unlockCard (SecurityPin) return CustomerDetails Cleared

...
27Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
efit is rather limited. The internals of components may be validated through
tests that have been developed according to structural criteria, but application
integration testing techniques such as built-in contract testing are solely based
on black-box testing.

3.3 Model-based Testing and Testing Techniques

Model-based testing is a relatively old idea that has undergone a renaissance
recently through the introduction of model-based development and the OMG’s
Model Driven Architecture [MDA]. Model driven testing follows two different
routes. The first one is to have a meta-model for testing concepts, or a so-called
testing profile that is currently being developed under the OMG umbrella
[UMLT]. Figure 9 displays an example concept space for a test case in form of a
UML class diagram. The OMG approach goes down that line, although their
concept spaces are laid out in a much more detailed and comprehensive way.
The second route to model-based testing concentrates on how tests may be
derived from graphical notations such as the UML. Such techniques are tradi-
tionally used for the development of safety critical and real-time systems, and
more recently it concentrates upon approaches on how to derive test informa-
tion from individual UML models. Binder gives an overview on which UML mod-
els may be used for which types of testing [Bin99].

3.3.1 Test case selection and test information extraction techniques from models

Models represent a solid foundation for test case generation that is primarily
based on the specification, and therefore mainly functional. Models use power-
ful (semi-) formal abstract notations in order to express requirements specifica-
tions. Having good requirements is crucial not only for the development of a sys-
tem but additionally for the development of its testing infrastructure. If
requirements are additionally testable they are the perfect source for instant test
scenario generation.

Class diagrams Class diagrams represent structure, that is associations between entities plus
externally visible attributes and operations of classes. They are a valuable source
for testing. Specification class diagrams (server) represent the interfaces that
individual components export to their clients and therefore show which opera-
tions need to be tested, which operations support the testing and which exter-
nal states are important for a unit. These can directly guide the construction of
tester components for a server component. Realization class diagrams (client)
represent the operations of the servers that a client is associated with. They only
contain externally visible server operations and attributes that a client is actually
using. It means such a diagram restricts the operational profile of a client in
terms of operations. This helps to determine the range of operations that a
tester component must consider. Class diagrams may be used to generate test
28 Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
cases according to boundary conditions and component interaction criteria
[Bin99].

State diagrams State diagrams are a valuable source for testing in many ways. This has already
been demonstrated in previous sections of this report (see Section 3.1.2 and
Section 3.1.3) and in the literature [Bin95, Off99, Rob99], and it is one of the
main sources for test case generation in built-in contract testing. State diagrams
concentrate on the dynamics of components in terms of externally visible states
and transitions between the states. State chart diagrams may be used to gener-
ate test cases according to class hierarchy and collaboration testing criteria
[Bin99].

Interaction dia-
grams

While state diagrams concentrate on the behaviour of individual objects, UML
collaboration diagrams represent the behavioural interactions between objects.
They describe how the functions of a software are spread over multiple collabo-
rating entities and how they interact in order to fulfil higher-level requirements
[Abd00]. Collaboration diagrams represent two views on an entity, a structural
view, and a behavioural view. Additionally, they pose constraints on a system.
Since collaboration diagrams realize a complete path for a higher-level use case
they may be used to define complete message sequence paths (see Section
3.1.4) according to the use case [Abd00]. This leads to testing coverage of a
use-case-based requirements document. Interaction diagrams are useful to con-
trol testing criteria such as round-trip sequences and polymorphic testing
[Bin99].

Package diagrams KobrA’s notation for a component is the UML package diagram since a KobrA
Component combines class-like and module-like properties. This is elaborated in
[Atk01]. For testing they represent a similar source as Class diagram although on
a coarser grained level of abstraction. In built-in contract testing component dia-
grams (component trees) are used to indicate variability in an application and
therefore mark the associations between components that need to be aug-
mented with built-in contract testing artefacts. This is further explained in Sec-
tion 4.1 and depicted in Figure 10.

Use cases opera-
tional profiles and
scenarios

Many organizations define use cases as their primary requirements specifica-
tions, for example [Mey98]. Additionally, they use operational profiles in order
to determine occurrences and probabilities of system usage. Use case models
thereby map to operations in an operational profile. Another application of use
cases is the generation of state chart diagrams [Quasar] from use-case driven
requirements engineering, or the generation of collaboration diagrams, as
briefly described in a previous paragraph. Use cases may be used to generate
test cases according to combinational function and category partitioning criteria
[Bin99].

Scenarios are used to describe the functionality and behaviour of a software sys-
tem from the user’s perspective in the same way as use cases do this. Scenarios
29Copyright Fraunhofer IESE 2002

Test Case Selection Techniques
essentially represent abstract tests for the developed system that can be easily
derived by following a simple process. This is laid out in the SCENT Method
[Rys99].

Figure 9:
Concepts of a test
case displayed
through a structural
model.

Initial State

Event Postcondition

Test Case

Precondition

Condition Input Vector Output Vector Final State

1..*

0..10..10..10..1 0..1 0..1

Verdict Outcome
Expected
Outcome

Initial State

Event Postcondition

Test Case

Precondition

Condition Input Vector Output Vector Final State

1..*

0..10..10..10..1 0..1 0..1

Verdict Outcome
Expected
Outcome
30 Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
4 Specification of the BIT Artefacts

The previous chapters have laid out the foundations for the development of the
BIT artefacts. They can be seen as an entry criterion for using built-in contract
testing. This is a sound development process that is ideally based on models,
though other notations may be acceptable as long as they provide similar con-
tents, plus a testable requirements specification (that is part of the method)
from which the tests may be derived. This of course comprises a quality plan as
well. This chapter discusses the two primary built-in contract testing artefacts,
the server tester that is built into the client of a component in order to test the
component when it is plugged to the client, and the testing interface that is
built into (extends) the normal interface of the component and provides intro-
spection mechanisms for the testing.

Meyer [Mey97] defines the relationship between an object and its clients as a
formal agreement or a contract, expressing each party's rights and obligations in
the relationship. This means that individual components define their side of the
contract as either offering a service (this is the server in a client-server relation-
ship) or requiring a service (this is the client in a client-server relationship). Built-
in contract testing focuses on verifying these pairwise client/server interactions
between two components when an application is assembled. This is typically
performed at deployment time when the application is configured for the first
time, or later during the execution of the system when a re-configuration is per-
formed.

4.1 Built-in Server Tester Components

Configuration involves the creation of individual pairwise client/server relations
between the components in a system. This is usually done by an outside "third
party", which we refer to as the context of the components. This creates the
instances of the client and the server, and passes the reference of the server to
the client (i.e. thereby establishing the clientship connection between them).
This act of configuring clients and servers is represented through the KobrA style
<<acquires>> stereotype illustrated in Figure 10. The context that establishes
this connection may be the container in a contemporary component technol-
ogy, or it may simply be the parent object.

In order to fulfil its obligations towards its own clients, a component that
acquires a new server must verify the server's semantic compliance to its client-
ship contract. It means the client must check that the server provides the seman-
tic service that the client has been developed to expect. The client is therefore
31Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
augmented with in-built test software in form of a tester component as shown
in Figure 10. This is called a server tester component, and it is executed when
the client is configured to use the server [Cmp01]. In order to achieve this, the
client will pass the server's reference to its own in-built server tester component.
This is represented through an <<acquires>> association between the server
tester component and the server in Figure 10. If the test fails, the tester compo-
nent may raise a contract testing exception and point the application program-
mer to the location of the failure.

Figure 10:
KobrA style compo-
nent containment
hierarchy without
and with built-in
contract testing.

A test involves the invocation of the methods of an associated component with
predefined input values according to a precondition and the checking of the
returned results against the expected results according to a post-condition. A
test suite inside a server tester component contains a number of test cases that
are developed according to testing criteria that are defined in the quality assur-
ance plan (see Section 2.2). Any of the testing criteria from Chapter 3, or any
other test case generation technique from the literature [Bei90] is considered an
acceptable method of deriving test cases. This of course depends upon the type
of project and the management of the project, for example safety standards
may apply that require entry-exit-path coverage as test criterion.

A client that owns or contains a tester component and performs a contract test
on its acquired server is termed a testing client or a testing component
[Cmp+01]. The tester component may be a component in its own right, and it
can also be acquired dynamically, not only owned by and contained in the cli-
ent. This is illustrated through the bold <<acquires>> relation between Testing-
Client and ServerTester in Figure 10 in the right hand side diagram. This way of
organizing the association between client and server tester provides maximal

«component»
Server

«creates»

«acquires»

«creates»

«acquires»«component»
Client

Context

«component»
Server

«creates»

«acquires»«component»
TestingClient

Context

«component»
ServerTester

«acquires»

«acquires»

«component»
Server

«creates»

«acquires»«component»
TestingClient

Context

«component»
ServerTester

«component»
Server

«creates»

«acquires»

«creates»

«acquires»«component»
Client

Context

«component»
Server

«creates»

«acquires»«component»
TestingClient

Context

«component»
ServerTester

«acquires»

«acquires»

«component»
Server

«creates»

«acquires»«component»
TestingClient

Context

«component»
ServerTester
32 Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
flexibility. The server tester is attached to the client in the same way as the nor-
mal server through a configuration interface. Figure 11 displays a generic speci-
fication of these relationships in form of a UML class diagram.

Figure 11:
Generic Specifica-
tion of a testing
component and
associated server
tester components.

The TestingClient in Figure 11 extends the functionality of the Client component
by a configuration that is used to set the type of tester that will check the asso-
ciated servers of the Client. This is established by passing the references of the
respective servers to the TestingClient (through call TestingClient::setTesterX/Y)
whenever the configuration interface in the Client is setting a new server com-
ponent. Figure 12 displays the configuration sequence for this example without
considering the built-in testing, and Figure 13 displays the same sequence
including built-in testing.

The testing artefacts represent normal development artefacts which are dealt
with in the same way as any other development item. It means they fit naturally
in the overall development method. In the KobrA Method such artefacts are
additionally augmented with the stereotype <<Testing>> in order to separate
testing functionality from normal (non-testing) functionality. This is important if
the identifier of a testing component does not indicate that the component
serves testing purposes and no consistent rules for identifiers are defined for a
project. A component with the stereotype <<Component>> that serves testing
purposes will therefore have the stereotype <<Testing Component>>. A
method that is only used for testing will have the <<Testing>> stereotype as
well. This corresponds to the strategy that the KobrA Method offers for han-
dling variability. In this case it provides the stereotype <<Variant>> or <<Variant
Component>> [Atk01]. This organization provides the highest level of flexibility
for testing because we can develop a specific testing variant of an application

<<Component>>
TestingClient

<<Component>>
Client

<<funct. Interface>>
...
<<Configuration
Interface>>
setServerX (Server X)
setServerY (Server Y)

<<Configuration
Interface>>
setTesterX (Tester X)
setTesterY (Tester Y)

Test

TestSuite

1

1..n

1..n

1

<<owns>>

<<owns>>

<<Component>>
ServerX

<<Component>>
ServerY

<<acquires>>

<<acquires>>

<<Component>>
ServerTesterX

<<Component>>
ServerTesterY

<<acquires>>

<<acquires>>

<<acquires>> <<acquires>>

<<owns>>

1..n

1

<<Component>>
TestingClient

<<Component>>
Client

<<funct. Interface>>
...
<<Configuration
Interface>>
setServerX (Server X)
setServerY (Server Y)

<<Configuration
Interface>>
setTesterX (Tester X)
setTesterY (Tester Y)

Test

TestSuite

1

1..n

1..n

1

<<owns>>

<<owns>>

<<Component>>
ServerX

<<Component>>
ServerY

<<acquires>>

<<acquires>>

<<Component>>
ServerTesterX

<<Component>>
ServerTesterY

<<acquires>>

<<acquires>>

<<acquires>> <<acquires>>

<<owns>>

1..n

1

33Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
out of a more general application, that is without the testing, by using exactly
the same principles for handling variability that are employed in product-line
engineering. Through this mechanism we can easily instantiate an application
that comprises all the testing, so we can check its integration. After successful
integration we can create an instance of the original system without all the
built-in testing and deploy it on an embedded controller, for instance.

Figure 12:
Sequence diagram
that specifies the
configuration
sequence of the sce-
nario displayed in
Figure 11 without
built-in testing.

Figure 13:
Sequence diagram
with the configura-
tion of built-in test-
ing.

Figure 14 displays the class diagram for a testing client that shows points of test-
ing variability represented through the stereotypes <<Testing>>. The tester
components are also augmented with the stereotype <<Testing Component>>.

<<Component>>
:Client

<<Component>>
:ServerX

:ClientContext

<<Component>>
:ServerY

setServerX (Server ServerX)

setServerY (Server ServerY)

...

...

<<Component>>
:Client

<<Component>>
:ServerX

:ClientContext

<<Component>>
:ServerY

setServerX (Server ServerX)

setServerY (Server ServerY)

...

...

<<Component>>
:TestingClient

<<Component>>
:ServerX

:ClientContext

<<Component>>
:ServerY

setServerX (ServerX)

<<Component>>
:ServerTesterX

<<Component>>
:ServerYTesterY

setTesterX (ServerTesterX)

test (ServerX) ...

Verdict

setServerY (ServerY)

setTesterY (ServerTesterY)

test (ServerY) ...

Verdict

...

...

Execution
Of Tests

Execution
Of Tests

<<Component>>
:TestingClient

<<Component>>
:ServerX

:ClientContext

<<Component>>
:ServerY

setServerX (ServerX)

<<Component>>
:ServerTesterX

<<Component>>
:ServerYTesterY

setTesterX (ServerTesterX)

test (ServerX) ...

Verdict

setServerY (ServerY)

setTesterY (ServerTesterY)

test (ServerY) ...

Verdict

...

...

Execution
Of Tests

Execution
Of Tests
34 Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
Figure 14:
Structure of the test-
ing client with ste-
reotypes.

4.2 Built-in Testing Interface

The previous section has concentrated on the specifications that need to be con-
sidered on the client side of a client-server relationship, the tester component,
and how this is embedded into the normal development. This section defines
how the server side in the client-server relationship may be augmented in order
to support a client’s built-in tester component.

The object-oriented and as a consequence the component-based development
paradigm builds on the principles of abstract data types which advocate to the
combination of data and functionality in a single entity. State transition testing
is therefore an essential part of component verification. In order to check
whether a component's operations are working correctly it is not sufficient sim-
ply to compare their returned values with the expected values. The compliance
of the component's externally visible states and transitions to the expected
states and transitions according to the specification state model must also be
checked. These externally visible states are part of a component's contract that a
user of the component must know in order to use it properly. However, because
these externally visible states of a component are embodied in its internal state
attributes, there is a fundamental dilemma.

The basic principles of encapsulation and information hiding dictate that exter-
nal clients of a component should not see the internal implementation and
internal state information. The external test software of a component therefore
cannot get or set any internal state information. The user of a correct compo-
nent simply assumes that a distinct operation invocation will result in a distinct
externally visible state of the component. However, the component does not
usually make this state information visible in any way. This means that expected
state transitions as defined in the specification state model cannot normally be
tested properly.

<<Component>>
Client

<<funct. Interface>>
...
<<Configuration
Interface>>
setServerX (Server X)
setServerY (Server Y)
<<Testing>> setTesterX ()
<<Testing>> setTesterY ()

<<Testing Component>>
ServerTesterX

<<funct. Interface>>
Test ()

<<Testing Component>>
ServerTesterY

<<funct. Interface>>
Test ()

<<Component>>
Client

<<funct. Interface>>
...
<<Configuration
Interface>>
setServerX (Server X)
setServerY (Server Y)
<<Testing>> setTesterX ()
<<Testing>> setTesterY ()

<<Testing Component>>
ServerTesterX

<<funct. Interface>>
Test ()

<<Testing Component>>
ServerTesterY

<<funct. Interface>>
Test ()
35Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
The contract testing paradigm is therefore based on the principle that compo-
nents should ideally expose externally visible state information by extending the
normal functional server as displayed in Figure 15. In other words, a component
should ideally not only expose its externally visible signatures, but additionally it
should provide the model of its externally visible behaviour openly. A testing
interface therefore provides additional operations that read from and write to
internal state attributes that collectively determine the states of a component’s
behavioural model.

Figure 15:
Concepts of test-
able components
and testing inter-
faces represented
through a class dia-
gram.

A component that supports its own testing by external clients through an addi-
tional testing interface is called testable component. Figure 15 shows three
alternative ways of implementing a testable component. The first class on the
left hand side represents a testable server component that has all built-in testing
artefacts directly built-in. This is the normal functional interface plus the addi-
tional testing interface that comprises operations for setting and getting internal
state information (setToStateXYZ and isInStateXYZ). These are the specified
externally visible states according to the component’s behavioural model. In the
KobrA specification the state setting and checking operations are augmented
with the <<Testing>> stereotype in order to indicate their special purpose. The
diagram in the middle (Figure 15) represents an alternative implementation that
has public state variables and only one state setting and one state checking
operation that take the state variables as input instead of two setting and check-
ing operations per state as in the first instance. This alternative representation is
supported by the Java Library that comes with contract testing as an example
support system (see Section 8.3 and [BBB03]). Additional flexibility will be
achieved if the testing interface extends the normal functionality of the compo-
nent as represented by the right hand side diagram in Figure 15. This imple-
ments the testing interface as a component extension in its own right so that
the implementation of the testing software is encapsulated and strictly sepa-
rated from the normal functional software.

<<Component>>
TestableServer

<<funct. Interface>>
...
<<Testing Interface>>
<<State Setting>>
<<Testing>> setToStateX ()
<<Testing>> setToStateY ()
<<Testing>> setToStateZ ()
<<State Checking>>
<<Testing>> isInStateX ()
<<Testing>> isInStateY ()
<<Testing>> isInStateZ ()

<<Component>>
TestableServer

<<Testing>> StateX
<<Testing>> StateY
<<Testing>> StateZ

<<funct. Interface>>
...
<<Testing Interface>>
<<State Setting>>
<<Testing>> setToState (State)
<<State Checking>>
<<Testing>> isInState (State)

<<Component>>
TestableServer

StateX
StateY
StateZ

<<Testing Interface>>
<<State Setting>>
setToState (State)
<<State Checking>>
isInState (State)

<<func. Interface>>
...

<<Testing Component>>
TestableServer

<<Component>>
TestableServer

<<funct. Interface>>
...
<<Testing Interface>>
<<State Setting>>
<<Testing>> setToStateX ()
<<Testing>> setToStateY ()
<<Testing>> setToStateZ ()
<<State Checking>>
<<Testing>> isInStateX ()
<<Testing>> isInStateY ()
<<Testing>> isInStateZ ()

<<Component>>
TestableServer

<<Testing>> StateX
<<Testing>> StateY
<<Testing>> StateZ

<<funct. Interface>>
...
<<Testing Interface>>
<<State Setting>>
<<Testing>> setToState (State)
<<State Checking>>
<<Testing>> isInState (State)

<<Component>>
TestableServer

StateX
StateY
StateZ

<<Testing Interface>>
<<State Setting>>
setToState (State)
<<State Checking>>
isInState (State)

<<func. Interface>>
...

<<Testing Component>>
TestableServer
36 Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
The state checking operations of the testing interface verify whether the compo-
nent is currently residing in a distinct logical state (for verifying the pre- and post
conditions of a test case). The state setting operations set the component's
internal attributes to represent a distinct logical state (for satisfying the precon-
ditions of a test case). State checking operations are more fundamental than
state setting operations. The latter may often involve quite considerable devel-
opment effort. Sometimes they will re-implement exactly the same functionality
as the normal interface. Thus, in most cases state setting will be achieved by
invoking the operations of the normal functional interface. Subsequently, the
state checking methods may be used to verify that the pre-conditions (initial
state) for a test case are satisfied. In the server tester component, this is the cli-
ent side of the contract, there are consequently two alternatives for implement-
ing a test case. In the first way the state setting operations, if applicable, are
invoked to ensure the preconditions required for a test case, the tested opera-
tion is invoked with the predetermined input parameters according to the test-
ing criterion, and finally, the state checking operations are invoked to verify the
post conditions required for a test case. The second way is applied when no
state setting operations are provided by the tested component. Then, the opera-
tions of the component's normal functional interface have to be invoked to
bring the component into the desired initial state for a test. Since these opera-
tions are part of the software that should be tested, the state checking opera-
tions have then to be invoked to verify the correct precondition for the applica-
tion of a test case. Finally, the test method is called, and the state checking
operations are used to verify the post conditions against the expected outcome.
These two alternatives are illustrated through the sequence diagrams in Figure
16. Each of these alternatives depicts the same test case.

Figure 16:
Alternative invoca-
tion sequences in a
test case.

:Client :Server :Client :Server

setToStateY ()

Result = testedOperation ()

isInStateZ ()

operationA ()

operationB ()

operationC ()

...

stateY = isInStateY ()

[stateY]
Result = testedOperation ()

isInStateZ ()

setToStateY corresponds
to the invocation history
in the right diagram

:Client :Server :Client :Server

setToStateY ()

Result = testedOperation ()

isInStateZ ()

operationA ()

operationB ()

operationC ()

...

stateY = isInStateY ()

[stateY]
Result = testedOperation ()

isInStateZ ()

setToStateY corresponds
to the invocation history
in the right diagram
37Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
4.3 Associations between Components in Built-in Contract Testing

The previous sections have introduced the two primary artefacts that must be
generated for built-in contract testing: tester component and testing interface.
These represent additional functionality that is particularly aimed at testing. The
first one extends the client component, and it comprises the actual test cases
that check the client’s deployment environment, that is its server components.
The second extends the interface of the server in order to make the server more
testable. If a server does not provide a testing interface (e.g. a COTS compo-
nent) it does not mean that contract testing may not be used. It is simply limited
in respect with controllability and observeability during a test, and the test cases
in the client must be designed differently, that means according to the missing
testing interface. This is because the test units that may be considered if no test-
ing interface is available tend to be larger, because they have to be designed in
a way that they always end up in an externally observable state. Otherwise we
cannot check anything. Observeability is a prerequisite for testability. The tester
component may be considered the more important part of built-in contract test-
ing.

4.3.1 Associations between Client Component and Tester Component

In the client role, a component may own and contain its tester component. It
means the test cases, typically organized as components in their own right, are
permanently encapsulated and built into the client. This is the simplest form of
built-in contract testing, and it provides no direct run-time configureability with
respect to the type and amount of testing the client component will perform
when it is connected to its server components. This association can be expressed
through the UML composition association.

A more flexible way of built-in contract testing is realized through a loosely asso-
ciated tester component that may be acquired by the testing client in the same
way it acquires any other external sources. Here, the component provides a con-
figuration interface through which any arbitrary tester component that repre-
sents the client’s view on a tested server may be set. This provides flexibility in
terms of how much testing will be performed at deployment, and additionally in
a product line development project, it provides flexibility as to which type of
tester will be applied according to which product line will be instantiated. A
more loosely coupled association may be represented through a UML aggrega-
tion association, or more specifically through the KobrA stereotype
<<acquires>> that indicates that the tester component is an externally acquired
server.
38 Copyright Fraunhofer IESE 2002

Specification of the BIT Artefacts
4.3.2 Associations between Server Component and Testing Interface

In a server role, a component must be much more closely connected to its test-
ing interface because the testing interface must be able to access the server’s
internal implementation (i.e. for setting and getting attribute variables). The
testing interface is therefore directly built in to the component and extends its
normal functionality with some additional functionality that happens to be
intended for testing purposes. Another approach is to augment the functionality
of the server with an additional testing interface by using a typical extension
(inheritance) mechanism. In the KobrA method this is indicated through the
UML extension symbol plus the <<extends>> stereotype. In any case, the testing
interface of a component must be visible at its external boundary. For compo-
nents with nested objects it means that each of these objects must be dealt with
individually inside the component in a way that externally visible behaviour that
is implemented through these smaller parts will be visible at the component
boundary.

4.3.3 Associations between Tester Component and Testing Interface

The tester component of the client and the server’s testing interface are inter-
operating in the same way as their respective functional counterparts. Since the
testers and testing infrastructure is built into the system it is only additional
functionality that happens to be executed when components are intercon-
nected. The tester component must only “know” the reference of the tested
server, and this is simply passed in to the tester component when the test is
invoked by the client. Testing in this respect is only executing some additional
code that uses some additional interface operations. Therefore, built-in contract
testing is initially only a distinct way of implementing functionality that is exe-
cuted when components are interconnected during deployment. This only con-
cerns the architecture of a system (i.e. which components will expose additional
interfaces, which components will comprise tester components), the test cases
that are applied during deployment are arbitrary, and they can be developed
according to traditional criteria.
39Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
5 Development of the BIT Artefacts & Step-by-Step Process

The previous chapters and sections of this report have set the foundations for
developing and using built-in contract testing. They can be seen as a required
entry criterion, as a prerequisite, of introducing and implementing the technol-
ogy. This comprises a sound development process that defines the required
quality criteria in form of a quality plan, the specification and realization specifi-
cation of each component, ideally according to the KobrA method with UML
models and operation specifications, plus fundamental object and component
technology features. The next sections provide a step-by-step guide for develop-
ing testing interfaces and tester components. That is guided by examples.

The following sub-section headings represent the respective steps that have to
be taken. These steps are:

1 Identification of the Tested Interactions.

2 Definition and Modeling of the Testing Architecture.

3 Specification of the Testing Interfaces for the Identified Associations

4 Realization of the Testing Interfaces

5 Specification of the Tester Components

6 Realization of the Tester Components

7 Integration of the Components

5.1 Identification of Tested Interactions - Step 1

In theory, any arbitrary server-clientship relationship in component and applica-
tion engineering may be checked through built-in test software. This is true for
both development of individual components and assembly of components into
meaningful configurations. Built-in contract testing is in this respect a multiple
purpose testing technology that may be applied at all stages during unit and sys-
tem development. This is because the typical object- and component-principle
of client-servership is applied at all levels during development (even under the
non-object paradigm) and built-in contract testing is inherently founded on that.
The question is not about which parts of the application we are going to test
with it, because we can apply it at all levels of abstraction and for all client-serv-
40 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
ership interactions, but the fundamental question is where it makes the most
sense to have it built-in permanently. In other words, under which circum-
stances does built-in testing provide the greatest return on investment with
respect to software reuse in component-based application development. There-
fore we have to decide where in an application we have to built in the testing
permanently, and where we can have it removed after integration. The develop-
ment team must therefore answer the following questions:

– Where do we built in testing and have it removed after integration?
– Where do we built in testing and leave it permanently?

In general, any client-servership interaction may be augmented with a built-in
testing interface and built-in tester component. These interactions are repre-
sented through any arbitrary association in a structural diagram, for example
UML component, class and object diagrams, as well as KobrA composition-,
nesting- and creation-tree diagrams. In other words, every nesting association
represents client-servership. At least this is the case for UML because it provides
no representation for creation associations and usage associations in contrast to
the KobrA Method that does provide these (e.g. an instance that is created by a
component but not used as a server by this component).

Associations between classes that are encapsulated in a component are likely to
stay fixed throughout a component’s life cycle. Such associations may be aug-
mented with removable built-in contract testing artefacts. This may be imple-
mented through development-or compile-time configuration mechanism (e.g.
#include in C++), or through a run-time configuration interface that dynamically
allocates tester components, and testable components with testing interfaces.
Typically, reusable components will have permanent built-in testing interactions.
This means that every external association that requires or imports an interface
will be permanently augmented with a built-in contract tester component, and
every external association that provides or exports an interface will be perma-
nently augmented with a built-in testing interface.
41Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
Figure 17:
KobrA containment
hierarchy for a sim-
ple banking applica-
tion.

Example 1 Figure 17 displays a KobrA containment hierarchy for a simple banking applica-
tion that shows the individual components and their clientship relations. The
decision on which associations in the diagram will be augmented with built-in
contract tester components and interfaces depends on the estimation of how
likely the individual components will be replaced. Initially, any <<acquires>>
association is a possible candidate for built-in contract testing. The diagram dis-
plays a distributed system that comprises a local part (bank context) and a
remote converter part (context). The components of the bank context maybe
more likely to stay integrated over a longer period of time, and may only be put
together once. This integration may be checked by built-in contract testing.
Since this part of the system is not likely to change in the future, the built-in
testing artefacts remain only in the assembly throughout its integration and are
later removed. For the remote associations this is different. The converter com-
ponent is more likely to be changed over time (e.g. whenever the system is
restarted, or whenever new exchange rates are required, etc.), and therefore it
makes sense to have the contract testing artefacts permanently built in at that
location.

Bank Context Context

ConverterBankLook Up Table

Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»

Bank Context Context

ConverterBankLook Up Table

Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»
42 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
Figure 18:
Example KobrA
development-time
containment tree
(top) with the
respective organiza-
tion of the run-time
instances (bottom).

Example 2 Figure 18 displays the development-time containment hierarchy and the run-
time organization of an example component (RankComponent) that will also be
used throughout this step-by-step guide. The UML collaboration between Rank-
Component and DataForm represents client-servership with component con-
tainment that will permanently remain established (i.e. RankComponent creates
and holds the reference of DataForm). This means we can integrate the two as a
single encapsulating unit and test that integration once and for all. This connec-
tion will not change in the future. The new component diagram will therefore
not show the DataForm component any more, because it is completely hidden
by the encapsulating unit RankComponent, that means it belongs to the realiza-
tion of RankComponent. All other associations with the stereotype
<<acquires>> are possible candidates for built-in contract testing nevertheless.

There are many different ways of enabling or disabling a component’s function-
ality (in this case it is testing functionality), for example through a configuration
interface. Under Java, this may be achieved through exploiting the extension
mechanism plus a type cast.

Client and Server
Source Codes

The following Java source code examples illustrate how this may be done:

class client {
testableServer server; // acquired server
bitTester tester; // acquired built-in tester
...
// configuration interface

< < C o m p o n e n t> >
R a n k C o m p o n e n t

< < C o m p o n e n t> >
D a t a F o r m

< < C o n te x t> >
C o m p o n e n t

< < C o m p o n e n t> >
R a n k C o m p o n e n t

C l ie n t

< < a c q u ir e s > >:R a n k C o m -
p o n e n t C l ie n t

:R a n k C o m -
p o n e n t

:D a t a F o r m

< < a c q u ir e s > > < < C o m p o n e n t> >
G r id F o r m

< < a c q u ir e s > >

< < a c q u ir e s > > :G r id F o r m

< < C o m p o n e n t> >
R a n k C o m p o n e n t
< < C o m p o n e n t> >
R a n k C o m p o n e n t

< < C o m p o n e n t> >
D a t a F o r m

< < C o m p o n e n t> >
D a t a F o r m

< < C o n te x t> >
C o m p o n e n t
< < C o n te x t> >
C o m p o n e n t

< < C o m p o n e n t> >
R a n k C o m p o n e n t

C l ie n t

< < C o m p o n e n t> >
R a n k C o m p o n e n t

C l ie n t

< < a c q u ir e s > >:R a n k C o m -
p o n e n t C l ie n t

:R a n k C o m -
p o n e n t

:D a t a F o r m

< < a c q u ir e s > > < < C o m p o n e n t> >
G r id F o r m

< < C o m p o n e n t> >
G r id F o r m

< < a c q u ir e s > >

< < a c q u ir e s > > :G r id F o r m
43Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
public void setServer (testableServer s) {
server = s;

}
...
public void setTester (bitTester t) {

tester = t;
}
public performTest () {

if (server != null || tester != null)
tester.start ();

else
; // if testing is not configured do nothing

}
}

class server {
// public interface
...

}

class testableServer extends server {
// testing interface
...

}

Context Source
Code

The context of the two components can enable or disable the built-in testing
functionality.

class context {
public static void main (String [] args) {

client C = new client();
server S = new server();
testableServer tS = new testableServer();
bitTester T = new bitTester();
...
// client acquires a normal server
C.setServer ((testableServer) S);
// client acquires a testable server
C.setServer ((testableServer) tS);
// this sets the server tester in the client
C.setTester (T);
// this executes the test on the server
C.performTest();

}
}

44 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
5.2 Definition and Modeling of the Testing Architecture - Step 2

The locations of the application where built-in contract testing makes the most
sense can be identified through the acquires relationships between the units as
said before. The stereotype <<acquires>> represents dynamic associations that
may be configured according to the needs of the application (i.e. components
may be replaced). These are parts of the overall system that are likely to change
over time, and the associations are therefore augmented with built-in contract
testers, on the client side, and built-in contract testing interfaces, on the server
side of the relationship.

The decisions on where we would like to integrate built-in contract testing arte-
facts must be somehow documented in the structure of the system. This may be
regarded as a simple additional software construction effort in the overall devel-
opment process that adds functionality to the application.

Example 1 Figure 19 displays the additional built-in contract testing artefacts that must be
included in the simple banking application in order to check the compliance of
the remote converter component to its clientship contract. The bank component
that acquires the remote converter component as a server will have a persistent
ConverterTester component built in that accesses the converter component for
checking purposes. The server on the other hand, should ideally (but not neces-
sarily) provide a testing interface that supports the testing. The additional testing
functionality is indicated through the stereotype <<Testing ...>>. Adding the
testing functionality results in an extended architecture of the system (Figure
19). The bank component is extended by the converter tester sub-component,
and the converter component is replaced by the testable converter component
(through extension).

Example 2 The extended system architecture of the second example is displayed in Figure
20. This shows the additional development artefacts that must be generated for
built-in contract testing. These are indicated through the stereotype <<Test-
ing>>. The modeling and realization of the <<Testing>> artefacts follows the
same principles that are used for realizing the normal functionality (KobrA
Method). In fact, these additional artefacts are realized through normal software
development activities, they only happen to implement testing functionality, and
this is the only peculiarity. Once the additional features (components) have been
identified they need to be specified in detail. This is described in the next sub-
sections, first for server’s testing interface and then for the client’s server tester.
45Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
Figure 19:
Containment tree
with additional con-
tract testing compo-
nents for checking a
remote server com-
ponent.

Figure 20:
New amended and
extended architec-
ture of the example
application from Fig-
ure 18.

<<Context>>
Bank Context

<<Context>>
Context

<<Testing
Component>>

TestableConverter

<<Component>>
Bank

<<Component>>
Look Up Table

<<Component>>
Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»

<<Testing
Component>>

ConverterTester

«extends»

<<Component>>
Converter

«remotely acquires»

<<Context>>
Bank Context

<<Context>>
Context

<<Testing
Component>>

TestableConverter

<<Component>>
Bank

<<Component>>
Look Up Table

<<Component>>
Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»

<<Testing
Component>>

ConverterTester

«extends»

<<Component>>
Converter

«remotely acquires»

<<Testing
Component>>

Testbl
RankComponent

<<Component>>
RankComponent

<<Context>>
Component

<<Component>>
RankComponent

Client

<<acquires>>:RankCom-
ponentClient

:Testable
RankCom-

ponent

:Rank
Component

Tester

<<acquires>> <<Testing
Component>>

Testable
GridForm

<<extends>>

<<acquires>> :Testable
GridForm

<<acquires>>

<<Testing
Component>>

RankComponent
Tester

<<acquires>>

<<Testing
Component>>

GridFormTester

<<Component>>
GridForm

<<extends>>
<<acquires>>

<<acquires>>

:Grid
Form
Tester <<acquires>>

<<Testing
Component>>

Testbl
RankComponent

<<Testing
Component>>

Testbl
RankComponent

<<Component>>
RankComponent
<<Component>>
RankComponent

<<Context>>
Component
<<Context>>
Component

<<Component>>
RankComponent

Client

<<Component>>
RankComponent

Client

<<acquires>>:RankCom-
ponentClient

:Testable
RankCom-

ponent

:Rank
Component

Tester

<<acquires>> <<Testing
Component>>

Testable
GridForm

<<Testing
Component>>

Testable
GridForm

<<extends>>

<<acquires>> :Testable
GridForm

<<acquires>>

<<Testing
Component>>

RankComponent
Tester

<<Testing
Component>>

RankComponent
Tester

<<acquires>>

<<Testing
Component>>

GridFormTester

<<Testing
Component>>

GridFormTester

<<Component>>
GridForm

<<Component>>
GridForm

<<extends>>
<<acquires>>

<<acquires>>

:Grid
Form
Tester <<acquires>>
46 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
5.3 Specification of the Testing Interfaces for the Identified Associations - Step 3

This step comprises the specification of an individual testing interface for the
server role of an association. It must be noted that it may only be performed if
the component is an in-house development, with the exception that Java is used
as implementation platform, or that appropriate technologies are in place that
enable the extension of third party components, e.g. Java’s reflection mecha-
nism.

Entry criterion for the specification of the testing interfaces is a full functional
specification for each operation of the tested component, for example following
the operation specification template of the KobrA Method (Table 6), or the
behavioural model. Both comprise sufficient information for development of
state setting and state checking operations that augment the functionality of
the original server component.

The additional testing interface is used to set and retrieve state information of
the component. This is defined in the component’s behavioural model. Each
state in this model represents an item for which the behaviour or an operation is
distinctively different from any other items. The individual states that the behav-
ioural model defines is therefore an ideal basis for specifying state setting and
retrieving operations. Each state in the state model therefore maps to one state
setting and one state checking method.

Table 6:
Operation specifica-
tion template based
on the Fusion
method [Atk01,
Col94].

Example 1 See the specification of the ATM components in Section 2.3.2 and Section
2.3.3, and the behavioural model in Figure 2 and Table 3. The specification of
the additional testing interface for the banking card example is displayed in Fig-
ure 21. It is derived from the behavioural model of Figure 2 that indicates four

Name Name of the operation

Description identification of the purpose of the operation, followed by an informal description of the
normal and exceptional effects

Constraints Properties that constrain the realization and implementation of the component

Receives Information input to the operation by the invoker

Returns Information returned to the invoker of the operation

Sends Signals that the operation sends to imported components (can be events or operation
invocations)

Reads Externally visible information that is accessed by the operation

Changes Externally visible information that is changed by the operation

Rules Rules governing the computation of the result

Assumes Weakest pre-condition on the externally visible state of the component and on the inputs
(in receives clause) that must be true for the component to guarantee the post condition
(in the result clause)

Result Strongest post-condition on the externally visible properties of the component and the
returned entities (returns clause) that becomes true after execution of the operation with
the assumes clause
47Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
distinct states: Cleared, Second- and ThirdAttempt for three unsuccessful trials
of providing a correct pin number, and Locked for another unsuccessful
attempt. Each of these map to two operations of the testing interface, one for
setting the state, and one for checking whether the component is residing in
that state. An alternative specification is the definition of each state as public
attribute, plus two parameterized operations isInState and setToState that take
these attributes as input.

Figure 21:
Structural model of
the banking card
testing interface.

Example 2 The operation specification for the method RankComponent::setDataTransfer-
Area is given in Table 7. Such a specification should be available for every single
provided operation of the component RankComponent. The behavioral model
of this component is displayed in Figure 22. The component is in charge of rank-
ing data according to some algorithms. It provides many functions (only a part is
considered here) and it is composed of an aggregation of many more sub com-
ponents (e.g. GridForm and DataForm according to Figure 18). The component
supplies the basic functionality to find similar cases using either continuous or
categorical attributes or a combination of both, and the best attributes with a
heuristic search. The best attributes with the heuristic search routine will return
the complete set of attributes excluding the predicted attribute. Full error check-
ing is implemented in this component (defensive development).

The operation SetDataTransferAarea creates an area where all the data can be
stored while it is being analyzed, and this is the primary condition to perform all
of the other operations. If this area is not created no other operations can be
invoked. It is a volatile storage area used just for the purpose of the required cal-
culations. Its operation specification is given in Table 7.

<<Com ponent>>
BankingCard

#validatePin ()
#unlockCard ()

<<Testing Com ponent>>
BankingCard

#setToState (b itState)
isInState (b inState)

#b itState C leared
#bitState SecondAttem pt
#bitState Th irdA ttem pt
#bitState Locked

<<Testing Com ponent>>
BankingCard

#setToC leared ()
#setToSecondAttem pt ()
#setToThirdA ttem pt ()
#setToLocked ()
isInC leared ()
isInSecondAttem pt ()
isInTh irdA ttem pt ()
isInLocked ()

<<extends>>

<<xor>>

<<Com ponent>>
BankingCard

#validatePin ()
#unlockCard ()

<<Testing Com ponent>>
BankingCard

#setToState (b itState)
isInState (b inState)

#b itState C leared
#bitState SecondAttem pt
#bitState Th irdA ttem pt
#bitState Locked

<<Testing Com ponent>>
BankingCard

#setToC leared ()
#setToSecondAttem pt ()
#setToThirdA ttem pt ()
#setToLocked ()
isInC leared ()
isInSecondAttem pt ()
isInTh irdA ttem pt ()
isInLocked ()

<<extends>>

<<xor>>
48 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
Table 7:
Operation specifica-
tion for RankCom-
ponent::SetDataTran
sferArea.

Figure 22:
Class and Behav-
ioural model of
RankComponent.

Figure displays the behavioural model of the component RankComponent
(Example 2). This identifies two distinct states for which the externally observed
behaviour of that component is different. That is if the state DataCollectionUN-
SET is true, the operation setDataTransferArea builts up an internal data struc-
ture so that the operation findClosestCase may be invoked, otherwise in the
state DataCollectionSET this operation leads to nothing.

The behavioural model maps to the specification of the testing interface, as dis-
played in the structural diagram in Figure 22. Each state maps to two additional
operations, one for bringing the component into that state, and one for check-
ing whether the component is residing in that state. Two alternative implemen-
tations are feasible. The first one defines the states as public attributes that are

Name RankComponent::SetDataTransferArea

Description On Success: create a storage area where all the data can be stored and whose size is given
by the parameter passed to the function. Return an ERR_SUCCESS message.
On Failure: return an ERR_MESSAGE (depends on the error type).

Constraints None.

Receives Number of cases and number of attributes to build up the storage size.

Returns On Success: a message ERR_SUCCESS
On Error: a message depending on the error occurred.

Sends On Success: activate the DataForm.

Reads Number of cases and number of attributes from the DataForm.

Changes Nonne.

Rules None.

Assumes Another data storage does not exist.
The number of cases is between 1 and 200-The number of attributes is between 1 and 200.

Result Data Storage is created and it is ready to store data.

<<Component>>
RankComponent

DataTransferArea

setDataTransferArea
destroyDataTransferArea
findClosestCases

DataCollection
UNSET

DataCollection
SET

<<create>>

destroyDataTransferAreasetDataTransferArea

destroyDataTransferArea
/ return MessageError

setDataTransferArea
/ return MessageError

findClosestCases

<<Testing Component>>
TestableRankComponent

bitState DataCollectionUnset
bitState DataCollectionSet

setToState (bitState)
isInState(bitState)

<<Testing Component>>
TestableRankComponent

setToDataCollectionUnset ()
isInDataCollectionUnset ()
setToDataCollectionSet ()
isInDataCollectionSet ()

<<extends>>

<<xor>>

<<Component>>
RankComponent

DataTransferArea

setDataTransferArea
destroyDataTransferArea
findClosestCases

<<Component>>
RankComponent

DataTransferArea

setDataTransferArea
destroyDataTransferArea
findClosestCases

DataCollection
UNSET

DataCollection
SET

<<create>>

destroyDataTransferAreasetDataTransferArea

destroyDataTransferArea
/ return MessageError

setDataTransferArea
/ return MessageError

findClosestCases

<<Testing Component>>
TestableRankComponent

bitState DataCollectionUnset
bitState DataCollectionSet

setToState (bitState)
isInState(bitState)

<<Testing Component>>
TestableRankComponent

setToDataCollectionUnset ()
isInDataCollectionUnset ()
setToDataCollectionSet ()
isInDataCollectionSet ()

<<extends>>

<<xor>>
49Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
parameters for the two multiple purpose state setup and checking operations.
The second one defines a state setup and checking operation for each individual
state. Whereas the second method specifies a testing interface that is only con-
sisting of two operations plus all defined states, the first one defines two opera-
tions for each state.

5.4 Realization of the Testing Interfaces - Step 4

The testing interface for each tested component will be specified according to
the KobrA method, typically by a structural model (e.g. class diagram) that
shows the signatures for each additional operation (see previous section). The
realization of these operations depends heavily upon the realization of the func-
tionality of that component.

Example 1 The banking card example exhibits four different states that represent a counter
for the number of unsuccessful attempts of providing the correct banking card
pin, so the implementation of the state setup and checking operations is
straight forward. The realization of the testing interface is represented by the
activity diagrams in Figure 23. The figure shows only the implementation of the
testing interface for the first alternative, that is two interface operations, one for
state setting and one for state checking, plus the public state variables that
these operations may take as input parameters. The implementation for the sec-
ond alternative has one of these operations for each respective state in the
behavioural model.

Example 2 The realization of the RankComponent has some implications on the specifica-
tion of the testing interface. This is explained in the following. The setToState
operations of the testing interface in Figure 22 are specified to bring the compo-
nent into some states, so that the DataTransferArea is accessible or not accessi-
ble. This is exactly what the two operations setDataTransferArea and destroy-
DataTransferArea do anyway. The implementations of the setToState operations
are therefore exactly the same as the two operations of the normal functional
interface. We could therefore simply call the respective normal operations as
sub-operations from the newly specified testing interface methods, or we could
re-implement the same functionality, ideally in a different way. Both solutions
are complete nonsense, the first one, because it makes no sense to use some-
thing that we would like to check for correctness as a means to assess its cor-
rectness, and the second one, because nobody will actually implement the same
thing twice merely for assessing it. A sensible approach to tackle this dilemma is
therefore to implement only the state checking mechanisms (isInStateDataAr-
eaSet and isInStateDataAreaUnset). These may be easily realized without code
duplication, and they check whether the DataTransferArea has been created or
destroyed correctly. The new specification, and additionally, the realization of
the isInState operation are depicted in Figure 24. The contract testing interface
in this case is only comprising a single method (or two methods depending on
50 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
the implementation according to the <<xor>> stereotype in Figure 24) that
checks whether the DataTransferArea has been created or destroyed correctly.
The parameters of the isInState operation control the respective states of the
behavioural model (Figure 22) and the Reference represents the DataTransfer-
Area that should have been stored correctly. Whether the second parameter is
needed depends on the implementation of the RankComponent and who is
actually providing or creating the instance of DataTransferArea.

Figure 23:
Activity diagrams for
the realization of a
testing interface
according to the
structural diagram.

Figure 24:
Specification and
realization of the
testing interface for
RankComponent.

5.5 Specification of the Tester Component - Step 5

Step one has identified the relations between individual components that will be
checked through the built-in contract testing approach. A client component in
such a relation will be referred to as testing component in the following. Each of
these testing components acquires a server, and it may be augmented with one
or more built-in tester components (one for each server). Each of these tester
components is developed according to the realization model of the testing com-

<<Component>>
BankingCard

+validatePin ()
+unlockCard ()

#unsuccessfulAttempts = 0

<<Testing Component>>
BankingCard

+ void setToState (bitState)
+ bool isInState (binState)

+bitState Cleared
+bitState SecondAttempt
+bitState ThirdAttempt
+bitState Locked

<<extends>>

BankingCard::setToState BankingCard::isInState

case: bitState in
Cleared:
unsuccessfulAttempts = 0
SecondAttempt:
unsuccessfulAttempts = 1
ThirdAttempt:
UnsuccessfulAttempts = 2
Locked:
UnsuccessfulAttempts = 3
default: Continue

case: bitState in
Cleared: return
(unsuccessfulAttempts == 0)
SecondAttempt: return
(unsuccessfulAttempts == 1)
ThirdAttempt: return
(UnsuccessfulAttempts == 2)
Locked:
(UnsuccessfulAttempts == 3)
default: return false

<<Component>>
BankingCard

+validatePin ()
+unlockCard ()

#unsuccessfulAttempts = 0

<<Testing Component>>
BankingCard

+ void setToState (bitState)
+ bool isInState (binState)

+bitState Cleared
+bitState SecondAttempt
+bitState ThirdAttempt
+bitState Locked

<<extends>>

BankingCard::setToState BankingCard::isInState

case: bitState in
Cleared:
unsuccessfulAttempts = 0
SecondAttempt:
unsuccessfulAttempts = 1
ThirdAttempt:
UnsuccessfulAttempts = 2
Locked:
UnsuccessfulAttempts = 3
default: Continue

case: bitState in
Cleared: return
(unsuccessfulAttempts == 0)
SecondAttempt: return
(unsuccessfulAttempts == 1)
ThirdAttempt: return
(UnsuccessfulAttempts == 2)
Locked:
(UnsuccessfulAttempts == 3)
default: return false

<<Component>>
RankComponent

#DataTransferArea

+setDataTransferArea ()
+destroyDataTransferArea ()
+findClosestCases ()

<<Testing Component>>
TestableRankComponent

+bitState DataCollectionUnset
+bitState DataCollectionSet

+isInState(bitState, Reference)

<<extends>>

RankComponent::
IsInState(bitState,Reference)

case: bitState in
DataCollectionUnset
(DataTransferArea == null)
DataCollectionSet
(DataTransferArea == Reference)

<<Component>>
RankComponent

#DataTransferArea

+setDataTransferArea ()
+destroyDataTransferArea ()
+findClosestCases ()

<<Component>>
RankComponent

#DataTransferArea

+setDataTransferArea ()
+destroyDataTransferArea ()
+findClosestCases ()

<<Testing Component>>
TestableRankComponent

+bitState DataCollectionUnset
+bitState DataCollectionSet

+isInState(bitState, Reference)

<<extends>>

RankComponent::
IsInState(bitState,Reference)

case: bitState in
DataCollectionUnset
(DataTransferArea == null)
DataCollectionSet
(DataTransferArea == Reference)
51Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
ponent. In other words, each testing component owns a description of what it
needs from its environment (its associated servers) in order to fulfill its own obli-
gations. This is defined in the realization model of the testing component. It rep-
resents the expectation of the testing component toward its environment. The
tests are not defined by the specification of the associated server - in this case it
would only be a unit test of the server.

Example 1 Every testing component that acquires another server component will own or
acquire a built-in tester component for that server. Figure 19 displays a compo-
nent Bank that acquires a remote Converter component for currency conver-
sions. The Bank component owns a built-in ConverterTester component that is
able to check the compliance of the acquired converter to the Bank’s clientship
contract. The ConverterTester represents the expectation of the Bank toward its
server in form of individual samples, the test cases. These test cases are designed
according to test criteria that have been defined in the quality assurance plan.
Chapter 2 has briefly described a quality assurance plan, and Chapter 3 has out-
lined feasible test case selection techniques that may be applied in a project.

The specification of the tester component is performed in the same way as for
any other functional component by simply following the steps that the develop-
ment process suggests. In this case, this would be simply following the KobrA
approach for designing a new component. The test cases may be realized in a
tabular form and later on implemented as code and integrated in the compo-
nent body. Figure 25 shows the realization structural and behavioural models of
the Bank component. The realization defines what the Bank component is made
out of. In this case, it is a Converter component that the Bank acquires with a
number of features that the Bank is expecting to be supported with. The opera-
tion signatures are displayed in the realization structural model, and their semi-
formal specification are contained in the realization behavioural model. An addi-
tional requirement of the Bank is the testing interface operation <<Testing>>
setRate (Curr, Rate). This is required for the Bank’s Converter tester component.

The test cases that will go into the Converter tester may be summarized in the
following Table (Table 8). They are derived according to the Bank’s realization
models. The tests are derived according to coverage of the realization behav-
ioural model that corresponds to full functional coverage. The states of the Con-
verter are not essential for the Bank component since it cannot add or remove
any entries. It can only change existing entries.
52 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
Table 8:
Specification of a
test suite for Bank’s
Converter Tester
Component.

Figure 25:
Realization struc-
tural and behav-
ioural models for the
Bank component.

Example 2 The tests that the Client of RankComponent performs are derived according to
the realization structural and behavioural models of the Client. This represents
the Client’s view on the functionality and behaviour of RankComponent. Figure
26 shows the realization structural model of its Client.

Table 9:
Specification of a
test case for Rank-
Component accord-
ing to the
RankComponent’s
behavioural model.

Initial State Precondition Event Postcondition FinalState

1 setRate (Curr, Rate) Curr in Converter

Curr in Converter isRate (Curr) true returned

2 Curr !in Converter isRate (Curr) false returned

3 setRate (Curr, Rate) Curr in Converter

Curr in Converter getRate (Curr) Rate returned

4 Curr !in Converter getRate (Curr) 0 returned

5 setRate (Curr, Rate) Curr in Converter

Curr in Converter convertToEUR (Curr, Amnt) Converted Amnt returned

6 Curr !in Converter convertToEUR (Curr, Amnt) 0 returned

7 setRate (Curr, Converter) Curr in Converter

convertFromEUR (Curr, Amnt) Converted Amnt returned

8 Curr !in Converter convertFromEUR (Curr, Amnt) 0 returned

<<Component>>
Converter

<<Functional Interface>>
+bool isRate (Curr)
+Rate getRate (Curr)
+Amount convertToEUR (Curr, Amount)
+Amount convertFromEUR (Curr, Amount)
<<Testing Interface>>
<<Testing>> + void setRate (Curr, Rate)

<<Testing
Component>>

ConverterTester

<<acquires>>

<<Component>>
Bank

<<acquires>>

<<acquires>>

<<Component>>
Converter

<<Functional Interface>>
+bool isRate (Curr)
+Rate getRate (Curr)
+Amount convertToEUR (Curr, Amount)
+Amount convertFromEUR (Curr, Amount)
<<Testing Interface>>
<<Testing>> + void setRate (Curr, Rate)

<<Testing
Component>>

ConverterTester

<<acquires>>

<<Component>>
Bank

<<acquires>>

<<acquires>>
Active

isRate (Curr)
[Curr in Converter]
/ return true
[Curr !in Converter]
/ return false

getRate (Curr)
[Curr in Converter]
/ return Rate(Curr)
[Curr !in Converter]
/ return 0

convertToEUR (Curr, Amount)
[Curr in Converter]
/ return converted Amount
[Curr !inConverter]
/ return 0

convertFromEUR (Curr, Amount)
[Curr in Converter]
/ return converted Amount
[Curr !in Converter]
/ return 0

Active

isRate (Curr)
[Curr in Converter]
/ return true
[Curr !in Converter]
/ return false

getRate (Curr)
[Curr in Converter]
/ return Rate(Curr)
[Curr !in Converter]
/ return 0

convertToEUR (Curr, Amount)
[Curr in Converter]
/ return converted Amount
[Curr !inConverter]
/ return 0

convertFromEUR (Curr, Amount)
[Curr in Converter]
/ return converted Amount
[Curr !in Converter]
/ return 0

Initial State Precondition Event Postcondition FinalState

1 DataCollectionUnset InvalidData setDataTransferArea () ERR_OUT_MIN_CASES DataCollectionUnset

DataCollectionUnset InvalidData setDataTransferArea () ERR_OUT_MAX_CASES DataCollectionUnset

DataCollectionUnset InvalidData setDataTransferArea () ERR_OUT_MIN_ATTRIBUTES DataCollectionUnset

DataCollectionUnset InvalidData setDataTransferArea () ERR_OUT_MAX_ATTRIBUTES DataCollecitonUnset

DataCollectionUnset ValidData setDataTransferArea () ERR_SUCCESS DataCollectionSet

DataCollectionSet ValidData setDataTransferArea ERR_DTA_ALREADY_EXISTS DataCollectionSet

DataCollectionSet destroydataTransferArea
53Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
Figure 26:
Realization struc-
tural model for the
RankComponent.

5.6 Realization of the Tester Components - Step 6

The realization of the tester components is concerned with how an individual
tester component will be organized and implemented, and which test suites it
will contain. This may comprise tester sub-components in the same way as real-
izations of normal functional components define sub-components whose func-
tionality they will acquire.

Example 1 The realization of the Bank’s Converter tester component comprises a number
of models that represent the test suites (e.g. activity diagrams). However, testing
functionality is often so straightforward that we won’t probably need any mod-
els. The realization may therefore simply be an implementation of the test plan
in code or in a test notation such as the Testing and Test Control Notation
[TTCN-3] that may be used as an input to automatic code generators. The test
plan is represented by a table or a collection of tables according to the different
testing criteria in a project (e.g. Table 8). The following Java code excerpt shows
an partial implementation of the test plan in Table 8:

class ConverterTester {
private Object converter = null;
private boolean pass = true;

public setConverter (Object C) {
converter = C;

}
public boolean performTest () {

test_1 ();
}

private void test_1 () {
converter.setRate (’’USD’’, 0.9956);
if (!converter.isRate (’’USD’’)

pass = false;
}

<<Com ponent>>
TestableRankCom ponent

#DataTransferA rea

<<Functional Interface>>
+setDataTransferArea ()
+destroyDataTransferArea ()
+ findC losestCases ()
<<Testing Interface>>
<<Testing>> +bitState DataCollectionUnset
<<Testing>> +bitState DataCollectionSet
<<Testing>> + isInState(b itState, Reference)

<<Com ponent>>
RankCom ponentClient

<<Testing Com ponent>>
RankCom ponentTester

<<acquires>>

<<acquires>>

<<acquires>>
54 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
private void test_2 () {
...

}
...

}

Example 2 Figure 27 shows a Java source code example with for an implementation of the
tester component for RankComponent.

Figure 27:
Excerpt of a Java
implementation.

5.7 Integration of the Components - Step 7

Once all the functional component artefacts and the built-in contract testing
component artefacts on both sides of a component contract have been properly
defined and implemented the two components can be integrated (plugged
together). This follows the typical process for component integration, i.e. a
wrapper is defined and implemented for client or the server, or an adaptor is
designed and implemented that realizes the mapping between the two roles.
Since the testing artefacts are integral parts of the individual components on
either sides of the contract they are not subject to any special treatment, they
55Copyright Fraunhofer IESE 2002

Development of the BIT
Artefacts & Step-by-Step Process
are just as any normal functionality. Figure 28 illustrates this. Here, client and
server have different expected and provided interfaces, so that they must be
mapped through an adaptor. The adaptor takes the operation calls from the cli-
ent and transforms them to into a format that the server can understand. If the
server produces results, the adaptor takes these and translates them back into
the format of the client. Since the built-in contract testing artefacts are part of
the client’s and server’s contracts they will be mapped through the adaptor as
well. Component platforms such as CORBA Components do already provide
support for this type of mapping.

Figure 28:
Component integra-
tion through an
adaptor.

Sequence of Inte-
gration

In a containment hierarchy integration is ideally performed bottom-up, so test-
ing stubs for higher-level components that imitate the behavior of lower-level
components may be omitted. Figure 29 displays two typical scenarios. The sec-
ond one is the traditional top-down testing approach that requires stubs to
replace required functionality that is not yet available for a test. Ideally, compo-
nent integration is performed bottom-up. This means that all required sub-com-
ponents are available, so that the contract between component B and C in Fig-
ure 29 can be verified before the contract between component A and B. This
follows the fundamental principle of application development that is in its pur-
est form performed in a bottom-up fashion.

T e stin g
C lie n t

T e sta b le
S e rv e r

A d a p to r

S yn ta c t ic
M a p p in g

B u ilt- in C o n tra c t
Te st in g Fu n c t io n a lity
(se m a n tic ch e ck in g)

C lie n t‘s
C o n tra c t

S e rve r‘s
C o n tra c t

T e stin g
C lie n t

T e sta b le
S e rv e r

A d a p to r

S yn ta c t ic
M a p p in g

B u ilt- in C o n tra c t
Te st in g Fu n c t io n a lity
(se m a n tic ch e ck in g)

C lie n t‘s
C o n tra c t

S e rve r‘s
C o n tra c t
56 Copyright Fraunhofer IESE 2002

Development of the BIT Artefacts
& Step-by-Step Process
Figure 29:
Integration
sequence that sup-
ports built-in con-
tract testing.

<<Component>>
A

<<Component>>
B

<<Component>>
C

<<Component>>
Context

<<acquires>> <<acquires>>

<<Component>>
A

<<Component>>
B

<<Stub>>
C

<<Component>>
Context

<<acquires>> <<acquires>>

<<Component>>
A

<<Component>>
A

<<Component>>
B

<<Component>>
B

<<Component>>
C

<<Component>>
C

<<Component>>
Context

<<Component>>
Context

<<acquires>> <<acquires>>

<<Component>>
A

<<Component>>
A

<<Component>>
B

<<Component>>
B

<<Stub>>
C

<<Stub>>
C

<<Component>>
Context

<<Component>>
Context

<<acquires>> <<acquires>>
57Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
6 Test-Suite Use and Reuse

Testing takes a big share of the total effort in the development of big/complex
software. However, component-based software engineering has mainly been
focused on cutting development time by reusing functional code. If the compo-
nents cannot be applied without extensive rework or retesting in the target
domains, the time saving becomes questionable [Gui89]. Hence, there is a need
to reuse not only functional code but also the tests and test environments that
can be used to verify that the components work on the target platform or their
target application. To get an effective test reuse in software development, there
are several aspects that must be taken into account.

– Increased testability through the use of Built-In Test (BIT) mechanisms.
– Standardized test interfaces.
– Availability of test cases.
– The possibility to customise the tests according to the target domain.

The contract testing approach to built-in testing includes a flexible architecture
that focuses on these aspects. It is the application of this architecture that makes
reuse possible. In the initial approach of built-in testing as proposed by Wang et.
al. [Wan00], complete test cases are put inside the components and are there-
fore automatically reused with the component. While this strategy seems attrac-
tive at first sight, it is not flexible enough to suit the general case. A component
needs different types of tests in different environments and it is neither feasible
nor sensible to have them all built in permanently.

Under the contract testing paradigm test cases are separated from their respec-
tive components and put in separate tester components. The BIT components
still have some built-in test mechanisms, but only to increase their accessibility
for testing. The actual testing is done by the tester components that are con-
nected to the BIT components through their BIT interfaces. In the developed
architecture, an arbitrary number of tester components can be connected to an
arbitrary number of BIT components. This offers a much more flexible way to
reuse tests as the tests used do not have to be identical to the ones originally
delivered with the BIT component. The tests can be customised to fit the context
of the component at all stages in the component’s life cycle. BIT components
have built-in mechanisms that increase the testability of the components. These
mechanisms can be for example error detection mechanisms like assertions,
methods to set and read the state of the component, and methods that report
resource allocations. These mechanisms can be accessed through a standardised
BIT interface, and are automatically reused with the component.
58 Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
The overall concept of test reuse in built-in contract testing follows the funda-
mental reuse principles of all object and component technologies. Because test-
ing is inherently built into an application or parts thereof (the components) test-
ing will be reused whenever functionality is reused. In fact testing in this respect
is normal functionality. Only the time when this functionality is executed distin-
guishes it from the other non-testing functionality, that is at configuration or
deployment time.

6.1 Test Reuse at Development Time

Component-based development separates two development activities. The first
one takes a top-down view on the development, this is when specified system
functionality is distributed over individual components. This is also referred to as
component engineering. The components are the building blocks of compo-
nent-based systems, and so they are the primary units of reuse. Therefore, com-
ponent engineering is termed development for reuse. The second one takes a
bottom up perspective on development, this is when the individual reusable
building blocks are assembled and put together in order to create a meaningful
configuration of a system. This is also referred to as application engineering and
it performs the development with reuse.

Components that are eventually reused in a new application abide by the same
basic object and component principles. In other words, what an application is
on a higher level of abstraction that is a component on a lower level of abstrac-
tion: an assembly of other sub-components. This is quite natural for compo-
nents: somebody’s component is somebody else’s system. The only distinguish-
ing feature between a component or an application/system is its reusing
context, or in other words, the arbitrary definition of a unit of composition that
a user of a component determines. Lower-level component assemblies that are
made up of other sub-components may be supported by the same built-in con-
tract testing techniques and architectures as application level components. Only
the question of whether a component will be a stand alone reusable entity in a
repository, or be subsumed in an assembly of other components determines
whether it makes sense to have the contract testing artefacts built-in perma-
nently.

Test reuse through built-in contract testing may therefore be applied at all levels
of development whenever larger-grained units are integrated out of finer-
grained units. After successful integration the built-in testing artefacts may be
removed.
59Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
6.2 Test Reuse at Configuration and Deployment Time

In the typical scenario for component-based software engineering, a component
can be bought off-the-shelf or taken from an in-house repository and inserted
into a new application. In our vision, these components should all be compo-
nents that support built-in contract testing. This means:

– They should have well-defined test interfaces that make them testable. These
can be developed by the component producer according to the BIT method-
ology and process described in the previous chapters of this document.

– They should also provide and publish their own tester components. These are
the tester components for
– checking the component itself, and views the component as the server

component.
– checking the servers of that component. These are the tester components

that validate the environment.

The built-in contract testing artefacts that should be provided with a such a
component are illustrated in Figure 30.

Figure 30:
BIT interface and
tester components
that should be pro-
vided with any BIT
component.

6.2.1 BIT Component Testers

The BIT component testers on the left hand side of the BIT component in Figure
30 represent the testing that the vendor or producer of the BIT component has
already developed and performed. These are source code components that
comprise the vendor’s original test cases for checking this particular BIT compo-
nent (its provided interfaces). Each of these tester components represents an
expected usage profile of the BIT component that the vendor of that BIT compo-
nent had imagined for their product. This in fact is a test suite for unit testing

BIT Component

BIT Testing
Interface

BIT Component
Tester

(Usage Profile 1)

BIT Component
Tester

(Usage Profile n)

Server
Tester

(Usage Profile 1)

Server
Tester

(Usage Profile n)

Tests according to the
Specification of the
BIT Component

Tests according to the
Realization of the

BIT Component

Server
Tester

(Usage Profile n)

BIT Component
Tester

(Usage Profile n)

BIT Component

BIT Testing
Interface

BIT Component
Tester

(Usage Profile 1)

BIT Component
Tester

(Usage Profile n)

Server
Tester

(Usage Profile 1)

Server
Tester

(Usage Profile n)

Tests according to the
Specification of the
BIT Component

Tests according to the
Realization of the

BIT Component

Server
Tester

(Usage Profile n)

BIT Component
Tester

(Usage Profile n)
60 Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
because it is developed according to the specification of the unit and not
according to the specification of the user of that unit.

Reusing and reexecuting these tests might initially seem redundant since the
vendor of the BIT component will have already applied these tests in their own
development environment. However, the operation environment (the expected
interfaces) of the customer of that BIT component is likely to be different from
that of the vendor. Reusing and reapplying the existing test components vali-
dates the functionality of the BIT component within its new context. The appli-
cation of these BIT component testers will cause the BIT component to use its
own server components upon which it depends, thus validating the contracts
between the BIT component and its servers. In other words, the application of
the BIT component test suites validates the contract compliance of the BIT com-
ponent’s associated servers. In this case, the combination of the BIT component
plus its server environment will be validated.

6.2.2 Server Tester Components

The server tester components on the right hand side of the BIT component in
Figure 30 represent the testing that the vendor or producer of the BIT compo-
nent has already developed and performed to check the BIT component’s devel-
opment-time environment. These are source code components that comprise
the vendor’s original test cases for checking the servers of this particular BIT
component. Each of these tester components represents a feasible usage profile
of the BIT component’s environment upon which itself depends. In other words,
these server tester components represent the different types of environments
for which the BIT component has been developed originally.

Reusing and reexecuting these tests will be performed whenever the server envi-
ronment of the BIT component is changed, that is if the BIT component is
moved into a new run-time environment, or if it is integrated into a new appli-
cation.

6.2.3 Built-in Documentation through the Provided Tester Components

The tester components for the provided and required interfaces determine how
the BIT component vendor expects its component to be used, and how the BIT
component vendor expects the BIT component to use its own environment.
Thus, the tester components represent the vendor’s interpretation of the BIT
component’s specification and realization documents. This realizes built-in doc-
umentation of the BIT component, because the test cases show a prospective
user of that component what the component expects to get from its environ-
ment in terms of expected services as well as in terms of expected pre- and post-
conditions.
61Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
Tester components additionally illustrate for which different usage profiles the
component is suitable. This facilitates the decision of whether the component
can be integrated into the intended scope of the application or not. For this pur-
pose, the tester components can be compared with the tester components that
the user of the BIT component has developed in order to see whether the user’s
expectations map to what the component provides.

6.3 Test Reuse at Operation Time

In theory, built-in contract testing may also be applied at operation time when
an application is dynamically changed. However, this may not initially be defined
as operation time, since the application will be out of service for the duration of
such a dynamic update. This process may rather be defined as a re-configuration
and re-deployment of an application, which is the typical scenario for using and
applying built-in contract testing.

6.4 Test Reuse throughout Maintenance

If the individual components that make up an application are in-house develop-
ments, the built-in contract tester components may also be used for regression
testing of the individual parts. Since each tester component represents a valid
usage profile of the associated component, the sum of all tester components
from all different dedications of the component may be re-executed when a
particular unit is amended. In other words, built-in contract testing also provides
a vehicle to perform specification-based development-time regression testing.

6.5 Reuse of Standardised Tester Components

The full vision of component-based development can only become a reality if
components implement standard interfaces for standard functionality. This
adopts the typical mechanical engineering view on physical components to the
software domain. It means that technical gadgets are built out of standard parts
that are made according to standardised specifications. For software engineer-
ing this corresponds to building software components according to well
defined, and standardised functional specifications. Each of these specifications
is generic to all feasible implementations of such a specification. This means that
a generic tester component for a generic specification can be used to test each
specific component implementation. A component market place would there-
fore not only have implementations of components on offer but also their
generic specifications and generic tester components for these specifications.
Component vendors may therefore not only sell functionality in form of compo-
nents but also testability in form of tester components for distinct specifications.
These generic tester components will be plugged into component assemblies
62 Copyright Fraunhofer IESE 2002

Test-Suite Use and Reuse
and reused in the same way as functional components are currently reused in
application engineering. For contract testing this means that a client which
acquires a standard component, executes its standardised in-built tester compo-
nent in order verify that the new server is an acceptable implementation of that
standard interface.

However, this vision can currently only be realized on an organizational level due
to the lack of suitable component market places. An organization that is devel-
oping under the component paradigm will have internal repositories of standard
components for their particular domain, from which the development depart-
ments will draw their reusable assets. These repositories may be realized as sim-
ple source or binary code libraries, or if more advanced, component repositories
with underlying middleware platforms that may be accessed remotely through
the organizational intranet. Such reusable assets will typically comprise multiple
realizations, different versions, for different purposes, or different product lines
that are implemented according to standard interfaces. In other words, for each
of their domain-specific standard interfaces they will have a number of feasible
implementations of that interface, or versions, that abide by the specified con-
tract, and additionally realize a variety of different non-functional requirements.
Such requirements may define size and performance properties of the code, or
conformance to different quality and safety standards, or they may simply
define specific run-time environments or hardware configurations under which
a version may be executed. All these different versions of one single interface
specification are expected to provide identical functionality and behaviour. The
different versions are only used according to the different required non-func-
tional specifications. Therefore, there will only be one single tester component
for each of these standard interfaces.
63Copyright Fraunhofer IESE 2002

Configuration Management and
Interfaces
7 Configuration Management and Interfaces

Configuration management activities are responsible for how changes in the
application are achieved. Configuration interfaces are one way to realize
changes, and they play an important role in the component-based development
paradigm. They represent additional functionality that is used to configure a
server component according to the particular needs of a distinct client, or a cli-
ent to use a distinct server. Each client uses a component according to a particu-
lar usage profile. This is equivalent with a view on a component’s functionality,
and this typically appears in systems with high functional variability, for instance
in product line development. Each particular product line will exhibit different
behaviour at certain points of variability of the overall system, and a component
must be able to accommodate this variability through some means of configura-
tion. Built in contract testing discriminates two different types of configuration
interfaces:

– Existing functional configuration interfaces that are typical for product line
development, for example.

– Configuration interfaces that set up the type and thoroughness of the
required built-in testing.

7.1 Functional Configuration

The first type of configuration is concerned with the effect that existing func-
tional configuration interfaces might have on any BIT artefact, or vice versa.
Such configuration interfaces are concerned with existing variability in function-
ality that is controlled through configuration interfaces. These are readily
defined in the functional specification of a product line, and they implement
normal functionality of the component as far as testing is concerned. Two sce-
narios are conceivable:

– The server is configureable, and a client acquires an instance of a configured
server component. This means that the creator of the component (this is not
the client) has already configured its functionality according to the needs of
the acquiring client, and the client “knows” nothing about the different
views that this server may provide to other clients. In this case, the client
receives a particular instance of a component that provides it with a particu-
lar service. Before using this acquired server, the client may execute its own
built-in tests that verify the semantic conformance of the server to its client-
ship contract. In this case, there are no implications of the server’s configure-
ability that affect built-in contract testing.
64 Copyright Fraunhofer IESE 2002

Configuration Management and
Interfaces
– The client is configureable, and it may be able to acquire a range of different
types of servers according to the intended functionality of the overall applica-
tion. In this case, the configuration interface of the client will have to provide
some means of choosing the type of server to be acquired from a list of feasi-
ble types of servers for this particular point of variation. In this case, the con-
figuration interface must also provide some means to set the tester for a par-
ticular type of server. Though, this is done in the same way as for configuring
the functional variability. This is performed according to choosing the test
weight in contract testing. The set up is displayed in Figure 31.

Figure 31:
Configureable cli-
ent, for example a
national and inter-
national Bank.

7.2 Test Configuration

This is concerned with how different testing requirements of the BIT technology
are configured. Configuration of a BIT-component can be considered from sev-
eral angles; the impact of functional configuration (at compile or deployment
time), the impact of configuration on test service availability, and run-time con-
figuration of test services. It is important to recognize that the configuration of
the functional aspects of the component has little impact on the testing func-
tionality.

Testing configuration interfaces are specific to the particular type of contract
testing that will have to be performed according to the intended use of a com-
ponent. With respect to the type and required thoroughness of test, any avail-
able tester component may be included in a client either statically, or dynami-
cally implemented through references. The previous section has considered
different types of testers that may be set according to different functionality at
points of variation in an application. This is one way to introduce configuration
interfaces for testing. The second one concentrates on the aspect of thorough-
ness of performed test. This is governed by criteria such as the time of the test,
the origin of a component or the availability of resources, for example in an
embedded system. In this respect, the architecture of built-in contract testing is
completely open to configuration since different types and degrees of testing
can be easily introduced.

Variable Client

Functional Interface

Testing Interface

Configuration Interface

Server Variation A

Server Variation B

Server Variation C

Server
Tester A

Server
Tester B

Server
Tester C

Functional
Variation

Testing
Variation

«acquires»

«acquires»

Variable Client

Functional Interface

Testing Interface

Configuration Interface

Server Variation A

Server Variation B

Server Variation C

Server
Tester A

Server
Tester B

Server
Tester C

Functional
Variation

Testing
Variation

«acquires»

«acquires»

Configurable Bank

Functional Interface

TestingInterface

ConfigurationInterface

Converter
for currency
conversion

Converter
Tester

ExchangeRate
Conversion
Functional
Variability

ExchangeRate
Conversion

Testing
Variability

«acquires»

«acquires»

Point of Variation:
National Bank: no converter
International Bank: converter

«acquires»

Configurable Bank

Functional Interface

TestingInterface

ConfigurationInterface

Converter
for currency
conversion

Converter
Tester

ExchangeRate
Conversion
Functional
Variability

ExchangeRate
Conversion

Testing
Variability

«acquires»

«acquires»

Point of Variation:
National Bank: no converter
International Bank: converter

«acquires»
65Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Commercial Off-the-shelf
Components (COTS)
8 Built-in Contract Testing and Commercial Off-the-shelf Compo-
nents (COTS)

The integration of commercially available third party components into own
applications represents one of the main driving factors for component-based
software development since it greatly reduces own development efforts. Such
components are aimed at solving typical problems in distinct domains, and ide-
ally they can be purchased off-the-shelf and simply plugged into an application.
However, this ideal scenario seems far from reality. Although they reduce devel-
opment effort for functionality, third party components do typically greatly
increase the integration effort of the overall application, since they are normally
only available in a shape that permits or at least inhibits their easy integration.
For example, they may provide syntactically or semantically different interfaces
from what is expected and required, or they may not be entirely fit for the
intended purpose. In any way, the usage and integration of third party compo-
nents typically requires either the development of wrappers or adaptor compo-
nents that hide and compensate these differences, or changes in the design and
implementation of the integrating client component. This underlines the need
for component markets that are based on and driven by the provision of stan-
dard interfaces reflecting standard solutions to typical domain problems.

If our own component can communicate syntactically with a provided COTS
component through some mechanism, the next step is to make sure that they
can also communicate semantically. In other words, the fact that two compo-
nents are capable of functioning together says nothing about the correctness of
that interaction. This is where built-in contract testing provides its valuable ser-
vices, and this is where it exhibits its greatest benefits.

8.1 COTS Components with BIT Capability

Ideally, all commercially available components should provide testability mea-
sures such as the introspection mechanism that is realized through built-in con-
tract testing interfaces. Such components will naturally fit into applications that
are driven by the built-in contract testing paradigm. They simply need to be
interconnected syntactically, and this of course comprises the functionality as
well as the testing aspects of the two components. The built-in contract testing
paradigm may be seen as a strong advocate of not only providing testing inter-
faces with commercial components but also providing these according to well-
defined interfaces, so that the syntactic integration effort may eventually be
wiped out completely. However, since the technology has not yet penetrated
into the component industry, it is likely that component vendors will not provide
66 Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Commercial Off-the-shelf
Components (COTS)
their components with such testability measures. Though, this is not too much a
difficulty as explained in the following sub-section.

Figure 32:
In-house develop-
ment that acquires a
COTS component
without testing
interface.

8.2 COTS Components without BIT Capability

If we bought a COTS component today we will typically expect it not to expose
any testability interfaces, or its own server testers. In other words, we get a com-
ponent that only provides its specified service. This is a unit with reduced con-
trollability and observeability compared with the full controllability and observe-
ability that components built-in contract testing paradigm expose through their
testing interfaces. For the client of such a component it means it cannot apply a
server tester that uses this testing interface, so it cannot set or get any internal
information of the component except through the normal interface. In fact, this
is the situation that testers have been facing right from the very advent of object
technology. They can only use the exposed operations of a component in order
to validate it, nothing more. Although the testability of such components is
decreased it does not change the validity of the built-in contract testing
approach. Figure 32 illustrates this scenario. It displays an in-house component
that is equipped with a built-in server tester component (through the context)
that checks the server’s contract compliance. The server does not exhibit any
testing interfaces, so its testability is limited.

Application
Context

COTS
Com ponent

Inhouse
Developm ent

«acquires»

Application
Context

COTS
Com ponent

Inhouse
Developm ent

«acquires»

COTS
Tester

«acquires»

Application
Context

COTS
Com ponent

Inhouse
Developm ent

«acquires»

Application
Context

COTS
Com ponent

Inhouse
Developm ent

«acquires»

COTS
Tester

«acquires»
67Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Commercial Off-the-shelf
Components (COTS)
Figure 33:
COTS component
that acquires
another COTS com-
ponent.

The same principle applies when two COTS components without testing inter-
faces are integrated. This is illustrated in Figure 33. COTS component A acquires
and uses COTS component B as server. Initially, A cannot test its server B. How-
ever, the context, this is the glue code that combines the two COTS compo-
nents, can provide a tester component that is developed according to A’s
required interface specification. Before the context lets the client component
use its server it can pass it to the tester component that checks it for the client.
In this case, any arbitrary scenario is feasible where the context provides tester
components for the COTS components. In this case, the testing organization
depends entirely on the capability of the context.

8.3 Extended COTS Components with Added Built-in Contract Testing Capability

Commercial third party components cannot typically be augmented with an
additional built-in contract testing interface that provides a client with an intro-
spection mechanism for improved testability and observeability. This leaves
COTS components only to be tested through their provided functional interface,
as it is traditionally the case in object and component testing. However, modern
object languages or component platforms such as Java do provide mechanisms
that enable internal access to a component. They can break the encapsulation
boundary of binary components in a controlled way and offer internal access.
Such mechanisms can be used to realize testing interfaces according to the
built-in contract testing philosophy for any arbitrary third party component.
How this is achieved exemplary with the Java platform as implementation tech-
nology by using a suitable Java Library that is based on Java’s own reflection

Application
Context

COTS
Component B

COTS
Component A

«acquires»

Application
Context

COTS
Component B

COTS
Component A

«acquires»

COTS
Component B

Tester «acquires»

Application
Context

COTS
Component B

COTS
Component A

Tester

«acquires»

COTS
Component A «acquires»

Application
Context

COTS
Component B

COTS
Component A

«acquires»

Application
Context

COTS
Component B

COTS
Component A

«acquires»

COTS
Component B

Tester «acquires»

Application
Context

COTS
Component B

COTS
Component A

Tester

«acquires»

COTS
Component A «acquires»
68 Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Commercial Off-the-shelf
Components (COTS)
mechanism is subject of the following paragraphs. The architecture of the library
is displayed in Figure 34 [BBB03]. Built-in contract testing can initially be carried
out by using three primary concepts. These are the testability contract, the tester
and test case. These are the fundamental features that support the assessment
of test results, control of the execution environment, and actions to be taken if
faults are encountered. Additionally, the library provides state based testing sup-
port that is more essential to built-in contract testing. These concepts are the
state-based testability contract, the state-based tester, and the state-based test
case. The state-based concepts abide by the principles of Harel’s state machines
[BBB03].

Figure 34:
Organization of the
built-in contract
testing support
library [BBB03].

The Java library is bounded to the original Java COTS component either through
an extension mechanism (inheritance) or through a containment relationship.
The second case realizes a new component that owns the original COTS compo-
nent as a sub-component (i.e. as an attribute). The new component acts as a
wrapper around the original COTS component. The access to the COTS compo-
nent is realized through Java’s Reflection mechanism inside the library. The
behavioural model that is required for the contract testing interface must be
defined according to the generic behavioural facilities that the library is provid-
ing and it is completely incorporated in the newly created wrapper. Through this
technique, the wrapper component represents an executable behavioural model
of the original COTS component. This requires that the COTS component is
properly documented. The wrapper component therefore provides a built-in
contract testing interface through overwriting the isInState and setToState oper-
ations that are implemented through the library. This technique is detailed and
explained on the basis of a case study in [BBB03]. It must be noted that this
technique heavily depends upon the capability of the implementation technol-
ogy.
69Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
9 Built-in Contract Testing and Web-Services

Web-Services are commercial software applications that are executed on Inter-
net hosts and provide individual services which are used to realize distributed
component-based systems. These services are typically specified based on the
Extensible Markup Language (XML) and they communicate with their clients
through Internet protocols that also support the XML. Web-Services fulfill all the
requirements of Szyperski’s component definition [Szy99], that is a service is
only described and used based on interface descriptions and more importantly,
it is independently deployable. This means, a Web-Service provides its own run-
time environment, so that a component-based application is not bound to a
specific platform. Every part of such an application is entirely independent from
any other part, and there is no overall run-time support system but the underly-
ing network infrastructure. Web-Services represent the ultimate means of imple-
menting component-based systems.

The fundamental idea behind the so-called service-oriented programming is that
individual parts of an application communicate on the basis of a predetermined
XML contract. Initially, this is not different from the way we have treated com-
ponents so far, for instance objects. However, here the components of an appli-
cation are not bound to a particular host such as in object-oriented program-
ming, but they are established dynamically throughout entire networks, for
example the Internet. In this way, different implementations of a distinct service
may be easily replaced through registering with a different Web-Service that
provides the same specification of the required component. Architectures for
service-oriented programming typically support the following concepts:

– Contract. This is the full specification of one or more interfaces that charac-
terizes the syntax and semantics of a service (functional and behavioural
specification).

– Component. This represents a readily usable and deployable object that pro-
vides functionality and exhibits behaviour. This is the realization of the actual
component that implements the functionality of the service.

– Connector, Container and Context. These concepts realize the networking
and run-time specific elements of a Web-Service. It means they are responsi-
ble for establishing the connection between client and server, take care of
the execution of an instance, or control its security.
70 Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
9.1 Checking Web-Services through Contract Testing

Contract testing provides the ideal technique for checking dynamic and distrib-
uted component-based systems that are based on Web-Services. In fact this is
the scenario for which built-in contract testing provides the most benefits. The
syntactic compatibility between client and a Web-based server is ensured
through the XML mapping between their interfaces. Their semantic compatibil-
ity is checked through the built-in server tester components inside the client that
are executed to validate the associated server. These tests are performed when
the client is registering with a service for the first time, this means during config-
uration, or if the client requests the same specification of the server from a dif-
ferent Web-Service provider, this means during re-configuration of the system.

Figure 35:
Example contain-
ment hierarchy of a
simple international
banking system on
the basis of a Web-
Service.

Example 1 Figure 35 displays the containment hierarchy of a simple international banking
system that is based on a Web-Service. The converter component contains all
currency exchange rates and exports the conversion operations. It may be pro-
vided by a company (Web-Service provider) that is specialized on banking ser-
vices, and it may be updated on a daily basis according to the stock market
exchange rates. The banking system connects to a new instance of the con-
verter once a day, so that the latest currency exchange rates are always available
on-line to the banking application. The <<remotely acquires>>-relationship indi-
cates that the converter (in this case it is a testable converter) is not locally avail-
able. It means that this relationship will be implemented through some underly-
ing networking infrastructure. This is realized through the Connector and the
Container on the server side (the Web-Service) and a Web-Service conformant
implementation on the client side of the <<remotely acquires>>-relationship.

Bank Context
Web-Service

Context

Testable
Converter

Testing Bank
Testable

Look Up Table

Testing Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»

Bank Context
Web-Service

Context

Testable
Converter

Testing Bank
Testable

Look Up Table

Testing Teller

«acquires»

«acquires»

«remotely acquires»

«registers with»

«remotely acquires»
71Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
The stereotype <<remotely acquires>> hides the underlying complexity of the
network implementation and only considers the level of abstraction that is
important for testing. This technique is termed “stratification” [Atk02]. In other
words, as soon as the connection between the two interacting components is
established, however this is realized in practice, a normal contract test may be
initiated. The server may provide a suitable test interface that the client’s built-in
tests can use. Client and server do not “know” that they communicate through
Web-Interfaces. This connection is established through their respective contexts
when the context of the Bank component registers with the context of the Con-
verter component (Figure 35).

Example 2 Figure 36 displays a containment hierarchy of a web-service-based video-confer-
ence system that represents the core functionality of a health-care surveillance
application. It shows a number of components, including one for the camera
control at the CentralSystem and one for the actual video camera at the
RemoteSystem.

Figure 36:
Development-time
containment hierar-
chy of a web-based
video-conferencing
system from a
healthcare project.

Figure 37: Specifica-
tion and Realization
of a Web-Service in
two Strata.

<<Komponent>>
VideoCamera

<<Komponent>>
RemoteSystem

<<Komponent>>
Multiplexer

<<Komponent>>
DataBase

<<Komponent>>
CentralSystem

<<Komponent>>
Visualizer

<<Komponent>>
CameraControl

<<remotely acquires>>

<<public>> <<public>><<public>><<public>><<public>>

<<Komponent>>
VideoCamera

<<Komponent>>
RemoteSystem

<<Komponent>>
Multiplexer

<<Komponent>>
DataBase

<<Komponent>>
CentralSystem

<<Komponent>>
Visualizer

<<Komponent>>
CameraControl

<<remotely acquires>>

<<public>> <<public>><<public>><<public>><<public>>

< < K o m p o n e n t> >
C a m e r a C o n t r o l

< < K o m p o n e n t> >
V id e o C a m e r a

< < K o m p o n e n t> >
M u lt ip le x e r

< < a c q u ir e s > >

< < a c q u ir e s > >

< < o w n s > >
1

1 . .n

< < K o m p o n e n t> >
C a m e r a C o n t r o l

< < K o m p o n e n t > >
V id e o C a m e r a

< < K o m p o n e n t > >
M u lt ip le x e r

< < o w n s > >
1

1 . .n

< < K o m p o n e n t> >
C l ie n t N e t w o r k L a y e r

< < K o m p o n e n t > >
S e r v e r N e t w o r k L a y e r

< < a c q u ir e s > >

< < a c q u ir e s > >

A p p l ic a t io n S t r a t u m (S p e c i f i c a t io n)

C o m m u n ic a t io n S t r a t u m (R e a l i z a t io n)

< < K o m p o n e n t> >
C a m e r a C o n t r o l

< < K o m p o n e n t> >
V id e o C a m e r a

< < K o m p o n e n t> >
M u lt ip le x e r

< < a c q u ir e s > >

< < a c q u ir e s > >

< < o w n s > >
1

1 . .n

< < K o m p o n e n t> >
C a m e r a C o n t r o l

< < K o m p o n e n t > >
V id e o C a m e r a

< < K o m p o n e n t > >
M u lt ip le x e r

< < o w n s > >
1

1 . .n

< < K o m p o n e n t> >
C l ie n t N e t w o r k L a y e r

< < K o m p o n e n t > >
S e r v e r N e t w o r k L a y e r

< < a c q u ir e s > >

< < a c q u ir e s > >

A p p l ic a t io n S t r a t u m (S p e c i f i c a t io n)

C o m m u n ic a t io n S t r a t u m (R e a l i z a t io n)
72 Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
Testing in this example should consider different system views at different levels
of abstraction (so-called strata). This is indicated in Figure 37. On an application
level, we are only interested whether the camera control component on the left
side can control the camera on the right side correctly. And we can test that
through appropriate test cases in the camera control component. However, fail-
ures may also be rooted in the underlying network infrastructure. This is similar
to the applications run-time system, and it may therefore be tested as well. The
camera control component may therefore be augmented with a tester compo-
nent for checking the underlying network infrastructure plus one for the appli-
cation-level camera control component. The testing sequence can then start by
executing the network related tests, and then, if these are correct, perform the
application-level tests that we are actually interested in. The decision on
whether we will include a network tester depends upon the trust that our com-
ponent has in the underlying infrastructure, and on how loosely the two compo-
nents are interconnected. If the underlying infrastructure is likely to change, it
might well make sense to have a permanently built-in network tester in the
camera control component. The same is true for the camera component. If it
never changes it probably does not make much sense to have a camera tester
built-in permanently. Such a tester is detailed in the following paragraph.

Figure 38:
Structure of the
camera control sys-
tem with a Camer-
aTester Component.

Figure 38 displays the structural view on the camera control functionality of the
system, and Figure 39 and Figure 40 depict the behavioural views on this system
part, with Figure 40 refining the ON-state in Figure 39. The CameraTester com-
ponent will be developed according to the behavioural models. Every state-tran-
sition maps to one or more test cases for the CameraTester. If the camera con-
trol unit acquires a new camera it can simulate typical requests from that
camera through executing CameraTester component.

< < K o m p o n e n t > >
C a m e r a C o n t r o l

< < K o m p o n e n t > >
V id e o C a m e r a

+ s e le c t C a m e r a (C a m e r a)
+ in it ia l iz e ()
+ c le a n U p ()
+ o n ()
+ o f f ()
+ m o v e U p M a x ()
+ m o v e D o w n M a x ()
+ m o v e L e f t M a x ()
+ m o v e R ig h t M a x ()
+ m o v e U p P o s ()
+ m o v e D o w n P o s ()
+ m o v e L e f t P o s ()
+ m o v e R ig h t P o s ()
+ m o v e H o m e ()

1

1 . .n

< < a c q u ir e s > >

< < K o m p o n e n t > >
M u lt ip le x e r

+ s e le c t C a m e r a (C a m e r a)

< < a c q u ir e s > >

1

1

1

1 . .n

< < t e s t in g > >
C a m e r a T e s t e r

< < a c q u ir e s > >1

1 . .n

< < K o m p o n e n t > >
C a m e r a C o n t r o l

< < K o m p o n e n t > >
V id e o C a m e r a

+ s e le c t C a m e r a (C a m e r a)
+ in it ia l iz e ()
+ c le a n U p ()
+ o n ()
+ o f f ()
+ m o v e U p M a x ()
+ m o v e D o w n M a x ()
+ m o v e L e f t M a x ()
+ m o v e R ig h t M a x ()
+ m o v e U p P o s ()
+ m o v e D o w n P o s ()
+ m o v e L e f t P o s ()
+ m o v e R ig h t P o s ()
+ m o v e H o m e ()

1

1 . .n

< < a c q u ir e s > >

< < K o m p o n e n t > >
M u lt ip le x e r

+ s e le c t C a m e r a (C a m e r a)

< < a c q u ir e s > >

1

1

1

1 . .n

< < t e s t in g > >
C a m e r a T e s t e r

< < a c q u ir e s > >1

1 . .n
73Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
Figure 39:
Behavioural model
of the camera con-
trol functionality.

Figure 40:
Refinement of the
ON-state in Figure
39 in tabular form.

9.2 Testing of Readily Initialized Server-Components

Web-Services are typically providing instances that are ready to use. It means
that the server component that is provided through the Internet service is
already configured and set to a distinct required state. A run-time test is there-
fore likely to change or destroy the server’s initial configuration, so that it may
not be usable by the client any more. For example, a test suite for the Converter
component in Figure 35 may comprise test cases that change, add or remove
some of the exchange rates stored in that component. Clearly, for the client,
such a changed server is of no use and this creates a fundamental dilemma for
built-in contract testing of Web-Services.

9.2.1 Possible Destruction of the Server through the Testing Client

Under object-oriented run-time systems the client can solve this dilemma by sim-
ply creating a clone of the tested component and passing the clone to the test

On

Off

on () off ()

Initialize () cleanup ()

On

Off

on () off ()

Initialize () cleanup ()

Final State

In
itial State

[pos<MaxUp] moveUpPos
[pos<MaxDownPos]
moveDownPos
[pos<MaxRightPos]
moveRightPos
[pos<MaxLeftPos]
moveLeftPos

moveMaxLeftmoveMaxRightmoveMaxDownmoveMaxUpmoveHomeOtherPos

moveUpPos
moveDownPos
moveRightPos

moveMaxRightmoveMaxDownmoveMaxUpmoveHomeMaxLeft

OtherPosMaxLeftMaxRightMaxDownMaxUpHome

moveUpPos
moveDownPos
moveRightPos
moveLeftPos

moveMaxLeftmoveMaxRightmoveMaxDownmoveMaxUp<<starting>>
Home

moveMaxRight

moveMaxRight

moveMaxDown

moveMaxDown

moveMaxUp

moveMaxUp

moveHome

moveHome

moveHome

MaxRight

MaxDown

MaxUp

moveUpPos
moveDownPos
moveLeftPos

moveMaxLeft

moveUpPos
moveRightPos
moveLeftPos

moveMaxLeft

moveDownPos
moveRightPos
moveLeftPos

moveMaxLeft

Final State

In
itial State

[pos<MaxUp] moveUpPos
[pos<MaxDownPos]
moveDownPos
[pos<MaxRightPos]
moveRightPos
[pos<MaxLeftPos]
moveLeftPos

moveMaxLeftmoveMaxRightmoveMaxDownmoveMaxUpmoveHomeOtherPos

moveUpPos
moveDownPos
moveRightPos

moveMaxRightmoveMaxDownmoveMaxUpmoveHomeMaxLeft

OtherPosMaxLeftMaxRightMaxDownMaxUpHome

moveUpPos
moveDownPos
moveRightPos
moveLeftPos

moveMaxLeftmoveMaxRightmoveMaxDownmoveMaxUp<<starting>>
Home

moveMaxRight

moveMaxRight

moveMaxDown

moveMaxDown

moveMaxUp

moveMaxUp

moveHome

moveHome

moveHome

MaxRight

MaxDown

MaxUp

moveUpPos
moveDownPos
moveLeftPos

moveMaxLeft

moveUpPos
moveRightPos
moveLeftPos

moveMaxLeft

moveDownPos
moveRightPos
moveLeftPos

moveMaxLeft
74 Copyright Fraunhofer IESE 2002

Built-in Contract Testing and
Web-Services
software. This works because client and server are handled by the same run-
time environment. For example, in Java this is performed through the
Object.clone method. In this case, the test software may completely mess up the
newly created clone without any effect on the original instance, it is simply
thrown away after the test, and the original is used as working server. However,
in a Web-Service environment the run-time system of the client is different from
that of the server, so that the client cannot construct a new instance from an
existing one. The client and server are residing within completely different run-
time scopes on completely different network nodes. For example, The banking
application in Figure 35 may be based on Java, and the Web-Service component
may be based upon a Cobol run-time environment. In other words, only the
Web-Service context may generate an instance of that Cobol component
because it comprises a Cobol run-time environment.

Contract testing can therefore only be applied in a Web-Service context if the
Web-Service provides somes way for the client to have a clone created and
accessed for testing. Some contemporary component technologies such as
CORBA Components are capable of doing exactly that. Here, the container pro-
vides operations that generate exact copies of existing instances and make them
available to their clients. In practice this will be initiated by the context of the cli-
ent that requests the Web-Service to generate two instances of a server.

9.2.2 Possible Destruction of the Testing Client through the Server

A similar problem appears on non-networked platforms when the test software
discovers a fatal failure that completely hangs up the run-time system. During
the integration phase of an application this is not a problem because it is not
used under real conditions. During a re-configuration of an operational system,
however, this may not happen. The application should ideally reject an unsafe
service and continue to operate with the existing configuration. The contract
test should therefore be executed within its own thread in order to rule out any
side effects. For Web-Services this is not an issue since the individual compo-
nents are executed in different threads on different nodes, anyway. So in this
case, a contract is always safe, and it will never fail the client application that is
applying it.
75Copyright Fraunhofer IESE 2002

Summary
10 Summary

This report has described the methodology and process of built-in contract test-
ing in model-driven component-based application construction. It is a technol-
ogy that is based on building the test software directly into components, built-in
tester components at the client side of a component interaction and built-in
testing interfaces at its server side. In this way, every component may check
whether it has been brought into a suitable environment, and it may be checked
by the environment whether the component provides the right service. This
enables system integrators who reuse such components to validate immediately
and automatically whether a component is working correctly in the changed
environment of an newly created application. The benefit of built-in contract
testing consequently follows the same principles that reuse technologies offer.
The effort of building test software into individual components is paid back
depending on how often such a component will be reused in a new context,
and a component is reused depending on how easily it may be reused. Built-in
contract testing greatly simplifies the reuse of a component because once it has
been integrated syntactically in its new environment its semantic compliance
with the expectations of that new environment may be automatically assessed.
76 Copyright Fraunhofer IESE 2002

References
11 References

[Abd00] Abdurazik, A. and Offutt, J., “Using UML Collaboration Diagrams
for Static Checking and Test Generation”, 3rd Intl. Conf. on the
Unified Modeling Language (UML’00), pp. 383-395, York, UK,
October 2000.

[Atk01] Atkinson, C., et al. “Component-Based Product-Line Engineering
with UML”, Addison-Wesley, London, 2001.

[Atk02] Atkinson, C., Bunse, C. Groß, H.-G., Kühne, T. Towards a General
Component Model for Web-based Applicaitons. Annals of Software
Engineering, Vol. 13, 2002.

[AF98] Allen, P., Frost, F., Component-based Development for Enterprise
Systems: Applying the Select Perspective, Cambridge University
Press, 1998.

[BBB03] Barbier, F., Belloir, N., Bruel, J.M., Incorporation of Test Functionality
in Software Components. To appear: 2nd Intl. Conference on
COTS-based Software Systems, Ottawa, Canada, 10.-12. February
2003.

[Bei90] Beizer, B., Software Testing Techniques, Thompson Computer Press,
1990.

[Bei95] Beizer, B., Black-box Testing, Techniques for Functional Testing of
Software and Systems, John Wiley & Sons, New York, 1995.

[Bin00] Binder, R., Testing Object-Oriented Systems - Models, Patterns, and
Tools, Addison-Wesley, 2000.

[BKF99] Bayer, J., et al., PuLSE - A Methodology to Develop Software Prod-
uct Lines, SSR’99, 1999.

[Boo87] Booch, G., Software Components with Ada: Structures, Tools and
Subsystems, 1987.

[CD00] Cheesman, J., Daniels, J., UML Components, A Simple Process for
Specifying Component-based Systems, Addison-Wesley, 2000.

[Chu99] Chung, S., et al., “Testing of Concurrent Programs Based on Mes-
77Copyright Fraunhofer IESE 2002

References
sage Sequence Charts”, In IEEE International Symposium on Soft-
ware Engineering for Parallel and Distributed Systems, Los Angeles,
CA, May 17 - 18, 1999.

[Cmp+01] Component+ Project Technical Report, “Built-in Testing for Compo-
nent-based Development”, http://www.component-plus.org

[Col94] Coleman, D., et al., Object-oriented Development. The Fusion
Method, Prentice Hall, 1994.

[DW98] D’Souza, D.F., Willis, A.C., Objects, Components and Frameworks
with UML: The Catalysis Approach, Addison-Wesley, 1998.

[GHY97] Graham, L., Henderson-Sellers, B., Younessi, H., The OPEN Process
Specification, Addison-Wesley, 1997.

[Gre01] McGregor, J., Sykes, D., A Practical Guide to Testing Object-Ori-
ented Software, Addison-Wesley, 2001.

[Gui89] Guindi, D. S., Ligon, W. B., McCracken, W. M., Rugaber, S., “The
impact of verification and validation of reusable components on
software productivity”, Proceedings of the Twenty-Second Annual
Hawaii International Conference on System Sciences, pp. 1016-
1024, 1989.

[IEEE99] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Std-610.12-1990, 1999.

[JBR99] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Devel-
opment Process, Addison-Wesley, 1999.

[KCN90] Kang, K.C., Cohen, S.G., Novak, W.E., Petersen, E.S., Feature-ori-
ented Domain Analysis (FODA) Feasibility Study, Technical Report
CMU/SEI90-TR-21, Software Engineering Institute, November 1990.

[Kru00] Kruchten, P.B., The Rational Unified Process - An Introduction, Add-
ison-Wesley, 2000.

[MDA] OMG’s Model Driven Architecture, www.omg.org/mda.

[Mey97] Meyer, B., Object-oriented Software Construction, Prentice Hall,
1997.

[Mey98] Meyer, S. and Sandfoss, R., “Applying Use-Case Methodology to
SRE and System Testing”, STAR West Conference, October 1998.
78 Copyright Fraunhofer IESE 2002

References
[MLH87] Mills, H.D., Linger, R.C., Hevner, R.A., Box-structured Information
Systems, IBM Systems Journal, 26(4), 1987.

[OCL00] Object Management Group, OCL Specification Documentation,
www.omg.org/ocl.

[Off99] Offutt, J. and Abdurazik, A., “Generating Tests from UML specifica-
tions”, 2nd Intl. Conf. on the Unified Modeling Language (UML99),
pp. 416-429, Fort Collins, CO, October 1999.

[Quasar] German national funded Quasar Project, http://www.first.gmd.de/
quasar/.

[RBP91] Rumbaugh, J., et al., Object-oriented Modeling and Design, Prentice
Hall, 1991.

[Rob92] Robinson, P.J., “Hierarchical Object-oriented Design”, Prentice Hall,
1992.

[Rob99] Robinson, H., “Finite State Model-Based Testing on a Shoestring”,
STAR West, October 1999.

[RWL96] Reenskaug, T., Wold, P., Lehne, O., Working with Objects: The
OORam Software Development Method, Manning/Prentice Hall,
1996.

[Rys99] Ryser, J. and Glinz, M., “A Scenario-Based Approach to Validating
and Testing Software Systems using Statecharts”, 12th Intl. Conf.
on Software and Systems Engineering and their Applications (ICS-
SEA’99), Paris, France, 1999.

[SGW94] Selic, B., Gullekson, G., Ward, P. Real-Time Object Oriented Model-
ing, John Wiley & Sons, 1994.

[Szy99] Szyperski, C., Component Software: Beyond Object-Oriented Pro-
gramming, Addison-Wesley, 1999.

[TTCN-3] Testing and Test Control Notation 3, European Telecommunication
Standards Institute (ETSI), www.etsi.org.

[UMLT] UML Testing Profile, http://www.fokus.gmd.de/u2tp.

[Veg00] Vegas, S.V., Title, PhD Thesis 2000.

[Wan00] Wang, Y., King, G., Fayad, M., Patel, D., Court, I., Staples, G., Ross,
M., “On Built-in Test Reuse in Object-Oriented Framework Design”,
79Copyright Fraunhofer IESE 2002

References
ACM Journal on Computing Surveys, Vol. 32, No. 1, March 2000.

[WL99] Weiss, D.M., Lai, C.T.R., Software Product Line Engineering - A Fam-
ily Based Software Engineering Process, Addison-Wesley, 1999.

80 Copyright Fraunhofer IESE 2002

Copyright 2002, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Component+ Methodo-
logy: Built-In Contract
Testing Method and Pro-
cess

Date: October 31, 2002
Report: IESE-030.02/E
Status: Final
Distribution: Public

	Executive Summary
	Table of Contents
	1 Introduction
	1.1 Contracts in Component-Based Development
	1.2 Built-in Contract Testing
	1.3 Software Components
	1.4 Overall Structure of this Report

	2 Application Specification
	2.1 Development Methods
	2.2 Definition of a Quality Assurance Plan
	2.3 Component Specification
	2.4 Component Realization
	2.5 System Specification

	3 Test Case Selection Techniques
	3.1 Functional Testing Techniques
	3.2 Structural Testing Techniques
	3.3 Model-based Testing and Testing Techniques

	4 Specification of the BIT Artefacts
	4.1 Built-in Server Tester Components
	4.2 Built-in Testing Interface
	4.3 Associations between Components in Built-in Contract Testing

	5 Development of the BIT Artefacts & Step-by-Step Process
	5.1 Identification of Tested Interactions - Step 1
	5.2 Definition and Modeling of the Testing Architecture - Step 2
	5.3 Specification of the Testing Interfaces for the Identified Associations - Step 3
	5.4 Realization of the Testing Interfaces - Step 4
	5.5 Specification of the Tester Component - Step 5
	5.6 Realization of the Tester Components - Step 6
	5.7 Integration of the Components - Step 7

	6 Test-Suite Use and Reuse
	6.1 Test Reuse at Development Time
	6.2 Test Reuse at Configuration and Deployment Time
	6.3 Test Reuse at Operation Time
	6.4 Test Reuse throughout Maintenance
	6.5 Reuse of Standardised Tester Components

	7 Configuration Management and Interfaces
	7.1 Functional Configuration
	7.2 Test Configuration

	8 Built-in Contract Testing and Commercial Off-the-shelf Components (COTS)
	8.1 COTS Components with BIT Capability
	8.2 COTS Components without BIT Capability
	8.3 Extended COTS Components with Added Built-in Contract Testing Capability

	9 Built-in Contract Testing and Web-Services
	9.1 Checking Web-Services through Contract Testing
	9.2 Testing of Readily Initialized Server-Components

	10 Summary
	11 References

