
Component-Based Development of Mobile Assistants with
the ELEPHANT System

Ilhan Aslan
Fraunhofer ESK

Munich
Germany

Ilhan.aslan@esk.fraunhofer.de

 Dyuti Menon
Fraunhofer ESK

Munich
Germany

dyuti.menon@esk.fraunhofer.de

ABSTRACT
We designed a component-based development process for mobile
assistants that we realized in the ELEPHANT (ELEments for
Pervasive and Handheld AssistaNTs) system. The ELEPHANT
system encompasses a middleware solution for mobile assistants.
In a first step users can utilize this system to mash-up interactive
components into adaptive application nodes. In a second step
users can compose a workflow of a full functional application by
linking application-nodes. The overall goal of the system is to
minimize the effort required for creating, managing and using
mobile assistants with enhanced capabilities such as utilizing user
and device presence information and accessing hardware near
sensor data. We propose a distributed system and the use of
concepts found in social software for collaboratively developing
mobile assistants.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: User interface management systems
(UIMS), H.5.3 [Group and Organization Interfaces]
Collaborative Computing

General Terms
Management, Design, Human Factors, Theory

Keywords
Mobile assistants, Context-aware, Middleware, Design process

1. INTRODUCTION
Characteristics of mobile personal assistants are context
adaptation, multiple interaction modalities and specialized
interaction design, e.g. design for small touch sensitive screens
and devices with specific sensors [14, 23]. However, these
characteristics are also challenges for the Mobility community.
Mobiles have been criticized for their bad usability due to
restricted recourses [21], e.g. display sizes, bandwidth and bad
data connectivity. Today we observe that some of the restrictions
are eliminated due to the increasing computation power, memory
and better connectivity of mobile devices.

Nevertheless the development of personal assistants is due to
subjective and ambiguous interpretation of context information
and different user preferences, in addition to the heterogenic
landscape of mobile devices [13, 14], very complex. On the other
hand, the spread of Web 2.0 solutions in the last few years created
“active web users” [28, 30] who not only consume information
and services but also produce information and services; for
example, through Wikis, Blogs but also through the use of
Mashup applications. A Mashup is an application that combines
data, either through APIs or other sources, into a single integrated
user experience [29]. Mashup editors allow non-programmer end-
users to mash-up information sources and services to meet their
information needs [10]; examples are Yahoo Pipes, Google
Mashup Editor, Microsoft PopFly and IBM QEDWiki. These
tools allow for visual creation by connecting services and sources
together in various ways. The area of mobile assistance is one
with highly personalized requirements. We believe that end-user
involvement is essential in the process of designing and
developing mobile assistance solutions for a broad range of
application fields. The goal of the system and the underlying
concepts that we present in this paper are to provide tools for end-
users to easily compose/mash-up personalized mobile assistants
that are context sensitive and utilize the full functionality of the
target mobile device. To be able to compose value added mobile
assistants, it is important to identify a framework for mobile
assistance and a concept for dividing mobile assistance solutions
in small elements. Our research is based on the assumption that it
is possible to break down the interaction process found in mobile
assistants down to small interactive components that we refer to
as elements. An element in the ELEPHANT system (E-element)
is a sub-application following the traditional Model-View-
Controller pattern. Each element (e.g. a widget or an offline
application linked to resources) is tagged with descriptive
information (Meta data) such as what interactions are provided,
what kind of sensors are accessed, what kind of web services are
linked and even kinds of situations and activities the element is
suitable for. We hypothesize that given a range of tools; end users
are capable to mash-up elements in smart application nodes and
compose a workflow of these smart nodes to create useful, mobile
and context sensitive assistants (E-application). In the following
we first describe related work and present our contribution. Then
we describe the theoretical model and the architectural
components of the ELEPHANT system in more detail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mobility 2009, Sep 2-4, Nice, France Copyright © 2009
ACM 978-1-60558-536-9/00/0009……$5.00

We have implemented and tested a first version of our authoring
tool (E-composer) to compose E-application [31]. Therefore, we
do not focus on the UI of a specific authoring tool but the
underlying design process and components of the ELEPHANT
system in this paper.

1.1 Related Work
Improving the development for mobile and ubiquitous
applications has been a challenge and subject for many
researchers [19, 17, 12, 18]. The design paradigm for mobile and
ubiquitous applications is moving from a user- and task-based
approach to an activity- and context-based approach [6, 7, 11, 15].
Activity theory differentiates between activities, actions and
operations that are in a hierarchical relation to each other [15].

Previously, many researchers have proposed solutions at a
conceptual level or for early prototyping of ubiquitous
applications. Also, due to the heterogenic landscape of ubiquitous
applications solutions were proposed for a subclass of ubiquitous
applications; for example, Li and Landay focus in [19] on the
class of applications that improves the awareness of one’s
activities as well as the activities of others (e.g. monitoring fitness
status in a family through digital picture frames). Whereas, when
designing for mobile applications, the mobile device (e.g. the
mobile phone) is the main and very often the only human machine
interface to ubiquitous machine functionalities in the environment
[20]; in ubiquitous applications the interface to machine
functionalities is various and woven into the fabric of everyday
life [25]. The difference between designing for mobile and
ubiquitous applications is in the realization of the interface
between user and machine. Having said this, the design process
on a conceptual level; for example, defining tasks or activities
seems to be very similar for ubiquitous and mobile applications.

Previously, successful prototypes of mobile assistants with
different new characteristics have been presented. For example in
[24] Wasinger et al. presented a prototype shopping assistant with
advanced interfaces for multi modal interaction (e.g. combination
of different input and output modalities). In [8] Bohnenberger et
al. presented also a mobile shopping assistant with focus on user
requirements and decision theoretic planning. In [2] Aslan et al.
presented an information system and multiple mobile services that
were designed to ease the everyday challenges for tourists. The
COMPASS2008 assistance services were context sensitive
regarding the interaction modalities and user profiles. Usability
and acceptance of the COMPASS2008 solutions were evaluated
in [22] with positive results. These works aimed to improve the
user assistance with mobile devices by implementing new
functionalities and providing higher personalization and adaptive
content within the use context. It is undeniable that mobile
devices provide useful information by reporting user location and
accessing user profiles. However, when regarding assistance
systems it is also important to consider effects of the assistance;
for example in [1] the authors propose that instead of trying to
reduce the amount of cognitive load whenever possible, it seems
to be necessary to support the mental elaboration of specific
information in a way adaptive to the situation. This seems to
make sense when the assistance aims to have an effect on the
human behavior and knowledge (e.g. assisting to keep healthy, or
assist in learning). Consequently, the design of assisting systems
is not a trivial one. Therefore specialists from the application
areas are needed within the development process. These
specialists are in most cases non-programmers and need tool
support for the development process. Research in mobile
assistance has evolved in respect to resource adaptation; however,
integrating these findings into the development process of mobile
and ubiquitous assistants is still challenging. There are many

framework and system approaches that have been dealing with
this subject; for example, Ballagas et al. present in [5] a
prototyping framework for new sensor based interfaces. The
myMytileneCity guide [16] is a prototype tourist guide that
allows end-users to choose the content that they are interested in
and builds a custom J2ME application for offline use on the
move. The Activitydesigner described by Li and Landay in [19]
supports designers in building activity-based prototypes.
Designers can create detailed activity models from media-rich
representation of everyday observations and build stream-based
interaction behaviours. Daniel and Matera propose in [9] a
framework for the development of context-aware web
applications; a component-based development approach for
mashing up context-aware web applications that is a similar
approach to our component-based composing of mobile assistants
that we present in this paper.

Similar to Daniel and Matera’s approach we aim with our
approach at empowering the users (both developers and end
users) with an easy-to- use tool for mashing up applications by
integrating ready (adaptive) services or application components.
Differences to our approach are in the composing of the
application nodes and the use of context. Whereas, in the
ELEPHANT system the user can define a general workflow; the
workflow in Daniel and Matera’s approach is automated through
the components that are mashed up, which is typical for
traditional mash-up systems. The behavior of the nodes in our
ELEPHANT applications have similarities to the mashed up web
applications, however we address a new challenge in setting these
“mashed up” nodes into a designed workflow for building
assistants that is defined through context and user interaction. We
also mash up offline and online content and functionalities which
is important for mobile usage.

Similar to Li and Landay’s work we also address applications for
extended periods of time (e.g. not only for the runtime of single
application but a sequence). The way we see it is that Li and
Landay’s focus is strongly on activity based modelling for
ubiquitous application whereas the ELEPHANT concept focuses
more on flexible composition of UI modules, specifically for
assistance applications, in a sense activity-based modelling of the
assistance process is possible, but is not mandatory. Our goal is to
easily build mobile assistance with adaptive functionalities similar
to the solutions presented by Aslan et al in [2]. However, we want
to provide tool support to end-users for easily developing and
modifying solutions that go even beyond the functionalities
described by Aslan et al.

Further related research areas are Hypermedia systems and User
Interface Management Systems, in that how ELEPHANT nodes
that come with their own UI can be linked with each other.
However, the linking procedure is straight forward in our current
version (see section 3.2 and 3.3). Therefore we will deal with
these research areas in detail, in our future work where we plan to
improve our current linking procedure.

1.2 Contribution
We designed a very flexible multilateral process for creating
mobile and context sensitive applications; such as for example
assistants for work, travel or learning. Users (both end-users and
developers) can create their own application workflow based on
their understanding of the application e.g. based on sensor

information, layout, media, interaction modalities, user input or
abstract concepts such as tasks or activities.

 In doing so, changes in the mental model of users, that
is, for example moving from a task based design
concept to an activity based concept is supported.

 Our design process is not specific to an application area
(e.g. eLearning, Healthcare, Logistics or
Transportation) but to a functional domain, namely
mobile assistance solutions.

 Our design process for mobile assistants results in
highly reusable components. This supports collaborative
iteration levels in developing, designing, sharing and
tagging E-elements and E-application within
communities.

 In our best understanding our approach is the first that
combines user composed application workflows with
“mashed-up” sub-applications (E-elements) to build
mobile assistance solutions.

We realized this process in our ELEPHANT system that we
explain in detail in the following sections.

2. CONCEPTUAL EXPLORATION
2.1 The Theoretical Framework
Wandke defines in [24] a conceptual framework for assistance
where two qualifications for assistance systems are defined:

 a first qualification of assistance is interactivity

 a second qualification is that some functions have to be
performed by the humans and some by machines.

The majority of mobile assistants help users to achieve goals by
providing stepwise assistance. Each step involves interaction;
such as presenting information to the user, accessing context
information or allowing the user to input information. We believe
that there are three factors that an advanced mobile assistant has
to consider: 1. Time and Workflow/Progress 2. User Interaction
and 3. Context.

Furthermore, the impact of these factors on each other has to be
considered. Figure 1 presents in an abstract way the complexity of
these factors. One specific application of the mobile assistant
presented in figure 1 can be presented as a line starting from time
zero to a time position where the goal of the assistance is reached.
In our presentation the box encompassing the plane would be the
whole assistance application. Implementing the functionality of
the whole box would be for end-users a very difficult task;
however, since we look at assistance applications and assistance
is in general a step-wise interactive procedure, it should be
possible to break down the bigger box into smaller boxes (see
figure 2). For example, the first box could be one that represents a
machine functionality (e.g. locating the position of the user).

The second box could be presenting information to the user
depending on the location information. Using this information the
user could accomplish a human functionality (e.g. walking to the
next shop or choosing the right bolt.)

Figure 1: Simplified visualization of the impact of the three
factors on executions of the mobile assistant

Figure 2: Representing the functionality of a mobile assistant
with a series of smaller interactive blocks

Figure 3: Simplified visualization of the impact of the three
factors on executions of the mobile assistant

In the ELEPHANT system we have E-application and E-
elements. An E-application is the encompassing bigger block (see
figure 2). E-elements are the smaller blocks that provide human
and machine functionalities.

The ELEPHANT system’s elements based development process
also supports an activity based modeling. In Activity-Centered
Design (ACD) [11] a set of perspectives on design practices are
given. Human activities are described through an activity
hierarchy. The three key elements are activities, actions and
operations. Actions are accomplished through operations.

Through grouping E-elements, actions as also activities can be
modeled. Further more, through E-services it is possible to model
long term activities (3). That is, organizing and planning repeated
application of one or more E-applications during a long term (e.g.
multiple language learning applications within a year).

2.2 Fieldwork
In order to supplement our knowledge of theory with real
requirements of end-users we conducted interviews, a paper based
task and a usability test with a first prototype authoring tool with
11 users with different backgrounds.

Here we summarize briefly the results from the paper-based test
that influenced our decisions related to the ELEPHANT system’s
design process. The goal of the tests was for the test subjects to
create a mobile assistant, which would assist a friend who would
shortly be visiting the city of Barcelona. This mobile assistant
would assist the visitor with the Spanish language by helping
them with the translation of common phrases (to buy tickets,
order food etc.) and also be a guide to sightseeing in the city of
Barcelona (by providing background information on the
interesting places to see). The test subjects were told the objective
and provided with a list of content they had at their disposal to
create this assistant. The content included text data, images, video
clips and audio files, all in reference to Barcelona and the Spanish
language.

Figure 4: Example result of one of the subjects

Keeping the generation of a Barcelona mobile assistant as the
common goal, the task was to design a paper based model. During
the test, the test subjects had the complete freedom to design their
own structure, and fill it with content.

The results of the interviews and the paper-based tests support our
hierarchical step-wise assistance model (8 of 10 subjects’ model
were hierarchical) (see figure 5 for an example). One of the ten
test subjects used only text and arrows. Only one subject didn’t
deliver any “useful” result, the subject had a very strong technical
background. He stated that the task was too abstract.

3. THE ELEPHANT SYSTEM
In this section we first present the overall architecture of the
ELEPHANT system and later we present the components in more
detail.

3.1 System Architecture
The architecture of the ELEPHANT system is similar to typical
web 2.0 solutions. A Client application, namely the ELEPHANT
composer (E-composer) is an editor-tool that provides access to
users within the community to ELEPHANT repositories. Through
functionalities provided by the components: Element Manager,
Application Manager and E-services (see figure 5) users can for
example search, tag E-elements and E-applications or manage
own E-elements, E-applications or E-services. Typically, the
ELEPHANT system runs on a dedicated server that can be
accessed through a gateway. On the mobile device the
ELEPHANT Interpreter (E-interpreter); the ELEPHANT system’s
local runtime environment, provides a bunch of core
functionalities, among other things user and application specific
information. That is, the E-interpreter can also accesses the
repositories and services depending on the connectivity of the
mobile device (e.g. the device presence) through the gateway and
the managing components.

Editor/Composer

Element Manager Application Manager
ELEPHANT

Services

ELEPHANT
Interpreter

Repository of
Elements and
Applications

Repository of
Services

Intra-,Internet

Gateway

Figure 5: Simplified overview of the ELEPHANT system
architecture

3.2 ELEPHANT Elements (E-elements)
When dividing the stepwise assistance process into elements for
each step, it is not so easy to identify what exactly a step in terms
of functionality is. Therefore, we are not too strict on the
definition of E-elements’ functionalities (see figure 2). However,
E-elements implement a Model-View-Controller (MVC) pattern,
where the MVC modules can be distributed to services, E-services
as also extern services (e.g. Flickr, Youtube, googlemaps,
openstreetmap etc.), the E-Interpreter and the E-application
package (see figure 6).

The controller part of the MVC pattern implemented in E-
elements can be native; that is, developed by the E-element’s
designer (e.g. implemented in a scripting language). The
controller part can also be linked to a service; as for example it is
typical with widgets. A currency calculator widget, that has a
view implemented in HTML and runs embedded in the browser
can, for example access an extern currency converter service via
HTTP requests to receive up to date information.

Model View Controller

Controller on
E-Service

Controller on
E-Interpreter

View on
E-Service

Model on
E-Service

Model on
E-application

Controller on
Extern Service

Model on
Extern Service

View on
Extern Service

Figure 6 : The Model-View-Controller components can be

s a consequence the view part can also be rolled out to the

.g. multimedia

hese two E-

distributed to services or the E-Interpreter

A
service (e.g. HTML, or Flash snippets). However, in most cases
the E-elements come with their native view (e.g. graphical and
auditive layouts and interactive UI components).

The Model part in E-elements can be native (e
attached by the designer of the E-element), linked in the process
of composing an E-application or located on a server (e.g. map
images highlighting the current position of the user).

Figure 7 presents two examples of E-elements. For t
elements the Model part is not implemented/linked by the
designer of the E-element; it’s up to the author that composes an
application to link these “media templates” with content. An
author could use the element on the left hand side to present a set
of images and text related to the images, allowing the user to
navigate through the images by using the arrow buttons. In that
sense the element provides native control for going back and
forward through a list of images. The template on the right hand
side could be used to present the user a list of items. E-element
designers can use an API of core functionalities provided by E-
services and the E-interpreter.

Figure 7: Two templates are presented. On the left hand side a
template to present a set of image and text. On the right hand

side a list with items.

For example, the functions nextAppNode and previousAppNode
are provided by the E-interpreter to step to the next or previous E-
element in the E-application’s workflow (e.g. in figure 7, the E-
element on the left hand side provides two buttons for these
functionalities). The E-interpreter decides based on the structure
of the E-application composed by the designer of the E-
application and the context conditions at runtime (e.g. user input,
user and device presence) which E-element is the next or the
previous in application nodes (see section 3.3).

Characteristics and properties of use for each E-element in the
repository are stored in a XML-based Meta description language.
This language describes E-elements in terms of:

 Presence of the device; that is, properties of the E-
element that are related to availability and status of
sensors and hardware specifications (e.g. WLAN,
Bluetooth, battery, bandwidth, camera, microphone,
headset or accelerometer) in an understandable
terminology for the user.

 Presence of the user; that is, properties that are related
to an actively set status of the user.

 Presence of the service; that is, properties that are
related to E-services (e.g. identity and password
management).

 Application area (e.g. eLearning, Healthcare,
Transportation, etc.)

 Abstract functionality, such as functionality related to
tasks and activities (e.g. working out, reading, etc.)

 Comments made by the community.

The properties of E-elements are set by the designer in the first
place but later accumulatively modified by the community. The
function of these descriptive properties is many folded; first, to
improve search and filtering operations and serve as a basic
description for end-users. Second, allow semantic tests of the
mash-up of multiple E-elements into application nodes.

3.3 Application Nodes and ELEPHANT
Application (E-application)
An application node in the ELEPHANT system is a node in the
workflow of an E-application. This workflow is presented through
a graph (see Figure 8). In its simplest form an application node is
a single E-element that is a sub-application following the MVC
pattern. As mentioned before, the workflow of a mobile
application has to consider dynamics caused by the changing use
of context. When defining the workflow structure for the
application the factor context has the potential to cause many
forks in the structure.

The ELEPHANT system implements a mash-up concept to ease
the definition of application nodes and the composition of the
workflow structure for the application. Supposing that developers
of E-applications have access to a repository of heterogenic E-
elements where each is described in ELEPHANT’s description
language regarding the use of context (e.g. user presence, device
presence, activity, task, connectivity, interaction modalities and
web-services). Developers can mash-up/cluster multiple E-
elements and content (e.g. sources of content, online as offline).
On runtime the E-Interpreter chooses depending on the live
context the matching E-elements and content sources.

Figure 8: Screenshot of ELEPHANT’s authoring tool

content to their liking and upload and tag it as their own version.

An E-application is an implementation of an application that is
designed to assist the user stepwise with machine functionalities.
The motivated user is supported to achieve a predefined goal; for
example, prepare a specific meal, organize a party, help with
dialogs in foreign languages. The assistance procedure may be
composed of multiple steps that are implemented in a series of E-
elements, in single E-elements or sub-routines provided by E-
elements. The workflow structure of an E-application is a tree
structure with application nodes as nodes of the tree. Each
application node is a mashed up cluster of content-sources and E-
elements. Figure 8 presents an E-application composed by our
current editor (E-composer). We conducted a usability test of the
E-composer to screen our preliminary ideas in implementing a
user interface for editing E-applications that we plan to publish in
a subsequent paper. The ELEPHANT system supports
collaboration while editing an E-application. That is, users can
load available E-application, modify components, structures or

3.4 ELEPHANT Services (E-services)
E-services are web-services with SOAP APIs provided by the
ELEPHANT System. Typically E-element’s functionalities are
encapsulated. Through E-services it is possible to implement
smarter E-elements; for example, E-elements that store state
information on a buffer provided by an E-service. In doing so it is
possible to create adaptable E-elements. Trough E-service E-
elements have access to data from earlier used E-elements and E-
application. This is important when the assistance need to set up
on earlier performances (e.g. history data) of the user (see also
figure 3).

Other E-services are for managing user information (e.g.
passwords). Some E-elements access extern web services that
need a login and a password (e.g. flickr, facebook, amazon etc.).
Each time such an E-element is used the user would have to type
login and password before accessing the sources. An E-service
that manages user passwords can provide a single sign on
mechanism. Access to E-services is managed through IDs (e.g.
user, E-element and E-application ID).

3.5 ELEPHANT Interpreter (E-interpreter)
The E-interpreter is an application running on the mobile device.
It consists of two parts.

First, a virtual machine written in the native language of the
mobile OS that provides access to sensor information on the
device (e.g. VC++ on Windows Mobile devices). The virtual
machine is a Socket Server accepting multiple clients (e.g. clients
related to specific sensors) (see figure 9).

The second part is the manager. The manager is a client
application that interprets the use of context (e.g. through
interpreting device and user presence) and loads depending on the
context E-elements from the workflow of the E-application. The
manager provides E-elements access to sensor information by
forwarding requests to the virtual machine and providing
interoperability. The E-interpreter is the ELEPHANT system’s
local runtime environment.

 OS specific

 E-application

Virtual Machine

Sensor A

Manager

so
ur

ce
s

E-element

Sensors B

Figure 9: Runtime environment on the target mobile device

The E-interpreter has through the virtual machine access to state
information of the mobile operating system’s sensors e.g. state of
Bluetooth, WLAN, Headset, Camera etc. We use the state
information to set the device presence.

The Manager provides some essential functions to manage
multiple mobile assistants running on the same device. First it
provides a home screen allowing to choose an assistant (Figure
10.1) or to search (Figure 10.2) for existing mobile assistants. At

the home screen the user can also set his presence (see Figure
10.3). When the user chooses an assistant the first E-element is
launched (see Figure 10.4); the user is able to see user and device
presence on the top bar of the E-element.

There is only one button on the left upper corner to blend in the
home screen. Each E-element in the structure of an E-application
has a unique id. Each id matches a directory name in the directory
structure that is set up for each assistant on the mobile device. All
offline resources assigned to an E-element by the E-Composer
application reside in the directory assigned to this particular E-
element. This arrangement simplifies the management of E-
elements, resources and their interplay.

Figure 10: Screenshots of the E-Interpreter UI (1-3) and an
E-element (4) on runtime

3.6 Implementation
For implementing our current system we use on the platform side
Ruby on Rails and MySQL. E-elements and E-application are
implemented in Flash (AS2).Our prototype editor (E-Composer)
is implemented in Flash (AS3). We use Adobe’s packager to build
installable E-applications (e.g. packaged as sis and cab files). In
our current E-interpreter the virtual machine is implemented in
VC++ for a Windows Mobile device. We have also implemented
a client to access the state information of the windows mobile
operating system’s sensors e.g. state of Bluetooth, WLAN,
Headset, Camera etc. that we use to set the device presence. In
our current implementation the E-interpreter uses only device and
user presence to choose one E-element from an application node.

4. CONCLUSION AND FUTURE WORK
In this paper we presented our component based design process
for mobile assistants. We described the theoretical framework for
developing mobile assistants and a small-sized field study. We
presented the ELEPHANT system where we realized our design
process. We described the single components: E-elements, E-
application, E-services and the E-interpreter.

In this paper, we did not describe a use case due to limited space;
however, during our development we used typical eLearning
scenarios to explain and create useful prototype demonstrators.

E-elements are currently developed with Adobe Flash plus a
documentation of the additional API. We plan to provide an
environment to emulate E-element functionalities to support
development and test of E-interpreter APIs. The E-interpreter is
currently using user and device presence information to choose an
E-element out of an application node. In future we plan to
evaluate other strategies (e.g. setting up an E-service to provide
context interpretations). We will also evaluate in detail the
strategies used by Daniel and Matera [9] and adapt ours based on
these results. To manage the quality of ELEPHANT’s
components we will evaluate reputation models. We are currently
planing a large-size study where we will provide open access to
the ELEPHANT system and our authoring tool.

ACKNOWLEDGMENTS
This work was funded in part by the Bavarian Ministry of
Economic Affairs, Infrastructure, Transport and Technology
within the project „Dynamische Plattformen für Verteilte
Systeme“.

5. REFERENCES
[1] I. Aslan, M. Schwalm, J. Baus, A. Krüger, and T. Schwartz.

Acquisition of spatial knowledge in location aware mobile
pedestrian navigation systems. In MobileHCI ’06: pp 105–
108, 2006

[2] I. Aslan, F. Xu, H. Uszkoreit, A. Krüger, and J. Steffen.
Compass2008: Multimodal, multilingual and crosslingual
interaction for mobile tourist guide applications. INTETAIN,
volume 3814 of Lecture Notes in Computer Science, pages
3–12. Springer, 2005.

[3] I.Aslan, F. Xu, H. Uszkoreit,A. Krüger and J. Steffen. The
compass2008 smart dining service. In Proceedings of intel
ligent Technologies for interactive Entertainment
(INTETAIN), Italy, 2005.

[4] R. Ballagas, J. Borchers, M. Rohs, and J. G. Sheridan. The
smart phone: a ubiquitous input device. Pervasive
Computing, IEEE, 5(1):70–77, 2006.

[5] R. Ballagas, F. Memon, R. Reiners, and J. Borchers. istuff
mobile: rapidly prototyping new mobile phone interfaces for
ubiquitous 1 computing. In CHI ’07, pages 1107–1116, New
York, NY, USA, 2007. ACM.

[6] H. Beyer. Contextual Design: Defining Customer-Centered
Systems. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1997.

[7] S. Bodker. Through the Interface: A Human Activity
Approach To User Interface Design. CRC, 1 edition, 1990.

[8] T. Bohnenberger, O. Jacobs, A. Jameson, and I. Aslan.
Decision-theoretic planning meets user requirements:
Enhancements and studies of an intelligent shopping guide.
In Hans Gellersen, Pervasive Computing: Third International
Conference, pages 279–296. Springer, Berlin, 2005.

[9] F. Daniel and M. Matera. Mashing up context-aware web
applications: A component-based development approach. In
WISE ’08: Proceedings of the 9th international conference
on Web Information Systems Engineering, pages 250–263,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] H. Elmeleegy, A. Ivan, R. Akkira ju, and R. Goodwin.
Mashup advisor: A recommendation tool for mashup
development. In ICWS ’08: Proceedings of the 2008 IEEE
International Conference on Web Services, pages 337–344,
Washington, DC, USA, 2008. IEEE Computer Society.

[11] G. Gay and H. Hembrooke. Activity-Centered Design: An
Ecological Approach to Designing Smart Tools and Usable
Systems (Acting with Technology). The MIT Press, 2004.

[12] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla, B.
Burr, A. Robinson-Mosher, and J. Gee. Reflective physical
prototyping through integrated design, test, and analysis. In
UIST ’06: Proceedings of the 19th annual ACM symposium
on User interface software and technology, pages 299–308,
New York, NY, USA, 2006. ACM.

[13] D. Heckmann. Ubiquitous User Modeling. Akademische
Verlagsgesellschaft Aka GmbH, Berlin, 2006.

[14] M. Jones and G. Marsden. Mobile Interaction Design. John
Wiley & Sons, February 2006.

[15] V. Kaptelinin and B. A. Nardi. Acting with Technology:
Activity Theory and Interaction Design (Acting with
Technology). The MIT Press, October 2006.

[16] M. Kenteris, D. Gavalas, and D. Economou. An innovative
mobile electronic tourist guide application. Personal
Ubiquitous Computing, 13(2):103–118, 2009.

[17] K. Leichtenstern and E. Andre. User-centred development of
mobile interfaces to a pervasive computing environment. In
ACHI ’08: Proceedings of the First International Conference
on Advances in Computer-Human Interaction, pages 114–
119, Washington, DC, USA, 2008. IEEE Computer Society.

[18] Y. Li, J. I. Hong, and J. A. Landay. Topiary: a tool for
prototyping location-enhanced applications. In UIST ’04:

Proceedings of the 17th annual ACM symposium on User
interface software and technology, pages 217–226, New
York, NY, USA, 2004. ACM Press.

[19] Y. Li and J. A. Landay. Activity-based prototyping of
ubicomp applications for long-lived, everyday human
activities. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
pages 1303–1312, New York, NY, USA, 2008. ACM.

[20] J. Sheridan, T. Ballagas, M. Rohn, and J. Borchers. The
Smart Phone As Input Device for Ubiquitous Computing. In
IEEE Pervasive Computing, 2005.

[21] M. Sharples. Big Issues in Mobile Learning. Report of a
workshop by the Kaleidoscope Network of Excellence in
Mobile Learning Initiative. University of Nottingham, 2006.

[22] H. Uszkoreit, F. Xu, W. Liu, J. Steffen, I. Aslan, J. Liu, C.
Müller, B. Holtkamp, and M. Wojciechowski. A successful
field test of a mobile and multilingual information service
system compass2008. HCI , pages 1047–1056, 2007.

[23] R. Wasinger. Multimodal Interaction with Mobile Devices:
Fusing a Broad Spectrum of Modality Combinations. IOS
Press, Amsterdam, The Netherlands, The Netherlands, 2007.

[24] R. Wasinger, Antonio Krüger, and O. Jacobs. Integrating
intra and extra gestures into a mobile and multimodal
shopping assistant. In Pervasive, pages 297–314, 2005.

[25] M. Weiser. The computer for the 21st century. Scientific
American, 265(3):94–104, September 1991.
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

[26] J. Yu, B. Benatallah, F. Casati, F. Daniel, M. Matera, and R.
Saint-Paul. Mixup: A development and runtime environment
for integration at the presentation layer. In Luciano Baresi,
Piero Fraternali, and Geert-Jan Houben, editors, ICWE,
volume 4607 of Lecture Notes in Computer Science, pages
479–484. Springer, 2007.

[27] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and
M. Matera. A framework for rapid integration of presentation
components. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 923–
932, New York, NY, USA, 2007. ACM.

[28] N. Zang and M. Beth Rosson. Web-active users working
with data. In CHI EA ’09: Proceedings of the 27th
international conference extended abstracts on Human
factors in computing systems, pages 4687–4692, New York,
NY, USA, 2009. ACM.

[29] N. Zang, M. B. Rosson, and V. Nasser. Mashups: who?
what? why? In CHI ’08: CHI ’08 extended abstracts on
Human factors in computing systems, pages 3171–3176,
New York, NY, USA, 2008. ACM.

[30] N. Zang and M. B. Rosson. What's in a mashup? and why?
Studying the perceptions of web-active end users. In Visual
Languages and Human- Centric Computing,, pages 31-38,
VL/HCC 2008.

[31] http://www.esk.fraunhofer.de/elephant

	1. INTRODUCTION
	1.1 Related Work
	1.2 Contribution

	2. CONCEPTUAL EXPLORATION
	2.1 The Theoretical Framework
	2.2 Fieldwork

	3. THE ELEPHANT SYSTEM
	3.1 System Architecture
	3.2 ELEPHANT Elements (E-elements)
	3.3 Application Nodes and ELEPHANT Application (E-application)
	3.4 ELEPHANT Services (E-services)
	3.5 ELEPHANT Interpreter (E-interpreter)
	3.6 Implementation

	4. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	5. REFERENCES

