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Abstract

Microscopic models for the processes occurring during charge and discharge of Li-ion batteries
allow detailed studies of the occurring phenomena, but they often result in nonlinear, coupled
diffusion-type PDE systems where the nonlinearities occur in the coefficients. Solving these models
on microscopically resolved geometries of anode and cathode structures of Li-ion batteries is
computationally very intensive. Model order reduction offers a possible remedy. We present a
method based on Proper orthogonal decomposition (POD) and Discrete empirical interpolation
method (DEIM) to solve the equations using Newton’s Method in reduced space. Since the
coefficients of the PDE system depend on the subdomain (i. e. anode, cathode or electrolyte) and
the different terms of the system show different nonlinearities, special care needs to be taken to
find the reduced basis and to use DEIM. We apply our approach to a simplified test problem.
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Notation

1 Notation

1.1 Acronyms

DEIM Discrete empirical interpolation method
MOR Model order reduction
PDE Partial differential equation
POD Proper orthogonal decomposition
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Notation

1.2 Table of symbols

Notation Description

un =
(
yn

zn

)
Unknowns yn, zn ∈ RN

un ∈ R2N Solution of the full system
q ∈ {y, z} Unknown in the unknown vector un

c Concentration
φ Potential
ũn ∈ Rn Solution of the reduced system

ũn =
(
ỹn

z̃n

)
Unknowns ỹn, z̃n in the reduced system

A,Aq Matrices describing linear part
F (u), Fq(u) Nonlinear functions
J(u) Jacobians corresponding to nonlinear functions
ε Percentage of information in the reduced system compared to the

one in the full system, see Section 3.1.2
N Number of space points in the discretization of the full system
n Size of the reduced basis for the solution u
m Size of the reduced basis for the nonlinear function F (u) for DEIM
mq,q Componentwise size of the reduced basis for F (u) for DEIM, i. e. size

of Iα,β
s Number of snapshots
superscript n,n+1 Old and new time step
superscript k,k+1 Newton step
no superscript in k Solution after Newton iterations
subscript i Unknowns in the mesh
{E,W,N, S, T,B} Labels for neighbors, i. e. E east, W west, N north, S south, T top, B

bottom (e. g. xi+E is the unknown point of xi’s east neighbor)
p Vector of integers whose i-th component pi corresponds to the i-th

interpolation index obtained via DEIM
I, Iα,β Index set containing indices needed for DEIM
j ∈ Iα,β Interpolation point index out of index set
P, Pα,β ∈ R2N×m Matrix with unit vectors corresponding to I and Iα,β, respectively
Xu ∈ R2N×s Matrix with snapshots as columns (i. e. column n is given by un after

n time steps, n = 1, . . . , s)
K ∈ R2N×2N Correlation matrix given by XuX

T
u

Vu ∈ R2N×n Transformation matrix whose columns are the POD modes corre-
sponding to the n largest eigenvalues of XuX

T
u

VF ∈ R2N×m Transformation matrix whose columns are the POD modes obtained
by applying POD to F evaluated at the snapshots u1, . . . ,us

F̃ (ũn) Approximation of the nonlinear term V T
u F (Vuũn)

J̃(ũn) Approximation of the Jacobian of the nonlinear term V T
u F (Vuũn)
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Introduction

1.3 Systems

As our notation depends on the systems for which the Model order reduction (MOR) methods are
derived, we display them at this point and postpone further detailed system descriptions to later
sections.

We aim to apply MOR to Partial differential equation (PDE) systems. However, the methods
described herein were originally derived for dynamical systems of the forms, given in (1) and (2).

After semi-discretizing a PDE in space, we obtain a system of ordinary differential equations and
therewith a dynamical system. Thus, it suffices to restrict ourselves to systems of the form

dy(t)
dt

= Ayy(t) + Fy(y(t), z(t)) (1a)

dz(t)
dt

= Azz(t) + Fz(y(t), z(t)). (1b)

By setting u(t) =
(
y(t)
z(t)

)
, we obtain the equation

du(t)
dt

= Auu(t) + Fu(u(t)) (2)

for a matrix A =
(
Ay

Az

)
describing the linear part and a function Fu =

(
Fy
Fz

)
for the nonlinear

part.

Discretizing both in time and space yields a system of the form

Aun + F (un) = 0.

after n time steps where the matrix A ∈ R2N,2N and the nonlinear function F with F (un) ∈ R2N

are chosen accordingly.

2 Introduction

Microscopic models for the processes occurring during charge and discharge of Li-ion batteries
allow detailed studies of the occurring phenomena, but they often result in nonlinear, coupled
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nonlinear PDE systems

diffusion-type PDE systems where the nonlinearities occur in the coefficients. Such a model is
derived in [1, Pg. 139] for modeling the transport of Li-ions and the respective occuring potential
for a microscopically resolved battery consisting of a porous anode, porous cathode and a
separator. This Li-ion battery is modeled by the coupled, nonlinear PDE system

∂c

∂t
−∇ · (α(c, φ)∇c+ β(c, φ)∇φ) = 0 (3a)

−∇ · (γ(c, φ)∇c+ δ(c, φ)∇φ) = 0 (3b)

for c(x, t) the concentration of Li-ions in
[

mol
cm3

]
and φ(x, t) the electric potential in [V]. For details

on the coefficients of (3) we refer to [1].

The discretization of results in a coupled, nonlinear DAE system, given in [2]. Solving this model on
microscopically resolved geometries of anode and cathode structures of Li-ion batteries allows
detailed insights into the distribution of concentration and potential (cp. [3]), but the
computations are very intensive. Model order reduction offers a possible remedy. We present a
POD-DEIM based method, extended from [4]. The basic concepts of the method are shown in
Section 3 and applied to a simple, coupled system of diffusion equations with nonlinear
coefficients. In Section 4, we derive the method for the actual system from [1] by extending [5]
and solve the equations by a Newton method in reduced space. Besides, we discuss details of its
implementation in the software BEST, based on the CoRheoS framework, described in [6]. As the
coefficients of the PDE system depend on the subdomain - anode, cathode or electrolyte - and the
different terms of the system show different nonlinearities, special care needs to be taken to find
the reduced basis and to use DEIM. We show the basic applicability of the method by applying it
to a simplified, pseudo-3D test problem.

3 Introduction to POD-DEIM for nonlinear PDE systems

DEIM has initially been introduced in [4] and is based on the Empirical interpolation method (EIM),
introduced in [7]. For introductory purposes, we repeat the basics of DEIM. Since the reduced
bases are found via POD, we firstly given an overview on the POD method which is a
long-established method to compute a reduced basis for discretized PDE systems, given as a set of
linear equations. Then, we describe the extension to DEIM for nonlinear contributions to the
system.
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3.1 Model reduction via POD

In this section we heavily rely on the description of MOR via POD in [8]. Since the time for
computations and the data that needs to be stored grow with the size of the dynamical system, it
is often necessary to approximate the full, high-dimensional, dynamical system by a
low-dimensional system that describes the characteristic dynamic of the original system. A method
for model reduction is POD, also known as total least-squares estimation. By using POD, we obtain
an optimally ordered, orthonormal basis in the least-squares sense for the given data. Then, the
constructed, optimal basis can be truncated in order to get a basis of the reduced system.

POD can also be seen as a method for data representation or as a projection method since the
original dynamical system is projected onto a subspace of the original phase space. For this reason,
we focus on the idea of finding a subspace that approximates a given data set in the least-squares
sense.

3.1.1 Constructing a POD basis

In the following, it is described how to construct a POD basis for a finite dimensional vector space
V . Let V = R2N and assume that U = {u1(t), . . . , uk(t)} is a given set of sampled data in V . The
trajectories ui(t) ∈ R2N , i = 1, . . . , k, t ∈ [0, T ] solve System (2) on the interval [0, T ] where T
stands for the total time. We aim to find an n-dimensional subspace W ⊆ V approximating the
data in a least-squares sense. This means that we need to find an orthogonal projection
Πn : V →W minimizing

‖U −ΠnU‖2 :=
k∑
i=1

∫ T

0
‖ui(t)−Πnui(t)‖2 dt.

In order to solve this problem, we define the correlation matrix K ∈ R2N×2N as

K :=
k∑
i=1

∫ T

0
ui(t)ui(t)

∗dt (4)

where ui(t)
∗ is obtained from ui(t) by taking the transposed and the complex conjugate for each

entry. Note that K is a symmetric positive semidefinite matrix with real, ordered eigenvalues
λ1 ≥ . . . ≥ λ2N ≥ 0. The corresponding eigenvectors vuj , j = 1, . . . , 2N, are given by

Kvuj = λjvuj , j = 1, . . . , 2N

and can be chosen such that {vu1 , . . . , vu2N } is an orthonormal basis of V . The eigenvectors
vuj , j = 1, . . . , 2N, are then called the POD modes. It can be shown that under these assumptions
the following equation holds:

min
W
‖U −ΠnU‖ =

2N∑
j=2N−n+1

λj (5)

Fraunhofer ITWM 7



Introduction to POD-DEIM for
nonlinear PDE systems

where we take the minimum over all subspaces W of dimension n. The optimal orthogonal
projection Πn : V →W with ΠnΠn

∗ = I is given by

Πn =
n∑
j=1

vujvuj
∗

and the optimal n-dimensional subspace W representing the data can be written as
W = span{vu1 , . . . , vun}. Hence, the corresponding POD basis is given by {vu1 , . . . , vun}.

3.1.2 Choosing the dimension

In order to obtain the subspace W of V and the corresponding orthogonal projection Πn, one can
proceed as described in Section 3.1.1. Nevertheless, it remains to show how to choose the
dimension n of W to get a good approximation of the data set. By Equation (5), there is a
connection between the least-squares error and the eigenvalues of the correlation matrix K,
defined in Equation (4). Large eigenvalues represent the main characteristics of a dynamical system
while omitting smaller eigenvalues only leads to small perturbations of the system. Thus, the
dimension n of the subspace W has to be chosen as small as possible such that the relative
information content I(n), defined by

I(n) :=
∑n

i=1 λi∑2N
i=1 λi

,

is greater than a given bound that should be slightly smaller than one for good approximations.
For a percentage ε of the information in V that is also contained in W the dimension n of the
subspace W can be computed by

n = argmin{I(n) : I(n) ≥ ε

100
}.

3.1.3 Snapshots and POD

By definition of K in Equation (4), K is a square matrix of dimension 2N where N can be very
large. Hence, a large eigenvalue problem for the matrix K ∈ R2N×2N has to be solved for the
computation of the POD modes. Instead of solving this high-dimensional eigenvalue problem, one
can also consider the low-dimensional eigenvalue problem for a square matrix of dimension s with
s < 2N where s is the number of the so-called snapshots. That is why this method is called the
method of snapshots.

In order to obtain snapshots, the trajectories of the dynamical system are evaluated at certain
times t1, . . . , ts ∈ [0, T ]. This means that the snapshots are given by ui = u(ti) ∈ R2N . The new
correlation matrix K is defined by

K :=
s∑
i=1

u(ti)u(ti)∗

Fraunhofer ITWM 8
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In the following, we always refer to this definition of the correlation matrix. The matrix Xu,
consisting of the snapshots u(ti) ∈ R2N , i = 1, . . . , s, in the columns and of the trajectories of the
system at discrete time events in the rows, is then given by

Xu = (u(t1), . . . , u(ts)) ∈ R2N×s.

It holds that K = XuX
∗
u. Instead of considering K ∈ R2N×2N , the low-dimensional eigenvalue

problem
X∗uXuvj = λjvj , vj ∈ Rs, j = 1, . . . , s,

for the matrix X∗uXu ∈ Rs×s is solved in the method of snapshots. The eigenvectors
vj , j = 1, . . . , s, can be chosen orthonormal and the POD modes are given by

vuj =
1√
λj
Xuvj ∈ R2N , j = 1, . . . , s.

3.2 Nonlinear model reduction via DEIM

This section describes how DEIM can be used for nonlinear model reduction. The method is
described in [4]. We recapture major parts of this work in a more detailed fashion using our
notation and extend it to systems of equations in Section 3.3.

As described in Section 1.3, we consider a system of nonlinear equations resulting from a
discretized PDE of the form

Aun + F (un) = 0 (6)

where A ∈ R2N×2N is a constant matrix, un = [un1 , . . . , u
n
2N ]T ∈ R2N , ui : [0, T ]→ R, is a solution

of the system, t ∈ [0, T ] denotes time and F = [F1(un), . . . , F2N (un)]T , Fi : Ω→ R, for a
continuous bounded domain Ω ⊂ R2N , is a nonlinear function evaluated at un. Here, the
dimension 2N denotes the number of spatial grid points used for discretization. The
corresponding Jacobian of System (6) is given by A+ J(un). Since the dimension 2N can be very
large, it is useful to approximate the full, high-dimensional system by a low-dimensional system
that describes the characteristic dynamic of the original system. As described in Section 3.1.1, we
need to construct a POD basis. Let Vu ∈ R2N×n the matrix whose columns are the (orthonormal)
POD modes corresponding to the n largest eigenvalues of the correlation matrix. Given the matrix
Vu, we have the following relation between the solution un ∈ R2N of the full system and the
solution ũn ∈ Rn of the reduced one:

un = Vuũn (7)

Thus, it also holds V T
u un = ũn for all t ∈ [0, T ]. The reduced order system is obtained by

multiplying (6) by V T
u and inserting (7). Since we aim to apply a Newton method for solving the

reduced system, the corresponding Jacobian is needed as well. The reduced order system and the
corresponding Jacobian are given by

FNewton(ũn) := V T
u AVu︸ ︷︷ ︸

=:Ã∈Rn×n

ũn + V T
u︸︷︷︸

∈Rn×2N

F (Vuũn)︸ ︷︷ ︸
∈R2N×1

= 0 (8)

JNewton(ũn) := V T
u AVu + V T

u︸︷︷︸
∈Rn×2N

J(Vuũn)︸ ︷︷ ︸
∈R2N×2N

Vu︸︷︷︸
∈R2N×n

= Ã+ V T
u J(Vuũn)Vu. (9)
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Although we have transformed the full system into a system of dimension n, we can see in
Equations (8) and (9) that the nonlinear function F and its Jacobian are of dimension 2N , i.e. they
have the dimension of the high-dimensional system. Thus, these computations are inefficient, in
particular because of the fact that we have to evaluate the high-dimensional Jacobian in every
Newton iteration. To overcome this problem of high computational costs, DEIM can be used to
reduce the number of rows of F that need to be evaluated. We firstly compute the POD basis for
the nonlinear function F . This basis can be constructed by applying POD to F evaluated at the
given snapshots u1, . . . ,us where s is the number of snapshots. Let m be the dimension of the
reduced system and let vF1 , . . . , vFm ∈ R2N be the vectors of the POD basis. Then, the
corresponding transformation matrix VF is given by VF = [vF1 , . . . , vFm ] ∈ R2N×m. Now, we
construct a matrix P = [ep1 , . . . , epm ] ∈ R2N×m where epi is the pi-th column of the
2N × 2N -identity matrix. Here, pi, i = 1, . . .m, denote the interpolation indices that can be
determined by the following algorithm: In this algorithm, the notation [|ρ|, pl] = max |r| denotes

Algorithm 1 Algorithm for interpolation indices p = [p1, . . . , pm]T ∈ Rm

Require: vF1 , . . . , vFm ∈ R2N linearly independent
[|ρ|, p1] = max |vF1 |
VF = [vF1 ], P = [ep1 ], p = [p1]
for l = 2 to m do

Solve (P TVF )c = P T vFl for c
r = vFl − VF c
[|ρ|, pl] = max |r|
VF := [VF , vFl ], P := [P, epl ], p := [pT , pl]T

end for

that |ρ| = maxi=1,...,2N |ri| = |rpl | and pl is the smallest index assuming the maximum of |r|. One
can show that the following approximation holds for the nonlinear function F :

F (Vuũn) ≈ VF (P TVF )−1P TF (Vuũn)

Hence, we obtain the approximations for the nonlinear term V T
u F (Vuũn) in Equation (8) and its

Jacobian V T
u J(Vuũn)Vu, denoted by F̃ (ũn) and J̃(ũn):

F̃ (ũn) := V T
u VF (P TVF )−1P TF (Vuũn) ≈ V T

u F (Vuũn) (10)

J̃(ũn) := V T
u VF (P TVF )−1P TJ(Vuũn)Vu ≈ V T

u J(Vuũn)Vu (11)

Since F in F̃ and J in J̃ are multiplied on the left by P T whose rows are unit vectors, F and J
only need to be evaluated in m distinguished rows pi. By inserting Equations (10) and (11) into
Equations (8) and (9) we obtain the approximations:

FNewton(ũn) ≈ V T
u AVuũ

n + V T
u VF (P TVF )−1P TF (Vuũn) != 0 (12)

JNewton(ũn) ≈ V T
u AVu + V T

u VF (P TVF )−1P TJ(Vuũn)Vu (13)

Note that these equations describe the entire reduced system consisting of the linear term and an
approximation of the nonlinear function. The solution ũn for the reduced system can be computed
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with the standard Newton method, given in Equation (14), using the reduced system formulation
in Equation (12) and the corresponding Jacobian in Equation (13):

Solve JNewton

(
ũk,n

)
∆ũk,n = −FNewton

(
ũk,n

)
for ∆ũk,n (14a)

ũk+1,n = ũk,n + ∆ũk,n (14b)
until a sufficiently accurate solution ũn is reached (14c)

The solution of the full (i. e. the original) system un after n time steps can easily be computed
using the transformation in Equation (7).

3.3 Nonlinear model reduction via DEIM for systems of equations

The derivations given in [4] are applicable to PDE systems if the reduced basis is determined for the
full coupled discretization. However, as each equation of the PDE system may show different
properties and dynamics, we apply MOR for PDE systems by determining a POD basis for each
equation separately. In this case, the approach in [4] needs to be extended which is shown in this
section.

Consider a discretized system of the form

F (y, z) =
(
F1(y, z)
F2(y, z)

)
= 0

where y and z are the unknowns.

As before, we need to distinguish between linear and nonlinear terms. Thus, it holds

F1(y, z) = G11(y, z) +G12(y, z) and F2(y, z) = G21(y, z) +G22(y, z)

with G11, G21 nonlinear and G12, G22 linear functions. Hence, we obtain:

F (y, z) =
(
F1(y, z)
F2(y, z)

)
=
(
G11(y, z) +G12(y, z)
G21(y, z) +G22(y, z)

)
=
(
G11(y, z)
G21(y, z)

)
︸ ︷︷ ︸

F̃1(y,z)

+
(
G12(y, z)
G22(y, z)

)
︸ ︷︷ ︸

F̃2(y,z)

where F̃1(y, z) =
(
G11(y, z)
G21(y, z)

)
is nonlinear and F̃2(y, z) =

(
G12(y, z)
G22(y, z)

)
is linear.

Let u = [y, z]T be the solution of the full system F (y, z) = 0. As described in Section 3.2, u can be
used in order to compute the POD basis as well as the interpolation indices. Thus, we construct
the matrices V1, VF 1 and P1 for the solution y by evaluating F1 at the given snapshots.
Analogously, the matrices V2, VF 2 and P2 are constructed for z. Hence, the reduced system that
needs to be solved is given by(

V T
1 VF 1(P T1 VF 1)−1P T1 G11(V1ỹ, V2z̃) + V T

1 G12(V1ỹ, V2z̃)
V T

2 VF 2(P T2 VF 2)−1P T2 G21(V1ỹ, V2z̃) + V T
2 G22(V1ỹ, V2z̃)

)
= 0

Fraunhofer ITWM 11



Introduction to POD-DEIM for
nonlinear PDE systems

where ũ = [ỹ, z̃]T is the solution of the reduced system. This can be written in the following way:(
V T

1 0
0 V T

2

)(
VF 1 0

0 VF 2

)(
(P T1 VF 1)−1 0

0 (P T2 VF 2)−1

)(
P T1 0
0 P T2

)(
G11(V1ỹ, V2z̃)
G21(V1ỹ, V2z̃)

)
+
(
V T

1 0
0 V T

2

)(
G12(V1ỹ, V2z̃)
G22(V1ỹ, V2z̃)

)
= 0

Simplifying yields:(
V T

1 0
0 V T

2

)(
VF 1 0

0 VF 2

)((
P T1 0
0 P T2

)(
VF 1 0

0 VF 2

))−1(
P T1 0
0 P T2

)
F̃1(V1ỹ, V2z̃)

+
(
V T

1 0
0 V T

2

)
F̃2(V1ỹ, V2z̃) = 0

Hence, we obtain

V TVF
(
P TVF

)−1
P T F̃1(V1ỹ, V2z̃) + V T F̃2(V1ỹ, V2z̃) = 0 (15)

where V :=
(
V1 0
0 V2

)
, VF :=

(
VF 1 0

0 VF 2

)
and P :=

(
P1 0
0 P2

)
.

3.4 An example: Solving the heat equation with nonlinear coefficients

As a simple example leading towards the actual problem, we want to solve in Section 4, we apply
MOR to the scalar heat equation with a nonlinear coefficient and later, in Section 3.4.3, to a
system of such coupled heat equations.

3.4.1 Description of the problem

In the following, we consider the one-dimensional heat equation given by

∂u

∂t
= λ(u)

∂2u

∂x2

as in [9], where u is the temperature. Since the temperature u depends on space and time, u(x, t)
denotes the temperature at position x and time t. In our simulations, we consider the time interval
(0,30] and a spatial range [0,1]. Besides, we assume the boundary conditions to be the following:

∂u

∂x
(0, t) = q(t) with q(t) =

{
1, t < 10
0, t ≥ 10

∂u

∂x
(1, t) = 0
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The initial condition is set as u(x, 0) = 1. The spatial distance between two discretization points
∆x is assumed to be 0.01 and ∆t denotes the size of one time step. By discretizing the PDE, we
obtain:

un+1
P − unP

∆t
∆x = λ(u)

(
un+1
E − un+1

P

∆x
−

un+1
P − un+1

W

∆x

)
(16)

This can be transformed into an equation of the form

F (un) = 0 (17)

where un is a vector whose component uni denotes the temperature at discretization point i at
time t.

Figure 1:Comparison of the temperature computed in the full (top) and in the reduced system (bottom). The POD basis was of dimension

1, λ(u) = 0.01.

Firstly, we assume λ(u) to be constant for all u, e. g. λ(u) = 0.01. Thus, Equation (16) and
therewith Equation (17) are linear. Hence, Equation (17) can easily be solved for all time events t.
After computing the temperature u in the full system, the corresponding reduced system can be
solved by using the snapshots, obtained from the full system, and by applying POD (cp. Section
3.1.1). The solution strongly depends on the chosen relative information content since it is
responsible for the size of the chosen POD basis. Figures 1 and 2 show the solutions for the full
system by applying POD with a POD basis of dimension 1 and of dimension 4. As expected the
results for the POD basis of dimension 4 are much better and they are very similar to the results
computed directly for the full system.

As a simple nonlinear case, we assume that λ(u) is non-constant, i. e. λ(u) = 0.01u. Hence, the
system that needs to be solved becomes nonlinear. The function F in Equation (17) can be written

Fraunhofer ITWM 13
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Figure 2:Comparison of the temperature computed in the full (top) and in the reduced system (bottom) . The POD basis was of dimension

4, λ(u) = 0.01.

Figure 3:Comparison of the temperature computed in the full (top) and in the reduced system (bottom), λ(u) = 0.01u.
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as
F (un) = F1(un) + F2(un) = 0 (18)

where F1 contains the nonlinear terms (i. e. all terms of F depending on the function λ(u)) and
F2 the linear terms. In order to solve Equation (18) for certain times t, Newton’s Method can be
applied. As discussed earlier, it is often useful to solve a low-dimensional reduced system instead
of solving the corresponding original system. Hence, we firstly compute the POD modes for the
given snapshots by solving an eigenvalue problem as described in Sections 3.1.1 and 3.1.3. Then,
we choose the dimension n of the reduced basis such that the relative information content of the
reduced and the full system is larger than a given bound and the matrix Vu consisting of the POD
modes corresponding to the n largest eigenvalues can be constructed. Analogously, another POD
basis is computed for F1, evaluated in the given snapshots, where F1 denotes the nonlinear terms
of function F . The corresponding matrix is called VF . Then, the algorithm in Section 3.2 is applied
in order to compute the interpolation indices and therewith the matrix P . By Equation (12), we
obtain the following approximation for the heat equation and the corresponding Jacobian:

FNewton(ũn) ≈ V T
u F2(Vuũn) + V T

u VF (P TVF )−1P TF1(Vuũn)) != 0 (19)

JNewton(ũn) ≈ V T
u JF2(Vuũn)Vu + V T

u VF (P TVF )−1P TJF1(Vuũn)Vu (20)

The initial condition of the solution ũ of (19) is given by ũ(0) = V T
u u(0). Then, the solution can be

computed by using Equation (20) as well as the initial condition and by applying Newton’s Method
that is formulated in (14). The solution of the full system is obtained from the solution of the
reduced system for all time events t by using the transformation un = Vuũn. The results for the
temperature computed in the full and the reduced system are displayed in Figure 3.

3.4.2 Remarks

Our simulations have shown that it is necessary to distinguish between a linear and a nonlinear
term instead of just evaluating F consisting of linear and nonlinear terms. This is of great
importance for the computation of the POD basis for the nonlinear terms of F . Figure 4 shows the
results for the case that the linear terms as well as the nonlinear terms are used for constructing
the POD basis.

3.4.3 Solving a system of two coupled heat equations

In the following, we consider a system of equations of the form

∂

∂t

(
y(x, t)
z(x, t)

)
=

(
λ1(y(x, t), z(x, t))∂

2y(x,t)
∂x2

λ2(y(x, t), z(x, t))∂
2z(x,t)
∂x2

)
(21)

Discretizing yields(
yk,n+1−yk,n

∆t ∆x
zk,n+1−zk,n

∆t ∆x

)
=

λ1(yk,n+1, zk,n+1)
(

yk+1,n+1−yk,n+1

∆x − yk,n+1−yk−1,n+1

∆x

)
λ2(yk,n+1, zk,n+1)

(
zk+1,n+1−zk,n+1

∆x − zk,n+1−zk−1,n+1

∆x

) .
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Figure 4:Comparison of the temperature computed in the full (top) and in the reduced system (bottom). No distinction between linear

and nonlinear terms was used, λ(u) = 0.01u.

One can write the system of the form

F (y, z) =
(
F1(y, z)
F2(y, z)

)
= 0 (22)

where

F1(y) =
yk,n+1 − yk,n

∆t
∆x− λ1(yk,n+1, zk,n+1)

(
yk+1,n+1 − yk,n+1

∆x
− yk,n+1 − yk−1,n+1

∆x

)
F2(z) =

zk,n+1 − zk,n

∆t
∆x− λ2(yk,n+1, zk,n+1)

(
zk+1,n+1 − zk,n+1

∆x
− zk,n+1 − zk−1,n+1

∆x

)
.

Now, the system of equations can be solved via discrete empirical interpolation as described in
Section 3.3.

Setting λ1(y) = 0.01y and λ2(z) = 0.01z results in a decoupled system. Therefore, the equations
can be solved independently from each other. We obtain the same results for y and z since the
same functions for λ1 and λ2 have been used. Besides, the results for solving a system of two
equations in the full and the reduced system are very similar as expected. The results are displayed
in Figure 5.

In a next step, the more general problem of a coupled system should be solved. Thus, the function
F consists of 2N components and the corresponding Jacobian is a 2N × 2N -matrix. The reduced
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Figure 5:Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the

first component on the left and the second on the right (λ1(y) = 0.01y, λ2(z) = 0.01z)
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system that needs to be solved is given by (15) where the components of F̃1 and F̃2 might depend
on the temperatures y and z. The POD bases V1 and VF1 for system 1 as well as V2 and VF2 for
system 2 can be computed separately from each other. The matrices P1 and P2 can be obtained by
the algorithm in Section 3.2. Note that the indices for interpolation of the second system, i. e. the
components of vector P2, need to be shifted by N which corresponds to the definition of the
blockdiagonal matrix P with matrices P1 and P2 as diagonal blocks because the i-th unit vector in
P2 corresponds to the (N + i)-th unit vector in P . By doing so, it is guaranteed that the correct
components of the function F̃1 are evaluated.

We set λ1(y) = 0.01y and λ2(z) = 0.03z, so the system is still decoupled. Figure 6 shows the
results for the temperature computed for systems 1 and 2 in the full and the reduced system using
the approach for systems of equations as described in Section 3.3. For solving the coupled system
with λ1(z) = 0.01z, λ2(y) = 0.03y, the results are displayed in Figure 7. For both simulations the
values of the temperature for systems 1 and 2 computed for the full and the reduced system are
very similar. Besides, one can see that the temperature of system 1 in the first simulation is slightly
smaller than the temperature of system 1 in the second simulation whereas the temperature of
system 2 in the first simulation is slightly larger than the corresponding temperature in the second
simulation. This corresponds to the intuition: The constant in λ1 is smaller than the one of λ2 and
thus the temperature of system 1 is smaller than the temperature of system 2 in general. Hence,
the change of the dependence of λ results in a slightly changed total temperature.

4 POD-DEIM for the microscopic model in BEST

Using the method described in Section 3.3, we describe the details of applying an MOR method
based on POD and DEIM to the model given in [1, Pg. 139]. It is essentially of the form:

∂c

∂t
−∇ · (α(c, φ)∇c+ β(c, φ)∇φ) = 0 (23a)

−∇ · (γ(c, φ)∇c+ δ(c, φ)∇φ) = 0 (23b)

with different functions for α, β, γ, δ in the different domains anode, cathode and electrolyte of a
Li-ion battery.

The finite volume discretization of the full system is described in detail in [2]. We repeat it only in
symbolic form here where we refer to the parts of the discretization corresponding to the terms in
System (23). A method based on POD and DEIM has been exemplified for an one-dimensional
mesoscopic model of the equations in [5]. We extend the approaches to the microscopic model
and a three-dimensional discretization.
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Figure 6:Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the

first component on the left and the second on the right (λ1(y) = 0.01y, λ2(z) = 0.03z)
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Figure 7:Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the

first component on the left and the second on the right (λ1(z) = 0.01z, λ2(y) = 0.03y)
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4.1 Newton’s Method for the full system

Assuming a finite volume discretization of System (23) on N finite volumes, we write the
discretized nonlinear system of equations as

F (u) = 0, u =
(

c
φ

)
∈ R2N .

where F (u) ∈ R2N and c,φ ∈ RN .

Let Fα,β(u) ∈ RN denote the discretization of the term in System (23) that is a function of the
partial derivative of β with respect to α. Hence, the term ∂c

∂t in (23) can be discretized by

Ft,c(un+1) = Ft,c(cn+1,φn+1) :=
1

∆t
V (cn+1 − cn) (24)

where V ∈ RN×N is a diagonal matrix with the cell volumes Vi on the diagonal, i. e.

V =

V1

. . .
VN

 .

Analogously, we proceed for the other terms in System (23) and we obtain a discretized system,
separated into terms according to the terms of System (23):

F (u) =
(
Ft,c(u) + Fx,c,c(u) + Fx,c,φ(u)

Fx,φ,c(u) + Fx,φ,φ(u)

)
(25)

Note that the term Ft,c in (25) is a linear function. All the other terms F∗ in Equation (25) might be
nonlinear due to the definition of the system before discretization, given in (23). Thus, F can be
written in the following form by using Equation (24):

F (u) =
(
Ft,c(u)

0

)
+
(
Fx,c,c(u) + Fx,c,φ(u)
Fx,φ,c(u) + Fx,φ,φ(u)

)
=
(

1
∆tV (cn+1 − cn)

0

)
+
(
Fx,c,c(u) + Fx,c,φ(u)
Fx,φ,c(u) + Fx,φ,φ(u)

)
=

1
∆t

M(un+1 − un) +
(
Fx,c,c(u) + Fx,c,φ(u)
Fx,φ,c(u) + Fx,φ,φ(u)

) (26)

where the matrix M ∈ R2N×2N is defined by

M :=
(
V 0
0 0

)
. (27)

Thus, the full system is given by

F (un+1) = Ft(un+1) + Fx(un+1) =
1

∆t
M(un+1 − un) + Fx(un+1)
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where Ft is a linear and Fx is a nonlinear function with

Fx(u) :=
(
Fx,c,c(u) + Fx,c,φ(u)
Fx,φ,c(u) + Fx,φ,φ(u)

)
. (28)

By definition of F in Equation (25) we obtain

F (uk,n+1) =
(
Ft,c(uk,n+1) + Fx,c,c(uk,n+1) + Fx,c,φ(uk,n+1)

Fx,φ,c(uk,n+1) + Fx,φ,φ(uk,n+1)

)
and thus, the corresponding Jacobian J(uk,n+1) ∈ R2N×2N can be computed by

J(uk,n+1) =

(
∂Ft,c(uk,n+1)
∂uk,n+1 + ∂Fx,c,c(uk,n+1)

∂uk,n+1 + ∂Fx,c,φ(uk,n+1)

∂uk,n+1

∂Fx,φ,c(u
k,n+1)

∂uk,n+1 + ∂Fx,φ,φ(uk,n+1)

∂uk,n+1

)

=

(
∂Ft,c(uk,n+1)
∂ck,n+1 + ∂Ft,c(uk,n+1)

∂φk,n+1

0

)
+ ∂Fx,c,c(uk,n+1)

∂ck,n+1 + ∂Fx,c,φ(uk,n+1)

∂ck,n+1

∂Fx,c,c(uk,n+1)

∂φk,n+1 + ∂Fx,c,φ(uk,n+1)

∂φk,n+1

∂Fx,φ,c(u
k,n+1)

∂ck,n+1 + ∂Fx,φ,φ(uk,n+1)

∂ck,n+1

∂Fx,φ,c(u
k,n+1)

∂φk,n+1 + ∂Fx,φ,φ(uk,n+1)

∂φk,n+1


(29)

where ∂F∗(uk,n+1)
∂uk,n+1 ∈ RN×2N .

Furthermore, we assume the existence of an initial condition for c and φ, given by

u0 = θ

for a given vector θ ∈ RN . Newton’s Method can then be applied, given by the following
algorithm:

Algorithm 2 Algorithm: Newton’s Method in the full system

Let uk,n+1 ∈ R2N , J(u) ∈ R2N×2N

Solve
J(uk,n+1)∆uk,n+1 = −F (uk,n+1)
uk+1,n+1 := uk,n+1 + ∆uk,n+1

until solution un+1 is found.

4.2 Newton’s Method for the reduced system

The structure of Equation (28), where parts of a single equation are separated, extends the
structures given in Section 3.2. Hence in this Section we extend the derivation of the Newton’s
Method for the reduced system initially given in Equation (10). The extension becomes apparent in
the transformation and interpolation matrices in Equations (31) and (33).
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The reduced system is fully solved in Rn instead of R2N . The solutions in Rn of the reduced space
are denoted by ũ and the corresponding transformation matrix for transformations between the
full and the reduced system is given by Vu.

Let the initial condition u0 = θ with θ ∈ RN be given. We aim to compute the solution un+1 of the
full system after n+ 1 time steps that can be obtained from the solution ũn+1 of the reduced
system after n+ 1 time steps because it holds un+1 = Vuũn+1. Since
u = Vuũ,u ∈ R2N , Vu ∈ R2N×n, ũ ∈ Rn, the relation u0 = Vuũ0 implies that ũ0 = V T

u u0 as it
holds V T

u u = V T
u Vuũ = Iũ = ũ. This is the first preparing step for the computations within the

reduced system where some more transformation matrices are needed. The reduced system to be
solved can be approximated by the following equation:

FNewton (ũ) = 0 (30)

with ũk,n+1 ∈ Rn and FNewton(ũ) ∈ Rn.

The function FNewton can be obtained from F as described in Section 3.2 where the matrix
A ∈ R2N×2N is given by

A :=
1

∆t
M

and M ∈ R2N×2N is given by (27).

Let Vu be the transformation matrix created from the solution u = [c,φ]T :

Vu =
(
Vuc 0
0 Vuφ

)
∈ R2N×n

where Vuc ∈ RN×nc is obtained from c and Vuφ ∈ RN×nφ from φ with nc + nφ = n.

Next, we construct the interpolation matrix VF for DEIM given by

VF =


VF c,c 0 0 0

0 VF c,φ 0 0
0 0 VF φ,c 0
0 0 0 VF φ,φ

 ∈ R4N×m (31)

where VF c,c ∈ RN×mc,c , . . . , VF φ,φ ∈ RN×mφ,φ . Here, the matrices VF α,β are obtained by applying
POD to Fx,α,β evaluated at snapshots. Thus, we construct the interpolation matrix by creating
interpolation matrices for each nonlinear term in F separately. Note that mc,c + . . .+mφ,φ = m.

For the separate multiplication of all terms of Equation (28) with the interpolation matrices, the
dimension of Fx is elevated from R2N to R4N . Hence, in Equation (35), the separate interpolation
of the terms in each equation needs to be summed again. This will be achieved by a
dimensionwise-modified version of VF which we call V̂F .

V̂F =
(
VF c,c VF c,φ 0 0

0 0 VF φ,c VF φ,φ

)
∈ R2N×m (32)
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The matrix P consisting of unit vectors corresponding to the interpolation point index set is:

P =


Pc,c 0 0 0
0 Pc,φ 0 0
0 0 Pφ,c 0
0 0 0 Pφ,φ

 ∈ R4N×m (33)

with Pα,β ∈ RN×mα,β .

As P TVF can be precomputed in the offline stage, let C := P TVF ∈ Rm×m for ease of notation.

C :=


Cc,c

Cc,φ
Cφ,c

Cφ,φ

 ∈ Rm×m (34)

where

Cc,c ∈ Rmc,c×mc,c , . . . , Cφ,φ ∈ Rmφ,φ×mφ,φ

After constructing Vu ∈ R2N×n, VF ∈ R4N×m and P ∈ R4N×m, an approximation of
FNewton

(
ũn+1

)
∈ Rn, describing the reduced system, can be computed. Using Equation (8) and

inserting the approximation of the nonlinear term in (10) yields:

FNewton
(
ũn+1

)
: = V T

u Ft(Vuũ
n+1) + V T

u Fx(Vuũn+1)

≈ V T
u Ft(Vuũ

n+1) + V T
u V̂F

(
P TVF

)−1
P TFx

(
Vuũn+1

)
=

1
∆t

V T
u MVu

(
ũn+1 − ũn

)
+ V T

u V̂FC
−1F̃x

(
Vuũn+1

) (35)

where F̃x
(
Vuũn+1

)
:= P TFx

(
Vuũn+1

)
∈ Rm. This corresponds to Equation (12) in the basic

POD-DEIM derivation. Again, the approximation makes computations more efficient since only
certain rows of Fx need to be evaluated.

Note that the way we solve the reduced system for the heat equation is completely analogous to
solving the more general system above. Equation (19) corresponds to Equation (35) where
1

∆tV
T
u MVu

(
ũn+1 − ũn

)
is the linear term for the reduced system.

Let JNewton with JNewton(ũ) ∈ Rn×n denote the Jacobian corresponding to FNewton. It can be
approximated by:

JNewton
(
ũn+1

)
≈ 1

∆t
V T
u MVu + V T

u V̂F (P TVF )−1∂F̃x
(
Vuũn+1

)
∂ũn+1

=
1

∆t
V T
u MVu + V T

u V̂F (P TVF )−1


∂F̃x,c,c(Vuũn+1)

∂ũn+1

...
∂F̃x,φ,φ(Vuũn+1)

∂ũn+1

 (36)
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where
∂F̃x,c,c(Vuũn+1)

∂ũn+1
∈ Rmc,c×n, . . . ,

∂F̃x,φ,φ(Vuũn+1)
∂ũn+1

∈ Rmφ,φ×n

Then, the reduced system, given in Equation (30), can be solved with Newton’s Method:

Algorithm 3 Algorithm: Newton’s Method in the reduced system
Solve
JNewton

(
ũk,n+1

)
∆ũk,n+1 = −FNewton

(
ũk,n+1

)
ũk+1,n+1 := ũk,n+1 + ∆ũk,n+1

until the solution ũn+1 is found.

4.3 Computation of the input argument, the nonlinear function and the Jacobian in
the reduced system

For ease of reading Vuũn+1 is denoted by Vuũ throughout this section. Since the computation of
Vuũ ∈ R2N is very inefficient Vuũ should never be fully computed. Besides, Vuũ is the only input of
FNewton and JNewton where JNewton ∈ Rn×n is a sparse matrix. Thus, it suffices to compute Vuũ
only for the discretization point i and its neighbors.

Before discussing this in more detail, let us firstly look at F̃x and the corresponding Jacobian J̃x
more closely:

F̃x(Vuũ) =



Fx,c,c(Vuũ)ic,c,1
...

Fx,c,c(Vuũ)ic,c,mc,c

mc,c

Fx,c,φ(Vuũ)ic,φ,1
...

Fx,c,φ(Vuũ)ic,φ,mc,φ

mc,φ

...
Fx,φ,φ(Vuũ)iφ,φ,1

...
Fx,φ,φ(Vuũ)iφ,φ,mφ,φ

mφ,φ



∈ Rm (37)

So F̃x(Vuũ) is the original Fx, evaluated at Vuũ and only certain points ic,c,1, . . . , ic,c,mc,c ∈ Ic,c are
picked. J̃x can be created in the same manner. It is given by:
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J̃x :=
∂F̃x(Vuũ)

∂ũ
=


[
∂Fx,c,c(Vuũ)

∂u · Vu
]
ic,c,1,...,ic,c,mc,c

}
mc,c

...[
∂Fx,φ,φ(Vuũ)

∂u · Vu
]
ic,c,1,...,ic,c,mc,c

}
mφ,φ

 ∈ Rm×n (38)

because we obtain by chain rule with u = Vuũ:

∂F̃x(Vuũ)
∂ũ

=
∂F̃x(Vuũ)

∂u
· ∂u
∂ũ

=
∂F̃x(Vuũ)

∂u
· Vu

4.4 Efficient computation of the nonlinear function and the Jacobian

In this section, the efficient computation of

(1) the nonlinear function [Fx,c,c(Vuũ)]ic,c,1,...ic,c,mc,c and

(2) the Jacobian
[
∂Fx,c,c(Vuũ)

∂u · Vu
]
ic,c,1,...ic,c,mc,c

are discussed.

4.4.1 Ad (1): Nonlinear function

It holds

[Fx,c,c(Vuũ)]ic,c,1,...ic,c,mc,c =

 Fx,c,c(Vuũ)ic,c,1
...

Fx,c,c(Vuũ)ic,c,mc,c

 , (39)

meaning that we need to pick out the j-th entries of Fx,c,c, computed at Vuũ, with
j = ic,c,1, . . . , ic,c,mc,c . Because of the underlying finite volume discretization stencil these values
only depend on certain entries of Vuũ, namely those at the center node j and its neighbors for
both variables c and φ of the system.

Thus, we define
Ṽuũj := [Vuũ]Nj={j,j+N,jE ,jE+N,...} (40)

using only the indices in Nj which exist due to boundaries etc.

We also have:
[Vuũ]Nj = [Vu]Nj ũ (41)

Fraunhofer ITWM 26



POD-DEIM for the microscopic
model in BEST

where [Vu]Nj ∈ RNj×n is the matrix consisting only of those rows of Vu with indices in Nj . Hence,
Vuũj as input for Fx,c,c(Vuũ)j can be computed with very little cost by

Vuũj =
∑
l∈Nj

[Vuũj ]l · el (42)

i. e. putting the entries of Vuũj into the right indices of the full vector Vuũ and we can use the

original discretization functions. This can be done for every j ∈
{
ic,c,1,...,ic,c,mc,c

}
. The matrices

[Vu]Nj =: Vuj can and should be precomputed for all j ∈ Ic,c ∪ Ic,φ ∪ Iφ,c ∪ Iφ,φ. F̃ is then built by
writing all such computed entries of F in a column.

4.4.2 Ad (2): Jacobian

For preparing the input argument Vuũ of

[
∂Fx,c,c(Vuũ)

∂u

]
ic,c,1,...ic,c,mc,c

the method is identical to the one in ad 1. Again, we use the precomputed small matrices Vuj and
the original discretization functions. The multiplication with Vu is then straightforward and can
directly be done for each entry j of J̃ separately. We denote

∂F̃x(Vuũ)
∂ũ

=

[
∂F̃x,q1,q2(Vuũ)

∂ũ

]
q1,q2∈{c,φ}

(43)

Now, we describe the computation of

∂F̃x,q1,q2(Vuũ)
∂ũ

which is
∂Fx,q1,q2(Vuũ)

∂u
· Vu (44)

Step 1 Assume Vuj has been created for each j ∈ Iq1,q2 .

Step 2 For each j ∈ Iq1,q2
(1) Create input Vuũj by the rule in Equation (42)
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(2) Evaluate the j-th row of Equation (44) using input Vuũj and get[
∂Fx,q1,q2(Vuũj)

∂u

]
j

(45)

(3) Multiply only the Nj-th (see Equation (40)) columns of Equation (45) with Vuj = [Vu]Nj to

obtain the correct matrix row of ∂F̃x
∂ũ :[

∂F̃x,q1,q2(Vuũ)
∂ũ

]
r

=
[
∂Fx,q1,q2(Vuũj)

∂u

]
j,Nj
· Vuj

for the r-th entry j of
{
ic,c,1, . . . , ic,c,mc,c

}
4.5 Numerical results

4.5.1 Pseudo-3D test problem

In this section, we present some numerical results obtained with BEST. We restrict ourselves to a
pseudo-3D test problem whose geometry is actually of dimension one due to periodicity and
symmetry of the geometry.

Geometry For the Pseudo-3D case, the total size of the battery is given by
18 · 10−3cm× 7 · 10−3cm× 7 · 10−3cm. Since the geometry should be very easy, both cathode and
anode are set as 3 · 10−3cm× 5 · 10−3cm× 5 · 10−3cm and the separator between cathode and
anode has a size of 4 · 10−3cm× 5 · 10−3cm× 5 · 10−3cm, as illustrated in Figure 8.

In the following, lineouts through the center of different variables are displayed, i. e. the y- and
z-component are assumed to be constantly 2.5 · 10−3cm whereas the concentration and the
potential are shown as functions of the x-component.

Figure 8:Geometry of the Pseudo-3D case. The geometry is made up of five domains: the current collector (leftmost and rightmost), the

anode (left, blue), the cathode (right,turquoise) and the separator (transparent between anode and cathode)
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Parameters The current density is set as 0.001 C = 0.0000190329 A/cm2 and the total time is
set as 205.000 s. Besides, it is important to set a suitable time step. In Figure 9, the concentration
is plotted as a function of the x-coordinate using time steps 500 s and 9.000 s. Although 9.000 s is
a very large time step, the results for the concentration are acceptable.

Figure 9:Pseudo-3D case: Concentration subject to time steps 500 s and 9.000 s for a full simulation

Results For the simulations in this section, we use Version 11 of BEST. The concentration in
anode, cathode and electrolyte is computed separately for the full and the reduced system by
applying POD to the three subdomains independent of each other. Furthermore, it is useful to
compare the cell-potential as functions of time for a full and a reduced simulation. There results
are displayed in Figure 10.
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Figure 10:Pseudo-3D case: Left: Concentration plotted against time for a full and a POD simulation (time step: 500 s, output interval:

500 s). Right: Cell potential for a full and a reduced simulation (time step: 500 s, output interval: 500 s) using Version 11

5 Conclusion

We have shown the applicability of our method based on POD and DEIM for a complex coupled
nonlinear PDE system resulting from the modeling of Li-ion battery charge transport. Determining
a reduced basis for a simple geometry is possible. The solution, approximating the full system to
the desired accuracy, can be found by applying a reduced Newton method. The possibility of
solving the model with this MOR method on more complicated geometries requires more research
on the careful choice and separation of the nonlinear terms used in the DEIM.
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