Fraunhofer

ITWM
S. Schmidt, L. Kreußer, S. Zhang

POD-DEIM based model order reduction for a three-dimensional microscopic Li-Ion battery model
© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2012
ISSN 1434-9973
Bericht 229 (2013)
Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in irgendeiner Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren oder in eine für Maschinen, insbesondere Datenverarbeitungsanlagen, verwendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.
Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können bezogen werden über:
Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany
Telefon: $\quad+49(0) 631 / 31600-4674$
Telefax: $\quad+49(0) 631 / 31600-5674$
E-Mail: presse@itwm.fraunhofer.de
Internet: www.itwm.fraunhofer.de

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts kontinuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissenschaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Mathematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Berichtreihe werden sowohl hervorragende Diplom- und Projektarbeiten und Dissertationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahlreichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirtschaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen und Softwareprodukte - und umgekehrt, denn Probleme der Praxis generieren neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter
Kaiserslautern, im Juni 2001

POD-DEIM based model order reduction for a three-dimensional microscopic Li-lon battery model

Sebastian Schmidt
Lisa Kreußer
Shiquan Zhang
May 27, 2013
Kaiserslautern

Abstract

Microscopic models for the processes occurring during charge and discharge of Li-ion batteries allow detailed studies of the occurring phenomena, but they often result in nonlinear, coupled diffusion-type PDE systems where the nonlinearities occur in the coefficients. Solving these models on microscopically resolved geometries of anode and cathode structures of Li-ion batteries is computationally very intensive. Model order reduction offers a possible remedy. We present a method based on Proper orthogonal decomposition $\sqrt{P O D}$ and Discrete empirical interpolation method (DEIM to solve the equations using Newton's Method in reduced space. Since the coefficients of the PDE system depend on the subdomain (i. e. anode, cathode or electrolyte) and the different terms of the system show different nonlinearities, special care needs to be taken to find the reduced basis and to use DEIM. We apply our approach to a simplified test problem.

Contents

1 Notation 3
1.1 Acronyms 3
1.2 Table of symbols 4
1.3 Systems 5
2 Introduction 5
3 Introduction to|POD||DEIM|for nonlinear|PDE|systems 6
3.1 Model reduction vialPOD 7
3.1.1 Constructing a|POD|basis 7
3.1.2 Choosing the dimension 8
3.1.3 Snapshots and POD 8
3.2 Nonlinear model reduction vialDEIM 9
3.3 Nonlinear model reduction via DEIM for systems of equations 11
3.4 An example: Solving the heat equation with nonlinear coefficients 12
3.4.1 Description of the problem 12
3.4.2 Remarks 15
3.4.3 Solving a system of two coupled heat equations 15
4 POD-DEIM for the microscopic model in BEST 18
4.1 Newton's Method for the full system 21
4.2 Newton's Method for the reduced system 22
4.3 Computation of the input argument, the nonlinear function and the Jacobian in the reduced system 25
4.4 Efficient computation of the nonlinear function and the Jacobian 26
4.4.1 Ad (1): Nonlinear function 26
4.4.2 $\operatorname{Ad}(2):$ Jacobian 27
4.5 Numerical results 28
4.5.1 Pseudo-3D test problem 28
5 Conclusion 30

1 Notation

1.1 Acronyms

DEIM Discrete empirical interpolation method
MOR Model order reduction
PDE Partial differential equation
POD Proper orthogonal decomposition

1.2 Table of symbols

Notation	Description
$\mathbf{u}^{n}=\binom{\mathbf{y}^{n}}{\mathbf{z}^{n}}$	Unknowns $\mathbf{y}^{n}, \mathbf{z}^{n} \in \mathbb{R}^{N}$
$\mathbf{u}^{n} \in \mathbb{R}^{2 N}$	Solution of the full system
$q \in\{\mathbf{y}, \mathbf{z}\}$	Unknown in the unknown vector \mathbf{u}^{n}
c	Concentration
ϕ	Potential
$\tilde{\mathbf{u}}^{n} \in \mathbb{R}^{n}$	Solution of the reduced system
$\tilde{\mathbf{u}}^{n}=\binom{\tilde{\mathbf{y}}^{n}}{\tilde{\mathbf{z}}^{n}}$	Unknowns $\tilde{\mathbf{y}}^{n}, \tilde{\mathbf{z}}^{n}$ in the reduced system
A, A_{q}	Matrices describing linear part
$F(\mathbf{u}), F_{q}(\mathbf{u})$	Nonlinear functions
$J(\mathbf{u})$	Jacobians corresponding to nonlinear functions
ε	Percentage of information in the reduced system compared to the one in the full system, see Section 3.1.2
N	Number of space points in the discretization of the full system
n	Size of the reduced basis for the solution \mathbf{u}
m	Size of the reduced basis for the nonlinear function $F(\mathbf{u})$ for DEIM
$m_{q, q}$	Componentwise size of the reduced basis for $F(\mathbf{u})$ for DEIM, i. e. size of $I_{\alpha, \beta}$
s	Number of snapshots
superscript ${ }^{n, n+1}$	Old and new time step
superscript ${ }^{k, k+1}$	Newton step
no superscript in k	Solution after Newton iterations
subscript ${ }_{i}$	Unknowns in the mesh
$\{E, W, N, S, T, B\}$	Labels for neighbors, i. e. E east, W west, N north, S south, T top, B bottom (e. g. x_{i+E} is the unknown point of x_{i} 's east neighbor)
p	Vector of integers whose i-th component p_{i} corresponds to the i-th interpolation index obtained via DEIM
$I, I_{\alpha, \beta}$	Index set containing indices needed tor DEIM
$j \in I_{\alpha, \beta}$	Interpolation point index out of index set
$P, P_{\alpha, \beta} \in \mathbb{R}^{2 N \times m}$	Matrix with unit vectors corresponding to I and $I_{\alpha, \beta}$, respectively
$X_{u} \in \mathbb{R}^{2 N \times s}$	Matrix with snapshots as columns (i. e. column n is given by \mathbf{u}^{n} after n time steps, $n=1, \ldots, s$)
$K \in \mathbb{R}^{2 N \times 2 N}$	Correlation matrix given by $X_{u} X_{u}^{T}$
$V_{u} \in \mathbb{R}^{2 N \times n}$	Transformation matrix whose columns are the POD modes corresponding to the n largest eigenvalues of $X_{u} X_{u}^{T}$
$V_{F} \in \mathbb{R}^{2 N \times m}$	Transformation matrix whose columns are the POD modes obtained by applying POD to F evaluated at the snapshots $\mathbf{u}^{1}, \ldots, \mathbf{u}^{s}$
$\tilde{F}\left(\tilde{\mathbf{u}}^{n}\right)$	Approximation of the nonlinear term $V_{u}^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right)$
$\tilde{J}\left(\tilde{\mathbf{u}}^{n}\right)$	Approximation of the Jacobian of the nonlinear term $V_{u}^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right)$

1.3 Systems

As our notation depends on the systems for which the Model order reduction (MOR methods are derived, we display them at this point and postpone further detailed system descriptions to later sections.

We aim to apply MOR to Partial differential equation (PDE) systems. However, the methods described herein were originally derived for dynamical systems of the forms, given in (1) and (2).

After semi-discretizing a PDE in space, we obtain a system of ordinary differential equations and therewith a dynamical system. Thus, it suffices to restrict ourselves to systems of the form

$$
\begin{align*}
\frac{d y(t)}{d t} & =A_{y} y(t)+F_{y}(y(t), z(t)) \tag{1a}\\
\frac{d z(t)}{d t} & =A_{z} z(t)+F_{z}(y(t), z(t)) \tag{1b}
\end{align*}
$$

By setting $u(t)=\binom{y(t)}{z(t)}$, we obtain the equation

$$
\begin{equation*}
\frac{d u(t)}{d t}=A_{u} u(t)+F_{u}(u(t)) \tag{2}
\end{equation*}
$$

for a matrix $A=\left(\begin{array}{ll}A_{y} & \\ & A_{z}\end{array}\right)$ describing the linear part and a function $F_{u}=\binom{F_{y}}{F_{z}}$ for the nonlinear part.

Discretizing both in time and space yields a system of the form

$$
A \mathbf{u}^{n}+F\left(\mathbf{u}^{n}\right)=0
$$

after n time steps where the matrix $A \in \mathbb{R}^{2 N, 2 N}$ and the nonlinear function F with $F\left(\mathbf{u}^{n}\right) \in \mathbb{R}^{2 N}$ are chosen accordingly.

2 Introduction

Microscopic models for the processes occurring during charge and discharge of Li-ion batteries allow detailed studies of the occurring phenomena, but they often result in nonlinear, coupled
diffusion-type PDE systems where the nonlinearities occur in the coefficients. Such a model is derived in [1, Pg. 139] for modeling the transport of Li-ions and the respective occuring potential for a microscopically resolved battery consisting of a porous anode, porous cathode and a separator. This Li-ion battery is modeled by the coupled, nonlinear PDE system

$$
\begin{align*}
\frac{\partial c}{\partial t}-\nabla \cdot(\alpha(c, \phi) \nabla c+\beta(c, \phi) \nabla \phi) & =0 \tag{3a}\\
-\nabla \cdot(\gamma(c, \phi) \nabla c+\delta(c, \phi) \nabla \phi) & =0 \tag{3b}
\end{align*}
$$

for $c(x, t)$ the concentration of Li-ions in $\left[\frac{\mathrm{mol}}{\mathrm{cm}^{3}}\right]$ and $\phi(x, t)$ the electric potential in [V]. For details on the coefficients of (3) we refer to (1).

The discretization of results in a coupled, nonlinear DAE system, given in [2]. Solving this model on microscopically resolved geometries of anode and cathode structures of Li-ion batteries allows detailed insights into the distribution of concentration and potential (cp. [3]), but the computations are very intensive. Model order reduction offers a possible remedy. We present a POD.DEIM] based method, extended from [4]. The basic concepts of the method are shown in Section 3 and applied to a simple, coupled system of diffusion equations with nonlinear coefficients. In Section 4 , we derive the method for the actual system from [1] by extending [5] and solve the equations by a Newton method in reduced space. Besides, we discuss details of its implementation in the software BEST, based on the CoRheoS framework, described in [6]. As the coefficients of the PDE system depend on the subdomain - anode, cathode or electrolyte - and the different terms of the system show different nonlinearities, special care needs to be taken to find the reduced basis and to use DEIM. We show the basic applicability of the method by applying it to a simplified, pseudo-3D test problem.

3 Introduction to PODFDEIM for nonlinear PDE systems

DEIM has initially been introduced in [4] and is based on the Empirical interpolation method (EIM), introduced in [7]. For introductory purposes, we repeat the basics of DEIM. Since the reduced bases are found via POD, we firstly given an overview on the POD method which is a long-established method to compute a reduced basis for discretized PDE systems, given as a set of linear equations. Then, we describe the extension to DEIM for nonlinear contributions to the system.

3.1 Model reduction via POD

In this section we heavily rely on the description of MOR via POD in [8]. Since the time for computations and the data that needs to be stored grow with the size of the dynamical system, it is often necessary to approximate the full, high-dimensional, dynamical system by a low-dimensional system that describes the characteristic dynamic of the original system. A method for model reduction is POD also known as total least-squares estimation. By using POD we obtain an optimally ordered, orthonormal basis in the least-squares sense for the given data. Then, the constructed, optimal basis can be truncated in order to get a basis of the reduced system.

POD can also be seen as a method for data representation or as a projection method since the original dynamical system is projected onto a subspace of the original phase space. For this reason, we focus on the idea of finding a subspace that approximates a given data set in the least-squares sense.

3.1.1 Constructing a POD basis

In the following, it is described how to construct a POD basis for a finite dimensional vector space V. Let $V=\mathbb{R}^{2 N}$ and assume that $U=\left\{u_{1}(t), \ldots, u_{k}(t)\right\}$ is a given set of sampled data in V. The trajectories $u_{i}(t) \in \mathbb{R}^{2 N}, i=1, \ldots, k, t \in[0, T]$ solve System (2) on the interval $[0, T]$ where T stands for the total time. We aim to find an n-dimensional subspace $W \subseteq V$ approximating the data in a least-squares sense. This means that we need to find an orthogonal projection $\Pi_{n}: V \rightarrow W$ minimizing

$$
\left\|U-\Pi_{n} U\right\|^{2}:=\sum_{i=1}^{k} \int_{0}^{T}\left\|u_{i}(t)-\Pi_{n} u_{i}(t)\right\|^{2} d t .
$$

In order to solve this problem, we define the correlation matrix $K \in \mathbb{R}^{2 N \times 2 N}$ as

$$
\begin{equation*}
K:=\sum_{i=1}^{k} \int_{0}^{T} u_{i}(t) u_{i}(t)^{*} d t \tag{4}
\end{equation*}
$$

where $u_{i}(t)^{*}$ is obtained from $u_{i}(t)$ by taking the transposed and the complex conjugate for each entry. Note that K is a symmetric positive semidefinite matrix with real, ordered eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{2 N} \geq 0$. The corresponding eigenvectors $v_{u_{j}}, j=1, \ldots, 2 N$, are given by

$$
K v_{u_{j}}=\lambda_{j} v_{u_{j}}, \quad j=1, \ldots, 2 N
$$

and can be chosen such that $\left\{v_{u_{1}}, \ldots, v_{u_{2 N}}\right\}$ is an orthonormal basis of V. The eigenvectors $v_{u_{j}}, j=1, \ldots, 2 N$, are then called the POD modes. It can be shown that under these assumptions the following equation holds:

$$
\begin{equation*}
\min _{W}\left\|U-\Pi_{n} U\right\|=\sum_{j=2 N-n+1}^{2 N} \lambda_{j} \tag{5}
\end{equation*}
$$

where we take the minimum over all subspaces W of dimension n. The optimal orthogonal projection $\Pi_{n}: V \rightarrow W$ with $\Pi_{n} \Pi_{n}{ }^{*}=I$ is given by

$$
\Pi_{n}=\sum_{j=1}^{n} v_{u_{j}} v_{u_{j}}^{*}
$$

and the optimal n-dimensional subspace W representing the data can be written as $W=\operatorname{span}\left\{v_{u_{1}}, \ldots, v_{u_{n}}\right\}$. Hence, the corresponding POD basis is given by $\left\{v_{u_{1}}, \ldots, v_{u_{n}}\right\}$.

3.1.2 Choosing the dimension

In order to obtain the subspace W of V and the corresponding orthogonal projection Π_{n}, one can proceed as described in Section 3.1.1. Nevertheless, it remains to show how to choose the dimension n of W to get a good approximation of the data set. By Equation (5), there is a connection between the least-squares error and the eigenvalues of the correlation matrix K, defined in Equation (4). Large eigenvalues represent the main characteristics of a dynamical system while omitting smaller eigenvalues only leads to small perturbations of the system. Thus, the dimension n of the subspace W has to be chosen as small as possible such that the relative information content $I(n)$, defined by

$$
I(n):=\frac{\sum_{i=1}^{n} \lambda_{i}}{\sum_{i=1}^{2 N} \lambda_{i}},
$$

is greater than a given bound that should be slightly smaller than one for good approximations. For a percentage ε of the information in V that is also contained in W the dimension n of the subspace W can be computed by

$$
n=\operatorname{argmin}\left\{I(n): I(n) \geq \frac{\varepsilon}{100}\right\} .
$$

3.1.3 Snapshots and POD

By definition of K in Equation (4), K is a square matrix of dimension $2 N$ where N can be very large. Hence, a large eigenvalue problem for the matrix $K \in \mathbb{R}^{2 N \times 2 N}$ has to be solved for the computation of the POD modes. Instead of solving this high-dimensional eigenvalue problem, one can also consider the low-dimensional eigenvalue problem for a square matrix of dimension s with $s<2 N$ where s is the number of the so-called snapshots. That is why this method is called the method of snapshots.

In order to obtain snapshots, the trajectories of the dynamical system are evaluated at certain times $t_{1}, \ldots, t_{s} \in[0, T]$. This means that the snapshots are given by $u_{i}=u\left(t_{i}\right) \in \mathbb{R}^{2 N}$. The new correlation matrix K is defined by

$$
K:=\sum_{i=1}^{s} u\left(t_{i}\right) u\left(t_{i}\right)^{*}
$$

In the following, we always refer to this definition of the correlation matrix. The matrix X_{u}, consisting of the snapshots $u\left(t_{i}\right) \in \mathbb{R}^{2 N}, i=1, \ldots, s$, in the columns and of the trajectories of the system at discrete time events in the rows, is then given by

$$
X_{u}=\left(u\left(t_{1}\right), \ldots, u\left(t_{s}\right)\right) \in \mathbb{R}^{2 N \times s} .
$$

It holds that $K=X_{u} X_{u}^{*}$. Instead of considering $K \in \mathbb{R}^{2 N \times 2 N}$, the low-dimensional eigenvalue problem

$$
X_{u}^{*} X_{u} v_{j}=\lambda_{j} v_{j}, \quad v_{j} \in \mathbb{R}^{s}, \quad j=1, \ldots, s
$$

for the matrix $X_{u}^{*} X_{u} \in \mathbb{R}^{s \times s}$ is solved in the method of snapshots. The eigenvectors $v_{j}, j=1, \ldots, s$, can be chosen orthonormal and the POD modes are given by

$$
v_{u_{j}}=\frac{1}{\sqrt{\lambda_{j}}} X_{u} v_{j} \in \mathbb{R}^{2 N}, \quad j=1, \ldots, s
$$

3.2 Nonlinear model reduction via DEIM

This section describes how DEIM can be used for nonlinear model reduction. The method is described in [4]. We recapture major parts of this work in a more detailed fashion using our notation and extend it to systems of equations in Section 3.3.

As described in Section 1.3, we consider a system of nonlinear equations resulting from a discretized PDE of the form

$$
\begin{equation*}
A \mathbf{u}^{n}+F\left(\mathbf{u}^{n}\right)=0 \tag{6}
\end{equation*}
$$

where $A \in \mathbb{R}^{2 N \times 2 N}$ is a constant matrix, $\mathbf{u}^{n}=\left[u_{1}^{n}, \ldots, u_{2 N}^{n}\right]^{T} \in \mathbb{R}^{2 N}, \mathbf{u}_{i}:[0, T] \rightarrow \mathbb{R}$, is a solution of the system, $t \in[0, T]$ denotes time and $F=\left[F_{1}\left(\mathbf{u}^{n}\right), \ldots, F_{2 N}\left(\mathbf{u}^{n}\right)\right]^{T}, F_{i}: \Omega \rightarrow \mathbb{R}$, for a continuous bounded domain $\Omega \subset \mathbb{R}^{2 N}$, is a nonlinear function evaluated at \mathbf{u}^{n}. Here, the dimension $2 N$ denotes the number of spatial grid points used for discretization. The corresponding Jacobian of System (6) is given by $A+J\left(\mathbf{u}^{n}\right)$. Since the dimension $2 N$ can be very large, it is useful to approximate the full, high-dimensional system by a low-dimensional system that describes the characteristic dynamic of the original system. As described in Section 3.1.1, we need to construct a POD basis. Let $V_{u} \in \mathbb{R}^{2 N \times n}$ the matrix whose columns are the (orthonormal) POD modes corresponding to the n largest eigenvalues of the correlation matrix. Given the matrix V_{u}, we have the following relation between the solution $\mathbf{u}^{n} \in \mathbb{R}^{2 N}$ of the full system and the solution $\tilde{\mathbf{u}}^{n} \in \mathbb{R}^{n}$ of the reduced one:

$$
\begin{equation*}
\mathbf{u}^{n}=V_{u} \tilde{\mathbf{u}}^{n} \tag{7}
\end{equation*}
$$

Thus, it also holds $V_{u}^{T} \mathbf{u}^{n}=\tilde{\mathbf{u}}^{n}$ for all $t \in[0, T]$. The reduced order system is obtained by multiplying (6) by V_{u}^{T} and inserting (7). Since we aim to apply a Newton method for solving the reduced system, the corresponding Jacobian is needed as well. The reduced order system and the corresponding Jacobian are given by

$$
\begin{align*}
& F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n}\right):=\underbrace{V_{u}^{T} A V_{u}}_{=: \tilde{A} \in \mathbb{R}^{n \times n}} \tilde{\mathbf{u}}^{n}+\underbrace{V_{u}^{T}}_{\in \mathbb{R}^{n \times 2 N}} \underbrace{F\left(V_{u} \tilde{\mathbf{u}}^{n}\right)}_{\in \mathbb{R}^{2 N \times 1}}=0 \tag{8}\\
& J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n}\right):=V_{u}^{T} A V_{u}+\underbrace{V_{u}^{T}}_{\in \mathbb{R}^{n \times 2 N}} \underbrace{J\left(V_{u} \tilde{\mathbf{u}}^{n}\right)}_{\in \mathbb{R}^{2 N \times 2 N}} \underbrace{V_{u}}_{\mathbb{R}^{2 N \times n}}=\tilde{A}+V_{u}^{T} J\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u} . \tag{9}
\end{align*}
$$

Although we have transformed the full system into a system of dimension n, we can see in Equations (8) and (9) that the nonlinear function F and its Jacobian are of dimension $2 N$, i.e. they have the dimension of the high-dimensional system. Thus, these computations are inefficient, in particular because of the fact that we have to evaluate the high-dimensional Jacobian in every Newton iteration. To overcome this problem of high computational costs, DEIM can be used to reduce the number of rows of F that need to be evaluated. We firstly compute the POD basis for the nonlinear function F. This basis can be constructed by applying POD to F evaluated at the given snapshots $\mathbf{u}^{1}, \ldots, \mathbf{u}^{s}$ where s is the number of snapshots. Let m be the dimension of the reduced system and let $v_{F_{1}}, \ldots, v_{F_{m}} \in \mathbb{R}^{2 N}$ be the vectors of the POD basis. Then, the corresponding transformation matrix V_{F} is given by $V_{F}=\left[v_{F_{1}}, \ldots, v_{F_{m}}\right] \in \mathbb{R}^{2 N \times m}$. Now, we construct a matrix $P=\left[e_{p_{1}}, \ldots, e_{p_{m}}\right] \in \mathbb{R}^{2 N \times m}$ where $e_{p_{i}}$ is the p_{i}-th column of the $2 N \times 2 N$-identity matrix. Here, $p_{i}, i=1, \ldots m$, denote the interpolation indices that can be determined by the following algorithm: In this algorithm, the notation $\left[|\rho|, p_{l}\right]=\max |r|$ denotes

```
Algorithm 1 Algorithm for interpolation indices \(p=\left[p_{1}, \ldots, p_{m}\right]^{T} \in \mathbb{R}^{m}\)
Require: \(v_{F_{1}}, \ldots, v_{F_{m}} \in \mathbb{R}^{2 N}\) linearly independent
    \(\left[|\rho|, p_{1}\right]=\max \left|v_{F_{1}}\right|\)
    \(V_{F}=\left[v_{F_{1}}\right], P=\left[e_{p_{1}}\right], p=\left[p_{1}\right]\)
    for \(l=2\) to \(m\) do
        Solve \(\left(P^{T} V_{F}\right) c=P^{T} v_{F_{l}}\) for \(c\)
        \(r=v_{F_{l}}-V_{F} c\)
        \(\left[|\rho|, p_{l}\right]=\max |r|\)
        \(V_{F}:=\left[V_{F}, v_{F_{l}}\right], P:=\left[P, e_{p_{l}}\right], p:=\left[p^{T}, p_{l}\right]^{T}\)
    end for
```

that $|\rho|=\max _{i=1, \ldots, 2 N}\left|r_{i}\right|=\left|r_{p_{l}}\right|$ and p_{l} is the smallest index assuming the maximum of $|r|$. One can show that the following approximation holds for the nonlinear function F :

$$
F\left(V_{u} \tilde{\mathbf{u}}^{n}\right) \approx V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right)
$$

Hence, we obtain the approximations for the nonlinear term $V_{u}^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right)$ in Equation 88 and its Jacobian $V_{u}^{T} J\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u}$, denoted by $\tilde{F}\left(\tilde{\mathbf{u}}^{n}\right)$ and $\tilde{J}\left(\tilde{\mathbf{u}}^{n}\right)$:

$$
\begin{align*}
\tilde{F}\left(\tilde{\mathbf{u}}^{n}\right) & :=V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right) \approx V_{u}^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right. \tag{10}\\
\tilde{J}\left(\tilde{\mathbf{u}}^{n}\right) & :=V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} J\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u} \approx V_{u}^{T} J\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u} \tag{11}
\end{align*}
$$

Since F in \tilde{F} and J in \tilde{J} are multiplied on the left by P^{T} whose rows are unit vectors, F and J only need to be evaluated in m distinguished rows p_{i}. By inserting Equations 10 and 111 into Equations (8) and (9) we obtain the approximations:

$$
\begin{align*}
& F_{\text {Newtoo }}\left(\tilde{\mathbf{u}}^{n}\right) \approx V_{u}^{T} A V_{u} \tilde{\mathbf{u}}^{n}+V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} F\left(V_{u} \tilde{\mathbf{u}}^{n}\right) \stackrel{!}{=} 0 \tag{12}\\
& J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n}\right) \approx V_{u}^{T} A V_{u}+V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} J\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u} \tag{13}
\end{align*}
$$

Note that these equations describe the entire reduced system consisting of the linear term and an approximation of the nonlinear function. The solution $\tilde{\mathbf{u}}^{n}$ for the reduced system can be computed
with the standard Newton method, given in Equation (14), using the reduced system formulation in Equation (12) and the corresponding Jacobian in Equation (13):

$$
\text { Solve } \begin{align*}
J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{k, n}\right) \Delta \tilde{\mathbf{u}}^{k, n} & =-F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{k, n}\right) \text { for } \Delta \tilde{\mathbf{u}}^{k, n} \tag{14a}\\
\tilde{\mathbf{u}}^{k+1, n} & =\tilde{\mathbf{u}}^{k, n}+\Delta \tilde{\mathbf{u}}^{k, n} \tag{14b}
\end{align*}
$$

until a sufficiently accurate solution $\tilde{\mathbf{u}}^{n}$ is reached
The solution of the full (i. e. the original) system \mathbf{u}^{n} after n time steps can easily be computed using the transformation in Equation (7).

3.3 Nonlinear model reduction via DEIM for systems of equations

The derivations given in [4] are applicable to PDE systems if the reduced basis is determined for the full coupled discretization. However, as each equation of the PDE system may show different properties and dynamics, we apply MOR for PDE systems by determining a POD basis for each equation separately. In this case, the approach in [4] needs to be extended which is shown in this section.

Consider a discretized system of the form

$$
F(\mathbf{y}, \mathbf{z})=\binom{F_{1}(\mathbf{y}, \mathbf{z})}{F_{2}(\mathbf{y}, \mathbf{z})}=\underline{0}
$$

where \mathbf{y} and z are the unknowns.
As before, we need to distinguish between linear and nonlinear terms. Thus, it holds

$$
F_{1}(\mathbf{y}, \mathbf{z})=G_{11}(\mathbf{y}, \mathbf{z})+G_{12}(\mathbf{y}, \mathbf{z}) \quad \text { and } \quad F_{2}(\mathbf{y}, \mathbf{z})=G_{21}(\mathbf{y}, \mathbf{z})+G_{22}(\mathbf{y}, \mathbf{z})
$$

with G_{11}, G_{21} nonlinear and G_{12}, G_{22} linear functions. Hence, we obtain:

$$
F(\mathbf{y}, \mathbf{z})=\binom{F_{1}(\mathbf{y}, \mathbf{z})}{F_{2}(\mathbf{y}, \mathbf{z})}=\binom{G_{11}(\mathbf{y}, \mathbf{z})+G_{12}(\mathbf{y}, \mathbf{z})}{G_{21}(\mathbf{y}, \mathbf{z})+G_{22}(\mathbf{y}, \mathbf{z})}=\underbrace{\binom{G_{11}(\mathbf{y}, \mathbf{z})}{G_{21}(\mathbf{y}, \mathbf{z})}}_{\tilde{F}_{1}(\mathbf{y}, \mathbf{z})}+\underbrace{\binom{G_{12}(\mathbf{y}, \mathbf{z})}{G_{22}(\mathbf{y}, \mathbf{z})}}_{\tilde{F}_{2}(\mathbf{y}, \mathbf{z})}
$$

where $\tilde{F}_{1}(\mathbf{y}, \mathbf{z})=\binom{G_{11}(\mathbf{y}, \mathbf{z})}{G_{21}(\mathbf{y}, \mathbf{z})}$ is nonlinear and $\tilde{F}_{2}(\mathbf{y}, \mathbf{z})=\binom{G_{12}(\mathbf{y}, \mathbf{z})}{G_{22}(\mathbf{y}, \mathbf{z})}$ is linear.
Let $\mathbf{u}=[\mathbf{y}, \mathbf{z}]^{T}$ be the solution of the full system $F(\mathbf{y}, \mathbf{z})=\underline{0}$. As described in Section 3.2, u can be used in order to compute the POD basis as well as the interpolation indices. Thus, we construct the matrices $V_{1}, V_{F 1}$ and P_{1} for the solution y by evaluating F_{1} at the given snapshots.
Analogously, the matrices $V_{2}, V_{F 2}$ and P_{2} are constructed for \mathbf{z}. Hence, the reduced system that needs to be solved is given by

$$
\binom{V_{1}^{T} V_{F 1}\left(P_{1}^{T} V_{F 1}\right)^{-1} P_{1}^{T} G_{11}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)+V_{1}^{T} G_{12}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)}{V_{2}^{T} V_{F 2}\left(P_{2}^{T} V_{F 2}\right)^{-1} P_{2}^{T} G_{21}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)+V_{2}^{T} G_{22}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)}=\underline{0}
$$

where $\tilde{\mathbf{u}}=[\tilde{\mathbf{y}}, \tilde{\mathbf{z}}]^{T}$ is the solution of the reduced system. This can be written in the following way:

$$
\begin{array}{r}
\left(\begin{array}{cc}
V_{1}^{T} & 0 \\
0 & V_{2}^{T}
\end{array}\right)\left(\begin{array}{cc}
V_{F 1} & 0 \\
0 & V_{F 2}
\end{array}\right)\left(\begin{array}{cc}
\left(P_{1}^{T} V_{F 1}\right)^{-1} & 0 \\
0 & \left(P_{2}^{T} V_{F 2}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
P_{1}^{T} & 0 \\
0 & P_{2}^{T}
\end{array}\right)\binom{G_{11}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)}{G_{21}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)} \\
+\left(\begin{array}{cc}
V_{1}^{T} & 0 \\
0 & V_{2}^{T}
\end{array}\right)\binom{G_{12}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)}{G_{22}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)}=\underline{0}
\end{array}
$$

Simplifying yields:

$$
\begin{array}{r}
\left(\begin{array}{cc}
V_{1}^{T} & 0 \\
0 & V_{2}^{T}
\end{array}\right)\left(\begin{array}{cc}
V_{F 1} & 0 \\
0 & V_{F 2}
\end{array}\right)\left(\left(\begin{array}{cc}
P_{1}^{T} & 0 \\
0 & P_{2}^{T}
\end{array}\right)\left(\begin{array}{cc}
V_{F 1} & 0 \\
0 & V_{F 2}
\end{array}\right)\right)^{-1}\left(\begin{array}{cc}
P_{1}^{T} & 0 \\
0 & P_{2}^{T}
\end{array}\right) \tilde{F}_{1}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right) \\
\\
+\left(\begin{array}{cc}
V_{1}^{T} & 0 \\
0 & V_{2}^{T}
\end{array}\right) \tilde{F}_{2}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)=\underline{0}
\end{array}
$$

Hence, we obtain

$$
\begin{equation*}
V^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} \tilde{F}_{1}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)+V^{T} \tilde{F}_{2}\left(V_{1} \tilde{\mathbf{y}}, V_{2} \tilde{\mathbf{z}}\right)=0 \tag{15}
\end{equation*}
$$

where $V:=\left(\begin{array}{cc}V_{1} & 0 \\ 0 & V_{2}\end{array}\right), V_{F}:=\left(\begin{array}{cc}V_{F 1} & 0 \\ 0 & V_{F 2}\end{array}\right)$ and $P:=\left(\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right)$.

3.4 An example: Solving the heat equation with nonlinear coefficients

As a simple example leading towards the actual problem, we want to solve in Section 4 , we apply MOR to the scalar heat equation with a nonlinear coefficient and later, in Section 3.4.3, to a system of such coupled heat equations.

3.4.1 Description of the problem

In the following, we consider the one-dimensional heat equation given by

$$
\frac{\partial u}{\partial t}=\lambda(u) \frac{\partial^{2} u}{\partial x^{2}}
$$

as in [9], where u is the temperature. Since the temperature u depends on space and time, $u(x, t)$ denotes the temperature at position x and time t. In our simulations, we consider the time interval $(0,30]$ and a spatial range $[0,1]$. Besides, we assume the boundary conditions to be the following:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(0, t)=q(t) \text { with } q(t)= \begin{cases}1, & t<10 \\
0, & t \geq 10\end{cases} \\
& \frac{\partial u}{\partial x}(1, t)=0
\end{aligned}
$$

The initial condition is set as $u(x, 0)=1$. The spatial distance between two discretization points Δx is assumed to be 0.01 and Δt denotes the size of one time step. By discretizing the PDE, we obtain:

$$
\begin{equation*}
\frac{\mathbf{u}_{P}^{n+1}-\mathbf{u}_{P}^{n}}{\Delta t} \Delta x=\lambda(\mathbf{u})\left(\frac{\mathbf{u}_{E}^{n+1}-\mathbf{u}_{P}^{n+1}}{\Delta x}-\frac{\mathbf{u}_{P}^{n+1}-\mathbf{u}_{W}^{n+1}}{\Delta x}\right) \tag{16}
\end{equation*}
$$

This can be transformed into an equation of the form

$$
\begin{equation*}
F\left(\mathbf{u}^{n}\right)=0 \tag{17}
\end{equation*}
$$

where \mathbf{u}^{n} is a vector whose component \mathbf{u}_{i}^{n} denotes the temperature at discretization point i at time t.

Figure 1:Comparison of the temperature computed in the full (top) and in the reduced system (bottom). The POD basis was of dimension $1, \lambda(\mathbf{u})=0.01$.

Firstly, we assume $\lambda(\mathbf{u})$ to be constant for all \mathbf{u}, e. g. $\lambda(\mathbf{u})=0.01$. Thus, Equation 16) and therewith Equation (17) are linear. Hence, Equation (17) can easily be solved for all time events t. After computing the temperature \mathbf{u} in the full system, the corresponding reduced system can be solved by using the snapshots, obtained from the full system, and by applying POD (cp. Section 3.1.1. The solution strongly depends on the chosen relative information content since it is responsible for the size of the chosen POD basis. Figures 1 and 2 show the solutions for the full system by applying POD with a POD basis of dimension 1 and of dimension 4. As expected the results for the POD basis of dimension 4 are much better and they are very similar to the results computed directly for the full system.

As a simple nonlinear case, we assume that $\lambda(\mathbf{u})$ is non-constant, i. e. $\lambda(\mathbf{u})=0.01 \mathbf{u}$. Hence, the system that needs to be solved becomes nonlinear. The function F in Equation (17) can be written

Introduction to POD.DEIM for nonlinear PDE systems

- Temperature for $\mathrm{t}=4.5$
Temperature for $\mathrm{t}=6.75$
Temperature for $\mathrm{t}=9.0$
Temperature for $\mathrm{t}=11.25$
Temperature for $\mathrm{t}=13.5$
Temperature for $\mathrm{t}=15.75$
- Temperature for $\mathrm{t}=18.0$
Temperature for $\mathrm{t}=20.25$
Temperature for $\mathrm{t}=22.5$
Temperature for $\mathrm{t}=27.0$

----- Temperature for $\mathrm{t}=4.5$
Temperature for $\mathrm{t}=6.75$
Temperature for $\mathrm{t}=9.0$
-- Temperature for $\mathrm{t}=11.25$
- Temperature for $\mathrm{t}=13.5$
Temperature for $\mathrm{t}=15.75$
Temperature for $\mathrm{t}=18.0$
Temperature for $\mathrm{t}=20.25$
Temperature for $\mathrm{t}=22.5$
Temperature for $\mathrm{t}=27.0$

Figure 2:Comparison of the temperature computed in the full (top) and in the reduced system (bottom). The PODbasis was of dimension $4, \lambda(\mathbf{u})=0.01$.

Figure 3:Comparison of the temperature computed in the full (top) and in the reduced system (bottom), $\lambda(\mathbf{u})=0.01 \mathbf{u}$.
as

$$
\begin{equation*}
F\left(\mathbf{u}^{n}\right)=F_{1}\left(\mathbf{u}^{n}\right)+F_{2}\left(\mathbf{u}^{n}\right)=0 \tag{18}
\end{equation*}
$$

where F_{1} contains the nonlinear terms (i. e. all terms of F depending on the function $\lambda(\mathbf{u})$) and F_{2} the linear terms. In order to solve Equation 18 for certain times t, Newton's Method can be applied. As discussed earlier, it is often useful to solve a low-dimensional reduced system instead of solving the corresponding original system. Hence, we firstly compute the POD modes for the given snapshots by solving an eigenvalue problem as described in Sections 3.1.1 and 3.1.3. Then, we choose the dimension n of the reduced basis such that the relative information content of the reduced and the full system is larger than a given bound and the matrix V_{u} consisting of the POD modes corresponding to the n largest eigenvalues can be constructed. Analogously, another POD basis is computed for F_{1}, evaluated in the given snapshots, where F_{1} denotes the nonlinear terms of function F. The corresponding matrix is called V_{F}. Then, the algorithm in Section 3.2 is applied in order to compute the interpolation indices and therewith the matrix P. By Equation (12), we obtain the following approximation for the heat equation and the corresponding Jacobian:

$$
\begin{align*}
& F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n}\right)\left.\approx V_{u}^{T} F_{2}\left(V_{u} \tilde{\mathbf{u}}^{n}\right)+V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} F_{1}\left(V_{u} \tilde{\mathbf{u}}^{n}\right)\right) \stackrel{!}{=} 0 \tag{19}\\
& J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n}\right) \approx V_{u}^{T} J_{F_{2}}\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u}+V_{u}^{T} V_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} J_{F_{1}}\left(V_{u} \tilde{\mathbf{u}}^{n}\right) V_{u} \tag{20}
\end{align*}
$$

The initial condition of the solution $\tilde{\mathbf{u}}$ of 19 is given by $\tilde{\mathbf{u}}(0)=V_{u}^{T} \mathbf{u}(0)$. Then, the solution can be computed by using Equation (20) as well as the initial condition and by applying Newton's Method that is formulated in 14. The solution of the full system is obtained from the solution of the reduced system for all time events t by using the transformation $\mathbf{u}^{n}=V_{u} \tilde{\mathbf{u}}^{n}$. The results for the temperature computed in the full and the reduced system are displayed in Figure 3 .

3.4.2 Remarks

Our simulations have shown that it is necessary to distinguish between a linear and a nonlinear term instead of just evaluating F consisting of linear and nonlinear terms. This is of great importance for the computation of the POD basis for the nonlinear terms of F. Figure 4 shows the results for the case that the linear terms as well as the nonlinear terms are used for constructing the POD basis.

3.4.3 Solving a system of two coupled heat equations

In the following, we consider a system of equations of the form

$$
\begin{equation*}
\frac{\partial}{\partial t}\binom{y(x, t)}{z(x, t)}=\binom{\lambda_{1}(y(x, t), z(x, t)) \frac{\partial^{2} y(x, t)}{\partial x^{2}}}{\lambda_{2}(y(x, t), z(x, t)) \frac{\partial^{2} z(x, t)}{\partial x^{2}}} \tag{21}
\end{equation*}
$$

Discretizing yields

Figure 4:Comparison of the temperature computed in the full (top) and in the reduced system (bottom). No distinction between linear and nonlinear terms was used, $\lambda(u)=0.01 u$.

One can write the system of the form

$$
\begin{equation*}
F(\mathbf{y}, \mathbf{z})=\binom{F_{1}(\mathbf{y}, \mathbf{z})}{F_{2}(\mathbf{y}, \mathbf{z})}=\underline{0} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}(\mathbf{y})=\frac{\mathbf{y}^{k, n+1}-\mathbf{y}^{k, n}}{\Delta t} \Delta x-\lambda_{1}\left(\mathbf{y}^{k, n+1}, \mathbf{z}^{k, n+1}\right)\left(\frac{\mathbf{y}^{k+1, n+1}-\mathbf{y}^{k, n+1}}{\Delta x}-\frac{\mathbf{y}^{k, n+1}-\mathbf{y}^{k-1, n+1}}{\Delta x}\right) \\
& F_{2}(\mathbf{z})=\frac{\mathbf{z}^{k, n+1}-\mathbf{z}^{k, n}}{\Delta t} \Delta x-\lambda_{2}\left(\mathbf{y}^{k, n+1}, \mathbf{z}^{k, n+1}\right)\left(\frac{\mathbf{z}^{k+1, n+1}-\mathbf{z}^{k, n+1}}{\Delta x}-\frac{\mathbf{z}^{k, n+1}-\mathbf{z}^{k-1, n+1}}{\Delta x}\right) .
\end{aligned}
$$

Now, the system of equations can be solved via discrete empirical interpolation as described in Section 3.3

Setting $\lambda_{1}(\mathbf{y})=0.01 \mathbf{y}$ and $\lambda_{2}(\mathbf{z})=0.01 \mathbf{z}$ results in a decoupled system. Therefore, the equations can be solved independently from each other. We obtain the same results for \mathbf{y} and z since the same functions for λ_{1} and λ_{2} have been used. Besides, the results for solving a system of two equations in the full and the reduced system are very similar as expected. The results are displayed in Figure 5 .

In a next step, the more general problem of a coupled system should be solved. Thus, the function F consists of $2 N$ components and the corresponding Jacobian is a $2 N \times 2 N$-matrix. The reduced

Introduction to POD,DEIM for nonlinear PDE systems

Temperature for $\mathrm{t}=4.5$ Temperature for $t=6.75$ Temperature for $t=9.0$ Temperature for $t=11.25$ Temperature for $t=13.5$ Temperature for $t=15.75$ Temperature for $\mathrm{t}=18.0$ Temperature for $t=20.25$ Temperature for $t=22.5$ Temperature for $\mathrm{t}=27.0$

Figure 5:Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the first component on the left and the second on the right ($\lambda_{1}(\mathbf{y})=0.01 \mathbf{y}, \lambda_{2}(\mathbf{z})=0.01 \mathbf{z}$)
system that needs to be solved is given by 15 where the components of \tilde{F}_{1} and \tilde{F}_{2} might depend on the temperatures \mathbf{y} and \mathbf{z}. The POD bases V_{1} and $V_{F_{1}}$ for system 1 as well as V_{2} and $V_{F_{2}}$ for system 2 can be computed separately from each other. The matrices P_{1} and P_{2} can be obtained by the algorithm in Section 3.2. Note that the indices for interpolation of the second system, i. e. the components of vector P_{2}, need to be shifted by N which corresponds to the definition of the blockdiagonal matrix P with matrices P_{1} and P_{2} as diagonal blocks because the i-th unit vector in P_{2} corresponds to the $(N+i)$-th unit vector in P. By doing so, it is guaranteed that the correct components of the function \tilde{F}_{1} are evaluated.

We set $\lambda_{1}(\mathbf{y})=0.01 \mathbf{y}$ and $\lambda_{2}(\mathbf{z})=0.03 \mathbf{z}$, so the system is still decoupled. Figure 6 shows the results for the temperature computed for systems 1 and 2 in the full and the reduced system using the approach for systems of equations as described in Section 3.3. For solving the coupled system with $\lambda_{1}(\mathbf{z})=0.01 \mathbf{z}, \lambda_{2}(\mathbf{y})=0.03 \mathbf{y}$, the results are displayed in Figure 7. For both simulations the values of the temperature for systems 1 and 2 computed for the full and the reduced system are very similar. Besides, one can see that the temperature of system 1 in the first simulation is slightly smaller than the temperature of system 1 in the second simulation whereas the temperature of system 2 in the first simulation is slightly larger than the corresponding temperature in the second simulation. This corresponds to the intuition: The constant in λ_{1} is smaller than the one of λ_{2} and thus the temperature of system 1 is smaller than the temperature of system 2 in general. Hence, the change of the dependence of λ results in a slightly changed total temperature.

4 POD-DEIM for the microscopic model in BEST

Using the method described in Section 3.3, we describe the details of applying an MOR method based on POD and DEIM to the model given in [1, Pg. 139]. It is essentially of the form:

$$
\begin{align*}
\frac{\partial c}{\partial t}-\nabla \cdot(\alpha(c, \phi) \nabla c+\beta(c, \phi) \nabla \phi) & =0 \tag{23a}\\
-\nabla \cdot(\gamma(c, \phi) \nabla c+\delta(c, \phi) \nabla \phi) & =0 \tag{23b}
\end{align*}
$$

with different functions for $\alpha, \beta, \gamma, \delta$ in the different domains anode, cathode and electrolyte of a Li-ion battery.

The finite volume discretization of the full system is described in detail in [2]. We repeat it only in symbolic form here where we refer to the parts of the discretization corresponding to the terms in System (23). A method based on POD and DEIM has been exemplified for an one-dimensional mesoscopic model of the equations in [5]. We extend the approaches to the microscopic model and a three-dimensional discretization.

POD-DEIM for the microscopic model in BEST

Figure 6:Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the first component on the left and the second on the right $\left(\lambda_{1}(y)=0.01 y, \lambda_{2}(z)=0.03 z\right)$

POD-DEIM for the microscopic model in BEST

Figure 7: Comparison of the temperature computed for a system of equations in the full (top) and in the reduced (bottom) case with the first component on the left and the second on the right $\left(\lambda_{1}(z)=0.01 z, \lambda_{2}(y)=0.03 y\right)$

4.1 Newton's Method for the full system

Assuming a finite volume discretization of System (23) on N finite volumes, we write the discretized nonlinear system of equations as

$$
F(\mathbf{u})=0, \quad \mathbf{u}=\binom{\mathbf{c}}{\boldsymbol{\phi}} \in \mathbb{R}^{2 N}
$$

where $F(\mathbf{u}) \in \mathbb{R}^{2 N}$ and $\mathbf{c}, \phi \in \mathbb{R}^{N}$.
Let $F_{\alpha, \beta}(\mathbf{u}) \in \mathbb{R}^{N}$ denote the discretization of the term in System 23 that is a function of the partial derivative of β with respect to α. Hence, the term $\frac{\partial c}{\partial t}$ in 23 can be discretized by

$$
\begin{equation*}
F_{t, c}\left(\mathbf{u}^{n+1}\right)=F_{t, c}\left(\mathbf{c}^{n+1}, \phi^{n+1}\right):=\frac{1}{\Delta t} V\left(\mathbf{c}^{n+1}-\mathbf{c}^{n}\right) \tag{24}
\end{equation*}
$$

where $V \in \mathbb{R}^{N \times N}$ is a diagonal matrix with the cell volumes V_{i} on the diagonal, i. e.

$$
V=\left(\begin{array}{lll}
V_{1} & & \\
& \ddots & \\
& & V_{N}
\end{array}\right)
$$

Analogously, we proceed for the other terms in System (23) and we obtain a discretized system, separated into terms according to the terms of System (23):

$$
\begin{equation*}
F(\mathbf{u})=\binom{F_{t, c}(\mathbf{u})+F_{x, c, c}(\mathbf{u})+F_{x, c, \phi}(\mathbf{u})}{F_{x, \phi, c}(\mathbf{u})+F_{x, \phi, \phi}(\mathbf{u})} \tag{25}
\end{equation*}
$$

Note that the term $F_{t, c}$ in (25) is a linear function. All the other terms F_{*} in Equation (25) might be nonlinear due to the definition of the system before discretization, given in (23). Thus, F can be written in the following form by using Equation (24):

$$
\begin{align*}
F(\mathbf{u}) & =\binom{F_{t, c}(\mathbf{u})}{0}+\binom{F_{x, c, c}(\mathbf{u})+F_{x, c, \phi}(\mathbf{u})}{F_{x, \phi, c}(\mathbf{u})+F_{x, \phi, \phi}(\mathbf{u})} \\
& =\binom{\frac{1}{\Delta t} V\left(\mathbf{c}^{n+1}-\mathbf{c}^{n}\right)}{0}+\binom{F_{x, c, c}(\mathbf{u})+F_{x, c, \phi}(\mathbf{u})}{F_{x, \phi, c}(\mathbf{u})+F_{x, \phi, \phi}(\mathbf{u})} \tag{26}\\
& =\frac{1}{\Delta t} M\left(\mathbf{u}^{n+1}-\mathbf{u}^{n}\right)+\binom{F_{x, c, c}(\mathbf{u})+F_{x, c, \phi}(\mathbf{u})}{F_{x, \phi, c}(\mathbf{u})+F_{x, \phi, \phi}(\mathbf{u})}
\end{align*}
$$

where the matrix $M \in \mathbb{R}^{2 N \times 2 N}$ is defined by

$$
M:=\left(\begin{array}{ll}
V & 0 \tag{27}\\
0 & 0
\end{array}\right) .
$$

Thus, the full system is given by

$$
F\left(\mathbf{u}^{n+1}\right)=F_{t}\left(\mathbf{u}^{n+1}\right)+F_{x}\left(\mathbf{u}^{n+1}\right)=\frac{1}{\Delta t} M\left(\mathbf{u}^{n+1}-\mathbf{u}^{n}\right)+F_{x}\left(\mathbf{u}^{n+1}\right)
$$

POD-DEIM for the microscopic
model in BEST
where F_{t} is a linear and F_{x} is a nonlinear function with

$$
\begin{equation*}
F_{x}(\mathbf{u}):=\binom{F_{x, c, c}(\mathbf{u})+F_{x, c, \phi}(\mathbf{u})}{F_{x, \phi, c}(\mathbf{u})+F_{x, \phi, \phi}(\mathbf{u})} . \tag{28}
\end{equation*}
$$

By definition of F in Equation 25 we obtain

$$
F\left(\mathbf{u}^{k, n+1}\right)=\binom{F_{t, c}\left(\mathbf{u}^{k, n+1}\right)+F_{x, c, c}\left(\mathbf{u}^{k, n+1}\right)+F_{x, c, \phi}\left(\mathbf{u}^{k, n+1}\right)}{F_{x, \phi, c}\left(\mathbf{u}^{k, n+1}\right)+F_{x, \phi, \phi}\left(\mathbf{u}^{k, n+1}\right)}
$$

and thus, the corresponding Jacobian $J\left(\mathbf{u}^{k, n+1}\right) \in \mathbb{R}^{2 N \times 2 N}$ can be computed by

$$
\begin{align*}
J\left(\mathbf{u}^{k, n+1}\right)= & \binom{\frac{\partial F_{t, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}}+\frac{\partial F_{x, c, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}}+\frac{\partial F_{x, c, \phi}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}}}{\frac{\partial F_{x, \phi, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}}+\frac{\partial F_{x, \phi, \phi}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}}} \\
= & \binom{\left.\frac{\partial F_{t, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{c}^{k, n+1}}+\frac{\partial F_{t, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \phi^{k, n+1}}\right)+}{0} \tag{29}\\
& \left(\begin{array}{c}
\frac{\partial F_{x, c, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{c}^{k, n+1}}+\frac{\partial F_{x, c, \phi}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{c}^{k, n+1}} \\
\frac{\partial F_{x, \phi, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{c}^{k, n+1}}+\frac{\partial F_{x, \phi, \phi}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{c}^{k, n+1}}
\end{array} \frac{\partial F_{x, c, c}\left(\mathbf{u}^{k, n+1}\right)}{\partial \boldsymbol{\phi}^{k, n+1}}+\frac{\partial F_{x, c, \phi}\left(\mathbf{u}^{k, n+1}\right)}{\partial \phi^{k, n+1}}\right) \\
& \left.\frac{\partial \phi^{k, n+1}}{}\right)
\end{align*}
$$

Where $\frac{\partial F_{*}\left(\mathbf{u}^{k, n+1}\right)}{\partial \mathbf{u}^{k, n+1}} \in \mathbb{R}^{N \times 2 N}$.
Furthermore, we assume the existence of an initial condition for c and ϕ, given by

$$
\mathbf{u}^{0}=\theta
$$

for a given vector $\theta \in \mathbb{R}^{N}$. Newton's Method can then be applied, given by the following algorithm:

```
Algorithm 2 Algorithm: Newton's Method in the full system
    Let \(\mathbf{u}^{k, n+1} \in \mathbb{R}^{2 N}, J(\mathbf{u}) \in \mathbb{R}^{2 N \times 2 N}\)
    Solve
    \(J\left(\mathbf{u}^{k, n+1}\right) \Delta \mathbf{u}^{k, n+1}=-F\left(\mathbf{u}^{k, n+1}\right)\)
    \(\mathbf{u}^{k+1, n+1}:=\mathbf{u}^{k, n+1}+\Delta \mathbf{u}^{k, n+1}\)
    until solution \(\mathbf{u}^{n+1}\) is found.
```


4.2 Newton's Method for the reduced system

The structure of Equation 28, where parts of a single equation are separated, extends the structures given in Section 3.2. Hence in this Section we extend the derivation of the Newton's Method for the reduced system initially given in Equation 10. The extension becomes apparent in the transformation and interpolation matrices in Equations (31) and 33.

POD-DEIM for the microscopic
model in BEST

The reduced system is fully solved in \mathbb{R}^{n} instead of $\mathbb{R}^{2 N}$. The solutions in \mathbb{R}^{n} of the reduced space are denoted by $\tilde{\mathbf{u}}$ and the corresponding transformation matrix for transformations between the full and the reduced system is given by V_{u}.

Let the initial condition $\mathbf{u}^{0}=\theta$ with $\theta \in \mathbb{R}^{N}$ be given. We aim to compute the solution \mathbf{u}^{n+1} of the full system after $n+1$ time steps that can be obtained from the solution $\tilde{\mathbf{u}}^{n+1}$ of the reduced system after $n+1$ time steps because it holds $\mathbf{u}^{n+1}=V_{u} \tilde{\mathbf{u}}^{n+1}$. Since $\mathbf{u}=V_{u} \tilde{\mathbf{u}}, \mathbf{u} \in \mathbb{R}^{2 N}, V_{u} \in \mathbb{R}^{2 N \times n}, \tilde{\mathbf{u}} \in \mathbb{R}^{n}$, the relation $\mathbf{u}^{0}=V_{u} \tilde{\mathbf{u}}^{0}$ implies that $\tilde{\mathbf{u}}^{0}=V_{u}^{T} \mathbf{u}^{0}$ as it holds $V_{u}^{T} \mathbf{u}=V_{u}^{T} V_{u} \tilde{\mathbf{u}}=I \tilde{\mathbf{u}}=\tilde{\mathbf{u}}$. This is the first preparing step for the computations within the reduced system where some more transformation matrices are needed. The reduced system to be solved can be approximated by the following equation:

$$
\begin{equation*}
F_{\text {Newton }}(\tilde{\mathbf{u}})=0 \tag{30}
\end{equation*}
$$

with $\tilde{\mathbf{u}}^{k, n+1} \in \mathbb{R}^{n}$ and $F_{\text {Newton }}(\tilde{\mathbf{u}}) \in \mathbb{R}^{n}$.
The function $F_{\text {Newton }}$ can be obtained from F as described in Section 3.2 where the matrix $A \in \mathbb{R}^{2 N \times 2 N}$ is given by

$$
A:=\frac{1}{\Delta t} M
$$

and $M \in \mathbb{R}^{2 N \times 2 N}$ is given by 27 .
Let V_{u} be the transformation matrix created from the solution $\mathbf{u}=[\mathbf{c}, \boldsymbol{\phi}]^{T}$:

$$
V_{u}=\left(\begin{array}{cc}
V_{u c} & 0 \\
0 & V_{u \phi}
\end{array}\right) \in \mathbb{R}^{2 N \times n}
$$

where $V_{u_{c}} \in \mathbb{R}^{N \times n_{c}}$ is obtained from \mathbf{c} and $V_{u \phi} \in \mathbb{R}^{N \times n_{\phi}}$ from ϕ with $n_{c}+n_{\phi}=n$.
Next, we construct the interpolation matrix V_{F} for DEIM given by

$$
V_{F}=\left(\begin{array}{cccc}
V_{F c, c} & 0 & 0 & 0 \tag{31}\\
0 & V_{F c, \phi} & 0 & 0 \\
0 & 0 & V_{F \phi, c} & 0 \\
0 & 0 & 0 & V_{F \phi, \phi}
\end{array}\right) \in \mathbb{R}^{4 N \times m}
$$

where $V_{F c, c} \in \mathbb{R}^{N \times m_{c, c}}, \ldots, V_{F \phi, \phi} \in \mathbb{R}^{N \times m_{\phi, \phi}}$. Here, the matrices $V_{F \alpha, \beta}$ are obtained by applying POD to $F_{x, \alpha, \beta}$ evaluated at snapshots. Thus, we construct the interpolation matrix by creating interpolation matrices for each nonlinear term in F separately. Note that $m_{c, c}+\ldots+m_{\phi, \phi}=m$.

For the separate multiplication of all terms of Equation (28) with the interpolation matrices, the dimension of F_{x} is elevated from $\mathbb{R}^{2 N}$ to $\mathbb{R}^{4 N}$. Hence, in Equation [35), the separate interpolation of the terms in each equation needs to be summed again. This will be achieved by a dimensionwise-modified version of V_{F} which we call \hat{V}_{F}.

$$
\hat{V}_{F}=\left(\begin{array}{cccc}
V_{F c, c} & V_{F c, \phi} & 0 & 0 \tag{32}\\
0 & 0 & V_{F \phi, c} & V_{F \phi, \phi}
\end{array}\right) \in \mathbb{R}^{2 N \times m}
$$

POD-DEIM for the microscopic
model in BEST

The matrix P consisting of unit vectors corresponding to the interpolation point index set is:

$$
P=\left(\begin{array}{cccc}
P_{c, c} & 0 & 0 & 0 \tag{33}\\
0 & P_{c, \phi} & 0 & 0 \\
0 & 0 & P_{\phi, c} & 0 \\
0 & 0 & 0 & P_{\phi, \phi}
\end{array}\right) \in \mathbb{R}^{4 N \times m}
$$

with $P_{\alpha, \beta} \in \mathbb{R}^{N \times m_{\alpha, \beta}}$.
As $P^{T} V_{F}$ can be precomputed in the offline stage, let $C:=P^{T} V_{F} \in \mathbb{R}^{m \times m}$ for ease of notation.

$$
C:=\left(\begin{array}{cccc}
C_{c, c} & & & \tag{34}\\
& C_{c, \phi} & & \\
& & C_{\phi, c} & \\
& & & C_{\phi, \phi}
\end{array}\right) \in \mathbb{R}^{m \times m}
$$

where

$$
C_{c, c} \in \mathbb{R}^{m_{c, c} \times m_{c, c}}, \ldots, C_{\phi, \phi} \in \mathbb{R}^{m_{\phi, \phi} \times m_{\phi, \phi}}
$$

After constructing $V_{u} \in \mathbb{R}^{2 N \times n}, V_{F} \in \mathbb{R}^{4 N \times m}$ and $P \in \mathbb{R}^{4 N \times m}$, an approximation of $F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n+1}\right) \in \mathbb{R}^{n}$, describing the reduced system, can be computed. Using Equation (8) and inserting the approximation of the nonlinear term in 10 yields:

$$
\begin{align*}
F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n+1}\right): & =V_{u}^{T} F_{t}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)+V_{u}^{T} F_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right) \\
& \approx V_{u}^{T} F_{t}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)+V_{u}^{T} \hat{V}_{F}\left(P^{T} V_{F}\right)^{-1} P^{T} F_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right) \tag{35}\\
& =\frac{1}{\Delta t} V_{u}^{T} M V_{u}\left(\tilde{\mathbf{u}}^{n+1}-\tilde{\mathbf{u}}^{n}\right)+V_{u}^{T} \hat{V}_{F} C^{-1} \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)
\end{align*}
$$

where $\tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right):=P^{T} F_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right) \in \mathbb{R}^{m}$. This corresponds to Equation 12 in the basic POD DEIM derivation. Again, the approximation makes computations more efficient since only certain rows of F_{x} need to be evaluated.

Note that the way we solve the reduced system for the heat equation is completely analogous to solving the more general system above. Equation (19) corresponds to Equation (35) where $\frac{1}{\Delta t} V_{u}^{T} M V_{u}\left(\tilde{\mathbf{u}}^{n+1}-\tilde{\mathbf{u}}^{n}\right)$ is the linear term for the reduced system.

Let $J_{\text {Newton }}$ with $J_{\text {Newton }}(\tilde{\mathbf{u}}) \in \mathbb{R}^{n \times n}$ denote the Jacobian corresponding to $F_{\text {Newton }}$. It can be approximated by:

$$
\begin{align*}
J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{n+1}\right) & \approx \frac{1}{\Delta t} V_{u}^{T} M V_{u}+V_{u}^{T} \hat{V}_{F}\left(P^{T} V_{F}\right)^{-1} \frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)}{\partial \tilde{\mathbf{u}}^{n+1}} \\
& =\frac{1}{\Delta t} V_{u}^{T} M V_{u}+V_{u}^{T} \hat{V}_{F}\left(P^{T} V_{F}\right)^{-1}\left(\begin{array}{c}
\frac{\partial \tilde{F}_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)}{\partial \tilde{\mathbf{u}}^{n+1}} \\
\vdots \\
\frac{\partial \tilde{F}_{x, \phi, \phi}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)}{\partial \tilde{\mathbf{u}}^{n+1}}
\end{array}\right) \tag{36}
\end{align*}
$$

where

$$
\frac{\partial \tilde{F}_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)}{\partial \tilde{\mathbf{u}}^{n+1}} \in \mathbb{R}^{m_{c, c} \times n}, \ldots, \frac{\partial \tilde{F}_{x, \phi, \phi}\left(V_{u} \tilde{\mathbf{u}}^{n+1}\right)}{\partial \tilde{\mathbf{u}}^{n+1}} \in \mathbb{R}^{m_{\phi, \phi} \times n}
$$

Then, the reduced system, given in Equation (30), can be solved with Newton's Method:

```
Algorithm 3 Algorithm: Newton's Method in the reduced system
    Solve
    \(J_{\text {Newton }}\left(\tilde{\mathbf{u}}^{k, n+1}\right) \Delta \tilde{\mathbf{u}}^{k, n+1}=-F_{\text {Newton }}\left(\tilde{\mathbf{u}}^{k, n+1}\right)\)
    \(\tilde{\mathbf{u}}^{k+1, n+1}:=\tilde{\mathbf{u}}^{k, n+1}+\Delta \tilde{\mathbf{u}}^{k, n+1}\)
    until the solution \(\tilde{\mathbf{u}}^{n+1}\) is found.
```


4.3 Computation of the input argument, the nonlinear function and the Jacobian in the reduced system

For ease of reading $V_{u} \tilde{\mathbf{u}}^{n+1}$ is denoted by $V_{u} \tilde{\mathbf{u}}$ throughout this section. Since the computation of $V_{u} \tilde{\mathbf{u}} \in \mathbb{R}^{2 N}$ is very inefficient $V_{u} \tilde{\mathbf{u}}$ should never be fully computed. Besides, $V_{u} \tilde{\mathbf{u}}$ is the only input of $F_{\text {Newton }}$ and $J_{\text {Newton }}$ where $J_{\text {Newton }} \in \mathbb{R}^{n \times n}$ is a sparse matrix. Thus, it suffices to compute $V_{u} \tilde{\mathbf{u}}$ only for the discretization point i and its neighbors.

Before discussing this in more detail, let us firstly look at \tilde{F}_{x} and the corresponding Jacobian \tilde{J}_{x} more closely:

$$
\left.\tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)=\left(\begin{array}{c}
F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, c, 1}} \tag{37}\\
\vdots \\
F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, c, m}} \\
F_{x, c, \phi}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, \phi, 1}} \\
\vdots \\
F_{x, c, \phi}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, \phi, m_{c, \phi}}} \\
\vdots \\
F_{x, \phi, \phi}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{\phi, \phi, 1}} \\
\vdots \\
F_{x, \phi, \phi}\left(V_{u} \tilde{\mathbf{u}}\right)_{i \phi, \phi, m_{\phi, \phi}}
\end{array}\right\} m_{c, c}, m_{c, \phi}, m_{\phi, \phi}\right) \in \mathbb{R}^{m}
$$

So $\tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)$ is the original F_{x}, evaluated at $V_{u} \tilde{\mathbf{u}}$ and only certain points $i_{c, c, 1}, \ldots, i_{c, c, m_{c, c}} \in I_{c, c}$ are picked. \tilde{J}_{x} can be created in the same manner. It is given by:

$$
\left.\tilde{J}_{x}:=\frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}=\left(\begin{array}{c}
{\left[\frac{\partial F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot V_{u}\right]_{i_{c, c, 1}, \ldots, i_{c, c, m_{c, c}}}} \tag{38}
\end{array}\right\} m_{c, c} \vdots_{\left[\frac{\partial F_{x, \phi, \phi}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot V_{u}\right]_{i_{c, c, 1}, \ldots, i_{c, c, m_{c, c}}}}^{\vdots} m_{\phi, \phi}\right) \in \mathbb{R}^{m \times n}
$$

because we obtain by chain rule with $\mathbf{u}=V_{u} \tilde{\mathbf{u}}$:

$$
\frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}=\frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot \frac{\partial \mathbf{u}}{\partial \tilde{\mathbf{u}}}=\frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot V_{u}
$$

4.4 Efficient computation of the nonlinear function and the Jacobian

In this section, the efficient computation of
(1) the nonlinear function $\left[F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)\right]_{i_{c, c, 1}, \ldots i_{c, c, m_{c, c}}}$ and
(2) the Jacobian $\left[\frac{\partial F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot V_{u}\right]_{i_{c, c, 1}, \ldots i_{c, c, m_{c, c}}}$
are discussed.

4.4.1 Ad (1): Nonlinear function

It holds

$$
\left[F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)\right]_{i_{c, c, 1}, \ldots i_{c, c, m_{c, c}}}=\left(\begin{array}{c}
F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, c, 1}} \tag{39}\\
\vdots \\
F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)_{i_{c, c, m_{c, c}}}
\end{array}\right)
$$

meaning that we need to pick out the j-th entries of $F_{x, c, c}$, computed at $V_{u} \tilde{\mathbf{u}}$, with $j=i_{c, c, 1}, \ldots, i_{c, c, m_{c, c}}$. Because of the underlying finite volume discretization stencil these values only depend on certain entries of $V_{u} \tilde{\mathbf{u}}$, namely those at the center node j and its neighbors for both variables \mathbf{c} and ϕ of the system.

Thus, we define

$$
\begin{equation*}
\tilde{V}_{u} \tilde{\mathbf{u}}_{j}:=\left[V_{u} \tilde{\mathbf{u}}\right]_{\mathcal{N}_{j}=\left\{j, j+N, j_{E}, j_{E}+N, \ldots\right\}} \tag{40}
\end{equation*}
$$

using only the indices in \mathcal{N}_{j} which exist due to boundaries etc.
We also have:

$$
\begin{equation*}
\left[V_{u} \tilde{\mathbf{u}}\right]_{\mathcal{N}_{j}}=\left[V_{u}\right]_{\mathcal{N}_{j}} \tilde{\mathbf{u}} \tag{41}
\end{equation*}
$$

where $\left[V_{u}\right]_{\mathcal{N}_{j}} \in \mathbb{R}^{\mathcal{N}_{j} \times n}$ is the matrix consisting only of those rows of V_{u} with indices in \mathcal{N}_{j}. Hence, $V_{u} \tilde{\mathbf{u}}_{j}$ as input for $F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)_{j}$ can be computed with very little cost by

$$
\begin{equation*}
V_{u} \tilde{\mathbf{u}}_{j}=\sum_{l \in \mathcal{N}_{j}}\left[V_{u} \tilde{\mathbf{u}}_{j}\right]_{l} \cdot e_{l} \tag{42}
\end{equation*}
$$

i. e. putting the entries of $V_{u} \tilde{\mathbf{u}}_{j}$ into the right indices of the full vector $V_{u} \tilde{\mathbf{u}}$ and we can use the original discretization functions. This can be done for every $j \in\left\{i_{\left.c, c, 1, \ldots, i_{c, c, m_{c, c}}\right\} \text {. The matrices }}\right.$ $\left[V_{u}\right]_{\mathcal{N}_{j}}=: V_{u j}$ can and should be precomputed for all $j \in I_{c, c} \cup I_{c, \phi} \cup I_{\phi, c} \cup I_{\phi, \phi} . \tilde{F}$ is then built by writing all such computed entries of F in a column.

4.4.2 Ad (2): Jacobian

For preparing the input argument $V_{u} \tilde{\mathbf{u}}$ of

$$
\left[\frac{\partial F_{x, c, c}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}}\right]_{i_{c, c, 1}, \ldots i_{c, c, m_{c, c}}}
$$

the method is identical to the one in ad 1. Again, we use the precomputed small matrices $V_{u j}$ and the original discretization functions. The multiplication with V_{u} is then straightforward and can directly be done for each entry j of \tilde{J} separately. We denote

$$
\begin{equation*}
\frac{\partial \tilde{F}_{x}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}=\left[\frac{\partial \tilde{F}_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}\right]_{q_{1}, q_{2} \in\{c, \boldsymbol{\phi}\}} \tag{43}
\end{equation*}
$$

Now, we describe the computation of

$$
\frac{\partial \tilde{F}_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}
$$

which is

$$
\begin{equation*}
\frac{\partial F_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \mathbf{u}} \cdot V_{u} \tag{44}
\end{equation*}
$$

Step 1 Assume $V_{u j}$ has been created for each $j \in I_{q_{1}, q_{2}}$.

Step 2 For each $j \in I_{q_{1}, q_{2}}$
(1) Create input $V_{u} \tilde{\mathbf{u}}_{j}$ by the rule in Equation 42

POD-DEIM for the microscopic
model in BEST
(2) Evaluate the j-th row of Equation using input $V_{u} \tilde{\mathbf{u}}_{j}$ and get

$$
\begin{equation*}
\left[\frac{\partial F_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}_{j}\right)}{\partial \mathbf{u}}\right]_{j} \tag{45}
\end{equation*}
$$

(3) Multiply only the \mathcal{N}_{j}-th (see Equation 40) columns of Equation (45) with $V_{u j}=\left[V_{u}\right]_{\mathcal{N}_{j}}$ to obtain the correct matrix row of $\frac{\partial \tilde{F}_{x}}{\partial \tilde{\mathbf{u}}}$:

$$
\left[\frac{\partial \tilde{F}_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}\right)}{\partial \tilde{\mathbf{u}}}\right]_{r}=\left[\frac{\partial F_{x, q_{1}, q_{2}}\left(V_{u} \tilde{\mathbf{u}}_{j}\right)}{\partial \mathbf{u}}\right]_{j, \mathcal{N}_{j}} \cdot V_{u j}
$$

for the r-th entry j of $\left\{i_{c, c, 1}, \ldots, i_{c, c, m_{c, c}}\right\}$

4.5 Numerical results

4.5.1 Pseudo-3D test problem

In this section, we present some numerical results obtained with BEST. We restrict ourselves to a pseudo-3D test problem whose geometry is actually of dimension one due to periodicity and symmetry of the geometry.

Geometry For the Pseudo-3D case, the total size of the battery is given by $18 \cdot 10^{-3} \mathrm{~cm} \times 7 \cdot 10^{-3} \mathrm{~cm} \times 7 \cdot 10^{-3} \mathrm{~cm}$. Since the geometry should be very easy, both cathode and anode are set as $3 \cdot 10^{-3} \mathrm{~cm} \times 5 \cdot 10^{-3} \mathrm{~cm} \times 5 \cdot 10^{-3} \mathrm{~cm}$ and the separator between cathode and anode has a size of $4 \cdot 10^{-3} \mathrm{~cm} \times 5 \cdot 10^{-3} \mathrm{~cm} \times 5 \cdot 10^{-3} \mathrm{~cm}$, as illustrated in Figure 8 .

In the following, lineouts through the center of different variables are displayed, i. e. the y - and z-component are assumed to be constantly $2.5 \cdot 10^{-3} \mathrm{~cm}$ whereas the concentration and the potential are shown as functions of the x-component.

Figure 8:Geometry of the Pseudo-3D case. The geometry is made up of five domains: the current collector (leftmost and rightmost), the anode (left, blue), the cathode (right,turquoise) and the separator (transparent between anode and cathode)

Parameters The current density is set as $0.001 \mathrm{C}=0.0000190329 \mathrm{~A} / \mathrm{cm}^{2}$ and the total time is set as 205.000 s. Besides, it is important to set a suitable time step. In Figure 91, the concentration is plotted as a function of the x-coordinate using time steps 500 s and 9.000 s . Although 9.000 s is a very large time step, the results for the concentration are acceptable.

Figure 9:Pseudo-3D case: Concentration subject to time steps 500 s and 9.000 s for a full simulation

Results For the simulations in this section, we use Version 11 of BEST. The concentration in anode, cathode and electrolyte is computed separately for the full and the reduced system by applying POD to the three subdomains independent of each other. Furthermore, it is useful to compare the cell-potential as functions of time for a full and a reduced simulation. There results are displayed in Figure 10

Figure 10:Pseudo-3D case: Left: Concentration plotted against time for a full and a POD simulation (time step: 500 s , output interval:
500 s). Right: Cell potential for a full and a reduced simulation (time step: 500 s, output interval: 500 s) using Version 11

5 Conclusion

We have shown the applicability of our method based on POD and DEIM for a complex coupled nonlinear PDE system resulting from the modeling of Li-ion battery charge transport. Determining a reduced basis for a simple geometry is possible. The solution, approximating the full system to the desired accuracy, can be found by applying a reduced Newton method. The possibility of solving the model with this MOR method on more complicated geometries requires more research on the careful choice and separation of the nonlinear terms used in the DEIM.

References

[1] A. Latz and J. Zausch. Thermodynamic consistent transport theory of Li-ion batteries. Journal of Power Sources, 196(6):3296-3302, 2011.
[2] P. Popov, Y. Vutov, O. Iliev, and S. Margenov. Finite volume discretization of equations describing nonlinear diffusion in Li-lon batteries. Technical Report 191, Fraunhofer ITWM, 2010.
[3] G. B. Less, J. H. Seo, S. Han, A. M. Sastry, J. Zausch, A. Latz, S. Schmidt, C. Wieser, D. Kehrwald, and S. Fell. Micro-scale modeling of Li-lon batteries: Parameterization and
validation. Journal of The Electrochemical Society, 159(6):A697-A704, 2012.
[4] D. C. Sorensen S. Chaturantabut. Nonlinear model reduction via discrete empirical interpolation. SIAM, 32(5):2737-2764, 2010.
[5] O. lliev, A. Latz, J. Zausch, and S. Zhang. An overview on the usage of some model reduction approaches for simulations of li-ion transport in batteries. Technical Report 214, Fraunhofer ITWM, 2012.
[6] S. Schmidt. On numerical simulation of granular flow. PhD thesis, Technische Universität Kaiserslautern, July 2009.
[7] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Patera. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9):667-672, November 2004.
[8] R. Pinnau. Model Reduction via Proper Orthogonal Decomposition, chapter Model Reduction via Proper Orthogonal Decomposition, pages 95-109. Springer, 2008.
[9] F. Chinesta, A. Ammar, A. Leygue, and R. Keunings. An overview of the proper generalized decomposition with applications in computational rheology. Journal of Non-Newtonian Fluid Mechanics, 166(11):578-592, 2011.

Published reports of the Fraunhofer ITWM

The PDF-files of the following reports are available under:
www.itwm.fraunhofer.de/presse-und-publikationen/

1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for Compressible Flows
(19 pages, 1998)
2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application of Hilbert Transform and Multi-Hypothesis Testing
Keywords: Hilbert transform, damage diagnosis, Kalman filtering, non-linear dynamics
(23 pages, 1998)
3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic MultiHypothesis Algorithms: Application to Rotating Machinery
Keywords: Robust reliability, convex models, Kalman filtering, multi-hypothesis diagnosis, rotating machinery, crack diagnosis
(24 pages, 1998)
4. F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer in Glass Cooling Processes
(23 pages, 1998)
5. A. Klar, R. Wegener

A hierarchy of models for multilane vehicular traffic
Part I: Modeling
(23 pages, 1998)
Part II: Numerical and stochastic investigations (17 pages, 1998)
6. A. Klar, N. Siedow

Boundary Layers and Domain Decomposition for Radiative Heat Transfer and Diffusion Equations: Applications to Glass Manu-
facturing Processes
(24 pages, 1998)
7. I. Choquet

Heterogeneous catalysis modelling and numerical simulation in rarified gas flows Part I: Coverage locally at equilibrium (24 pages, 1998)
8. J. Ohser, B. Steinbach, C. Lang

Efficient Texture Analysis of Binary Images (17 pages, 1998)
9. J. Orlik

Homogenization for viscoelasticity of the integral type with aging and shrinkage (20 pages, 1998)
10. J. Mohring

Helmholtz Resonators with Large Aperture (21 pages, 1998)
11. H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs (15 pages, 1998)
12. H. W. Hamacher, K.-H. Küfer Inverse radiation therapy planning a multiple objective optimisation approach (14 pages, 1999)
13. C. Lang, J. Ohser, R. Hilfer On the Analysis of Spatial Binary Images (20 pages, 1999)
14. M. Junk

On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes
(24 pages, 1999)
15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations
(20 pages, 1999)
16. H. Neunzert

Mathematics as a Key to Key Technologies (39 pages, 1999)
17. J. Ohser, K. Sandau

Considerations about the Estimation of the Size Distribution in Wicksell's Corpuscle Problem
(18 pages, 1999)
18. E. Carrizosa, H. W. Hamacher, R. Klein, S. Nickel

Solving nonconvex planar location problems by finite dominating sets
Keywords: Continuous Location, Polyhedral Gauges, Finite Dominating Sets, Approximation, Sandwich AIgorithm, Greedy Algorithm
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures
Keywords: Distortion measure, human visual system (26 pages, 2000)
20. H. W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn

Polyhedral Properties of the Uncapacitated Multiple Allocation Hub Location Problem Keywords: integer programming, hub location, facility location, valid inequalities, facets, branch and cut (21 pages, 2000)
21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public Transportation
(30 pages, 2001)
22. D. Hietel, M. Junk, R. Keck, D. Teleaga The Finite-Volume-Particle Method for Conservation Laws
(16 pages, 2001)
23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo, S. Nickel

Location Software and Interface with GIS

and Supply Chain Management

Keywords: facility location, software development, geographical information systems, supply chain management
(48 pages, 2001)
24. H. W. Hamacher, S. A. Tjandra Mathematical Modelling of Evacuation Problems: A State of Art
(44 pages, 2001)
25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson equation
Keywords: Poisson equation, Least squares method, Grid free method
(19 pages, 2001)
26. T. Götz, H. Rave, D. Reinel-Bitzer, K. Steiner, H. Tiemeier

Simulation of the fiber spinning process
Keywords: Melt spinning, fiber model, Lattice
Boltzmann, CFD
(19 pages, 2001)
27. A. Zemitis

On interaction of a liquid film with an obstacle
Keywords: impinging jets, liquid film, models, numeri-
cal solution, shape
(22 pages, 2001)

28. I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to model the filling of expanding cavities by Bingham Fluids
Keywords: Generalized LBE, free-surface phenomena, interface boundary conditions, filling processes, Bingham viscoplastic model, regularized models (22 pages, 2001)
29. H. Neunzert
»Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann"
Vortrag anlässlich der Verleihung des
Akademiepreises des Landes Rheinland-
Pfalz am 21.11.2001
Keywords: Lehre, Forschung, angewandte Mathematik, Mehrskalenanalyse, Strömungsmechanik (18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projection method for simulations of the incompressible Navier-Stokes equations
Keywords: Incompressible Navier-Stokes equations, Meshfree method, Projection method, Particle scheme, Least squares approximation
AMS subject classification: 76D05, 76M28
(25 pages, 2001)
31. R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption

or Income Streams

Keywords: Portfolio optimisation, stochastic control, HJB equation, discretisation of control problems
(23 pages, 2002)
32. M. Krekel

Optimal portfolios with a loan dependent credit spread
Keywords: Portfolio optimisation, stochastic control, HJB equation, credit spread, log utility, power utility, non-linear wealth dynamics
(25 pages, 2002)

33. J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on the choice of adjacency in homogeneous lattices Keywords: image analysis, Euler number, neighborhod relationships, cuboidal lattice
(32 pages, 2002)
34. I. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in Casting
Keywords: Lattice Boltzmann models; free-surface phenomena; interface boundary conditions; filling processes; injection molding; volume of fluid method; interface boundary conditions; advection-schemes; up-wind-schemes
(54 pages, 2002)
35. M. Günther, A. Klar, T. Materne, R. Wegener

Multivalued fundamental diagrams and stop and go waves for continuum traffic equations Keywords: traffic flow, macroscopic equations, kinetic derivation, multivalued fundamental diagram, stop and go waves, phase transitions
(25 pages, 2002)
36. S. Feldmann, P. Lang, D. Prätzel-Wolters Parameter influence on the zeros of network determinants
Keywords: Networks, Equicofactor matrix polynomials, Realization theory, Matrix perturbation theory
(30 pages, 2002)
37. K. Koch, J. Ohser, K. Schladitz

Spectral theory for random closed sets and estimating the covariance via frequency space
Keywords: Random set, Bartlett spectrum, fast Fourier transform, power spectrum
(28 pages, 2002)
38. D. d'Humières, I. Ginzburg

Multi-reflection boundary conditions for lattice Boltzmann models
Keywords: lattice Boltzmann equation, boudary condistions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)
39. R. Korn

Elementare Finanzmathematik
Keywords: Finanzmathematik, Aktien, Optionen, Port-folio-Optimierung, Börse, Lehrerweiterbildung, Mathematikunterricht
(98 pages, 2002)
40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:
Models and Complexity Results
Keywords: Complexity theory, Integer programming,
Assigment, Logistics
(19 pages, 2002)
41. J. Linn

On the frame-invariant description of the
phase space of the Folgar-Tucker equation Key words: fiber orientation, Folgar-Tucker equation, injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel

A Multi-Objective Evolutionary Algorithm for Scheduling and Inspection Planning in Software Development Projects
Key words: multiple objective programming, project management and scheduling, software development, evolutionary algorithms, efficient set (29 pages, 2003)
43. T. Bortfeld, K.-H. Küfer, M. Monz, A. Scherrer, C. Thieke, H. Trinkaus Intensity-Modulated Radiotherapy - A Large Scale Multi-Criteria Programming Problem

Keywords: multiple criteria optimization, representative systems of Pareto solutions, adaptive triangulation, clustering and disaggregation techniques, visualization of Pareto solutions, medical physics, external beam radiotherapy planning, intensity modulated radiotherapy (31 pages, 2003)

44. T. Halfmann, T. Wichmann
 Overview of Symbolic Methods in Industrial
 Analog Circuit Design

Keywords: CAD, automated analog circuit design, symbolic analysis, computer algebra, behavioral modeling, system simulation, circuit sizing, macro modeling, dif-ferential-algebraic equations, index
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength and Fatigue Durability Analysis of Composites
Keywords: multiscale structures, asymptotic homogenization, strength, fatigue, singularity, non-local conditions
(14 pages, 2003)
46. P. Domínguez-Marín, P. Hansen, N. Mladenovic, S. Nickel

Heuristic Procedures for Solving the Discrete Ordered Median Problem
Keywords: genetic algorithms, variable neighborhood search, discrete facility location
(31 pages, 2003)
47. N. Boland, P. Domínguez-Marín, S. Nickel, J. Puerto

Exact Procedures for Solving the Discrete Ordered Median Problem
Keywords: discrete location, Integer programming (41 pages, 2003)
48. S. Feldmann, P. Lang Padé-like reduction of stable discrete linear systems preserving their stability
Keywords: Discrete linear systems, model reduction, stability, Hankel matrix, Stein equation
(16 pages, 2003)

49. J. Kallrath, S. Nickel A Polynomial Case of the Batch Presorting

Problem

Keywords: batch presorting problem, online optimization, competetive analysis, polynomial algorithms, logistics (17 pages, 2003)

50. T. Hanne, H. L. Trinkaus

knowCube for MCDM -
Visual and Interactive Support for

Multicriteria Decision Making

Key words: Multicriteria decision making, knowledge management, decision support systems, visual interfaces, interactive navigation, real-life applications. (26 pages, 2003)

51. O. Iliev, V. Laptev

On Numerical Simulation of Flow Through

Oil Filters

Keywords: oil filters, coupled flow in plain and porous media, Navier-Stokes, Brinkman, numerical simulation (8 pages, 2003)
52. W. Dörfler, O. lliev, D. Stoyanov, D. Vassileva On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media
Keywords: Nonlinear multigrid, adaptive refinement, non-Newtonian flow in porous media (17 pages, 2003)
53. S. Kruse

On the Pricing of Forward Starting Options under Stochastic Volatility
Keywords: Option pricing, forward starting options, Heston model, stochastic volatility, cliquet options (11 pages, 2003)

54. O. Iliev, D. Stoyanov

Multigrid - adaptive local refinement solver for incompressible flows
Keywords: Navier-Stokes equations, incompressible
flow, projection-type splitting, SIMPLE, multigrid methods, adaptive local refinement, lid-driven flow in a cavity
(37 pages, 2003)
55. V. Starikovicius

The multiphase flow and heat transfer in porous media
Keywords: Two-phase flow in porous media, various
formulations, global pressure, multiphase mixture mod-
el, numerical simulation
(30 pages, 2003)
56. P. Lang, A. Sarishvili, A. Wirsen

Blocked neural networks for knowledge extraction in the software development process Keywords: Blocked Neural Networks, Nonlinear Regression, Knowledge Extraction, Code Inspection
(21 pages, 2003)
57. H. Knaf, P. Lang, S. Zeiser

Diagnosis aiding in Regulation
Thermography using Fuzzy Logic
Keywords: fuzzy logic, knowledge representation, expert system
(22 pages, 2003)
58. M. T. Melo, S. Nickel, F. Saldanha da Gama Largescale models for dynamic multicommodity capacitated facility location Keywords: supply chain management, strategic planning, dynamic location, modeling
(40 pages, 2003)
59. J. Orlik

Homogenization for contact problems with periodically rough surfaces
Keywords: asymptotic homogenization, contact problems (28 pages, 2004)
60. A. Scherrer, K.-H. Küfer, M. Monz,
F. Alonso, T. Bortfeld

IMRT planning on adaptive volume structures - a significant advance of computational complexity
Keywords: Intensity-modulated radiation therapy (IMRT), inverse treatment planning, adaptive volume structures, hierarchical clustering, local refinement, adaptive clustering, convex programming, mesh generation, multi-grid methods
(24 pages, 2004)
61. D. Kehrwald

Parallel lattice Boltzmann simulation

of complex flows

Keywords: Lattice Boltzmann methods, parallel computing, microstructure simulation, virtual material design, pseudo-plastic fluids, liquid composite moulding (12 pages, 2004)
62. O. Iliev, J. Linn, M. Moog, D. Niedziela, V. Starikovicius

On the Performance of Certain Iterative Solvers for Coupled Systems Arising in Dis-
cretization of Non-Newtonian Flow Equations
Keywords: Performance of iterative solvers, Preconditioners, Non-Newtonian flow
(17 pages, 2004)
63. R. Ciegis, O. Iliev, S. Rief, K. Steiner

On Modelling and Simulation of Different Regimes for Liquid Polymer Moulding
Keywords: Liquid Polymer Moulding, Modelling, Simulation, Infiltration, Front Propagation, non-Newtonian flow in porous media
(43 pages, 2004)
64. T. Hanne, H. Neu

Simulating Human Resources in

Software Development Processes
Keywords: Human resource modeling, software process, productivity, human factors, learning curve (14 pages, 2004)
65. O. Iliev, A. Mikelic, P. Popov

Fluid structure interaction problems in deformable porous media: Toward permeability of deformable porous media
Keywords: fluid-structure interaction, deformable porous media, upscaling, linear elasticity, stokes, finite elements
(28 pages, 2004)
66. F. Gaspar, O. lliev, F. Lisbona, A. Naumovich, P. Vabishchevich

On numerical solution of 1-D poroelasticity equations in a multilayered domain
Keywords: poroelasticity, multilayered material, finite volume discretization, MAC type grid (41 pages, 2004)
67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe Diffraction by image processing and its application in materials science
Keywords: porous microstructure, image analysis, random set, fast Fourier transform, power spectrum,
Bartlett spectrum
(13 pages, 2004)

68. H. Neunzert

Mathematics as a Technology: Challenges

 for the next 10 YearsKeywords: applied mathematics, technology, modelling, simulation, visualization, optimization, glass processing, spinning processes, fiber-fluid interaction, trubulence effects, topological optimization, multicriteria optimization, Uncertainty and Risk, financial mathematics, Malliavin calculus, Monte-Carlo methods, virtual material design, filtration, bio-informatics, system biology (29 pages, 2004)
69. R. Ewing, O. Iliev, R. Lazarov, A. Naumovich On convergence of certain finite difference discretizations for 1D poroelasticity interface problems
Keywords: poroelasticity, multilayered material, finite volume discretizations, MAC type grid, error estimates (26 pages, 2004)
70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva On Efficient Simulation of Non-Newtonian Flow in Saturated Porous Media with a Multigrid Adaptive Refinement Solver Keywords: Nonlinear multigrid, adaptive renement, non-Newtonian in porous media
(25 pages, 2004)
71. J. Kalcsics, S. Nickel, M. Schröder

Towards a Unified Territory Design Approach - Applications, Algorithms and GIS Integration

Keywords: territory desgin, political districting, sales territory alignment, optimization algorithms, Geographical Information Systems
(40 pages, 2005)

72. K. Schladitz, S. Peters, D. Reinel-Bitzer,

 A. Wiegmann, J. OhserDesign of acoustic trim based on geometric modeling and flow simulation for non-woven Keywords: random system of fibers, Poisson line process, flow resistivity, acoustic absorption, Lattice-Boltzmann method, non-woven (21 pages, 2005)
73. V. Rutka, A. Wiegmann

Explicit Jump Immersed Interface Method for virtual material design of the effective elastic moduli of composite materials Keywords: virtual material design, explicit jump immersed interface method, effective elastic moduli, composite materials
(22 pages, 2005)
74. T. Hanne

Eine Übersicht zum Scheduling von Baustellen
Keywords: Projektplanung, Scheduling, Bauplanung,
Bauindustrie
(32 pages, 2005)

75. J. Linn

The Folgar-Tucker Model as a Differetial Algebraic System for Fiber Orientation Calculation
Keywords: fiber orientation, Folgar-Tucker model, invariants, algebraic constraints, phase space, trace stability
(15 pages, 2005)
76. M. Speckert, K. Dreßler, H. Mauch, A. Lion, G. J. Wierda

Simulation eines neuartigen Prüfsystems
für Achserprobungen durch MKS-Model-
lierung einschließlich Regelung
Keywords: virtual test rig, suspension testing, multibody simulation, modeling hexapod test rig, optimization of test rig configuration
(20 pages, 2005)
77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss, F. Alonso, A. S. A. Sultan, Th. Bortfeld, D. Craft, Chr. Thieke

Multicriteria optimization in intensity modulated radiotherapy planning
Keywords: multicriteria optimization, extreme solutions, real-time decision making, adaptive approximation schemes, clustering methods, IMRT planning, reverse engineering
(51 pages, 2005)
78. S. Amstutz, H. Andrä

A new algorithm for topology optimization using a level-set method
Keywords: shape optimization, topology optimization, topological sensitivity, level-set
(22 pages, 2005)
79. N. Ettrich

Generation of surface elevation models for urban drainage simulation
Keywords: Flooding, simulation, urban elevation
models, laser scanning
(22 pages, 2005)
80. H. Andrä, J. Linn, I. Matei, I. Shklyar, K. Steiner, E. Teichmann

OPTCAST - Entwicklung adäquater Strukturoptimierungsverfahren für Gießereien Technischer Bericht (KURZFASSUNG)

Keywords: Topologieoptimierung, Level-Set-Methode, Gießprozesssimulation, Gießtechnische Restriktionen, CAE-Kette zur Strukturoptimierung
(77 pages, 2005)

81. N. Marheineke, R. Wegener Fiber Dynamics in Turbulent Flows
 Part I: General Modeling Framework

Keywords: fiber-fluid interaction; Cosserat rod; turbulence modeling; Kolmogorov's energy spectrum; dou-ble-velocity correlations; differentiable Gaussian fields (20 pages, 2005)

Part II: Specific Taylor Drag

Keywords: flexible fibers; k- ε turbulence model; fi-ber-turbulence interaction scales; air drag; random Gaussian aerodynamic force; white noise; stochastic differential equations; ARMA process
(18 pages, 2005)

82. C. H. Lampert, O. Wirjadi

An Optimal Non-Orthogonal Separation of the Anisotropic Gaussian Convolution Filter Keywords: Anisotropic Gaussian filter, linear filtering, orientation space, nD image processing, separable filters (25 pages, 2005)

83. H. Andrä, D. Stoyanov

Error indicators in the parallel finite element solver for linear elasticity DDFEM Keywords: linear elasticity, finite element method, hierarchical shape functions, domain decom-position, parallel implementation, a posteriori error estimates (21 pages, 2006)
84. M. Schröder, I. Solchenbach

Optimization of Transfer Quality in
Regional Public Transit
Keywords: public transit, transfer quality, quadratic assignment problem
(16 pages, 2006)

85. A. Naumovich, F. J. Gaspar

On a multigrid solver for the three-dimensional Biot poroelasticity system in multilayered domains
Keywords: poroelasticity, interface problem, multigrid, operator-dependent prolongation
(11 pages, 2006)
86. S. Panda, R. Wegener, N. Marheineke

Slender Body Theory for the Dynamics of Curved Viscous Fibers
Keywords: curved viscous fibers; fluid dynamics; NavierStokes equations; free boundary value problem; asymptotic expansions; slender body theory
(14 pages, 2006)

87. E. Ivanov, H. Andrä, A. Kudryavtsev

Domain Decomposition Approach for Automatic Parallel Generation of Tetrahedral Grids Key words: Grid Generation, Unstructured Grid, Delaunay Triangulation, Parallel Programming, Domain Decomposition, Load Balancing
(18 pages, 2006)
88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert, R. Wegener

A Meshfree Method for Simulations of Interactions between Fluids and Flexible Structures
Key words: Meshfree Method, FPM, Fluid Structure Interaction, Sheet of Paper, Dynamical Coupling (16 pages, 2006)
89. R. Ciegis, O. Iliev, V. Starikovicius, K. Steiner Numerical Algorithms for Solving Problems of Multiphase Flows in Porous Media

Keywords: nonlinear algorithms, finite-volume method, software tools, porous media, flows
(16 pages, 2006)
90. D. Niedziela, O. Iliev, A. Latz

On 3D Numerical Simulations of Viscoelastic Fluids
Keywords: non-Newtonian fluids, anisotropic viscosity, integral constitutive equation
(18 pages, 2006)
91. A. Winterfeld

Application of general semi-infinite Programming to Lapidary Cutting Problems
Keywords: large scale optimization, nonlinear programming, general semi-infinite optimization, design centering, clustering
(26 pages, 2006
92. J. Orlik, A. Ostrovska

Space-Time Finite Element Approximation and Numerical Solution of Hereditary Linear Viscoelasticity Problems
Keywords: hereditary viscoelasticity; kern approximation by interpolation; space-time finite element approximation, stability and a priori estimate
(24 pages, 2006)
93. V. Rutka, A. Wiegmann, H. Andrä

EJIIM for Calculation of effective Elastic

Moduli in 3D Linear Elasticity

Keywords: Elliptic PDE, linear elasticity, irregular domain, finite differences, fast solvers, effective elastic moduli
(24 pages, 2006)
94. A. Wiegmann, A. Zemitis

EJ-HEAT: A Fast Explicit Jump Harmonic
Averaging Solver for the Effective Heat Conductivity of Composite Materials
Keywords: Stationary heat equation, effective thermal conductivity, explicit jump, discontinuous coefficients, virtual material design, microstructure simula-
tion, EJ-HEAT
(21 pages, 2006)
95. A. Naumovich

On a finite volume discretization of the three-dimensional Biot poroelasticity system in multilayered domains
Keywords: Biot poroelasticity system, interface problems, finite volume discretization, finite difference method (21 pages, 2006)
96. M. Krekel, J. Wenzel

A unified approach to Credit Default Swaption and Constant Maturity Credit Default

Swap valuation

Keywords: LIBOR market model, credit risk, Credit Default Swaption, Constant Maturity Credit Default Swapmethod
(43 pages, 2006)
97. A. Dreyer

Interval Methods for Analog Circiuts
Keywords: interval arithmetic, analog circuits, tolerance analysis, parametric linear systems, frequency response symbolic analysis, CAD, computer algebra
(36 pages, 2006)
98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler Usage of Simulation for Design and Optimization of Testing
Keywords: Vehicle test rigs, MBS, control, hydraulics, testing philosophy
(14 pages, 2006)
99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert Comparison of the solutions of the elastic and elastoplastic boundary value problems Keywords: Elastic BVP, elastoplastic BVP, variational
inequalities, rate-independency, hysteresis, linear kinematic hardening, stop- and play-operator
(21 pages, 2006)
100. M. Speckert, K. Dreßler, H. Mauch

MBS Simulation of a hexapod based suspension test rig
Keywords: Test rig, MBS simulation, suspension, hydraulics, controlling, design optimization (12 pages, 2006)
101. S. Azizi Sultan, K.-H. Küfer

A dynamic algorithm for beam orientations in multicriteria IMRT planning
Keywords: radiotherapy planning, beam orientation optimization, dynamic approach, evolutionary algorithm, global optimization
(14 pages, 2006)
102. T. Götz, A. Klar, N. Marheineke, R. Wegener A Stochastic Model for the Fiber Lay-down Process in the Nonwoven Production
Keywords: fiber dynamics, stochastic Hamiltonian system, stochastic averaging
(17 pages, 2006)
103. Ph. Süss, K.-H. Küfer

Balancing control and simplicity: a variable aggregation method in intensity modulated radiation therapy planning
Keywords: IMRT planning, variable aggregation, clustering methods
(22 pages, 2006)
104. A. Beaudry, G. Laporte, T. Melo, S. Nickel Dynamic transportation of patients in hospitals
Keywords: in-house hospital transportation, dial-a-ride, dynamic mode, tabu search
(37 pages, 2006)
105. Th. Hanne

Applying multiobjective evolutionary algorithms in industrial projects
Keywords: multiobjective evolutionary algorithms, discrete optimization, continuous optimization, electronic circuit design, semi-infinite programming, scheduling (18 pages, 2006)
106. J. Franke, S. Halim

Wild bootstrap tests for comparing signals and images
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(13 pages, 2007)

107. Z. Drezner, S. Nickel

Solving the ordered one-median problem in the plane
Keywords: planar location, global optimization, ordered median, big triangle small triangle method, bounds, numerical experiments
(21 pages, 2007)
108. Th. Götz, A. Klar, A. Unterreiter, R. Wegener

Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning

Keywords: rotational fiber spinning, viscous fibers, boundary value problem, existence of solutions (11 pages, 2007)

109. Ph. Süss, K.-H. Küfer

Smooth intensity maps and the BortfeldBoyer sequencer
Keywords: probabilistic analysis, intensity modulated radiotherapy treatment (IMRT), IMRT plan application, step-and-shoot sequencing (8 pages, 2007)
110. E. Ivanov, O. Gluchshenko, H. Andrä,
A. Kudryavtsev

Parallel software tool for decomposing and meshing of 3d structures
Keywords: a-priori domain decomposition, unstructured grid, Delaunay mesh generation
(14 pages, 2007)
111. O. lliev, R. Lazarov, J. Willems Numerical study of two-grid preconditioners for 1d elliptic problems with highly oscillating discontinuous coefficients Keywords: two-grid algorithm, oscillating coefficients, preconditioner
(20 pages, 2007)
112. L. Bonilla, T. Götz, A. Klar, N. Marheineke, R. Wegener

Hydrodynamic limit of the Fokker-Planckequation describing fiber lay-down processes
Keywords: stochastic dierential equations, FokkerPlanck equation, asymptotic expansion, OrnsteinUhlenbeck process
(17 pages, 2007)

113. S. Rief

Modeling and simulation of the pressing section of a paper machine
Keywords: paper machine, computational fluid dynamics, porous media
(41 pages, 2007)
114. R. Ciegis, O. lliev, Z. Lakdawala

On parallel numerical algorithms for simulating industrial filtration problems Keywords: Navier-Stokes-Brinkmann equations, finite volume discretization method, SIMPLE, parallel computing, data decomposition method
(24 pages, 2007)
115. N. Marheineke, R. Wegener

Dynamics of curved viscous fibers with surface tension
Keywords: Slender body theory, curved viscous bers with surface tension, free boundary value problem (25 pages, 2007)

116. S. Feth, J. Franke, M. Speckert

Resampling-Methoden zur mse-Korrektur und Anwendungen in der Betriebsfestigkeit Keywords: Weibull, Bootstrap, Maximum-Likelihood, Betriebsfestigkeit
(16 pages, 2007)
117. H. Knaf

Kernel Fisher discriminant functions - a concise and rigorous introduction
Keywords: wild bootstrap test, texture classification, textile quality control, defect detection, kernel estimate, nonparametric regression
(30 pages, 2007)
118. O. Iliev, I. Rybak

On numerical upscaling for flows in heterogeneous porous media
Keywords: numerical upscaling, heterogeneous porous media, single phase flow, Darcy's law, multiscale problem, effective permeability, multipoint flux approxima-
tion, anisotropy
(17 pages, 2007)
119. O. Iliev, I. Rybak

On approximation property of multipoint flux approximation method
Keywords: Multipoint flux approximation, finite volume method, elliptic equation, discontinuous tensor coefficients, anisotropy
(15 pages, 2007)
120. O. Iliev, I. Rybak, J. Willems

On upscaling heat conductivity for a class of industrial problems
Keywords: Multiscale problems, effective heat conductivity, numerical upscaling, domain decomposition (21 pages, 2007)
121. R. Ewing, O. Iliev, R. Lazarov, I. Rybak On two-level preconditioners for flow in porous media
Keywords: Multiscale problem, Darcy's law, single phase flow, anisotropic heterogeneous porous media, numerical upscaling, multigrid, domain decomposition, efficient preconditioner
(18 pages, 2007)
122. M. Brickenstein, A. Dreyer

POLYBORI: A Gröbner basis framework

for Boolean polynomials

Keywords: Gröbner basis, formal verification, Boolean polynomials, algebraic cryptoanalysis, satisfiability
(23 pages, 2007)
123. O. Wirjadi

Survey of 3d image segmentation methods
Keywords: image processing, 3d, image segmentation, binarization
(20 pages, 2007)
124. S. Zeytun, A. Gupta

A Comparative Study of the Vasicek and the
CIR Model of the Short Rate
Keywords: interest rates, Vasicek model, CIR-model, calibration, parameter estimation
(17 pages, 2007)
125. G. Hanselmann, A. Sarishvili

Heterogeneous redundancy in software quality prediction using a hybrid Bayesian approach
Keywords: reliability prediction, fault prediction, nonhomogeneous poisson process, Bayesian model averaging
(17 pages, 2007)
126. V. Maag, M. Berger, A. Winterfeld, K.-H. Küfer
A novel non-linear approach to minimal area rectangular packing
Keywords: rectangular packing, non-overlapping constraints, non-linear optimization, regularization, relaxation
(18 pages, 2007)
127. M. Monz, K.-H. Küfer, T. Bortfeld, C. Thieke Pareto navigation - systematic multi-crite-ria-based IMRT treatment plan determination

Keywords: convex, interactive multi-objective optimization, intensity modulated radiotherapy planning (15 pages, 2007)
128. M. Krause, A. Scherrer

On the role of modeling parameters in IMRT plan optimization
Keywords: intensity-modulated radiotherapy (IMRT), inverse IMRT planning, convex optimization, sensitivity analysis, elasticity, modeling parameters, equivalent uniform dose (EUD)
(18 pages, 2007)
129. A. Wiegmann

Computation of the permeability of porous materials from their microstructure by FFFStokes
Keywords: permeability, numerical homogenization, fast Stokes solver
(24 pages, 2007)
130. T. Melo, S. Nickel, F. Saldanha da Gama

Facility Location and Supply Chain Manage-
ment - A comprehensive review
Keywords: facility location, supply chain management, network design
(54 pages, 2007)
131. T. Hanne, T. Melo, S. Nickel

Bringing robustness to patient flow management through optimized patient transports in hospitals
Keywords: Dial-a-Ride problem, online problem, case study, tabu search, hospital logistics
(23 pages, 2007)
132. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, J. Willems

An efficient approach for upscaling properties of composite materials with high contrast of coefficients
Keywords: effective heat conductivity, permeability of fractured porous media, numerical upscaling, fibrous insulation materials, metal foams
(16 pages, 2008)

133. S. Gelareh, S. Nickel

New approaches to hub location problems in public transport planning
Keywords: integer programming, hub location, transportation, decomposition, heuristic
(25 pages, 2008)
134. G. Thömmes, J. Becker, M. Junk, A. K. Vaikuntam, D. Kehrwald, A. Klar, K. Steiner, A. Wiegmann

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
Keywords: Lattice Boltzmann method, Level Set method, free surface, multiphase flow
(28 pages, 2008)

135. J. Orlik

Homogenization in elasto-plasticity

Keywords: multiscale structures, asymptotic homogenization, nonlinear energy
(40 pages, 2008)
136. J. Almquist, H. Schmidt, P. Lang, J. Deitmer, M. Jirstrand, D. Prätzel-Wolters, H. Becker Determination of interaction between MCT1 and CAll via a mathematical and physiological approach

Keywords: mathematical modeling; model reduction; electrophysiology; pH-sensitive microelectrodes; proton antenna
(20 pages, 2008)
137. E. Savenkov, H. Andrä, O. Iliev An analysis of one regularization approach for solution of pure Neumann problem
Keywords: pure Neumann problem, elasticity, regularization, finite element method, condition number (27 pages, 2008)
138. O. Berman, J. Kalcsics, D. Krass, S. Nickel The ordered gradual covering location problem on a network
Keywords: gradual covering, ordered median function, network location
(32 pages, 2008)

139. S. Gelareh, S. Nickel

Multi-period public transport design: A novel model and solution approaches Keywords: Integer programming, hub location, public transport, multi-period planning, heuristics (31 pages, 2008)
140. T. Melo, S. Nickel, F. Saldanha-da-Gama Network design decisions in supply chain planning
Keywords: supply chain design, integer programming models, location models, heuristics
(20 pages, 2008)
141. C. Lautensack, A. Särkkä, J. Freitag, K. Schladitz

Anisotropy analysis of pressed point processes
Keywords: estimation of compression, isotropy test, nearest neighbour distance, orientation analysis, polar ice, Ripley's K function
(35 pages, 2008)
142. O. Iliev, R. Lazarov, J. Willems

A Graph-Laplacian approach for calculating the effective thermal conductivity of complicated fiber geometries
Keywords: graph laplacian, effective heat conductivity, numerical upscaling, fibrous materials
(14 pages, 2008)
143. J. Linn, T. Stephan, J. Carlsson, R. Bohlin Fast simulation of quasistatic rod deformations for VR applications
Keywords: quasistatic deformations, geometrically exact rod models, variational formulation, energy minimization, finite differences, nonlinear conjugate gradients
(7 pages, 2008)
144. J. Linn, T. Stephan

Simulation of quasistatic deformations using discrete rod models
Keywords: quasistatic deformations, geometrically exact rod models, variational formulation, energy minimization, finite differences, nonlinear conjugate gradients
(9 pages, 2008)
145. J. Marburger, N. Marheineke, R. Pinnau

Adjoint based optimal control using meshless discretizations
Keywords: Mesh-less methods, particle methods, Eule-rian-Lagrangian formulation, optimization strategies, adjoint method, hyperbolic equations
(14 pages, 2008
146. S. Desmettre, J. Gould, A. Szimayer Own-company stockholding and work effort preferences of an unconstrained executive Keywords: optimal portfolio choice, executive compensation
(33 pages, 2008)
147. M. Berger, M. Schröder, K.-H. Küfer

A constraint programming approach for the
two-dimensional rectangular packing prob-
lem with orthogonal orientations
Keywords: rectangular packing, orthogonal orientations non-overlapping constraints, constraint propagation
(13 pages, 2008)
148. K. Schladitz, C. Redenbach, T. Sych, M. Godehardt

Microstructural characterisation of open foams using 3d images
Keywords: virtual material design, image analysis, open foams
(30 pages, 2008)
149. E. Fernández, J. Kalcsics, S. Nickel, R. Ríos-Mercado

A novel territory design model arising in the implementation of the WEEE-Directive Keywords: heuristics, optimization, logistics, recycling (28 pages, 2008)
150. H. Lang, J. Linn

Lagrangian field theory in space-time for geometrically exact Cosserat rods Keywords: Cosserat rods, geometrically exact rods, small strain, large deformation, deformable bodies, Lagrangian field theory, variational calculus (19 pages, 2009)
151. K. Dreßler, M. Speckert, R. Müller, Ch. Weber
Customer loads correlation in truck engineering
Keywords: Customer distribution, safety critical components, quantile estimation, Monte-Carlo methods (11 pages, 2009)
152. H. Lang, K. Dreßler

An improved multiaxial stress-strain correction model for elastic FE postprocessing Keywords: Jiang's model of elastoplasticity, stress-strain correction, parameter identification, automatic differentiation, least-squares optimization, Coleman-Li algorithm
(6 pages, 2009)
153. J. Kalcsics, S. Nickel, M. Schröder

A generic geometric approach to territory design and districting
Keywords: Territory design, districting, combinatorial optimization, heuristics, computational geometry (32 pages, 2009)
154. Th. Fütterer, A. Klar, R. Wegener

An energy conserving numerical scheme for
the dynamics of hyperelastic rods
Keywords: Cosserat rod, hyperealstic, energy conserva-
tion, finite differences
(16 pages, 2009)
155. A. Wiegmann, L. Cheng, E. Glatt, O. Iliev, S. Rief

Design of pleated filters by computer simulations

Keywords: Solid-gas separation, solid-liquid separation, pleated filter, design, simulation
(21 pages, 2009)
156. A. Klar, N. Marheineke, R. Wegener

Hierarchy of mathematical models for production processes of technical textiles Keywords: Fiber-fluid interaction, slender-body theory, turbulence modeling, model reduction, stochastic differential equations, Fokker-Planck equation, asymptotic expansions, parameter identification
(21 pages, 2009)
157. E. Glatt, S. Rief, A. Wiegmann, M. Knefel, E. Wegenke

Structure and pressure drop of real and virtual metal wire meshes
Keywords: metal wire mesh, structure simulation, model calibration, CFD simulation, pressure loss (7 pages, 2009)

158. S. Kruse, M. Müller

Pricing American call options under the assumption of stochastic dividends - An application of the Korn-Rogers model
Keywords: option pricing, American options, dividends, dividend discount model, Black-Scholes model (22 pages, 2009)
159. H. Lang, J. Linn, M. Arnold

Multibody dynamics simulation of geometrically exact Cosserat rods
Keywords: flexible multibody dynamics, large deformations, finite rotations, constrained mechanical systems, structural dynamics
(20 pages, 2009)
160. P. Jung, S. Leyendecker, J. Linn, M. Ortiz Discrete Lagrangian mechanics and geometrically exact Cosserat rods
Keywords: special Cosserat rods, Lagrangian mechanics, Noether's theorem, discrete mechanics, frame-indifference, holonomic constraints
(14 pages, 2009)
161. M. Burger, K. Dreßler, A. Marquardt, M. Speckert

Calculating invariant loads for system simulation in vehicle engineering
Keywords: iterative learning control, optimal control theory, differential algebraic equations (DAEs) (18 pages, 2009)
162. M. Speckert, N. Ruf, K. Dreßler

Undesired drift of multibody models excited by measured accelerations or forces Keywords: multibody simulation, full vehicle model, force-based simulation, drift due to noise (19 pages, 2009)
163. A. Streit, K. Dreßler, M. Speckert, J. Lichter, T. Zenner, P. Bach

Anwendung statistischer Methoden zur Erstellung von Nutzungsprofilen für die Auslegung von Mobilbaggern
Keywords: Nutzungsvielfalt, Kundenbeanspruchung, Bemessungsgrundlagen
(13 pages, 2009)
164. I. Correia, S. Nickel, F. Saldanha-da-Gama The capacitated single-allocation hub location problem revisited: A note on a classical formulation
Keywords: Capacitated Hub Location, MIP formulations (10 pages, 2009)
165. F. Yaneva, T. Grebe, A. Scherrer

An alternative view on global radiotherapy optimization problems
Keywords: radiotherapy planning, path-connected sublevelsets, modified gradient projection method, improving and feasible directions
(14 pages, 2009)
166. J. I. Serna, M. Monz, K.-H. Küfer, C. Thieke Trade-off bounds and their effect in multicriteria IMRT planning
Keywords: trade-off bounds, multi-criteria optimization, IMRT, Pareto surface
(15 pages, 2009)
167. W. Arne, N. Marheineke, A. Meister, R. Wegener
Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes
Keywords: Rotational spinning process, curved viscous fibers, asymptotic Cosserat models, boundary value problem, existence of numerical solutions (18 pages, 2009)
168. T. Melo, S. Nickel, F. Saldanha-da-Gama An LP-rounding heuristic to solve a multiperiod facility relocation problem Keywords: supply chain design, heuristic, linear programming, rounding
(37 pages, 2009)
169. I. Correia, S. Nickel, F. Saldanha-da-Gama Single-allocation hub location problems with capacity choices
Keywords: hub location, capacity decisions, MILP formulations
(27 pages, 2009)

170. S. Acar, K. Natcheva-Acar

A guide on the implementation of the Heath-Jarrow-Morton Two-Factor Gaussian Short Rate Model (HJM-G2++)
Keywords: short rate model, two factor Gaussian,
G2++, option pricing, calibration
(30 pages, 2009)
171. A. Szimayer, G. Dimitroff, S. Lorenz

A parsimonious multi-asset Heston model: calibration and derivative pricing
Keywords: Heston model, multi-asset, option pricing, calibration, correlation
(28 pages, 2009)
172. N. Marheineke, R. Wegener

Modeling and validation of a stochastic drag for fibers in turbulent flows
Keywords: fiber-fluid interactions, long slender fibers, turbulence modelling, aerodynamic drag, dimensional analysis, data interpolation, stochastic partial differential algebraic equation, numerical simulations, experimental validations
(19 pages, 2009)
173. S. Nickel, M. Schröder, J. Steeg

Planning for home health care services
Keywords: home health care, route planning, metaheuristics, constraint programming
(23 pages, 2009)
174. G. Dimitroff, A. Szimayer, A. Wagner

Quanto option pricing in the parsimonious

Heston model

Keywords: Heston model, multi asset, quanto options,
option pricing
(14 pages, 2009) 174. G. Dimitroff, A. Szimayer, A.
Wagner
175. S. Herkt, K. Dreßler, R. Pinnau

Model reduction of nonlinear problems in structural mechanics
Keywords: flexible bodies, FEM, nonlinear model reduction, POD
(13 pages, 2009)
176. M. K. Ahmad, S. Didas, J. Iqbal

Using the Sharp Operator for edge detec-
tion and nonlinear diffusion
Keywords: maximal function, sharp function, image processing, edge detection, nonlinear diffusion
(17 pages, 2009)
177. M. Speckert, N. Ruf, K. Dreßler, R. Müller, C. Weber, S. Weihe

Ein neuer Ansatz zur Ermittlung von Erprobungslasten für sicherheitsrelevante Bauteile
Keywords: sicherheitsrelevante Bauteile, Kundenbeanspruchung, Festigkeitsverteilung, Ausfallwahrschein-
lichkeit, Konfidenz, statistische Unsicherheit, Sicherheitsfaktoren
(16 pages, 2009)

178. J. Jegorovs

Wave based method: new applicability areas
Keywords: Elliptic boundary value problems, inhomogeneous Helmholtz type differential equations in bounded domains, numerical methods, wave based method, uniform B-splines
(10 pages, 2009)
179. H. Lang, M. Arnold

Numerical aspects in the dynamic simulation of geometrically exact rods
Keywords: Kirchhoff and Cosserat rods, geometri-
cally exact rods, deformable bodies, multibody dynamics, artial differential algebraic equations,
method of lines, time integration
(21 pages, 2009)
180. H. Lang

Comparison of quaternionic and rotationfree null space formalisms for multibody dynamics
Keywords: Parametrisation of rotations, differentialalgebraic equations, multibody dynamics, constrained mechanical systems, Lagrangian mechanics (40 pages, 2010)
181. S. Nickel, F. Saldanha-da-Gama, H.-P. Ziegler Stochastic programming approaches for risk aware supply chain network design problems Keywords: Supply Chain Management, multi-stage stochastic programming, financial decisions, risk
(37 pages, 2010)
182. P. Ruckdeschel, N. Horbenko

Robustness properties of estimators in generalized Pareto Models
Keywords: global robustness, local robustness, finite sample breakdown point, generalized Pareto distribution (58 pages, 2010)
183. P. Jung, S. Leyendecker, J. Linn, M. Ortiz A discrete mechanics approach to Cosserat rod theory - Part 1: static equilibria Keywords: Special Cosserat rods; Lagrangian mechanics; Noether's theorem; discrete mechanics; frameindifference; holonomic constraints; variational formuIation
(35 pages, 2010)
184. R. Eymard, G. Printsypar

A proof of convergence of a finite volume scheme for modified steady Richards' equation describing transport processes in the pressing section of a paper machine Keywords: flow in porous media, steady Richards' equation, finite volume methods, convergence of approximate solution
(14 pages, 2010)

85. P. Ruckdesche

Optimally Robust Kalman Filtering
Keywords: robustness, Kalman Filter, innovation outlier, additive outlier
(42 pages, 2010)
186. S. Repke, N. Marheineke, R. Pinnau On adjoint-based optimization of a free surface Stokes flow
Keywords: film casting process, thin films, free surface Stokes flow, optimal control, Lagrange formalism (13 pages, 2010)
187. O. Iliev, R. Lazarov, J. Willems Variational multiscale Finite Element Method for flows in highly porous media Keywords: numerical upscaling, flow in heterogeneous porous media, Brinkman equations, Darcy's law, subgrid approximation, discontinuous Galerkin mixed FEM (21 pages, 2010)
188. S. Desmettre, A. Szimayer

Work effort, consumption, and portfolio selection: When the occupational choice matters
Keywords: portfolio choice, work effort, consumption, occupational choice
(34 pages, 2010)
189. O. Iliev, Z. Lakdawala, V. Starikovicius

On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations
Keywords: Stokes-Brinkman equations, subgrid approach, multiscale problems, numerical upscaling (27 pages, 2010)
190. A. Latz, J. Zausch, O. Iliev

Modeling of species and charge transport in Li-Ion Batteries based on non-equilibrium thermodynamics
Keywords: lithium-ion battery, battery modeling, electrochemical simulation, concentrated electrolyte, ion transport
(8 pages, 2010)
191. P. Popov, Y. Vutov, S. Margenov, O. Iliev Finite volume discretization of equations describing nonlinear diffusion in Li-Ion batteries
Keywords: nonlinear diffusion, finite volume discretization, Newton method, Li-Ion batteries
(9 pages, 2010)
192. W. Arne, N. Marheineke, R. Wegener Asymptotic transition from Cosserat rod to string models for curved viscous inertial jets
Keywords: rotational spinning processes; inertial and viscous-inertial fiber regimes; asymptotic limits; slen-der-body theory; boundary value problems (23 pages, 2010)
193. L. Engelhardt, M. Burger, G. Bitsch

Real-time simulation of multibody-systems for on-board applications

Keywords: multibody system simulation, real-time simulation, on-board simulation, Rosenbrock methods (10 pages, 2010)
194. M. Burger, M. Speckert, K. Dreßler Optimal control methods for the calculation of invariant excitation signals for multibody systems
Keywords: optimal control, optimization, mbs simula-
tion, invariant excitation
(9 pages, 2010)
195. A. Latz, J. Zausch

Thermodynamic consistent transport theory of Li-Ion batteries
Keywords: Li-Ion batteries, nonequilibrium thermodynamics, thermal transport, modeling
(18 pages, 2010)
196. S. Desmettre

Optimal investment for executive
stockholders with exponential utility
Keywords: portfolio choice, executive stockholder,
work effort, exponential utility
(24 pages, 2010)
197. W. Arne, N. Marheineke, J. Schnebele, R. Wegener

Fluid-fiber-interactions in rotational spinning process of glass wool production
Keywords: Rotational spinning process, viscous thermal jets, fluid-fiber-interactions, two-way coupling, slenderbody theory, Cosserat rods, drag models, boundary value problem, continuation method
(20 pages, 2010)
198. A. Klar, J. Maringer, R. Wegener

A 3d model for fiber lay-down in nonwoven production processes
Keywords: fiber dynamics, Fokker-Planck equations, diffusion limits
(15 pages, 2010)
199. Ch. Erlwein, M. Müller

A regime-switching regression model for hedge funds
Keywords: switching regression model, Hedge funds, optimal parameter estimation, filtering
(26 pages, 2011)
200. M. Dalheimer

Power to the people - Das Stromnetz der Zukunft
Keywords: Smart Grid, Stromnetz, Erneuerbare Ener-
gien, Demand-Side Management
(27 pages, 2011)
201. D. Stahl, J. Hauth

PF-MPC: Particle Filter-Model Predictive Control
Keywords: Model Predictive Control, Particle Filter, CSTR, Inverted Pendulum, Nonlinear Systems, Sequential Monte Carlo
(40 pages, 2011)
202. G. Dimitroff, J. de Kock Calibrating and completing the volatility cube in the SABR Model
Keywords: stochastic volatility, SABR, volatility cube, swaption
(12 pages, 2011)
203. J.-P. Kreiss, T. Zangmeister

Quantification of the effectiveness of a safety function in passenger vehicles on the basis of real-world accident data
Keywords: logistic regression, safety function, realworld accident data, statistical modeling
(23 pages, 2011)
204. P. Ruckdeschel, T. Sayer, A. Szimayer

Pricing American options in the Heston model: a close look on incorporating correlation
Keywords: Heston model, American options, moment matching, correlation, tree method
(30 pages, 2011)
205. H. Ackermann, H. Ewe, K.-H. Küfer, M. Schröder

Modeling profit sharing in combinatorial exchanges by network flows
Keywords: Algorithmic game theory, profit sharing, combinatorial exchange, network flows, budget balance, core
(17 pages, 2011)
206. O. Iliev, G. Printsypar, S. Rief

A one-dimensional model of the pressing section of a paper machine including $d y$ namic capillary effects
Keywords: steady modified Richards' equation, finite volume method, dynamic capillary pressure, pressing section of a paper machine
(29 pages, 2011)
207. I. Vecchio, K. Schladitz, M. Godehardt, M. J. Heneka

Geometric characterization of particles in 3d with an application to technical cleanliness Keywords: intrinsic volumes, isoperimetric shape factors, bounding box, elongation, geodesic distance, technical cleanliness
(21 pages, 2011)
208. M. Burger, K. Dreßler, M. Speckert Invariant input loads for full vehicle multibody system simulation
Keywords: multibody systems, full-vehicle simulation, optimal control
(8 pages, 2011)
209. H. Lang, J. Linn, M. Arnold

Multibody dynamics simulation of geometrically exact Cosserat rods
Keywords: flexible multibody dynamics, large deformations, finite rotations, constrained mechanical systems, structural dynamics
(28 pages, 2011)
210. G. Printsypar, R. Ciegis

On convergence of a discrete problem describing transport processes in the pressing section of a paper machine including dynam ic capillary effects: one-dimensional case Keywords: saturated and unsaturated fluid flow in porous media, Richards' approach, dynamic capillary pressure, finite volume methods, convergence of approximate solution
(24 pages, 2011)
211. O. lliev, G. Printsypar, S. Rief

A two-cimensional model of the pressing section of a paper machine including dynamic capillary effects
Keywords: two-phase flow in porous media, steady modified Richards' equation, finite volume method, dynamic capillary pressure, pressing section of a paper machine, multipoint flux approximation
(44 pages, 2012)
212. M. Buck, O. Iliev, H. Andrä

Multiscale finite element coarse spaces for the analysis of linear elastic composites Keywords: linear elasticity, domain decomposition, multiscale finite elements, robust coarse spaces, rigid body modes, discontinuous coefficients
(31 pages, 2012)

213. A. Wagner

Residual demand modeling and application

 to electricity pricingKeywords: residual demand modeling, renewable infeed, wind infeed, solar infeed, electricity demand, German power market, merit-order effect (28 pages, 2012)
214. O. Iliev, A. Latz, J. Zausch, S. Zhang

An overview on the usage of some model reduction approaches for simulations of Liion transport in batteries
Keywords: Li-ion batteries, porous electrode model, model reduction
(21 pages, 2012)
215. C. Zémerli, A. Latz, H. Andrä

Constitutive models for static granular systems and focus to the Jiang-Liu hyperelastic law
Keywords: granular elasticity, constitutive modelling, non-linear finite element method
(33 pages, 2012)
216. T. Gornak, J. L. Guermond, O. Iliev, P. D. Minev

A direction splitting approach for incompressible Brinkmann flow
Keywords: unsteady Navier-Stokes-Brinkman equations, direction splitting algorithms, nuclear reactors safety simulations
(16 pages, 2012)
217. Y. Efendiev, O. Iliev, C. Kronsbein

Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations
Keywords: two phase flow in porous media, uncertainty quantification, multilevel Monte Carlo (28 pages, 2012)

218. J. Linn, H. Lang, A. Tuganov

Geometrically exact Cosserat rods with Kel-vin-Voigt type viscous damping
Keywords: geometrically exact rods, viscous damping, Kelvin-Voigt model, material damping parameters (10 pages, 2012)
219. M. Schulze, S. Dietz, J. Linn, H. Lang, A. Tuganov

Integration of nonlinear models of flexible body deformation in Multibody System Dynamics
Keywords: multibody system dynamics, flexible structures, discrete Cosserat rods, wind turbine rotor blades (10 pages, 2012)
220. C. Weischedel, A. Tuganov, T. Hermansson, J. Linn, M. Wardetzky

Construction of discrete shell models by geometric finite differences
Keywords: geometrically exact shells, discrete differential geometry, rotation-free Kirchhoff model, triangular meshes
(10 pages, 2012)
221. M. Taralov, V. Taralova, P. Popov, O. Iliev, A. Latz, J. Zausch
Report on Finite Element Simulations of Electrochemical Processes in Li-ion Batteries with Thermic Effects
Keywords: Li-ion battery, FEM for nonlinear problems, FEM for discontinuous solutions, Nonlinear diffusion, Nonlinear interface conditions
(40 pages, 2012)
222. A. Scherrer, T. Grebe, F. Yaneva, K.-H. Küfer Interactive DVH-based planning of intensity -modulated radiation therapy (IMRT)
Keywords: intensity-modulated radiation therapy (IMRT), cumulative dose-volume histogram (DVH), interactive IMRT planning, DVH-based planning criteria (22 pages, 2012)
223. S. Frei, H. Andrä, R. Pinnau, O. Tse

An adjoint-based gradient-type algorithm for optimal fiber orientation in fiber-reinforced materials
Keywords: pde constrained optimization, fiberreinforced materials, fiber orientation, linear elasticity, upscaling, adjoint-based optimization, microstructural optimization
(17 pages, 2012)
224. M. Kabel, H. Andrä

Fast numerical computation of precise bounds of effective elastic moduli Keywords: composite materials, numerical homogenization, effective elasticity coefficients, Hashin-Shtrikman bounds, Lippmann-Schwinger equation, FFT (16 pages, 2013)
225. J. Linn, H. Lang, A. Tuganov

Derivation of a viscoelastic constitutive model of Kelvin-Voigt type for Cosserat rods Keywords: geometrically exact rods, viscoelasticity, Kelvin-Voigt model, nonlinear structural dynamics (42 pages, 2013)
226. H. Knaf

Distanzen zwischen Partitionen - zur Anwendung und Theorie
Keywords: Metrik, Partitionenverband, Clusteranalyse, Ergebnisbewertung
(35 pages, 2013)

227. S. Desmettre, R. Korn, F. Th. Seifried

Worst-case consumption-portfolio optimization
Keywords: worst-case, crash, consumption, verification (30 pages, 2013)
228. M. Obermayr, Ch. Vrettos, J. Kleinert, P. Eberhard

A Discrete Element Method for assessing reaction forces in excavation tools Keywords: discrete element method, rolling resistance, cohesionless soil, draft force
(17 pages, 2013)

229. S. Schmidt, L. Kreußer, S. Zhang

POD-DEIM based model order reduction for a three-dimensional microscopic Li-Ion battery model
Keywords: : Model order reduction, nonlinear PDE, POD-DEIM, Li-Ion battery simulation (33 pages, 2013)

