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Stochastic system identification without an a priori chosen
kinetic model—exploring feasible cell regulation with piecewise
linear functions
Martin Hoffmann 1,2 and Jörg Galle3

Kinetic models are at the heart of system identification. A priori chosen rate functions may, however, be unfitting or too restrictive
for complex or previously unanticipated regulation. We applied general purpose piecewise linear functions for stochastic system
identification in one dimension using published flow cytometry data on E.coli and report on identification results for equilibrium
state and dynamic time series. In metabolic labelling experiments during yeast osmotic stress response, we find mRNA production
and degradation to be strongly co-regulated. In addition, mRNA degradation appears overall uncorrelated with mRNA level.
Comparison of different system identification approaches using semi-empirical synthetic data revealed the superiority of single-cell
tracking for parameter identification. Generally, we find that even within restrictive error bounds for deviation from experimental
data, the number of viable regulation types may be large. Indeed, distinct regulation can lead to similar expression behaviour over
time. Our results demonstrate that molecule production and degradation rates may often differ from classical constant, linear or
Michaelis–Menten type kinetics.
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INTRODUCTION
System identification faces three major indeterminacy issues: (i)
true functional equivalence of different regulatory mechanisms; (ii)
apparent functional equivalence; and (iii) relative parameter
insensitivity conferred by mathematical functions. True functional
equivalence is generally limited to an operational range, where
any representative is equally practical. In contrast, apparent
equivalence is linked to actual measurement data. For example,
identifiability depends on the kind of data analysed. As an
illustration, basic molecule birth and death processes1 result in
Poissonian steady state probability distributions for the number of
expressed molecules. These distributions are characterised by a
single parameter: the mean expression ν= α/λ defined by the
production rate α and the molecular degradation constant λ. Thus,
identical steady state distributions can be observed for high and
low levels of molecule production and degradation. Nevertheless,
the distinction between high and low rates can be relevant in
practice, e.g., under limiting cell culture conditions, and requires
direct rate measurement. From frequency distributions of expres-
sion values, parameters influencing scarcely populated regions are
hardly identifiable. Though the same parameters can be
determined using single-cell tracking data if the absolute number
of observed molecule production and degradation events is
sufficiently high.
Choosing the right rate functions can compensate for

incomplete data if the underlying regulation type, i.e., the
qualitative form of production and degradation rates, is known.
Ad hoc selection of specific mathematical functions may other-
wise exclude equivalent or even more appropriate regulation.

Parametric functions generally show different sensitivities for their
individual parameters in different domains. In this respect,
piecewise linear functions are advantageous because their y-set
points influence function values equally if their corresponding x-
set points are equidistant and non-boundary. Notably, piecewise
linear functions can approximate any continuous function,
including classical rate functions. In the following, we explore
further advantages of this approach using published data from
different experimental paradigms.
We start by modelling two experiments by Kashiwagi et al.2 on

the functioning of a synthetic gene regulatory toggle switch in E.
coli. The first experiment shows that the switch is effective only if
proliferation in cell culture is slowed down by an antibiotic.
Otherwise molecular dilution during cell division is dominant and
results in an almost homogeneous population of cells that
maintain only a few molecules. The second experiment in ref. 2

shows that if the vital enzymes GLS-H or DHFR are depleted from
the culturing medium, E.coli is able to activate exactly that branch
of the switch that compensatory produces the required enzyme.
We hypothesised that the engineered bacteria might explore
expression choices of the implanted plasmid by randomly
activating either branch of the switch using a mechanism similar
to what we introduced as noise-driven dynamics before.3–5 In our
simulations, we aimed at validating this hypothesis and employed
general purpose piecewise linear functions6 to minimise bias
through a priori rate function choice. This approach differs from
previous work that featured constant, Michaelis–Menten or Hill
type rates7–10 or introduced step functions comprising only few
discrete states.11
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Employing a second data set of Miller et al.12, we particularly
focused on the regulation of molecule degradation. To the best of
our knowledge, molecule degradation has so far invariably been
modelled by a linear term, i.e., assuming the molecular degrada-
tion coefficient λ to be constant, in system identification studies7–
11,13–15 despite the fact that actively regulated mRNA and protein
degradation, i.e., variable λ, has frequently been reported in the
literature.9,16–34 Thus, we use the data by Miller et al. for a critical
evaluation of the linear degradation term assumption.
In both applications, the range of feasible rate functions able to

generate expression values similar to the experimental data was
rather broad. We thus explored further data types and parameter
identification strategies for their power to narrow down the
feasible parameter range and thus determine model parameters
as uniquely as possible. Direct frequentist evaluation of single-cell
tracking data performed best in this respect.
Our major finding is that a large variety of non-standard

regulation types are consistent with the experimental data. In
particular, production and degradation rates can differ from the
classical constant, linear or Michaelis–Menten type. In order to
access these additional options for cell regulation, we propose to
begin systems identification by applying non-limiting identifica-
tion approaches in general. Recent and comprehensive reviews on
system identification related to this work can be found in refs.13–15

In the following, we model the first and second experiments of
Kashiwagi et al. (fluorescence cytometry data) on E.coli and
reanalyse the metabolic labelling data of Miller et al. on S.
cerevisiae (yeast osmotic stress response). The overt rate
indeterminacy issues encountered during these analyses are
followed-up by the ensuing comparison of different system
identification approaches. Finally, selected virtual treatment
experiments demonstrate precise model identification to be
required for quantitatively assessing treatment effects in practice.
A workflow diagram is provided as Supplementary Figure 2.
Individual steps are detailed in Supplementary Methods 4.

RESULTS
We modelled production (P), degradation (D) and growth (G) rates
by piecewise linear functions parameterised by respectively three
x- and y-set-points (Fig. 1). This allowed to model rate functions

with a maximum or minimum, the latter being a key characteristic
of noise-driven dynamics.3 P and D were limited to a maximum of
12/h12,35–37 while the minimum cell doubling time was set to 2 h
matching the growth data of the second experiment of Kashiwagi
et al.2 and corresponding to a mean growth rate of the modified
bacteria of 0.5·ln(2)/h during overnight culture. We denote by A=P
−D the deterministic and by B=P+D the noise term of the
dynamics (see Methods for details).

Non-homoeostatic regulation can promote noise-driven dynamics
We used the first experiment of Kashiwagi et al.2 to test whether
these data provide any evidence for noise-driven regulation in the
system (Methods). The experiment recorded the expression of two
reporter genes—each integrated into one arm of a synthetic
toggle switch—before and 3 days after growth rate reduction by
the antibiotic nalidixic acid. Both recordings represent equilibrium
states and were pre-processed as described in Supplementary
Figure 3. y-set points of production and degradation rates (six
parameters) were randomly initialised and optimised during a
fixed number of 200 iterations. Random initialisation was repeated
until 15,000 trajectories had reached the feasible region defined
by an error ≤0.05 (Methods). This corresponded to 100 and 81% of
initiating trajectories for the models assuming a maximum
number of molecules (as mapped to the maximum fluorescence
intensity; see Methods) N= 15 and N= 60, respectively. Feasible
parameter regions were found to be extensive, as evidenced by
the wide range of corresponding average production and
degradation rates (Fig. 2a, d). Average excess of production over
degradation (distance to diagonal) appeared almost constant for
all feasible parameters and reflects net molecule production
during cell proliferation counteracting molecular dilution, which
can on average be assumed to be proportional to growth.38

Population-averaged slopes of production and degradation
rates (Fig. 2b,e) occupy different parameter regions for N= 15 and
60, with a tendency towards co-regulation (similar slopes) at
higher N. The different (positive/negative) slope combinations are
consistent with the population-weighted correlation between
rates (Supplementary Methods 5). Figure 2c,f displays the average
absolute deterministic, regulated noise and diffusion terms of the
Fokker–Planck (FP) equation (Methods). With larger N, the feasible
region becomes more vertically extended along the y-axis

Fig. 1 Model properties and data fit. Production (P) and degradation (D) rates and the simulated (F3) and experimental (F3 Exp) frequency
distributions after 3 days of cell culture for minimum error parameters and a maximum number of molecules N= 30. a Piecewise linear model.
b Basic birth and death process model (constant P, linear D). D is identified to be zero, which for bacteria has also been assumed in the
literature.38,46 This contrasts the co-upregulation of P and D identified in a. Thus, very small differences in data fit and varying model
assumptions can result in largely different final parameters and lead to opposing conclusions. This is clearly indicative of serious identifiability
problems. In a, the three individual x- and y-set points for P and D are indicated by vertical lines and red and blue points, respectively. Rates
are set constant right of the 3rd set-point. For degradation rates the lower boundary (D(0)= 0) is omitted from the line graph. Frequencies
were scaled to match the upper rate limit (12/h). The number of molecules per cell n is displayed up to the 99% percentile of the experimental
frequency distribution (n ≤ 20). Reduced growth rate: 0.65·0.5·ln(2)/h. Original data by courtesy of Kashiwagi and Yomo
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indicating a higher probability for noise regulation-dominated
dynamics (Methods). Results for N= 30 are displayed in Supple-
mentary Figure 4a–c. Corresponding graphs showing colour-
coded errors instead of correlation and diffusion are presented in
Supplementary Figure 5.
The above results refer to slow proliferation (65% of maximum

growth rate), during which the toggle switch was effective
(Supplementary Figure 3). Results for fast proliferation, for which
no switching was observed due to molecular dilution, were
generally similar. However, rate derivatives were much more
scattered suggesting that parameter identification was less
reliable (likely due to the peaked frequency distribution).
Importantly, it was practically impossible (minimum error= 0.25)
to simultaneously fit the distributions for fast and slow prolifera-
tion by the same production and degradation rates, i.e., when only
the observed 30–40% reduction in growth rate2 was accounted
for. This incompatibility may be due to growth rate-dependent
regulation,39–42 in particular plasmid-based protein production,43

or result from additional side-effects of the DNA replication
blocker nalidixic acid, a DNA gyrase and topoisomerase IV
inhibitor that affects supercoiling.
Non-proliferating cells do not require net molecule production,

which in turn implies a positive deterministic dynamical compo-
nent (see Methods). We thus expected that noise-driven dynamics
—defined by the absence of such deterministic term—would take
a larger role in resting cell populations. We tested this hypothesis
by assuming zero proliferation in the modelling of the first
experiment of Kashiwagi et al.2 Counter-intuitively, zero growth
completely eliminated the noise regulation-dominated section of
the feasible region (Fig. 2h, j, Supplementary Figure 4c and 6c).
Also, the required equality of population-averaged production and
degradation rates was much more strictly obeyed during zero
proliferation (diagonal in Fig. 2g, i) than was their suggested
constant difference in proliferating cells (Fig. 2a, d). Notably,
randomness introduced by cell division appears negligible in this
respect since a molecule number halving model and the binomial

Fig. 2 Feasible region (error ≤ 0.05) identified using equilibrium fluorescence cytometry data and depicted according to three different
characteristic plots. a Data fitting error (colour-coded) of the feasible region as a function of population-averaged production (P) and
degradation (D) rates for N= 15. Numerals indicate areas for which representative results are shown in the accordingly numbered small
images (display analogous to Fig. 1). The asterisk indicates the error minimum. b Population-averaged correlation as a function of the
population-averaged slopes of production (dP) and degradation (dD) rates. c Average absolute Fokker–Planck-associated diffusion term as a
function of the corresponding average absolute deterministic term jAFPj and regulated noise term jDBFPj. d–f Analogous results for N= 60. g–j
Results for the same data but assuming zero proliferation during modelling. Panels g, h relate to a, c, panels i, j to d, f. Colour in 2D plots
corresponds to averages according to a 600 × 600 grid. Reduced growth rate 0.65·0.5·ln(2)/h (experimental measurement) in a–f and assumed
zero growth in g–j. Population-averaged correlation is calculated first per cell cycle phase i weighting P(n, i) and D(n, i) by the probability p(n, i)
and, second, by averaging across i (see Methods). Note that we increased the error limit to 0.07 for N= 60 in i, j because of reduced efficiency
of the zero proliferation model. Original data by courtesy of A. Kashiwagi and T. Yomo
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distribution in equation (2) gave similar results, as was analogously
stated in.44

The above results suggest that cell-wise non-homoeostatic
regulation, as implied by e.g., transient amplifying states in cell
differentiation,45 goes along with noise-dominated dynamics. Of
course, the data are still consistent with different regulation types.

Are transient response data actually beneficial for system
identification?
Feasible parameter regions as identified from the first experiment
of Kashiwagi et al.2 are rather large. Since transient response data
have been suggested to provide a clear benefit for system
identification,7,46,47 we tested whether the time series data of the
second experiment would shrink the corresponding feasible
regions.
The second experiment of Kashiwagi et al.2 provided data on

the dynamics of gene induction after medium change (enzyme
depletion) in terms of fluorescence intensity log-ratios indicative
of compensatory enzyme production (switch activation). Para-
meter optimisation was performed as before to obtain 15,000
trajectories reaching the feasible region except that individual
trajectories were continued for 400 iterations, accounting for the
more involved fitting problem, i.e., simultaneous adaptation to
four different fluorescence distributions at 0.5, 2, 5 and 7.5 h, and
inclusion of 2·2 additional y-set points for growth rate and
response induction. Modelling an explicitly time-dependent
response induction was necessary to account for delayed system
response likely due to unmeasured intermediate processes during
the transition from fast proliferation (full medium) to reduced
proliferation and switch activation (depleted medium). The
induction function I(t) transforms equilibrium rates for fast
proliferation (Rf) into those of switch activation (Rs) according to

Rðn; tÞ ¼ RfðnÞ 1� IðtÞ½ � þ RsðnÞ IðtÞ; (1)

in which R represents P or D. Proliferation was assumed to be
regulated downstream of the vital enzyme glutamine synthetase
(GLS-H) and instantly changed over from a constant maximum
rate (0.5 ⋅ ln(2)/h; full medium) to a non-decreasing piecewise
linear profile G(n) (depleted medium). The feasible region, now
defined by an error ≤0.07 due to the relatively more complex data
(ten parameters, four frequency distributions), was reached by 44
and 62% of trajectories for N= 15 and N= 60, respectively. Figure
3a–c depicts the region dynamics in terms of population-averaged
production and degradation rates, response induction and growth
rate (N= 30). The first two y-set points of, respectively, response
induction and growth rate were free parameters. The identified
curves thus imply that induction is rapid (0.5–1 h) and proliferation
at small enzyme numbers is inhibited, consistent with the
experimental findings. Figure 3d–f, h–j display results analogous
to Fig. 2a–f at time= 7.5 h and Fig. 3g, k illustrates results for the
parameter areas indicated by numerals 1 and 3. Both panels
correspond to noise regulation-dominated dynamics. In particular,
the rates in Fig. 3g have their minima at maximum population
density, a key equilibrium characteristic of noise-driven dynamics.3

Indeed, this dynamical type should be favoured in the low
expression range (here, N= 15) because the left boundary
condition D(0)= 0 implies a natural positive deterministic
component (for P(0) > 0) required to increase the mean number
of molecules. Results for the minimal error state (*) were similar
(Supplementary Figure 7a). Corresponding images showing
colour-coded errors instead of correlation and diffusion are shown
in Supplementary Figure 8.
Details of the experimental procedure and the definition of the

feasible region differ slightly between the equilibrated system and
the dynamic time series. Nevertheless, in absence of a strictly
equal error scale, comparability of results is warranted by the fact
that feasible parameters were determined by 15,000 trajectories

with mostly comparable success rates in both cases. Despite this
minor limitation, our results show that the extent of the
corresponding feasible regions in Figs. 2 and 3 is largely
comparable.
We stress that the rate degeneracy observed is unlikely to result

from model over-parameterisation since already the two para-
meter classical birth and death model1 supports a quasi-unlimited
range of rate mean values (Introduction).

Metabolic labelling data demonstrate strongly regulated
degradation
Population-averaging in general implies loss of molecular detail.
Nevertheless, observing average system behaviour over time can
signify regulatory relationships that are equally valid also at the
single-cell level, at least for unimodal, strongly peaked population
distributions. We pre-processed the metabolic labelling data of
Miller et al.12 as described in Supplementary Methods 4 and
interpolated the resulting expression and rate time series by
smoothing splines. In the following, we drop overbars for P, D, A
and B. In addition, we assume that mean cellular gene expression
n ¼ T=M is equivalent to the total number of molecules T as
quantified by normalised microarray data.
Figure 4a–d shows example trajectories of production (P) and

degradation (D) rates and gene expression (T) as observed for
osmotic stress response in S.cerevisiae. These data illustrate the
presence of production-dominated and degradation-dominated
regulation as well as positive and negative correlation between
both P and T and D and T (see Supplementary Figure 9a–l for
additional examples). P-dominated and D-dominated regulation
can be identified by respectively positive and negative correlation
between the time derivatives of the terms A (DA) and B (DB)
(Methods).
Figure 4e depicts the average time course across the 2065

quality-filtered genes showing high overall co-regulation of
production and degradation rates. This phenomenon has similarly
been reported in a number of recent publications16–22,31 and was
suggested to implement rapid environmental adaptation.
Linear fits of the individual trajectories indicate that most

trajectories (66%) show overall decreasing gene expression over
time while being mostly associated with increasing degradation (D
+, 37%) (Fig. 4f), clearly contradicting the linear degradation
model.
The strong rate co-regulation observed in the sample trajec-

tories is corroborated by the corresponding distribution of gene-
wise correlation values (Fig. 4g). Here, a reference distribution
based on enumerating all time point permutations was added
(Supplementary Methods 4). The distribution of DA− DB correla-
tion values (Fig. 4h) demonstrates preference for D-dominated
regulation.
Figure 4i, j show histograms for correlation values between P

and T and D and T, respectively. P is mainly positively correlated
with T, but the association between D and T is fully balanced.
Once more, this contradicts linear degradation, for which a strong
bias towards positive correlation should be observed.
To quantify the diversity of regulation types we clustered the

genes into 122 groups of similar expression time courses and
calculated mean within-cluster standard deviations (Supplemen-
tary Figure 9s, t). Figure 4k displays these standard deviations as a
function of the cluster-wise linear expression trends. It demon-
strates low variability for T and decreasing variation for P and D. If
expression time courses were tightly linked to specific regulation
types, within-cluster variation of P and D should not much exceed
that of T. However, variation of P and D is about 3–4-fold higher
for negative trends and 2–3-fold higher for positive trends.
Especially, variation of D at negative trends tends towards unity—
the expected value for standard random data.
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Taken together, the results of this section clearly demonstrate
that for the present data mRNA degradation is regulated in
parallel to mRNA production and is overall uncorrelated with
mRNA level.

What should we measure? A comparison of different system
identification approaches
The results of the previous sections plainly illustrate that critical
evaluation of different data types and evaluation methods

assessing their ability to pin down system-specific parameter
values is urgently needed. We thus screened six different
approaches, five of which involve metabolic labelling or single-
cell tracking, and compared method performance based on
specifically generated semi-empirical synthetic data (Methods).
For this purpose, the minimum error states (*) in Fig. 3

(Supplementary Figure 7) were used to create synthetic reference
data of different types from the same model parameters.
Subsequently, we evaluated the investigated methods using all

Fig. 3 Feasible parameter region (error ≤ 0.07), induction function and growth rate identified using dynamic fluorescence cytometry data. a
Data fitting error (colour-coded) of the feasible region as a function of population-averaged production (P) and degradation (D) rates at 0, 0.5,
2, 5 and 7.5 h after medium change (N= 30). b Induction I(t) and c growth rate G(n) depicted as smoothed colour-coded density across all
feasible parameter vectors (N= 30). d Fitting error as a function of population-averaged production (P) and degradation (D) rates for N= 15 at
7.5 h. e Population-weighted correlation between production and degradation rates as a function of population-averaged slopes of
production (dP) and degradation (dD) rates. f Average absolute Fokker–Planck-associated diffusion term (colour-coded) as a function of the
corresponding average absolute deterministic term jAFPj and regulated noise term jDBFPj. g Experimental and fitted distributions of green/red
fluorescence log-ratios (Supplementary Methods 6) for the four experimental times. The title numeral 1 indicates the corresponding areas in
panels d–f. The inset shows production (P) and degradation (D) rates, and the simulated distribution of molecules at 7.5 h (F7). The error
minimum is indicated by an asterisk (*). h–k Analogous results for N= 60. Errors are means across all four time points while correlation and
diffusion correspond to 7.5 h. Colours in 2D plots are averages according to a 600×600 grid. Densities in b, c were calculated by pooling all 2D
rate points, e.g., {(ti, Ij(ti))} with i the discrete time and j the parameter index, and calculating kernel densities in 2D using R (blue clouds). Red
lines connect mean values per discrete time (b) or molecule number (c). Original data by courtesy of A. Kashiwagi and T. Yomo
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feasible parameters identified in the penultimate section (Fig. 3)
and did not perform new method-specific identification runs for
these data (Supplementary Methods 4). This procedure has the
great advantage of all methods being evaluated for exactly the
same parameters, while on the other hand, method-specific
feasible regions may be incompletely mapped.
The six identification methods/error types relate to differences

regarding molecule frequency distributions in 1D (Freq 1D), as
used above, and 2D (Freq 2D), related to metabolic labelling,
differences in population-averaged rates (Rates PAV), also relating
to metabolic labelling, differences in rates as derived from ideal
(Rates SCT id) and simulated (Rates SCT) single-cell tracking (SCT),
as well as the negative log-likelihood (LogLike SCT) of the
synthetic SCT data (see Methods and Supplementary Methods
4,8–10 for details).
Figure 5a demonstrates that all investigated methods are

subject to identifiability issues. Only very small deviations from the

reference data narrow the range of feasible parameters sufficiently
down. E.g. for N= 15, parameters with a distance to the reference
parameter set of up to ~1/3 of the maximum distance show very
small minimal errors (<0.05) irrespective of the specific method
used. This implies that already small experimental inaccuracies
may have a strong effect on identified parameter values.
Figure 5b shows box plots for all parameters corresponding to

method-specific errors ≤0.02. Analogous results for N= 60 are
displayed in panels c and d. The outcome for N= 30 is even more
obvious (Supplementary Figure 12a,b).
Because of the low identifiability of parameters PY3 and DY3

these were excluded from distance calculations in (a,c). This
measure somewhat increases the error-distance slope for meth-
ods, for which PY3 and DY3 were variable (b,d). Results based on
all parameters are shown in Supplementary Figure 12c-e.
Notably, Rates SCT and LogLike SCT derive from identical data

(Supplementary Methods 4). The better performance of Rates SCT

Fig. 4 Reanalysis of yeast metabolic labelling data on osmotic stress response. a–d Illustrating examples for P-dominated and D-dominated
regulation as evidenced by positive (a) and negative (b) DA-DB correlation (corDADB) and positive (c) and negative (d) correlation between P/
D and T (corPT/DT). The actual correlation values are indicated in the headlines together with the correlation between P and D (corPD). eMean
time course of P, D and T averaged across 2065 genes. f Distribution of linear trends (signs of linear regression slopes). Overall decreasing (T−)
and increasing (T+) expression make up 66 and 34% of trajectories, respectively. These are further stratified according to combinations of
decreasing and increasing production (P ±) and degradation (D ±) rates. More than 1/3 of trajectories (37%) are characterised by decreasing T
and increasing D. Parallel P and D increase (62%) may largely result from the strong upregulation step between minutes 12 and 18 (e). g–j
Distribution of Pearson correlation values between P and D (g), time derivatives DA and DB (h), P and T (i) and D and T (j). Shown are
distributions for the experimental time ordering (Exp) and corresponding reference distributions generated by enumerating all 5040 time
point permutations (Perm). k Mean within-cluster standard deviation of T, P and D for 122 time course clusters (points) as a function of the
clusterwise linear expression trend (T). Also shown are linear regression lines. Clusters were defined by complete linkage clustering of
expression trajectories (T) according to a maximum correlation distance of 0.15. Time courses were standardised across time (mean=0,
standard deviation=1). Within-cluster standard deviations were first calculated for each time point across genes before averaging across time.
Curves for T in (a–d) are scaled by a factor 0.1. Original data by courtesy of B. Schwalb and P. Cramer
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can evidently be attributed to the additional stratification
(normalisation) step that in effect separates the overall identifica-
tion task into smaller sub-problems—here, one for each number
of molecules (Supplementary Methods 9). This appears especially
useful for regions with relatively few events that are otherwise
outnumbered in the global likelihood (Supplementary Methods 8).
Supplementary Figure 13 reports on additional results of local

Hessian sensitivity analysis, indicating that for Freq 1D and Freq
2D the difference between production and degradation rates is
the single most important feature.
The results of this section suggest that Rates SCT id, Rates SCT

and Freq 2D are associated with the lowest bias and dispersion
and thus appear as the most accurate identification methods.
Accordingly, single-cell techniques that have increasingly become
available in recent years can actually be expected to become a
powerful tool for system identification.

Virtual treatment experiments
The problems of systems identification described above have
practical importance specifically for human biological system
intervention. In the following, we illustrate this issue by virtual
treatment experiments.
In Fig. 6a the constant production rate P= α of a classical birth

and death process is increased by 63%, e.g., by addition of a
transcription factor, chromatin modifier or inhibition blocker. This
results in a positive shift regarding the mean number of molecules
by 77%. In Fig. 6b the same increase is accomplished by
diminishing the molecular degradation constant λ by 51%, e.g.,
by adding capping enzymes or by inhibition of exonucleases,
ubiquitin ligases or proteasomes. In panels c and d the same
treatments are applied to regulation, in which both α(n) and

λ(n)= 6/n (n ≥ 1) are down-regulated upon molecular crowding.
The resulting boost in mean is then only about 1/3 of that in (a,b).
Moreover, the standard deviation that increases by 38% in (a,b)
remains quasi constant in (c,d). Analogous results for two
additional regulation types are presented in Supplementary
Figure 14.
Thus, treatment response can substantially depend on how

precisely regulation is implemented in different cell types or
individual patients. This finding clearly argues in favour of system
identification being performed without an a priori chosen kinetic
model in the first place.

DISCUSSION
We applied stochastic system identification to the flow cytometry
data of Kashiwagi et al.2 on a synthetic toggle switch in E.coli. Our
analysis demonstrated that many different regulation types were
consistent with these data, i.e., produced model output showing
only minor deviations. This in turn implies that system identifica-
tion results are sensitive to experimental imprecision of the same
order. To assess whether other data types and evaluation methods
can amend this situation, we generated diverse semi-empirical
synthetic data sets. The corresponding method screen indicated
that primarily rate reconstruction from single-cell tracking and,
secondary, frequency distributions derived from single-cell meta-
bolic labelling are the most accurate approaches for parameter
identification. In contrast, the use of population-averaged rates
and likelihoods predicted by single-cell tracking data performed
less favourably.
The above results were obtained by application of quasi

unconstrained piecewise-linear rate functions that generally differ
from commonly employed expression models such as classical

Fig. 5 Comparison of parameter identification methods. a Minimum error as a function of euclidean distance to the reference parameter
vector for six parameter identification approaches: Freq 1D, Freq 2D, Rates PAV, Rates SCT id, Rates SCT and LogLike SCT for N= 15. Minimum
errors were calculated for different distances by stratifying errors according to centred distance windows (width= 0.05) and averaging across
the lower 1% error percentile. Freq 1D and Freq 2D are naturally on the same scale. Rates PAV, Rates SCT id, Rates SCT and LogLike SCT were
scaled to Freq 2D. For illustration purposes, the minimum error of Rates SCT was not adjusted to be zero. b Boxplot for all parameter sets (0/1-
scaled y-set points PY1-GY2) corresponding to method-specific errors ≤0.02. Red horizontal lines indicate true parameter values. Generally, the
highest parameter variability is observed for the respective 3rd y-set points of production (PY3) and degradation (DY3) rates corresponding to
regions scarcely populated during the entire time course. Different from panel a, Rates SCT is fully scaled to Freq 2D, i.e., all methods have zero
minimum error. (c, d) Analogous results for N= 60
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birth and death processes or Michaelis–Menten type kinetics. In
particular, degradation rates are still widely assumed to be linear.
In contrast, our reanalysis of the metabolic labelling data of Miller
et al.12 during yeast osmotic shock response clearly demonstrated
that degradation rates were tightly coupled to production rates, as
likewise reported in the literature,16–22,31 and can be regulated at
least equally strongly. Correlation between trajectories of degra-
dation rate and gene expression showed a quasi-random, sign-
balanced distribution across 2065 genes, while wholly positive
correlation would be expected if degradation was indeed linear
(i.e., unregulated).
A number of factors can influence molecule degradation,

ranging from priming by adaptor proteins,23,24 cooperative or
stepwise degradation,1,9,33 storage in granules and P-bodies,25,31

effects of regulatory RNAs and RNA-binding proteins26,30,31 to
overall resource limitation.27–29,34 It has repeatedly been pointed
out that mRNA and protein degradation are at least equally import
for cell regulation as are transcription and translation.31,32,34 Thus,
general application of linear degradation in biological system
identification appears an oversimplification that can result in
substantial identification bias. Notably, regulated degradation can
also impact the assessment of transcriptional and translational
noise.7–9

Employing more versatile identification approaches like the one
presented in this study explores wider regulatory possibilities that
more likely include the true regulation type as long as data
overfitting can be excluded. Here, we counteracted overfitting of
noisy data by smoothing the fluorescence intensity profiles and
limited model over-parameterisation by considering only two or
three parameters per rate. For production and degradation rates, a
minimum of three parameters was necessary to test whether non-
monotonous rate functions, specifically those with a minimum
(related to noise-driven dynamics), could be consistent with
experiment. Occasionally, we observed pronounced rate changes
in sparsely populated regions at large molecule numbers. This

might be indicative of low parameter identifiability and could, if
desired, be amended by implementing smooth function variation
depending on data density.
We do not oppose the common preference for the simplest

model. However, it cannot be taken as axiomatic that Occam’s
razor selects the true solution. Our reanalysis of the metabolic
labelling data of Miller et al. provides clear evidence for regulated
mRNA degradation. Evidently, system identification can best be
tackled by appropriate measurement and evaluation techniques,
like single-cell tracking (reaction event monitoring), that allow
precise parameter identification of basic models.
We propose that rate functions successfully identified by rather

flexible identification approaches can subsequently be repre-
sented by more specialised mappings to reduce the number of
parameters as needed. This two-step procedure largely decouples
the problems of true and apparent regulatory equivalence from
those of relative parameter insensitivity as conferred by mathe-
matical functions (Introduction). Nevertheless, the number of
effectively unconstrained (independent) parameters needs to be
kept as low as possible to enable quasi exhaustive parameter
searches, for which we provided an expert monitoring method.
The starting point and a basic motivation of this study was to

further explore our previous hypothesis that noise regulation can
be a major driving force of cell dynamics.3–5 The noise regulation
model assumes that the deterministic part of the dynamics is
negligible while the main effects result from local variations in
noise level, rendering low noise states population attractors. This
idea was later also termed noise-controlled cell regulation by
Pujadas and Feinberg.48 A main benefit of such design is that
regulation need not be learned and hard-wired beforehand but
can be explored in situ through immediate feedback monitoring.
This principle was similarly implemented in our novel noise-driven
optimisation (NDO) method showing very good performance.
To capture noise regulation on top of deterministic growth

processes in highly proliferative cells like E.coli, we supplemented

Fig. 6 Response of different regulation types to identical treatment. a A constant increase in production rate (red dashed line changed to red
solid line) is applied to the ground state (time 0 h, mean 6.0, standard deviation 2.4) of a molecule birth and death model, resulting in
increased mean (10.6) and standard deviation (3.3) after 7.5 h. b The same effect is achieved by a corresponding reduction in the molecular
degradation rate (blue dashed line changed to blue solid line). c, d Identical treatments are applied to a model in which molecule production
is downregulated with the number of molecules, while the degradation rate remains constant. These scenarios correspond to much weaker
responses: the mean shift by 4.6 in a, b compares to only 1.7 in c and 1.4 in d. The standard deviation increases by 0.9 in a, b but remains quasi
unchanged (shift by only 0.1) in c, d. These results similarly apply for the respective reverse treatments as the system is almost completely
equilibrated after 7.5 h. No cell proliferation was assumed
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our original definition of noise-driven dynamics by the more
general term noise-dominated dynamics as quantified by
corresponding terms of the Fokker–Planck equation. Surprisingly,
we found indications of the possibility that noise-dominated
regulation may indeed be favoured in proliferating cell popula-
tions. Corresponding changes in the noise content of cellular
regulation could also be implied in other processes involving
variation of proliferation intensity, like batch or fed-batch cell
culture, eukaryotic cell differentiation45 or cancer.
The general need to identify production and degradation rates

is illustrated by our virtual treatment experiments. Evidently, the
influence of different regulation types will be more prominent in
real-world multi-dimensional settings requiring considerable
future efforts to develop clear-cut and effective experimental
and mathematical methods for biological systems identification.

METHODS
General equations
We aimed at modelling fluorescent protein frequency distributions F
matching experimental cytometry data listing cell counts per binned
fluorescent intensity value. For this purpose, we employed a rate equation
that accounts for cell proliferation using the multi-phase cell cycle model
of Leon et al.49 For the number of molecules n= 1...N per cell and cell cycle
phases i= 1…k, these equations read

dFðn;iÞ
dt ¼ E�1

n � 1
� �

Pðn; iÞ Fðn; iÞ þ Eþ1
n � 1

� �
Dðn; iÞ Fðn; iÞ

�Gðn; iÞ Fðn; iÞ þ 2
PN

m¼n
Gðm; kÞ bðnjm; 1=2Þ Fðm; kÞ for i ¼ 1

Gðn; i � 1Þ Fðn; i � 1Þ for i ¼ 2; :::; k

;

8
<

:

(2)

with Rðn; iÞ ¼ R n=vib cð Þ for R= P,D,G indicating the production (P),
degradation (D) and growth (G) rates, vi= 1 + (i− 1)/(k− 1) defining the
cell volume, and n=vib c the lower integer concentration. Esn f ðn; iÞ ¼
f ðnþ s; iÞ denotes the discrete n shift operator and b(n|m,1/2) the
symmetric binomial distribution accounting for molecule partitioning
among daughter cells.35,36 Cell cycle phases allow the modelling of varying
cell volume during cell proliferation. According to previous findings,3 k= 5
is used throughout. For comparison with experiment, F is marginalised
across cell cycle phases, i.e., we use F(n)= ∑iF(n,i). Notably, equation (2) is
similar to a chemical master equation (CME).50 However, F is a frequency
distribution summing up to the (time-varying) total number of cells in the
system instead of unity. Hence, we use the term rate equation for clarity.
Indeed, equation (2) can be derived from an extended CME also
accounting for the number of cell divisions (Supplementary Methods 1).
In this context, it describes the dynamics of the mean number of cells that
harbour n molecules and proceed in cell cycle phase i, irrespective of cell
division history. For zero growth, the number of cells is constant and
equation (2) becomes equivalent to a one-dimensional CME for the
probability distribution p(n). A second order approximation to the CME is
the Fokker-Planck (FP) equation (Ito form) that, using the deterministic
term A(x)= P(x)− D(x) and the noise term B(x)= P(x)+ D(x), can be written
as (Supplementary Methods 1)

dpðxÞ
dt

¼
∂
∂x �AðxÞpðxÞð Þ� � þ ∂

∂x
∂BðxÞ
∂x pðxÞ

� �
� 1

2
∂2BðxÞ
∂x2 pðxÞ

h i
þ BðxÞ

2
∂2pðxÞ
∂x2 ;

deterministic regulated noise diffusion

(3)

in which we denoted the first summand as FP-associated deterministic
term (AFP(x)), the second as regulated noise term (DBFP(x)) and the third as
diffusion term. Equation (2) is solved by Euler forward integration (time
step 1min). The FP-terms in (3) are then evaluated using the results of (2).

Types of dynamics
We link the regulated noise term DBFP(x) with noise-driven dynamics3 and
generally excluded boundaries in actual function evaluations. In equation
(3), −A(x) and ∂B(x)/∂x take similar roles. Nevertheless, according to the
time derivative of the total number of molecules T (Supplementary

Methods 7)

dT
dt

¼ M P � D
� � ¼ MA; (4)

a non-zero population-averaged deterministic term A is required to change
T. Indeed, if A vanishes the average number of molecules per cell n ¼ T=M,
with M the number of cells, will dillute out in proliferating populations.
Without loss of generality, A(x), B(x) and the FP-terms in (3) can also be
applied to growing cell populations and multiple cell cycle phases.
However, we used these terms to exclusively characterise the cell
regulation part of molecule expression (rates P and D) since (i) we did
not explicitly account for the distribution of the number of cell divisions
(associated with growth rate G), for which also no measurement data were
available, and (ii) the non-local jump processes during cell division
(basically halving of molecule numbers) are not amenable to the FP
approximation.50 Yet, our conclusions on cell regulation remain unaffected
by this choice as long as molecule repartitioning among daughter cells can
be considered an unregulated random process35,36 or effects of
asymmetric cell division average out as per population or over time. We
use the population-averaged rates P and D, their derivatives dP ¼ ∂P=∂x
and dD ¼ ∂D=∂x, and the average absolute deterministic term jAFPj and
regulated noise term jDBFPj to characterise the feasible parameter region
by three different 2D graphical plots. Compared to direct parameter
display, this has the advantage of immediate meaning and relative
independence of mathematical representation. Additionally, we introduce
the term noise regulation-dominated dynamics for regulation in which
jDBFPj>jAFPj, while noise-driven dynamics3 is defined by A(x)= 0, i.e.,
equality of P(x) and D(x) as a function.

Parameter identification
Scaled parameters (range [0,1]) were randomly initialised and optimised by
minimising the sum of absolute deviations between simulated and
experimental frequency distributions. The final scaled error was obtained
by dividing by two times the sum of the experimental frequencies, which is
a strict error bound for relative frequencies. x-set points were adapted in
preliminary runs and later fixed. Random initialisation for y-set points was
repeated until a certain number of trajectories had reached the feasible
region defined by an upper error limit.
In view of experimental inaccuracy51 (Supplementary Figure 3a), global

mapping of the feasible region appeared most appropriate. Accordingly,
local sensitivity analysis relative to single best fitting parameters is
provided as supplementary information. We discretised the parameter
space into a grid of 16 bins per dimension and compiled a list of feasible
region bins into which minimal error parameters were recorded.
To reduce overfitting of noisy data, we smoothed the experimental

fluorescence intensity histograms by analytical functions (Supplementary
Figure 3b, Supplementary Methods 4). Nevertheless, experimental bias
cannot generally be excluded. Some spillover between fluorescence
channels is clearly present in the data (Supplementary Figure 3a). For
matching experimental and simulation results, fluorescence intensities
were mapped to molecule numbers using an affine function (Supplemen-
tary Methods 2). We investigated three different molecular ranges defined
by the maximum number of molecules per cell N. Specifically, we
designated the sequence N= 15,30,60 for analysis and placed the
distributional mass within the lower 2/3 of the molecular range to exclude
upper boundary effects. This design corresponds to the lower range of the
10–1000 signalling proteins per cell reported for E.coli,52 which is both
most relevant for stochastic process modelling (Supplementary Figure 9u)
and computationally efficient.

Noise-driven optimisation (NDO)
In order to compromise between parameter identification and parameter
space exploration (scouting)53 we developed a new optimisation method
termed NDO. Basically, NDO generates new exploratory parameters by
perturbing previously encountered lowest error reference parameters
according to a normal distribution whose variance decreases with decreasing
reference error (Supplementary Methods 3). Performance of NDO was best
compared to the Simplex (Nelder–Mead) algorithm and explored markedly
more states than the BFGS (Broyden–Fletcher–Goldfarb–Shanno) approach.
Conjugate Gradient and Simulated Annealing were clearly outperformed
(Supplementary Figure 1). By assessing detected feasible region size as a
function of the number of random initialisations, we also demonstrated that

Stochastic system identification without a model...
M Hoffmann and J Galle

9

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2018)  15 



our parameter search was almost exhaustive up to intermediate levels of
parameter space fine graining (Supplementary Figure 1).

Modelling the toggle switch and molecule degradation
Similar to Kashiwagi et al.2, we assume instant inhibition of the contra-
lateral arm of the toggle switch after medium change. In the case
considered here, the glutamine-depleted medium favours the GLS-H
branch of the toggle switch, which in turn shuts down DHFR. This implies
immediate reduction to a single species system that exclusively describes
the induction of the compensatory enzyme (here GLS-H). This view is
supported by results of Tsuru et al.54 demonstrating analogous adaptation
of E.coli based on a single gene construct. Our model is designed to
describe protein auto-regulation thus treating intermediate processes like
the corresponding mRNA dynamics implicitly. This can partly be justified
by the fact that transcription and translation occur simultaneously in
bacteria. Yet, our ansatz remains a proxy for gene activation by
intermediate processes since the plasmid-encoded metabolic enzymes
themselves cannot induce their own tetA and trc promoters. Furthermore,
we assume fast promoter switching dynamics,55 thus neglecting promoter
state-dependent expressional bursts, that nevertheless, appear to pre-
dominate in mammalian cells.56 Multiple promoter or RNA polymerase
activation states, as e.g., mediated by sigma-factor dynamics in bacteria,57

were recently reported to have a burst-balancing effect.56 Nevertheless, we
cannot presently exclude that promoter switching35 may have an influence
on system identification results. Also, due to the experimentally chosen co-
expression construct2 degradation rates refer to the fluorescent reporter
proteins instead of the target enzymes. However, we expect these minor
limitations to have essentially no impact on the general methodological
implications of this study.

Synthetic metabolic labelling data
During metabolic labelling the nucleoside analogue 4-thiouridine is
incorporated into nascent mRNA during Pol II transcription in eukaryotic
cells (Miller et al.12). This can be utilised to determine population-averaged
mRNA production and degradation rates for pools of cells.12,58 Anticipating
corresponding single-cell application, we implemented an extended rate
equation (Supplementary Methods 7) and generated 2D frequency
distributions representing the total number of molecules and the number
of labelled molecules (Supplementary Figure 10a,b). We directly used
deviations regarding these frequency distributions for model fitting since
single-cell production and degradation rates cannot be derived using this
method because the required mRNA levels at the start of each labelling
time interval are unknown. For cell populations, these are estimated from
sequentially terminated parallel experiments assuming that the respective
population means are identical over time. In addition to the direct use of
the 2D frequency distributions, we also calculated population-averaged
production and degradation rates mimicking the experimental data and
computational approach of Miller et al.12 and Sun et al.58. In these
publications, rates were calculated based on two related exponential
growth models. In the present study, we derived alternative formulas
based on the above 2D frequency distribution (Supplementary Methods 7).
Comparison of these three approaches resulted in quasi equivalent very
good performance (e.g., average relative error <5% for N= 30; Supple-
mentary Figure 10c).

Synthetic single-cell tracking data
A more immediate approach to cellular rates is the tracking of individual
events in single cells, usually performed based on fluorescence microscopy
techniques. Traditionally, such single-cell tracking (SCT) data are employed
to identify model parameters by probabilistic likelihood59 (Supplementary
Methods 8). In addition, we developed a frequentist rate reconstruction
method (Supplementary Methods 9). Basically, molecular change and cell
growth events were generated using rejection sampling, and total event
rates were derived from waiting-time histograms. Subsequently, produc-
tion, degradation and growth rates were calculated according to their
relative event frequencies (Supplementary Figure 11).

Data availability
The data that support the findings of this study were provided by A.
Kashiwagi and T. Yomo (Kashiwagi et al.2) and B. Schwalb and P. Cramer
(Miller et al.12) for the purpose of this study. The data continue to be

managed by the original authors. The R and c computer codes generated
during the current study are available on request.
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