
A Base Solution for Exposing IMS
Telecommunication Services

to Web 2.0 Enabled Applications

Florian Deinert, Alin Murarasu, Andreas Bachmann, Thomas Magedanz

Fraunhofer Institute for Open Communication Systems (FOKUS)
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

{florian.deinert,alin.murarasu,andreas.bachmann,thomas.magedanz}@fokus.

fraunhofer.de

http://www.fokus.fraunhofer.de

Abstract. The convergence of telecommunication and Web 2.0 services
is leading to new opportunities for the telecommunications market. Com-
panies are looking for ways to include their services in Web 2.0 applica-
tions. Predictions suggest that future telecommunication networks will
be based on the IP Multimedia Subsystem (IMS), an all IP telecommu-
nication core network. This paper describes an approach to combining
Web 2.0 enabled applications, namely widgets, with telecommunication
features using IMS. Widgets are small applications based on Web tech-
nologies that run on the client device. A new abstraction layer with inter-
faces for the different telecommunication features will be introduced. In
addition a widget engine that makes these telecommunication interfaces
available to its widgets will be presented. This will allow the rapid devel-
opment of IMS applications for external developers and the combination
of other Web 2.0 services with IMS features.

Key words: Web 2.0, Widgets, Widget Engine, IMS, API, JavaScript,
Google Android, Telecommunication, VoIP

1 Introduction

Over the last few years there has been an identifiable tendency towards the
convergence of classic telecommunication methods and Internet services. The
availability of fast Internet connections with less delay is making new telecom-
munication applications that use the Internet possible. Services like Voice-over
IP or instant messaging have gained wide acceptance from users. IMS is a strong
candidate for a telecommunication network base of the future. It is specified by
3GPP and offers services like Voice-over IP calls, presence, location information
and instant messaging. To access the IMS a client is usually required to be based
among others in the Session Initiation Protocol (SIP).

In the past telecommunication companies had a conservative strategy when
compared to web companies. Their services were traditionally not open and
could only be accessed by commercial clients with the provider’s permission.

http://www.fokus.fraunhofer.de


2 Mobilware, Berlin, Germany, April 28-29, 2009

The Internet community introduced another approach, as Web companies have
tended to offer their own APIs to let the user build their own applications or
services using the companies’ data and services. This type of business benefits
both sides: the user and the operating company. Users get new functionality to
generate individual content while the vendor benefits from more customers. Most
of these APIs are based on JavaScript, respectively Asynchronous JavaScript and
XML (AJAX), because it is available in almost all modern browsers and it is
not too complex. To reach various new developers those APIs have a simple
structure. This enables rapid development of new ideas and the combination of
different services from different companies: these are known as mash ups.

This paper will analyze the approaches to accessing telecommunication func-
tions inside small Web 2.0 enabled applications called widgets. In order to run a
widget, a runtime environment, called a widget engine, is required to host and
manage the widgets. Widget engines are standalone applications and are written
in a complex programming language. There is also another kind of widget called
a browser widget, which is displayed directly inside a web page and is not stored
and managed locally. Browser widgets will not be explored in this article.

Widgets usually use common web technologies like HTML, XML, CSS,
JavaScript and AJAX. They can be created by external Web developers as
these technologies are spread in the World Wide Web. This enables a big de-
veloper community. Due to the limitation to these Web technologies widgets
have restricted functionality. A widget is similar to a Web page. It uses almost
the same technologies and has the same limitations. HTML and XML are just
markup languages without control options. Hence the features of the widgets
are limited by the functions offered by JavaScript. For instance widgets have no
direct access to the file system. Widgets can also not directly access the IMS be-
cause it is not possible to use SIP with JavaScript. Furthermore, due to security
issues JavaScript does not have the permission to access functions or resources
outside of its sandbox: other Web pages are the exception. All features which are
not realizable using native JavaScript must be carried out by the Widget engine
as the widget engine is not restricted in functionality. Thus the widget engine
must provide extensions to use a widget’s additional features. Other widget en-
gines provide extensions for monitoring resource consumption or file handling
for instance.

This paper will introduce a telecommunication extension dealing with the
opportunity to create ”IMS Widgets”, widgets that can use telecommunication
features based on IMS. In order to ease the development process for web pro-
grammers not familiar with IMS the widget engine must provide an abstraction
layer between Web technologies and the IMS world.
Section 2 will provide a brief introduction to widget engines currently available
from other companies, and the W3C widget standard draft.
Section 3 will introduce a JavaScript API that provides telecommunication in-
terfaces for services offered by IMS.
Section 4 describes a widget engine which offers telecommunication functions
to its widgets by implementing the JavaScript telecommunication API.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 3

2 Related Work

This section describes widget engines from big vendors which are widely used. A
short introduction into the W3C widget standard, currently in the draft status,
will follow, concluding with Parlay X interfaces, a telecommunication API based
on Web services.

2.1 Widget Engines

In the last few years a new kind of application has increasingly gained popular-
ity: the so called desktop widgets. These widgets are small frames that provide
services like weather forecasts, news headlines or simply display a picture slide
show on the desktop. Widgets are interesting because they are easy to develop,
deploy and use. Since widgets cannot run as stand-alone applications they re-
quire a widget engine in order to run.

Various companies have released their own widget engines. Konfabulator is
supposed to be the first commercially successful widget engine. Apple’s Dash-
board which was integrated into the Mac OS X 10.4 operating system in 2005
was inspired by Konfabulator. In the same year Yahoo bought the Konfabulator
and renamed it Yahoo Widget Engine. In 2006 Google introduced its Google
Desktop Gadgets, another widget engine. Microsoft followed and integrated the
Vista Sidebar, as a replacement for Active Desktop from Windows 98, which
was also designed to display Web content on the client desktop but was not very
successful. Another popular widget engine comes from Opera and these widgets
are simply named Opera Widgets. Microsoft and Google use the term gadget
which is in fact just another name for widget.

Almost all widget engines provide hardware device features like monitoring
battery status or CPU usage but none of these widget engines have telecom-
munication features. Dashboard offers a Skype widget which is in fact able to
use telecommunication features like VoIP or instant messaging. But this widget
requires the normal Skype standalone-application to be installed on the system
because the widget engine communicates with the standalone Skype application.
Hence the communication part is not really integrated into the widget engine.
None of these widget engines gives the developer the opportunity to access IMS
services. Section 4 will introduce a widget engine that makes use of IMS services.

2.2 W3C Widget Standard

All widget engines named above are proprietary, meaning their widgets are not
compatible. In order to fulfill the specific requirements, a developer who wants
to deploy his widget on the most common engines has to write it several times.
Nevertheless they have a great deal in common. All engines use common file
formats like HTML, XML and JavaScript to ease development and to make
integration of other Web 2.0 services comfortable. W3C has done a survey on the
widget engines currently available and they are now in the process of developing

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



4 Mobilware, Berlin, Germany, April 28-29, 2009

a widget standard [1]. The widget structure, as defined in the first draft, looks
very similar to the Opera widgets’ structure [2]. The actual draft does not yet
include any information about JavaScript extensions offered to the developer.
Such extensions are required to get access to additional features like hardware
monitoring or telecommunication services from a widget. The widget engine,
described in section 4, implements the actual W3C widget draft.

2.3 Parlay X - Telecommunication API

Programming telecommunication networks is very complex. For this reason the
Parlay Group was founded, an industry consortium of several telecommunication
vendors. Its goal is to develop open standards for the telecommunication market.
In 2003 Parlay released the Parlay X API, a collection of Web service interfaces
to access telecommunication networks. Version 3.0 classifies the interfaces into
20 service groups. These Web service interfaces can be implemented by different
vendors on different networks. Parlay X provides high level functions but is
usually not intended for external Web developers from the Web community. Even
though Web services are easy to use it is not that easy for a Web developer to
integrate them into browser enabled Web 2.0 applications. A solution is required
for combining IMS services with browser based Web technologies like AJAX
[3]. The JavaScript Telecommunication API, introduced in the next chapter,
provides an abstraction layer for the combination of Web technologies and IMS.

3 JavaScript Telecommunication API

This section introduces a telecommunication API, used to access the IMS inside
of widgets. A brief introduction for the most relevant IMS services will be given.

3.1 API

All telecommunication features described in this paper are based on the IMS
network. IMS is a telecommunication core network specified by 3GPP that is
completely based on IP.

A new API for telecommunication features, offered by IMS, is proposed.
The Telecommunication API is defined by JavaScript functions that can be used
inside of a widget. JavaScript was chosen due its market diffusion and simplicity.

The JavaScript IMS functions are high level abstractions, meaning only one
line of code is necessary for accessing an IMS service which might invoke sev-
eral internal actions. Each function can either be called synchronously or asyn-
chronously. Synchronously means that the script waits until the execution of
the command is finished. Asynchronous calls execute the same command with
a callback function as an additional parameter. The script goes further and the
callback function is executed when the command is finished. Synchronous calls
are easier to develop but have the disadvantage that the application might freeze
if the invoked command takes a long time to return.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 5

The API comes as a JavaScript file which must be included in all widgets that
want to use telecommunication features. Section 4.4 describes how to include the
API in a widget.

3.2 Telecommunication Services

IMS provides several kinds of telecommunication features. The aim of this API
is to provide high-level interfaces for the most relevant services. All provided
telecommunication functions are arranged into 8 service groups. Table 1 shows
the proposed groups in alphabetical order.

AddressBook contains a set of functions for accessing user profiles via XDMS

Call contains functions for outgoing and incoming voice over IP calls

ConferenceCall a set of functions for voice connection of multiple users

Location provides functions for getting location information

Messaging contains functions for sending and receiving instant messages

Presence provides functions for getting and setting presence state

SMS allows the user to send a short message to a mobile phone

ThirdPartyCall contains functions to start or end a third party call

Table 1. JavaScript telecommunication API Service Groups

First of all it is possible to initiate voice calls routed by IMS. There are
three different categories of voice calls: peer to peer calls, third party calls and
conference calls.

Peer to peer calls connect two participants via a SIP protocol where voice
information is streamed over an IP based network (Voice over IP). A gateway
to the PSTN enables it to call using classic circuit-switched access as well. The
API makes it possible to initiate and receive VoIP calls and to get information
about a running VoIP call.

The second category of voice calls are third party calls. Third party calls
also establish a voice connection between two participants from the point of
view of a server which acts as the third party. A third party call expects two
SIP addresses or phone numbers. After initiating the call participant 1 receives
an invitation for an incoming call. When participant 1 has accepted the call
participant 2 receives the notice of an incoming call as well. The voice connection
is only established if participant 2 has also accepted the call. The control of
the third party call lies on the server side, meaning the third party may also
disconnect the call.

Another kind of call is the conference call. Conference calls are voice con-
nections between at least two participants. The initiator of the conference may
invite new participants and disconnect participants from a running conference.

A further telecommunication service offered by IMS is instant messaging.
Instant messages are widely known from the Internet. The API makes it possible

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



6 Mobilware, Berlin, Germany, April 28-29, 2009

to send messages to the SIP address and to receive instant messages. This kind
of service facilitates chat applications.

The IMS network includes a gateway to send short messages (SMS) to
mobile phones. Thus it is possible with the telecommunication API to send a
SMS.

The next functional group of the API is called AddressBook. It includes all
functions that are necessary for managing personal contacts. Contacts are nor-
mally stored on the XML document management server (XDMS), which acts
as an XML database for user management and configuration. User profiles may
contain information like name, address, age, gender, telephone numbers or op-
tional free text. Contacts can be arranged into different groups like ”friends””
and ”teammates” for instance. The SIP address of each contact acts as its pri-
mary key.

Presence is another functional service group. The IMS network includes a
presence server which contains the actual presence state for all registered users.
The presence state is presented as one of the following strings: ”ONLINE”,
”OFFLINE”, ”BUSY”, ”AWAY”. The telecommunication API allows a user to
set its own state, to get the actual state of the other users and to react to other
users’ presence state changes.

The IMS also provides features for finding the location in terms of GPS
coordinates. If the device that runs the client provides location information it
can be accessed by the telecommunication API.

4 Widget Engine

This section introduces the new widget engine, which makes use of the telecom-
munication API, including its implementation on desktop computers and Google
Android based mobile phones.

4.1 Requirements for a Widget Engine with Telecommunication
Features

The widget engine cares about hosting, including managing and rendering the
widgets. It should run on different platforms: Windows XP, Windows Vista,
Linux, Windows Mobile and Google Android. Widgets should be portable, mean-
ing a widget that was written for the desktop engine should run on other plat-
forms too.

The widget engine is compliant to the current W3C draft standard [2]. That
is to say a widget uses only common file formats known from the web. For this
purpose the widget engine must include an interpreter for HTML and JavaScript
code. The goal of this paper is to introduce telecommunication features into wid-
gets. Hence the widget engine must additionally provide interfaces for telecom-
munication features to the widgets by offering the JavaScript functions of the
Telecommunication API described in section 3.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 7

Any incoming notification message must be delivered to the appropriate wid-
get. This is the situation in which the widget engine receives an incoming call, an
incoming instant message or a presence change. The web developer may define
JavaScript functions that will be invoked when such an incoming notification
occurs. If no widget is open while an incoming call arrives the user may define
a standard widget which will be opened automatically when a call arrives.

4.2 Architectural Design

The widget engine comes as a stand-alone application which is installed on the
terminal. On startup it logs in to the configured IMS network automatically.
Each widget is packaged as a zip file containing no more than the common Web
file formats. Widgets can be installed from external media storages or Web sites
into the engine. They are stored in a local directory as part of the widget engine.
The graphical interface of the engine differs depending on the operating system.

Figure 1 illustrates the interaction of the components. IMS access is realized
via MONSTER, a standards-compliant client framework developed at Fraun-
hofer FOKUS that implements JSR 281 [5][6]. The acronym MONSTER stands
for Multimedia Open Internet Services and Telecommunication Environment,
an extendible framework that provides communication interfaces for accessing
the IMS network. Due to its Java implementation, MONSTER is applicable on
multiple platforms. MONSTER was implemented and tested in the Open IMS
Playground, a Fraunhofer FOKUS IMS environment, but is applicable on other
IMS networks too [9].

When a widget invokes a JavaScript function of the telecommunication API,
the widget is responsible for doing the mapping to the appropriate MONSTER
interface. In the other direction MONSTER provides listener services which are
fired when an incoming notification arrives. The incoming notification will be
delivered to the appropriate widget by the widget engine. Some features, like
short messaging for instance, are executed by calling Web services offered by
OpenSE, a server based implementation of the Parlay X interfaces described
in section 2.3. Both MONSTER and OpenSE access the IMS via SIP protocol.
Because JavaScript has no built-in access to Java and certainly no possibility of
using SIP, the widget engine provides a way for communicating between Java
and JavaScript.

4.3 Implementation of the Desktop Widget Engine

Each widget runs in a dedicated window, which in fact contains a lightweight
Web browser to render the widget. The desktop version allows drag and drop of
the widgets on the screen. Moreover it allows multiple widgets to be opened in
parallel.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



8 Mobilware, Berlin, Germany, April 28-29, 2009

Fig. 1. Widget engine with interacting components

The implementation uses Java Standard Edition, thus it is possible to use
the same code on Windows and Linux. The Standard Widget Toolkit (SWT)1,
developed by the Eclipse foundation, was chosen as the GUI toolkit [10]. SWT
is an open source GUI toolkit, designed to provide user interface elements based
on the operating system. It meets the requirements in terms of portability, per-
formance and the GUI facilities provided. Because it uses native user interface
facilities from the operating system, SWT is much more efficient than Swing or
AWT. SWT offers a Web browser element, which is able to interpret HTML,
JavaScript and CSS files and to display image files like any other modern browser.

The SWT browser element uses Xulrunner, a runtime package that can be
used for the interpretation of HTML and JavaScript code [7]. Xulrunner was
developed by Mozilla and is available for Windows and Linux. It uses the Gecko
1 Please note that the term widget is used in another context when talking about

GUI toolkits. A GUI toolkit widget is a graphical element for user interaction like
an input field or a check box.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 9

engine, known from the Firefox Web browser. On Windows systems it is also
possible to exchange Xulrunner with Internet Explorer.

Two different approaches were considered for the mapping from JavaScript
to Java. Both use Jabsorb, an open source Java tool for Java-JavaScript interac-
tion [7]. Jabsorb provides methods for marshalizing Java objects into JavaScript
Object Notation (JSON) strings. JSON is a text-based format used to exchange
data which is similar to XML but with a simpler structure and less overhead.
The invocation of Java methods is done by JSON-RPC, a text based protocol for
calling on remote procedures. These JSON strings can be sent from JavaScript
to Java and vice versa. The receiving side unmarshalizes the JSON string into
a Java or JavaScript object. The two approaches for the JavaScript to Java
mapping differ in the way in which they transmit the JSON strings.

The first approach uses the browser status bar as a buffer. When JavaScript
wants to invoke a Java method a JSON string is written on the browser status
bar. The user will not notice that because the status bar is invisible. In Java
the browser element has an onChange listener method for the status bar which
is invoked when the status text changes. The JSON string on the status bar is
unmarshalized by Jabsorb into Java objects / method calls and the appropriate
Java method will be invoked. This approach is efficient because the delay between
method invocation and execution is very small. The disadvantage of this kind
of communication is that it does not allow synchronous calls. JavaScript has no
built-in support for multithreading. Thus it is not possible for the JavaScript
code to wait until Java returns.

The second approach is based on a local lightweight Web server with a small
memory footprint. The JSON string is transmitted via AJAX to the local HTTP
server. The server receives the string and sends it to Jabsorb which unmarshalizes
it, executes the appropriate Java method and sends a reply to JavaScript. This
kind of communication requires a local server. A lightweight HTTP server has
been implemented and integrated into the widget engine for this purpose. Due to
the server request this kind of communication suffers a longer delay than the first
approach. The advantage of this approach is the opportunity to use synchronous
calls. AJAX makes use of the XML.HTTP request object which is able to invoke
both asynchronous and synchronous calls.

Incoming notifications can be delivered directly to JavaScript by using the
browser.execute() command which is included into the SWT browser. In this
way incoming messages may cause the browser element to invoke the appropri-
ate JavaScript function inside a widget. A widget must register for incoming
messages since not all widgets are interested in knowing when an incoming mes-
sage arrives. Therefore the widget developer can write a JavaScript function
called init(), which is invoked on startup after the widget finishes loading.

Each widget using the telecommunication API on the desktop version must
include two JavaScript files in its initial HTML file. The first .js file manages the
JavaScript to Java mapping and the second one contains the telecommunication
interfaces.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



10 Mobilware, Berlin, Germany, April 28-29, 2009

4.4 Mobile Version using Google Android

Android is a new open-source platform for mobile devices introduced by Google
at the end of 2007. It was released in the form of a development toolkit including
an emulator for testing new applications. Android is based on Linux Kernel 2.6
and the Dalvik virtual machine, a JVM with some additional features like the
built-in GUI toolkit. Indeed it has some restrictions as well. Due to security
issues an Android application cannot access files outside of its own application
directory for instance.

Android applications are usually composed of multiple so called activities. An
activity is mostly a single screen that interacts with the user. Every activity has
its own complex lifecycle including a large set of controlling points. When writing
their own widget a developer does not need to be concerned about Android’s
programming model. They can use normal JavaScript in the same way as they
do when creating a Web site.

The Android version of the widget engine uses the same MONSTER com-
munication interfaces to access the IMS as the desktop version. For the GUI no
extra toolkit like SWT is required because Android has built in GUI elements
that can be used. The widgets are interpreted by an element called WebView,
which is part of WebKit, a library included in Android. WebKit is known as the
rendering engine of Apple’s Safari browser. This WebView element replaces the
SWT browser of the desktop version. Because of the smaller display the Android
version of the widget engine will not show more than one widget at the same
time. The engine itself is realized using the GUI element ”gallery” of Android.
The end-user may load new widgets from an SD-card into the engine or Web
and remove old widgets. Every icon in the gallery represents a stored widget.

The communication between Java and JavaScript is very efficient on An-
droid. WebView elements provide the opportunity to expose Java objects to
JavaScript, whose methods can be accessed directly inside the JavaScript code.
In the opposite direction Java can invoke JavaScript functions inside a WebView
by calling WebView.loadUrl(”javascript: code”). Due to the different mapping
from Java to JavaScript, widgets loaded into Android have to include another
JavaScript file for the telecommunication API than the desktop version. The fol-
lowing section describes this process. Nevertheless the telecommunication API
for Android provides the same interfaces but uses a different system for mapping
to the widget engine.

4.5 IMS Widgets

As defined in the W3C draft, every widget contains at least a config.xml for
the meta data and a starting HTML file, usually called index.html [2]. As an
extension of the widget engine the config.xml must include a link to an image
file which describes the shape of the widget.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 11

5 Evaluation

The aim of this work is to explore widgets’ IMS telecommunication features.
In order to prove their usability, portability and ease of development an exam-
ple widget was created for every service group of the telecommunication API.
This section shows some of these example widgets using the new widget engine,
including telecommunication services.

5.1 Call Widget Example

Figure 2 shows an example call widget. When inserting a number or SIP address
into the input field and clicking the green button on the left a new connection will
be established. Another use case appears when an incoming call arrives and the
user clicks on the green button. In this case the incoming call will be answered,
instead of initiating a new call. The user has the power to cancel the call or see
viewing information about the call by pushing the buttons on the bottom of the
widget.

Fig. 2. Call Widget Fig. 3. Address Book / Presence Widget

Each widget may contain an init function, which can be written by the developer.
This function is executed after the widget has finished loading. The init function
is meant to define what happens when incoming events, like an incoming call for
instance, occur. The following code demonstrates the simplicity of the API. In
the init function of the example call widget a callback function is defined which
is invoked when an incoming call arrives. The callback function starts to play a
ring tone and sets the global JavaScript variable status to ”Incoming”. The lower
4 lines handle the call status inside of JavaScript. onConnectionStatusChange
subscribes this widget for notifications of call connection status changes. If the
status changes it is displayed above the input field.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



12 Mobilware, Berlin, Germany, April 28-29, 2009

function init() {
var callback = function(sipUri) {
startRing(); // starts a ringtone
setStatus("Incoming: "+sipUri);
}
FOKUS.Call.onIncomingCall(callback);
var statusChange = function(status) {
setStatus(status); // set global status var
}
FOKUS.Call.onConnectionStatusChange(statusChange);
}

The following JavaScript code shows the functional part for the green button.
If the status equals ”Incoming” the ring tone stops and the incoming call is an-
swered. answerCall function is invoked asynchronously with a callback function
as input parameter while makeCall invokes the Java method synchronous. This
shows the different options for invoking the telecommunication API.

function connect() {
if (actualStatus.substring(0,8)=="Incoming") {
var callBackFunction = function(result)
{ stopRing(); // stops the ringtone sound }
FOKUS.Call.answerCall(callBackFunction);
}
else {
// read tel no from input field
var input= document.getElementById("tel").value;
if (input !="")

FOKUS.Call.makeCall(input);
} }

The high-level function makeCall executes a lot of consecutive actions. First of
all the request is sent to the widget engine which executes the appropriate Java
method in MONSTER. MONSTER sends a SIP invite packet to the P-CSCF of
the client’s IMS network. The P-CSCF redirects the invitation to the I-CSCF
which looks up the called user’s S-CSCF in its HSS. Subsequently the S-CSCF
forwards the invitation to the called user’s client. MONSTER also manages the
authentication, authorization and accounting (AAA).

The invocation of Java methods by JavaScript causes a delay of less than
10ms when using the implementation based on status bar communication. The
local server based communication requires no more than 20ms on a regular desk-
top computer.

As can be seen the invocation of the IMS service is very comfortable using the
JavaScript telecommunication API. A widget developer does not have to worry
about the complexity behind the JavaScript functions. The high-level functions
hide all consecutive actions. The use of JavaScript allows the integration of other
Web 2.0 services.

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



Mobilware, Berlin, Germany, April 28-29, 2009 13

5.2 Presence and Address Book Example Widget

The second example widget based on the widget engine combines the address
book service with the presence service. It displays all buddies entered in the user’s
address book and shows their actual presence state. Inside of its init function
the widget invokes the following actions:

1. read all entries from the user’s address book
2. get presence information for every entry
3. subscribe to be notified of presence changes for all entries
4. set callback function for incoming presence state change
5. display all entries with their presence state

When any of the buddies changes his presence state the widget gets noticed
immediately and displays the new presence state. With the select box on the
bottom of the widget a user may publish its own presence state to the IMS’
presence server. The whole widget implementation requires about 40 lines of
JavaScript code and less than 30 lines of HTML code. Design is defined in an
extra stylesheet file.

5.3 Widgets on Android

The same widgets deployed on the desktop widget engine will also run on An-
droid. This enables rapid development of Android IMS applications without
knowing anything about Java or the Android code model. Only some lines of
HTML and JavaScript must be written to create an IMS application on Android.

Fig. 4. Widget Engine on Android Emulator

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications



14 Mobilware, Berlin, Germany, April 28-29, 2009

Figure 4 shows the widget engine on an Android emulator. On the top you
can see the engine, where every icon represents a widget. The actual opened
widget is displayed on the bottom. The figure on the left shows the presence /
address book widget which was presented in section 5.2 for the desktop version.
The look and feel is the same as the desktop version. The figure in the middle
shows a chat widget, using the messaging service group of the telecommunication
API. The user can send and receive instant messages based on the IMS network.
The figure on the right shows an example widget for sending an SMS.

6 Conclusion

The widget engine described in this paper makes it possible to develop IMS client
applications in a fast and easy way. The telecommunication API provides a layer
of abstraction between the IMS and the widgets. Using this high-level abstraction
layer, a developer with only web programming experience can easily handle the
functional complexity behind IMS. This allows the creation of customized IMS
clients for a wide range of users. Due to the fact that widgets make use of
Web technologies, exposing IMS based telecommunication services to Web 2.0
enabled applications becomes an exploitable opportunity. It has been proven
that the developed widgets are easy to create, are highly portable and run on
various operating systems and hardware platforms.

Future work will enhance the telecommunication API with services for music
and video streaming that can be used inside of Web applications. These features
are already supported by the MONSTER framework and it is planned to make
them available to widgets. At the moment Android restricts VoIP calls because
Google has disabled audio streaming. Another open issue is widget to widget
communication. Widgets can interact with the widget engine but cannot interact
with each other yet. Future work will concentrate on this issue. As another next
step the widget engine will be ported to Windows Mobile.

References

1. Widgets 1.0: The Widget Landscape, W3C, April 2008
2. Widgets 1.0: W3C Working Draft, W3C, April 2008
3. Hughes Systique Corporation. Telco-ajax: A concept approach at bringing legacy

telecom application servers to web 2.0. Whitepaper, Feburary 2008.
4. Parlay X Web Services, Parlay Group, Version 3.0 June 2007
5. JSR 281 IMS Services API, Java Community Process, Ericsson, July 2008
6. Design of a Coherent Mobile Multimedia Framework for Convergent Services, Al-

berto Diez Albaladejo, Alin Murarasu, Thomas Magedanz, TU-Berlin, 2008
7. Jabsorb 1.3, Open Source, May 2008
8. Xulrunner 1.8.1, Mozilla, March 2008
9. IMS Playground, Fraunhofer FOKUS, http://www.open-ims.org
10. Standard Widget Toolkit, Eclipse Foundation, http://www.eclipse.org/swt/

Deinert, Murarasu, Bachmann, Magedanz: A Base Solution for Exposing IMS
Telecommunication Services to Web 2.0 Enabled Applications


	A Base Solution for Exposing IMS Telecommunication Services to Web 2.0 Enabled Applications
	Abstract
	Introduction
	Related Work
	Widget Engines
	W3C Widget Standard
	Parlay X - Telecommunication API

	JavaScript Telecommunication API
	API
	Telecommunication Services

	Widget Engine
	Requirements for a Widget Engine with Telecommunication Features
	Architectural Design
	Implementation of the Desktop Widget Engine
	Mobile Version using Google Android
	IMS Widgets

	Evaluation
	Call Widget Example
	Presence and Address Book Example Widget
	Widgets on Android

	Conclusion
	References



