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ABSTRACT
There have recently been considerable advances in fast in-
ference for (online) latent Dirichlet allocation (LDA). While
it is widely recognized that the scheduling of documents in
stochastic optimization and in turn in LDA may have sig-
nificant consequences, this issue remains largely unexplored.
Instead, practitioners schedule documents essentially uni-
formly at random, due perhaps to ease of implementation,
and to the lack of clear guidelines on scheduling the docu-
ments. In this work, we address this issue and propose to
schedule documents for an update that exert a dispropor-
tionately large influence on the topics of the corpus before
less influential ones. More precisely, we justify to sample
documents randomly biased towards those ones with higher
norms to form mini-batches. On several real-world datasets,
including 3M articles from Wikipedia and 8M from PubMed,
we demonstrate that the resulting influence scheduled LDA
can handily analyze massive document collections and find
topic models as good or better than those found with online
LDA, often at a fraction of time.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.7 [Artificial Intelligence]:
Natural Language Processing

General Terms
Algorithms
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1. INTRODUCTION
LDA has recently become popular due to its effectiveness

at extracting low-dimensional representations from sparse
high-dimensional data, with numerous applications in areas
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such as text analysis and computer vision [1]. Unfortunately,
fitting a LDA topic model given a set of training documents
requires approximate inference techniques that are computa-
tionally expensive. This makes it challenging to apply LDA
to large-scale document collections that nowadays become
increasingly common.

A promising approach to scaling LDA to large datasets
are online variants, see e.g. [5] and references in there, that
incrementally build topic models when a new document (or
a set of documents) appears. Specifically, Hoffman et al. [5]
presented an online variational Bayes (VB) algorithm for
LDA based on online stochastic optimization with a natu-
ral gradient step that can easily analyze massive document
collections. Here, we explore another avenue opened up by
online LDA (oLDA) algorithms, namely, to view LDA as a
search process and to ask the question whether we can im-
prove it by scheduling documents respectively mini-batches
for processing. Somewhat surprisingly, there has been virtu-
ally no attempt to study the question of determining a good
order for documents to be processed. While it is widely
recognized that the scheduling of documents in stochastic
optimization of LDA topic models may have significant con-
sequences, this issue remains largely unexplored. Instead,
practitioners schedule documents essentially uniformly at
random, due perhaps to ease of implementation, and to the
lack of clear guidelines on scheduling the documents. In this
work, we address the question of how to schedule documents
and show that convergence can be reached faster.

2. ONLINE LDA
LDA is a Bayesian probabilistic model of collections of

text documents [1]. It assumes a fixed number of K under-
lying topics in a document collection. Topics are assumed
to be drawn from a Dirichlet distribution, βk ∼ Dir(η),
which is a convenient conjugate to the multinomial distri-
bution of words appearing in documents. According to LDA,
documents are generated by first drawing topic proportions
according to θd ∼ Dir(α), where α is the parameter of
the Dirichlet prior on the per-document topic distributions.
Then for each word i a topic is chosen according to zdi ∼
Mult(θd) and the observed word wdi is drawn from the se-
lected topic, wdi ∼Mult(βzdi).

In this paper, we focus on variational Bayesian (VB) in-
ference. Here, the true posterior is approximated using a
simpler, fully factorized distribution q. Following [1, 5], we
choose q(z, θ, β) of the form q(zdi = k) = φdwdik, q(θd) =
Dir(θd, γd), and q(βk) = Dir(βk, λk). The variational pa-
rameters φ, γ, and λ are optimized to maximize the Evidence



Lower BOund (ELBO) log p(w | α, η) ≥ L (w, φ, γ, λ) ,
Eq [log p(w, z, θ, β | α, η)]−Eq [log q(z, θ, β)], which is equiva-
lent to minimizing the Kullback - Leibler divergence between
q(z, θ, β) and the true posterior p(z, θ, β | w,α, η).

Based on VB, Hoffman et al. [5] have introduced an on-
line variant that we here present for the batch case run-
ning over mini-batches (chunks of multiple observations).
That is, we assume that the corpus of documents has been
sorted according to some schedule, i.e. permutation π and
chunked into l mini-batches B1, B2, . . . , Bl of size S. That
is, the ELBO L is set to maximize L (w, φ, γ, λ) ,

∑
Bi∑

d∈Bi ` (nd, φd(nd, λ), γd(nd, λ), λ), where nd is the word

count vector and ` (nd, φd(nd, λ), γd(nd, λ), λ) denotes the
contribution of document d to the ELBO. As Hoffman et
al. [5] have shown this mini-batch VB-LDA corresponds to
a stochastic natural gradient algorithm on the variational
objective L. Using mini-batches reduces the noise in the
stochastic gradient estimation as we consider multiple obser-
vations per update: λ̃kw = η + D/S

∑
s∈Bi nswφskw where

nsw is the s-th document in the i-th mini-batch and D de-
note the number of documents.

3. INFLUENCE SCHEDULED (O)LDA
It is known that LDA and its precursor probabilistic la-

tent semantic analysis (pLSA) are closely related. In partic-
ular, one can show that pLSA is tantamount to LDA with a
uniform prior [4]. Moreover, it is well known that pLSA is
deeply connected to instances of the problem of non-negative
matrix factorization [2]. Putting both results together, there
is a relation between LDA and certain settings of low-rank
matrix factorization. Thus, it is natural to ask: ”Can we
improve LDA by adapting techniques developed for matrix
factorization?” Here, we show that this is actually the case.
Specifically, we utilize randomized matrix factorization ap-
proaches, see e.g. [3, 6]. That is, we approximate a given
matrix A by S rescaled rows/columns sampled from A. To
do so, we compute an ”importance score” for each row, and
sample rows using that score as an importance sampling
probability distribution.

A common score is p(i) =
∑
j n

2
ij/

∑
i,j n

2
ij , and the rescal-

ing factor is 1/
√
p(i) · S. This importance score depends on

the whole corpus and intuitively captures the ”influence” of
a given document on the LDA topic model. By preferen-
tially choosing documents that exert a disproportionately
large influence on the topic model, we expect to capture the
important part of a given corpus at hand.

Our key idea now is to apply the importance sampling
procedure to LDA. However, whereas the randomized ma-
trix factorization approaches sample a subset of documents
with replacement, we want to keep all documents exactly
once. Consequently, we schedule documents by sampling all
documents with replacement biased towards those ones with
higher norms. In other words, the documents with higher
entry values will have higher chance to be processed earlier.

We compute a schedule, i.e., a permutation π of the doc-
ument collection {d1, d2, . . . , dn} by sweeping through the
list of documents in order of increasing indices until all doc-
uments have been selected. To decide whether the current
document di should be placed at position π(idx) of the sched-
ule π, we draw a random number in [0, 1] and check whether
it is larger than the influence score p(i) of di. If that is not
the case, we place di at position π(idx) of the schedule π.

Alternatively, we just sort the documents according to their
norm, from large to small documents. Setting π to a random
permutation would recover oLDA.

Putting everything together results in influenced sched-
uled LDA (isLDA): Compute p(i), rescale and shuffle the
documents according to π, and build mini-batches as de-
scribed earlier — and then run online variational Bayes in-
ference using these mini-batches. Because we only change
the schedule in which documents are considered, we do not
change the expected number of times a document is seen. In
turn, the analysis of [5] carries over to isLDA: isLDA con-
verges to a stationary point of the objective L (w, φ, γ, λ).

As we will show now, influence scheduling can be seen
as a stochastic search problem [7]. More formally, assume
that we have a distribution p(z|θ) over search directions, i.e.,
gradients parameterized by θ. In each iteration, we generate
m samples of search directions z1, . . . , zm and use some fit-
ness function to evaluate them — such as the contribution
` of document d to the ELBO — to evaluate and in turn to
adjust the parameters θ of the search distribution.

Let J(θ) be the expected fitness under search distribu-
tion p(z|θ), namely J(θ) =

∫
f(z)p(z|θ)dz. We now want

to adjust θ such that the expected fitness J(θ + δθ) is in-
creased. The most straightforward way to do this is to set
δθ = ∇θJ(θ) =

∫
p(z|θ) · (f(z)∇θ ln p(z|θ)dz). Using Monte

Carlo, we can approximate the last term as ∇θsJ(θ) =
(1/m)

∑m
i=1 f(zi)∇θ ln p(zi|θ). Apriori, i.e., when have not

seen any document, it is natural to assume the fitness f(zi)
is identical for all search directions, for the ease of simpli-
fication say f(zi) = 1 for i = 1, . . . ,m. The last equa-
tion simplifies to ∇θsJ(θ) = (1/m)

∑m
i=1∇θ ln p(zi|θ). So,

what is ∇θ ln p(zi|θ)? With a rough approximation, one can
assume all the search directions are independent and iden-
tically distributed. The central limit theorem then gives
z ∼ N (x, (C/m)) where x represents the mean and C is
the covariance matrix of the search directions. Again, if
we have not seen any document it is sensible to assume
C̃ is the identity matrix. Now, it is easy to show that
∇x ln p(z|θ) = C−1(z− x) = z− x .

What do we gain by this? It allows us to see isLDA as
an offline, greedy search learning approach and in turn that
it has close links to well-known active learning approaches.
Specifically, we have a set of i.i.d. documents simultaneously
available. Then, isLDA queries documents so as to attempt
to improve the ELBO as much as possible without comput-
ing the ELBO. Actually, isLDA takes a myopic approach
that greedily chooses the next query based on this criterion.
To see this, assume that the expected variational parame-
ters are uniform for documents not seen, i.e., φdwk = K−1.
Now, the expected influence of an unseen document d to λ̃
is ξd =

∑
k

∑
w ndwφdwk =

∑
k

∑
w ndwK

−1 =
∑
w ndw, i.e.

the number of words in the document. This tells us that
the document with the largest norm will have the greatest
expected impact on the search distribution. The sampling
implements a simple exploration and exploitation strategy.
Because the norm of a document is not changing, we can
stick to the corresponding schedule after having seen each
document once and continue running batch LDA following
the computed schedule. This essentially proves:

Theorem 3.1. isLDA is a myopic stochastic search pol-
icy assuming all documents are i.i.d. and uncorrelated.

Moreover, we can generalise isLDA to the online case. Intu-



Algorithm 1 Influence Scheduled Online LDA (isoLDA)

Define ρt , (τ0 + t)−κ with κ ∈ (0.5, 1]
Initialize λλλ randomly and set t = 0
repeat

Randomly select a batch B of documents
Compute a schedule π for B
Sort the documents in B according to schedule π
Build mini-batches B1, B2, . . . , Bl according to π
for each batch Bi in turn do

for each document s in Bi do
Initialize γsk = 1. /*The const. is arbitrary*/
repeat

Set φswk ∝ exp {Eq [log θsk] + Eq [log βkw]}
Set γsk = α+

∑
w φswknsw

until 1
K

∑
k |change in γsk| < 0.00001

Compute λ̃kw = η + D
S

∑
s∈Bi

nswφswk

Set λλλ = (1− ρt)λλλ+ ρtλ̃
Increment t = t+ 1

until converged

itively, we draw a batch of documents at random, apply one
iteration of isLDA on this batch, and iterate. That is, we
draw again randomly a batch, apply one iteration of isLDA,
and so on. This influence scheduled oLDA (isoLDA) is sum-
marized in Alg. 1.

The benefits of isoLDA are manifold. In contrast to isLDA,
it does not require a full pass through the entire corpus in
order to schedule documents for an update. Instead, it real-
izes a dynamic scheduling by scheduling each random batch
again and again. In turn, it can be quite fast and flexible
when applying to massive datasets. Finally, it has a con-
stant memory consumption and naturally applies to growing
datasets. In a nutshell, it combines the benefits of isLDA
and oLDA: faster convergence and better quality. And, since
we sample batches uniformly at random, the analysis of [5]
again carries over:

Theorem 3.2. isoLDA converges to a stationary point of
the objective L (w, φ, γ, λ).

4. EXPERIMENTAL EVALUATION
Our intention here is to investigate the following ques-

tions: Q1 Can isLDA be faster than batch LDA and oLDA
on small and medium scale datasets? Q2 If so, does isLDA
find solutions that are as good as the ones of batch LDA
and oLDA for small and medium scale datasets? Q3 Does
isLDA scale also well to large datasets? Q4 If not, does
isoLDA scale better than isLDA and oLDA?

To this aim, we implemented batch LDA and all isLDA
variants in Python based on Hoffman et al.’s [5] Python
code1 for oLDA and evaluated their performances on several
datasets. Specifically, we considered the following datasets
where D denotes the number of documents, W the number
of unique words, and N the total number of words.

The WebKB2 dataset consists of webpages of various uni-
versities with four different categories (student, course, fac-
ulty, project) with D = 3,869 and N = 217,671. We chose
a vocabulary of W =3,000 unique words consisting of the
terms with the highest TFIDF. Finally, we also used the 20-
newsgroups3 dataset (20N) with D = 18,576, N =1,847,456,
and W = 10,000. From all corpora, we removed documents
with less than six words. For the scaling experiment (Q3,

1
http://www.cs.princeton.edu/~mdhoffma

2
http://web.ist.utl.pt/~acardoso/datasets/

3
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/rap/
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Figure 1: (Left and middle col.) Perplexity vs. CPU
time (sec.; K = 100; in log scale) resp. the number
of topics. (Right col.) Influence scheduling yields
competitive classification performance. Here, is =
isLDA, iss = isLDA (sorted), and o = oLDA. A ↑ (↓)
denotes that the first (second) algorithm achieved
a higher mean. A • denotes significant differences
(paired t-test, p = 0.05). (Best viewed in color)

Q4), we crawled our own Wikipedia (english) corpus of D =
3,295,656 documents with N ≈ 294,000,000 and a fixed vo-
cabulary of W =7,686 words. We preprocessed the crawled
Wikipedia articles as done in [5], using the provided positive-
list vocabulary to remove terms not appearing in our arti-
cles. Additionally we used PubMed (PM) abstracts from
the UCI repository with D = 8,200,000 documents with N ≈
737,000,000 and a vocabulary of W =141,043 words. And
finally, to compare the influence of different parameter set-
tings, we use the NY Times (NYT) news articles from UCI
with D = 300,000 documents with N ≈ 100,000,000 and a
vocabulary of W = 102,660 words. For both (after stopp-
word removal), the vocabulary was reduced by keeping just
words which appeared more than ten times, and additionally
for NYT we excluded all multi token phrases.

For WebKB and 20N, we held out 500 randomly se-
lected documents for evaluation purposes; 1000 documents
for the Wiki, PM and NYT datasets. On the test sets, we
computed perplexity (the lower, the better) to measure the
model’s ability to generalise to unseen data [1]. Addition-
ally, we evaluated all approaches in a classification setting
for WebKB and 20N. Specifically, we used the 7 first-level
classes for 20N and all classes for WebKB. Then, we used
a multi-class linear support vector machine4 to predict the
class labels merely using the topic distributions of the docu-
ments as estimated by the learned LDA models. We report
on the average accuracy achieved in a 5-fold cross-validation.

For all experiments, we set κ close to 0.5 as suggested in
[5] and τ0 = 4 for the small and medium corpora (deter-
mined by cross-validation on the training set of 20N but
used for all experiments). To set the mini-batch size for
isLDA on the small datasets we used the following heuristic:

S = D·‖D‖2∑
i‖di‖2

, where ‖di‖2 resp. ‖D‖2 denotes the Frobenius

norm of document i resp. the whole corpus. Intuitively,
it measures how many documents are required to capture

4
We used PyML http://pyml.sourceforge.net/ with the default pa-

rameter settings.

http://www.cs.princeton.edu/~mdhoffma
http://web.ist.utl.pt/~acardoso/datasets/
http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/rap/
http://pyml.sourceforge.net/
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Figure 2: Perplexity vs. CPU time on Wiki sub-
sets (min.; K = 100; upper two rows) resp. for (d)
Wiki and (e) PM (h.; K = 100). (f) isoLDA is more
stable for different parameter settings than oLDA:
Perplexity on NYT after 5 hours. The numbers be-
hind (is)(o)LDA indicate the batch sizes used. (Best
viewed in color)

the important part of a corpus. We always stopped when
each document was seen 25 times. We used fixed symmetric
hyperparameters α = 0.01 and η = 0.01.

Q1, Q2: Small and Medium Corpora The perplexity
results are summarized in Fig. 1. As one can see, isLDA ap-
proaches find solutions in the range of the batch algorithm’s
solution with much less computation. For small corpora, the
higher bias of isLDA (sorted) results in significantly better
performance compared to isLDA and oLDA. With increas-
ing sizes of the corpora, however, isLDA catches up. Taking
all experiments together, either influence scheduling outper-
forms oLDA on all document selections. We note, however,
that batch LDA’s perplexity can drop below the ones of the
mini-batch approaches. The accuracies of the classification
experiments as summarized in Fig. 1 clearly show that influ-
ence scheduling yield competitive predictive accuracies. In
8 cases, isLDA produced significantly higher classification
accuracies than oLDA. Only in one case oLDA produced a
significantly higher classification accuracy.

Q3, Q4: Scaling Experiments The results so far sug-
gest that isLDA finds solutions in the range of (o)LDA but
much faster. To investigate this further for large datasets,
we ran experiments on several subsets of the Wikipedia cor-
pus ranging from 100K to 500K documents using the optimal
parameters as determined by Hoffman et al. [5]. For isoLDA,
we used a mini-batch size of 1024. The results are summa-
rized in Fig. 2. As one can see, isLDA does not scale well. It
actually slows down for larger document collections. In con-
trast, isoLDA scales well. To further investigate if isoLDA
scales better than oLDA we conducted experiments on two
massive datasets with approx. 3.3M (Wiki) respectively
8.2M (PM) documents. Here, we used |B|/64 to set the
mini-batch size for isoLDA given that oLDA used a batch

size |B|. For Wiki we set τ0 = 1 based on the proposed set-
tings in [5] for large batch sizes. For PM we set τ0 = 1024
to account for its large vocabulary size. We considered large
batch sizes of |B| = 65536 and |B| = 262144 as we can ex-
pect to find models of higher quality for them. The results
are summarized in Fig. 2. On Wiki, isoLDA converged af-
ter about only 4 hours to a model with a lower perplexity
than the model oLDA found after 24 hours. On PM, this
difference in performances is even more pronounced. More-
over, the learning curves are much more stable compared to
oLDA. That isoLDA is more stable w.r.t. to different pa-
rameter settings is also confirmed by our final experiment on
the NYT corpus. Fig. 2 shows learning curves for several
different parameter settings. Clearly, the variance is much
lower for isoLDA than for oLDA.

Putting all experimental results together, we can clearly
answer questions Q1, Q2 and Q4 affirmatively.

Conclusion
Triggered by the recent success stories of oLDA approach
for the problem of inferring topics in growing document col-
lections, we revisited batch LDA. We turned batch LDA
into a quasi-online LDA approach that forms mini-batches of
highly influential documents first and processes them before
less influential ones, called isLDA. Then, we turned isLDA
into a novel, easy-to-implement oLDA approach, called isoLDA,
that scales well to massive and growing datasets by applying
influence scheduling to randomly formed batches. Based on
the results of the present paper, [8] have recently developed
the first active LDA.
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