International Cold Forging Group (ICFG)

50th ICFG Plenary Meeting– Shanghai, China, Sep. 03-06, 2017

Severe Plastic Deformation in Impact Extrusion Processes

by

D. Landgrebe, M. Bergmann

Presenting author: M. Bergmann, Fraunhofer Institute for Machine Tools and Forming Technology IWU, Email: <u>markus.bergmann@iwu.fraunhofer.de</u>

Severe Plastic Deformation in Impact Extrusion Processes

- 1. Introduction
- 2. Process Principle of Gradation Extrusion
- 3. Calculation of Strain
- 4. Evaluation of Graded Material Properties
- 5. Applications
- 6. Summary and Prospekts

1. INTRODUCTION

Severe plastic deformation (SPD)

Equal Channel Angular Pressing (ECAP) and Cyclic Extrusion Compression (CEC)

- Severe grain refinement (grain size below 1µm)
- Materials with improved properties

- > Ductility
- Corrosion resistance

Grain refinement: nearly **homogeneous** throughout the **complete volume**

- Limitations:
 - Low utilization factor productivity is low

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION

Process principles

- Approach
 - Combining ECAP with
 - impact extrusion
- Gradation die
 - Contains additional forming area
 - Specific conditions of SPD
 - Forming area with several forming elements

ECAP

Impact extrusion

Material deformation at a forming element in different positions

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION

Main properties of gradation extrusion (GE)

Gradation extrusion process design

 Severe plastic deformation of the lateral area

Influence of the die design

- Angle of element
- Length of element
- Number of stacked elements

Peripherial layer

- High strength
- Delayed crack initiation
- Improved corrosion resistance (Aluminium alloys - 7000 series)

Core

- High ductility and toughness
- Resistance to crack propagation

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION

$A \qquad B$

Design variants of die geometries for gradation extrusion

Main feature of forming elements

ICFG

Die design A

- Forming area with angled forming elements
- Undercuts
- Final diameter reduction

Die design B

- Forming area with angled forming elements and stepwise diameter reduction
- Without undercuts
- Final diameter reduction

Main influencing parameters

Initial diameter	D_0
Final diameter	D_F
Inner diameter	D_I
Radius	R
Forming element angle	ϕ
Forming element length	1
Number of steps	п

6

50

- Combining two main mechanisms:
 - **Extrusion steps** *i*

ECAP steps *j*

Element i	Diameter Change D _i -D _{i+1}	Eff. Strain Extrusion φ_i vlE	Angle φ	Effective Strain ECAP φ_j vECAP	
1	-		157.5°	0.23	
2-6	$egin{array}{c} \end{array}{0.16} & ightarrow \end{array}{0.13.9} \end{array}{0.13.9$	-0.235 / 0.307	135°	0.48	
7	\emptyset 13.9 \rightarrow \emptyset 16	0.307	112.5°	0.77	
8	Ø16→ Ø10	-0.610	135°	0.48	
	$\sum oldsymbol{arphi}_{i extsf{vle}} $:	= 2.236	$\sum \varphi_{j \vee ECAP} = 3.88$		
Total	φ _v = 6.116				
1	-		135°	0.48	
2	Ø16 ightarrow Ø14.5	-0.178	135°	0.48	
3, 5, 7		0	135°	0.48	
4	$\emptyset14.5 ightarrow \emptyset13$	-0.218	135°	0.48	
6	Ø13 → Ø11.5	-0.245	135°	0.48	
8	Ø11.5→ Ø10	-0.279	135°	0.48	
	$\Sigma arphi_{i ext{vle}} $	= 0.92	$\sum \varphi_{j_{VECAP}} = 3.84$		
Total	φ _v = 4.28				

8

Total effective strain as a function of forming element length

9

Calculated total effective strain with its shares resulting from ECAP-like deformation

- Share of ECAP-like deformation is higher with smaller forming element angles
- Design A be amount of ECAP-like deformation is increasing with smaller angles
- Design B the amount of extrusion-based deformation is steady

50 1967-2017

4. FINITE-ELEMENT SIMULATION OF THE PROCESS

Simulation setup

- Simufact Forming[®] 13.2
- Al-alloy EN AW-6082
- Process setup of rotationally symmetric 2D models

Punch Die Sample	

					Sample 🕂	
	Approach		Parameters			
Material flow ehaviour	$k_f = K \cdot \varphi^n$	$K = 400 \frac{N}{mm^2}$	n = 0.094	$R_e = 240 \frac{N}{mm^2}$		
Friction	Coulomb and maximum shear stress (combined)	$\mu = 0.08$	<i>m</i> = 0.2		_	
Meshing arameters	Quad-mesh	Element leng	th 0.3 mm (7	209 elements)	Flow stress Material-dependent coef	ficient
	1	I			Hardening exponent	
					Yield strength	
					Friction coefficient	
					Friction factor	

 k_f

Κ n R_e μ m

р

h

4. EVALUATION OF GRADED MATERIAL PROPERTIES

Hardness distribution and microstructure of the Al-alloy EN AW-6082

- Hardness distribution correlates with the simulated effective strain distribution
- EBSD maps show grain refined microstructure
- Significant influence of tool geometry (angle, radius, inner diameter)
 - Hardness values lie in the range of ECAP

4. EVALUATION OF GRADED MATERIAL PROPERTIES

Residual Stress

Process chain: producing an aluminum bolt

- Screw with outstanding strength
- High corrosion resistance

Process chain - subsequent forming of graded billet

Process chain: producing an aluminum bolt

Resulting microstructure

EN AW-6060

SEM images after electrolytical polishing

Process chain: producing an aluminum bolt

Data: Elias, C. N.; Meyers, M. A.; Valiev, R. Z.; Monteiro, S. N.: Ultrafine grained titanium for biomedical applications: An overview of performance. Journal of Materials Research and Technology, v. 2, Issue 4, p. 340-350, Oct. – Dec. 2013.

- Pure titanium instead of Ti-6Al-4V for implants
- Grade-2 titanium with strength of Ti-6Al-4V \rightarrow severe plastic deformation

In development - medical implants (Ti Grade 2) Die geometry and simulation

Lateral area

- Analytical effective strain $\rightarrow \varphi_{v} = 5.5$
- FE-Simulation app. $\rightarrow \varphi_{vsim} = 7$

Core

19

FE-Simulation $\varphi_{vsim-core} = 0.8$

50 1907-2017

In development - medical implants (Ti Grade 2)

- Gradation extrusion using undercut-free geometry (Design B)
- Forming of titanium grade-2 successful
 - Hardening effect with gradient

Hardness (HV1) of the as delivered billet and extruded samples at 20°C (RT) and 300°C

Hardness (HV1) measuring of cross section sample III at room temperature

A Initial billet
 B Sample after start of plastification
 C Sample almost completely processed
 D Sample completely formed at room temperature
 E Sample processed with starting temperature of 300°C

Gradation extrusion samples

20

In development - medical implants (Ti Grade 2)

Microstructural characterisation

5. SUMMARY AND PROSPEKTS

- Gradation Extrusion process combining impact extrusion and severe plastic deformation
- SPD forming elements influencing character of deformation
 - Strain level
 - Gradient
- Microstructural analysis shows the grain refining effect
- Applications
 - Aluminum bolts
 - High strength grade 2 titanium implants

Next steps:

- Investigation of bolt properties and optimization of process chain
- Forming of implant prototypes
- Investigation of residual stress after processing

5. PROSPEKTS

Residual Stress

Thank you for your attention !

Acknowledgements:

The authors acknowledge the Deutsche Forschungsgemeinschaft (DFG) for supporting the primary process development within the framework of Collaborative Research Centre 692.

SFB 692 – H A L S

