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Fpressure

Fpressure

1. INTRODUCTION 

� Severe grain refinement (grain size below 1µm) 

� Materials with improved properties

� Limitations:

� Low utilization factor - productivity is low

� Strength of material

� Ductility

� Corrosion resistance

ECAPECAPECAPECAP
Equal Channel 
Angular Pressing

CECCECCECCEC
Cyclic Extrusion 
Compression

Grain refinement:

nearly homogeneous 

throughout the complete 

volume

Severe plastic deformation (SPD)

Fpressure

Sample

ECAP channel

Punch

Sample

Tapered channel

Piston
Equal Channel Angular Pressing (ECAP) and Cyclic Extrusion Compression (CEC)
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� Approach

� Combining ECAP with

impact extrusion

� Gradation die

� Contains additional forming area

� Specific conditions of SPD

� Forming area with several forming elements

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION

ECAPECAPECAPECAP Impact Impact Impact Impact extrusionextrusionextrusionextrusion

Forming area

+

forming 

element

+

Process principles

Material deformation at a

forming element in

different positions

Gradation die
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� Severe plastic deformation of the
lateral area

Peripherial layer

ultrafine-grainedcoarse-grained

� Gradation extrusion process design 

Core

� High strength

� Delayed crack initiation

� Improved corrosion
resistance (Aluminium 
alloys - 7000 series)

� High ductility and 
toughness

� Resistance to crack 
propagation

Main properties of gradation extrusion (GE)

Workpiece
material

Influence of the die design

� Angle of element

� Length of element

� Number of stacked
elements

A A

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION
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A B

Punch

Die

Sample

øD0 øD0

øDF
øDF

Die design A

Die design B

� Forming area with angled
forming elements

� Undercuts

� Final diameter reduction

� Forming area with angled
forming elements and

stepwise diameter reduction

� Without undercuts

� Final diameter reduction

Design variants of die geometries for gradation extrusion

Main feature of forming elements

Initial diameter D0

Final diameter DF

Inner diameter DI

Radius R

Forming element angle φ

Forming element length l

Number of steps n

Main influencing parameters

ø

ø

ø

ø

ø

øDI
øDI

øD0

øD0

øDI

2. PROCESS PRINCIPLE OF GRADATION EXTRUSION
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3. CALCULATION OF STRAIN

� Combining two main mechanisms:

� Extrusion steps � ECAP steps

ECAP-like deformation within gradation extrusion die
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1 - 135° 0.48

2 Ø16 → Ø14.5 -0.178 135° 0.48

3, 5, 7 Ø14.5 → Ø14.5
Ø13→ Ø13

Ø11.5 → Ø11.5
0 135° 0.48

4 Ø14.5 → Ø13 -0.218 135° 0.48

6 Ø13 → Ø11.5 -0.245 135° 0.48

8 Ø11.5→ Ø10 -0.279 135° 0.48

∑ ��νIE = 0.92 ∑ ��νECAP = 3.84
Total  ν= 4.28

Element
i

Diameter 
Change
Di-Di+1

Eff. Strain
Extrusion
!�νIE

Angle
φ

Effective Strain ECAP
!�νECAP

1 - 157.5° 0.23

2-6
Ø16 → Ø13.9 /
Ø13.9 → Ø16

-0.235 /
0.307

135° 0.48

7 Ø13.9 → Ø16 0.307 112.5° 0.77

8 Ø16→ Ø10 -0.610 135° 0.48

∑ ��νIE = 2.236 ∑ ��νECAP = 3.88
Total  ν= 6.116

3. CALCULATION OF STRAIN

Die design A

Die design B
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øDI

øD0
øD0

øDI

� Design A

� Higher total effective strain

� Strain generation depends on angle

angle "ϕ) total effective strain "��#
� Strain generation depends on forming element length "�#

Die design A Die design B

3. CALCULATION OF STRAIN

Total effective strain as a function of forming element length
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ø

ø

ø

ø

øDI
øDI

øD0
øD0

øDI

� Share of ECAP-like deformation is higher with smaller forming element angles

� Design A the amount of ECAP-like deformation is increasing with smaller angles

� Design B the amount of extrusion-based deformation is steady

3. CALCULATION OF STRAIN

Calculated total effective strain with its shares resulting from ECAP-like deformation

Die design A Die design B
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4. FINITE-ELEMENT SIMULATION OF THE PROCESS

Simulation setup

� Simufact Forming© 13.2

� Al-alloy EN AW-6082

� Process setup of rotationally symmetric 2D models

Approach Parameters

Material 

flow

behaviour

Friction

Coulomb and

maximum shear

stress (combined)

Meshing

parameters
Quad-mesh Element length 0.3 mm (7209 elements)

n

f Kk ϕ⋅=
2

400
mm

N
K = 094.0=n 2

240
mm

N
Re =

Die

Punch

Sample

Flow stress &'
Material-dependent coefficient K

Hardening exponent n

Yield strength ()
Friction coefficíent *
Friction factor m

* = 0.08 . = 0.2
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A – 90° A – 120° A – 165° B – 90° B – 120° B – 165°

Analytical - Effective strain

12.2 9.8 7.8 9.0 5.1 2.0

Simulation - Effective strain

7.2 5.7 4.8 9.4 7.0 1.5

� Smaller angle wider layer of high strain generation

higher strain in the lateral area

� Die design B higher potential to create a strongly graded material

Effective strain �/ [-]

3. CALCULATION OF STRAIN
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4. EVALUATION OF GRADED MATERIAL PROPERTIES

Hardness distribution and microstructure of the Al-alloy EN AW-6082

� Hardness distribution correlates with the simulated effective strain distribution 

� EBSD maps show grain refined microstructure 

� Significant influence of tool geometry (angle, radius, inner diameter )

� Hardness values lie in the range of ECAP 

EN AW-6082

Smoothed geometry

Angular geometry

Distance to surface [mm]
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s
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V
0
,5
]

Hardness distribution map Measurement with
Electron Backscatter Diffraction (EBSD) 

First SPD forming element

Third SPD forming element
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4. EVALUATION OF GRADED MATERIAL PROPERTIES

Residual Stress

konvexkonkavkonventionell
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5. APPLICATIONS

� Screw with outstanding strength 

� High corrosion resistance

Process chain

� Process chain - subsequent forming of graded billet 

Process chain: producing an aluminum bolt

Effective 
strain �/ [-]

Experimental

Simulation
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5. APPLICATIONS

Process chain: producing an aluminum bolt

EN AW-6060

SEM images after electrolytical polishing

� Resulting microstructure
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5. APPLICATIONS

Process chain: producing an aluminum bolt

Gradation process and
diameter reduction are
performed in a first die

Forming steps are
performed in one die

Separate thread
rolling process

a)
b)

c)
d)

e)

EN AW-6060



18

Dental implant geometries [norismedical.com]

� Pure titanium instead of Ti-6Al-4V for implants

� Grade-2 titanium with strength of Ti-6Al-4V � severe plastic deformation

Data: Elias, C. N.; Meyers, M. A.; Valiev, R. Z.; Monteiro, S. N.: 
Ultrafine grained titanium for biomedical applications:  An overview of 
performance. Journal of Materials Research and Technology, v. 2, Issue 4, 
p. 340-350, Oct. – Dec. 2013.

5. APPLICATIONS

In development - medical implants (Ti Grade 2)
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5. APPLICATIONS

In development - medical implants (Ti Grade 2) Die geometry and simulation

Lateral area

� Analytical effective strain � !ν		= 5.5 
� FE-Simulation app. � !νsim	= 7
Core

� FE-Simulation 	!νsim−core = 0.8
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� Gradation extrusion using undercut-free geometry (Design B)

� Forming of titanium grade-2 successful

� Hardening effect with gradient

170

180

190

200

210

220

230

240

250

260

270

300°C

RT

SP

300°C

RT

CoreSurface

As 
delivered

Gradation extrusion samples Hardness (HV1) measuring of
cross section sample III at
room temperature

Hardness (HV1) of the as delivered billet 
and extruded samples at 20°C (RT) and 300°C 

335

325

315

305

295

285

275

265

255

245

235

HV1

10 mm

A           B          C          D         E

A Initial billet

B Sample after start of plastification

C Sample almost completely processed

D Sample completely formed at room temperature

E Sample processed with starting temperature of 300°C

5. APPLICATIONS

In development - medical implants (Ti Grade 2)
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5. APPLICATIONS

In development - medical implants (Ti Grade 2)

Microstructural 
characterisation

100 µm

100 µm

100 µm
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5. SUMMARY AND PROSPEKTS

• Gradation Extrusion – process combining impact extrusion and severe plastic 
deformation

• SPD forming elements influencing character of deformation

� Strain level

� Gradient

• Microstructural analysis shows the grain refining effect

• Applications

� Aluminum bolts

� High strength grade 2 titanium implants

Next steps:

� Investigation of bolt properties and optimization of process chain

� Forming of implant prototypes 

� Investigation of residual stress after processing
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5. PROSPEKTS

Residual Stress
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