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Abstract— Image-based 6-DoF pose estimation of arbitrarily
shaped 3D objects based on their shape is a rarely studied prob-
lem. Most existing image-based methods for pose estimation
either exploit textural information in form of local features or, if
shape-based, rely on the extraction of straight line segments or
other primitives. Straight-forward extensions of 2D approaches
are potentially more general, but in practice assume a limited
range of possible view angles. The general problem is that
a 3D object can potentially produce completely different 2D
projections depending on its relative pose to the observing
camera. One way to reduce the solution space is to exploit
temporal information, i.e. perform tracking. Again, existing
model-based tracking approaches rely on relatively simple
object geometries. In this paper, we propose a particle filter
based tracking approach that can deal with arbitrary shapes
and arbitrary or even no texture, i.e. it offers a general solution
to the rigid object tracking problem. As our approach can deal
with occlusions, it is in particular of interest in the context
of goal-directed imitation learning involving the observation of
object manipulations. Results of simulation experiments as well
as real-world experiments with different object types prove the
practical applicability of our approach.

I. INTRODUCTION

Image-based pose estimation of 3D objects has so far
been addressed mostly for specific object geometries. It
is an accepted fact that 3D shapes can in general not be
represented fully by a single 2D representation [1]. The
reason is that a 3D object can potentially produce completely
different 2D projections depending on its relative pose to
the camera, as illustrated in Fig. 1. Thus, for 6-DoF pose
estimation some kind of 3D model is required, i.e. for
instance image features associated with 3D positions or a
full 3D object model.

Fig. 1. Different views of a measuring cup.

Traditional edge-based recognition and in particular track-
ing methods rely on rather simple 3D models, as illustrated
in Fig. 2. Initial work in this context has been performed by
Lowe in 1987 [2] and later for the purpose of tracking in [3].
It is typical for this type of approaches to rely on straight line
segments as primitives, as they allow simple and efficient
2D-image to 3D-model matching. Either the model edges

are sampled and 2D-point-to-3D-line correspondences ([4])
or 2D-point-to-3D-point correspondences (e.g. [5], which
requires POSIT [6] or a similar method for computing the
pose estimate) are established, or straight line segments are
extracted from the image in a pre-processing step (e.g. [7]).
The determined matches are usually used as input to a least
squares based optimization method.

Fig. 2. Typical 3D model for model-based tracking composed of straight
line segments, as used in [8].

An alternative to applying an optimization method is to
perform a search for the correct pose, which seeks to maxi-
mize a similarity function between the projected instance of
the 3D model and the 2D image. Such a similarity function
can be formulated on the basis of line-to-line correspon-
dences, as done in [8], or the model edges can be sampled.
The search itself is often performed within a particle filter
as statistical framework, as done e.g. in [9].

When dealing with more complex shapes, however, such
approaches become inapplicable. The reason is that in par-
ticular curved surfaces can be modeled accurately only by
a multiplicity of polygons (or as freeform surfaces, e.g.
NURBS), so that the real edges of the object cannot be
expressed by straight line segments of the model (see Fig. 3).
In other words, a priori knowledge of the real edges is not
available: It depends on the pose of the object, which polygon
edges become real edges.

Fig. 3. 3D wireframe model of measuring cup.



2D tracking approaches model the appearance of an object
by 2D contours, using active contours or active shape models.
However, the 6-DoF pose cannot be derived accurately on the
basis of deformable 2D contours directly.

Since 2000, local appearance-based methods using point
features (e.g. [10], [11], [12]) or region-based features (e.g.
[13]) have become popular. However, such approaches are
only applicable for objects that exhibit such local features,
either computed by blob detectors on the basis of a scale
space analysis or by corner detectors. For single-colored
objects (see e.g. Fig. 1) this is not the case.

Global appearance-based approaches model the object by
a set of global views. So-called canonical views have been
proposed for representing an object by a reduced number of
views that are sufficient to cover all possible appearances of
the object [14], [15]. A suitable data structure for storing and
arranging such views is an aspect graph; a survey is given
in [16]. However, such representations are mainly used for
recognition; accurate 6-DoF pose estimation requires more
information than matching of canonical views can provide.

In our previous work [17], we have developed an approach
for shape-based object recognition and pose estimation,
which is based on matching of global views, stereo tri-
angulation, and online rendering. The object’s appearances
are represented by a dense view set consisting of several
thousand views. While being able to compute the full pose
given a single stereo image pair within less than 20 ms,
global segmentation of the object of interest is required and
therefore object occlusions cannot be handled.

We will motivate this work and provide a problem defi-
nition in Section II. Our proposed approach is presented in
detail in Section III. Results of simulation experiments as
well as real-world experiments are provided in Section IV,
ending with a conclusion in Section V.

II. MOTIVATION AND PROBLEM DEFINITION

On our humanoid robot ARMAR-III [18], our object
recognition and pose estimation approach proposed in [17] is
successfully applied for single-colored objects in the context
of manipulation tasks. As already mentioned, it requires
global segmentation and cannot deal with occlusions. There-
fore, the intention is to provide with this work a tracking
approach that starts tracking after an initial pose has been
computed with our approach from [17]. Once tracking has
started, e.g. complex object manipulations (which potentially
lead to occlusions) can be performed by a human and
observed by the robot by using the approach presented in
this work.

Therefore, in this work, we focussed on the problem of
6-DoF rigid object tracking, given an accurate 3D model of
the object of interest. We do not make any assumptions about
the object, neither on its texture, nor on its shape, nor on its
color. The only requirement on the 3D model is that it can
be rendered by a 3D engine.

Note that the objective is not a relative pose estimator,
which is often implemented using the KLT tracker [19]

for propagating 2D-3D feature correspondences. Such ap-
proaches have two drawbacks: they require the presence
of local features and pose estimation errors accumulate.
In contrast, the objective is an absolute model-based pose
estimator that does not assume the presence of local features.

Throughout our experiments, we used object models from
the object modeling system presented in [20]1. In our imple-
mentation, the 3D models were rendered using OpenGL.

III. PROPOSED APPROACH

The core idea of our approach is to perform an appearance-
based matching based on online rendering of a finegrained
local view space using a 3D model of the object.

In [17], we have shown that not only the orientation
of a 3D object influences its appearance in the projected
image, but also its position does. Computing a complete view
space thus must involve all six degrees of freedom, i.e. be
six-dimensional. For a global finegrained view space, this
would go far beyond reasonable memory consumption and
computation time.

Therefore, we propose to render only those views that are
in the vicinity of the current pose estimate, which has to be
done online. This is done within an annealed particle filter
[21], which decides which object poses to render for each
frame. As probability function of the particle filter an edge-
based similarity function is used.

In the following, the involved steps of our approach are
presented:

1) Pose update
2) Probability function
3) Normalization
4) Annealed Particle Filter

A. Pose Update

The object position is represented as a 3D translation
vector t ∈ R3. The orientation is represented as a three-
dimensional vector r ∈ R3, its direction specifying the
rotation axis and its length ‖r‖2 specifying the rotation
angle – essentially the same as a quaternion representation
reduced to three dimensions. In contrast to Euler angles, such
a representation does not suffer from singularities, which
would lead to tracking “dead ends”.

We denote a pose as p ∈ R6 with:

p =
(

r
t

)
(1)

For particle sampling, the pose update for a given pose pt
from the previous time step t is computed as follows:

pt+1 = pt +Bn · ω (2)

where ω ∈ R6 is a vector that in each of its components
contains independent Gaussian noise. Bn ∈ R6×6 is a diag-
onal matrix containing amplification weights. The index n in
Bt indicates that adaptive weights are applied, depending on
the current layer n of the particle filter (see Section III-D).

1http://i61p109.itec.uni-karlsruhe.de/ObjectModelsWebUI/



B. Probability Function

The evaluation function, on the basis of which the a
posteriori probabilities are computed, builds the core of any
particle filter. As we want to deal with arbitrary shapes, we
cannot assume an object model in which polygon edges are
directly related to real edges (see Section I). Our general
solution is to render the object with the given pose and to
treat the rendering result as an image. As the real edges will
per definition be visible edges in the rendering result, we
apply a gradient-based edge filter or edge detector to the
rendering result to compute them. The filter result will be
denoted as Ig,p (the index g indicating that it is a gradient
image, the index p indicating that it is a rendered view for
a particle pose). An example is shown in Fig. 4.

Fig. 4. Rendered and processed view for one particle. In this example, the
Canny edge detector with a subsequent 3×3 morphological dilation operator
was applied. Left: rendered view, given the pose of the particle and the 3D
model. Right: edge image.

The current input image (see Fig. 5) is processed with
the same edge filter that is used for processing the rendered
per-particle object views, in order to achieve a similar filter
response. The filter result will be denoted as Ig in the
following.

Fig. 5. Input image and computed edge image. In this example, the Canny
edge detector with a subsequent 3×3 morphological dilation operator was
applied. Left: input image. Right: edge image.

In conventional model-based trackers using particle filters,
a commonly used evaluation function for an edge-based cue
is:

w′g(Ig, Pp) = 1− 1
|Pp|

|Pp|∑
i=1

Ig(pi) (3)

where Ig denotes the edge image and Pp is a set of
sampled and projected model points for a given pose p to
be evaluated (see e.g. [22]). Here, we want to implement
the same error measure, but now replacing the sampled
point set Pp by the edge filtered rendered view Ig,p. The
reason for this replacement is that, as discussed earlier, with
arbitrary shapes it is not possible to sample a priori known

line segments for the visible edges. Instead, we propose to
define an error measure based on the bitwise AND operation
between the edge image Ig and the edge image of the
rendered particle view Ig,p:

wg(Ig, Ig,p) = 1−

∑
x,y

[Ig(x, y) AND Ig,p(x, y)]∑
x,y
Ig,p(x, y)

(4)

where the sums run over the complete image and Ig,p
is a binary image with Ig,p(u, v) ∈ {0, 255} for all pixels
(u, v). Note that this formulation of the error measure is
equivalent to Eq. (3) in case the point set Pp is sampled
with the discretization of 1 pixel.

In case of the Canny edge detector, both Ig and Ig,p are
already binary. A subsequent morphological dilate operation
is used to spread the edges so that the potentially overlap-
ping area is increased. When using the Sobel filter instead,
threshold binarization is performed to produce a binary edge
image. An exemplary result of the bitwise AND operation is
shown in Fig. 6.

Fig. 6. Result of the bitwise AND operation (before summation) for the
right images from the Figs. 4 and 5. As can be seen, the similarity of the
particle pose and the real pose lead to a relatively large overlap.

The function computing the a-posteriori probabilities is

pg(Ig |p) ∝
{
− 1

2σ2
g

wg(Ig, Ig,p)
}

(5)

where p denotes the pose of the particle to be evaluated
and σ2 denotes the system’s variance. In practice, the term

1
2σ2

g
is interpreted as an either fixed or adaptive weighting

factor, which affects the tracking behavior of the particle
filter.

C. Normalization

The evaluation function from Eq. (4) normalizes the
number of overlapping pixels with the total number of
edge pixels of the rendered view. This is precisely the
same normalization as in Eq. (3), where the number of
overlapping pixels is normalized with the total number of
sampled points. Depending on the object and its pose, this
kind of normalization can potentially lead to ambiguities.

An exemplary situation of such an ambiguity is illustrated
in Fig. 7. As can be seen the pose visualized in the bottom
row is the correct pose. However, the wrong pose (top row)
produces the slightly better rating when using Eq. (4). The
reason is that both poses produce an almost complete overlap,
but the filter response for the lower half ellipse for the
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Fig. 7. Example of a situation that leads to an ambiguity when using Eq. (4)
as evaluation function. The wrong pose (top row) produces a slightly better
rating.

correct pose is relatively weak. This leads to a slightly higher
matching percentage for the wrong pose, as in that case this
half ellipse does not appear in the rendered view due to a
self-occlusion.

If evaluating the total number of overlapping pixels instead
of the percentage of the overlap, this problem does not occur.
However, the maximum number of overlapping edge pixels
can substantially vary, in particular depending on the distance
of the object to the camera. This means that the input range of
the exponential function would significantly vary depending
on the pose, when applying constant weights. We therefore
first collect all ratings, then linearly map these to the interval
[0, 1], and finally weight the mapped ratings and apply the
exponential function:

wi := −
∑
x,y

[Ig(x, y) AND Ig,i(x, y)]

wmin := min
i
wi

wmax := max
i
wi

πi := exp
{

1− α · wi − wmin
wmax − wmin

}
(6)

Throughout our experiments, α = 15 was chosen as a
constant weight.

D. Annealed Particle Filter

The essential idea of annealed particle filtering [21] is to
apply several runs of a particle filter – so-called layers – to
the same frame, but instead use less particles. In [21], it is
claimed that the total number of evaluations can be reduced
drastically, in particular by modifying the broadness of the
probability function from broad to fine towards the last layer.
In their human motion capture system with an articulated
human model with 30 DoF, a conventional particle filter
with 40,000 particles was replaced by an annealed particle
filter with 10 layers and 200 particles, i.e. 2,000 evaluations
instead of 40,000.

This drastic reduction must however be taken with care.
What happens is that the coverage of the relevant state space
is reduced considerably and the parameters of the layers

are adjusted to achieve stronger convergence towards the
last layer. By doing this, fewer hypotheses are generated
in the early layers (which are refined in the later layers),
as the number of particles is significantly less. Furthermore,
from experience, applying annealed particle filtering leads
to increased jitter in the estimated trajectories, in particular
when there is a discrepancy between the number of particles
and the dimensionality of the search space. One method for
reducing jitter is to apply adaptive weights for particle sam-
pling (matrix Bt in Eq. (2)), as proposed in [23]. There, the
applied noise for a parameter was chosen to be proportional
to the variance of that parameter.

As the variance of a parameter does not necessarily have
to be related to an error of that parameter itself, we choose
a different scheme. The degrees of freedom of the weighting
matrix are weighted with a single scalar weight:

Bn =
1
n
B (7)

where n ≥ 1 is the number of the current layer and B is
a diagonal matrix with constant weights. By doing this, the
same number of particles is spread within a continuously
decreasing space, which means that the granularity of the
search becomes finer toward the final layer. The practical
effect is that estimation noise is reduced. Throughout the
performed experiments, three layers with 250 particles were
used for the present 6-DoF tracking problem. The motivation
for this layout is to use a reasonable amount of particles to
cover the search space with two additional layers for pose
refinement.

IV. EXPERIMENTAL RESULTS

In the following we present the results of an experi-
mental evaluation. The system was implemented with the
Integrating Vision Toolkit (IVT)2. The processing times were
measured for an optimized CPU and an optimized GPU
implementation. The applied optimizations are described in
Section IV-B.

A. Accuracy

We have performed experiments both with simulated and
with real image data. As ground truth information for the
real image sequences was not available, the accuracy was
evaluated for the simulated images only. The snapshots from
Fig. 9 show the success of our approach for simulated as
well as real image data. The video attachment provides the
complete image sequences.

The evaluation of the accuracy with simulated images
was performed with three objects: a cup, a plate, and a
measuring cup. The results are illustrated in Fig. 8. As
can be seen the translational errors are below 5 mm for the
x, y-coordinates and below 15 mm for the z-coordinate. The
rotational errors are below 0.1 radians (5.7o). The rotational
part was compared with Euler angles to isolate the rotational
symmetry axis of the cup and the plate. Note that this is
independent from modeling the rotational part within the

2ivt.sourceforge.net



particle filter with an axis/angle representation, as explained
in Section III-A.
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Fig. 8. Errors for all 6-DoF. The x, y, z-errors are given in mm, the
α, β, γ-errors in radians. Note that the angle γ is not provided for the cup
and the plate, as it is the angle around their rotational symmetry axis.

B. Runtime – CPU vs. GPU

We have optimized our approach both for the CPU and
for the GPU and have performed comparative runtime ex-
periments; the results are provided in the following.

To achieve maximum speedups on the CPU, we used
the Keyetech Performance Primitives (KPP)3 for the image
processing routines. Although the KPP achieve a speedup for
the image processing by a factor of 5, the total speedup is at
most a factor of 2. The reason is that rendering and readback
to main memory require approx 2.5 ms whereas the image
processing with the KPP requires only approx. 0.5 ms.

Table I depicts the runtime for tracking the cup (see Fig.
9) for different numbers of evaluations. The processing times
were measured on a standard PC with an Intel Core 2 Duo
3.0 GHz and an NVIDIA Tesla C1060. In the case of the
CPU-version, the graphics card was used for rendering the
views only.

Evaluations CPU CPU optimized (KPP) GPU (CUDA)
[s] [s] [s]

100 0.5 0.30 0.24
500 2.4 1.5 1.1
750 3.6 2.2 1.7

1000 5.7 2.9 2.3

TABLE I
RUNTIME OF CPU VS. GPU FOR DIFFERENT NUMBERS OF

EVALUATIONS.

3www.keyetech.de

Fig. 9. Visualization of the tracking result of different tracked objects both
with real-world experiments and experiments in simulation.

As reading back the framebuffer to the main memory is the
bottleneck of the CPU implementation, the aim was to exploit
NVIDIA’s CUDA to avoid the transfer to main memory. All
image processing routines were implemented with CUDA,
as they are highly suitable for parallel processing. Since the
rendering result is already stored in the GPU memory, the
transfer from the framebuffer of the GPU to main memory
of the host can be skipped. Instead, the rendered view is
directly mapped into the memory space of CUDA on the
GPU.

Figure 10 depicts the optimization process. For the image
processing, the image is subdivided into tiles, and each part
is computed by a group of threads called a thread block. To
avoid concurrency errors, synchronization is required among
all the thread blocks. Finally, the rating calculated for each
pose is transferred back from the GPU to the CPU’s main
memory.

The image processing routines (edge detection, threshold
binarization, bitwise AND operation, and pixel sum compu-
tation) perform slightly better than the CPU implementations
offered by the KPP. However, our measurements have shown
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Fig. 10. From the pose of the object to its probability. Each view for a given
object pose is rendered with OpenGL on the GPU. Then, the image of this
rendered view is mapped into the memory space of CUDA. The image is
divided into different blocks of the same size. On each block, several threads
apply the Sobel operator, the binarization, the bitwise AND operation and
the computation of the sum of the pixels. Finally, the calculated probability
is transferred to the host.

that mapping the rendering result from the memory space of
OpenGL into CUDA’s memory space requires the same time
as transferring it to the CPU’s memory space. The reason
is the framebuffer, which is the bottleneck due to its slow
bandwidth. Therefore, our expectations for using CUDA to
reduce the readback time significantly were not fulfilled.

V. DISCUSSION AND OUTLOOK

We have presented an approach to 6-DoF tracking of
arbitrarily shaped rigid objects. In contrast to conventional
approaches, neither a simplified geometric model nor the
presence of local point features (SIFT, SURF, etc.) is as-
sumed. The only requirement is an accurate 3D polygon
model that can be rendered by a graphics card. We have
presented experimental results with simulated and real image
data, with objects substantially differing in shape and texture.
The approach is robust to occlusions and is therefore suitable
for the observation of humans in realistic scenarios, such
as imitation and interaction involving the manipulation of
objects.

The universality of the approach comes at the price of
a high computational effort. We have fully optimized our
approach both for the CPU and GPU, and in both cases
the bottleneck was the slow readback from the frame buffer.
However, future graphics hardware development will at some
point resolve this issue. We thus hope to make with this
work an important step toward a universal 6-DoF rigid object
tracker for real-time robotics applications. Future work will
focus on the integration of additional cues to support appli-
cation in the presence of complex cluttered backgrounds.
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