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Abstract—Detecting vehicles in aerial images is an important
task in many applications such as traffic monitoring or screen-
ing of large areas. In general, vehicle detection in aerial images
is performed by applying classifiers or a cascade of classifiers
within a sliding window algorithm. However, detecting vehicles
in a real-time system is limited by the huge number of windows
to classify, especially in case of varying object scales, aspect
ratios or object orientations. To reduce the high number of
windows, we propose to apply so called object proposals meth-
ods. In recent years, several object proposals methods have
been proposed for generating candidate windows in detection
frameworks. However, aerial images differ considerably from
datasets that are typically used for exploring such methods. To
examine the applicability of such methods for aerial images,
we evaluate 11 state-of-the-art object proposals methods on
the publicly available DLR 3K Munich Vehicle Aerial Image
Dataset. First, we manually modified the provided ground truth
data to enable comparison to the generated object proposals.
To compensate for the differing characteristics of the aerial
images, we adapted seven methods by examining different
parameter settings and extensions for each method separately.
Finally, we demonstrate the potential of such methods for a
detection framework for aerial images as significantly fewer
candidate windows are generated in comparison to sliding
window.

1. Introduction

Detecting vehicles in aerial images is an important pro-
cessing step for applications such as traffic monitoring or
screening of large areas as used for surveillance, tracking or
rescue tasks. These applications share the need for accurate
detection of all relevant objects, e.g. vehicles inside the
camera’s field of view before the scene can be analyzed
and interpreted. To reduce the work load of image analysts,
an automatic detection of candidate objects is required.

In general, classifiers or a cascade of classifiers within
a sliding window approach are applied to detect vehicles
in aerial images [14], [19]. A search window is shifted in
horizontal and vertical direction across the entire image. At

each window position, appearance features are calculated
and a classifier returns a confidence value for the occur-
rence of a vehicle. However, sliding window approaches
are computationally expensive due to the huge number of
windows to classify, especially in case of different object
scales, aspect ratios or orientations [8].

In aerial images, several approaches are proposed to
overcome this challenge such as reducing the search space
or applying a cascade of weak classifiers. In recent years, an
alternative approach was proposed to reduce the number of
candidate windows. So called object proposals methods are
used to generate a set of regions that are likely to contain an
object [1], [20]. Several different object proposals methods
have achieved impressive results on datasets such as Pascal
VOC 2007 and ImageNet for a significantly reduced number
of candidate windows [8]. However, these datasets differ
considerably from aerial images as images contain only one
or few objects that are typically centered and occupy a high
fraction of the entire image [13]. In contrast, aerial images
are often larger and can contain multiple objects that are
smaller and more randomly located.

In this paper, we examine the applicability of proposed
methods for generating candidate windows in aerial images.
Therefore, we evaluate 11 object proposals methods on the
publicly available DLR 3K Munich Vehicle Aerial Image
Dataset [14], [19]. The dataset consists of 20 images with
a ground sampling distance of approximately 13 cm. Each
image contains roughly 500 vehicles on average. We first
modify the provided ground truth (GT) to enable comparison
between ground truth and generated proposals. The differing
characteristics of the aerial images are compensated by
adapting seven methods that are most promising for generat-
ing object proposals in aerial images. Therefore, we examine
different parameter settings and extensions for each method
separately. The adaptations that show high impact on the
performance are discussed in detail. Finally, we demonstrate
the potential of such methods for a detection framework
for aerial images as significantly fewer candidate windows
are generated in comparison to sliding window. Thus, our
contribution is threefold:



• The applicability of object proposals methods for
aerial images with small objects is examined.

• We systematically analyze the impact of several
parameters to adapt these methods to aerial images.

• Finally, we demonstrate the potential of object pro-
posals methods for aerial images by comparison to
baseline approaches.

The remainder of this paper is organized as follows:
related work is discussed in Section 2. A detailed overview
of object proposals methods is given in Section 3. The
evaluation results are presented in Section 4. We conclude
in Section 5.

2. Related Work

In literature, a broad variety of vehicle detection meth-
ods have been proposed. In general, vehicle detection is
performed by applying classifiers or a cascade of classifiers
within a sliding window algorithm. Therefore, several differ-
ent feature and classifier combinations have been proposed.
We limit our discussion to recently proposed approaches
which aim to reduce the search space. Tuermer et al. [19]
apply a sliding window approach with HOG features and
SVM classifiers to find stationary and moving vehicles. To
reduce the search space and consequently the number of
candidate windows, they propose to incorporate road maps.
Leitloff et al. [12] reduce the search space by using a road
database. Vehicle detection is only performed along the
roads in a certain direction. However, such approaches are
limited by the availability of road maps and typically require
georeferenced images [14]. Furthermore, vehicles offside
the road that may of interest can be missed. Teutsch et
al. [18] propose Integral Channel Features and an AdaBoost
classifier to detect moving vehicles. The search space is
reduced by using motion vectors. However, image sequences
are required. Furthermore, static objects, e.g. parked vehicles
are missed.

In recent years, several object proposals methods have
been proposed to reduce the number of candidate windows.
Selective Search is the mostly used method for generating
object proposals in detection frameworks such as R-CNN [7]
and Fast R-CNN [6]. The method greedily merges regions
together based on the similarity between neighboring re-
gions. Good detection results are achieved on Pascal VOC
2007 and ImageNet [8], [20]. However, these datasets differ
significantly from aerial images as described above.

A comprehensive survey on state-of-the-art object pro-
posals methods is provided by Hosang et al. [8]. They
compare 12 different object proposals methods to baseline
approaches like sliding window. Another survey is given
by Chavali et al. [3]. They perform different experiments
to analyze the category independence of object proposals
methods. Both surveys focus on datasets that are used to
explore and optimize such methods and not on datasets
similar to aerial images. To the best of our knowledge, there
exists no literature about the applicability of object proposals
methods for significantly differing datasets such as in case
of aerial images.

Method Approach
Edge Boxes [21] Window Scoring
Endres [4] Grouping
GOP [10] Grouping
LPO [11] Grouping
MCG [2] Grouping
Objectness [1] Window Scoring
Rahtu [16] Window Scoring
Randomized Prim’s [15] Grouping
Rantalankila [17] Grouping
Rigor [9] Grouping
Selective Search [20] Grouping

TABLE 1. EVALUATED OBJECT PROPOSALS METHODS.

3. Object Proposals Methods

In recent years, several object proposals methods have
been proposed for generating candidate windows in detec-
tion frameworks. In general, these methods can be cat-
egorized into grouping methods and window scoring
methods [3], [8]. A detailed overview of the object propos-
als methods proposed in literature is given in the following
subsections. An overview of the object proposals methods
evaluated in the context of this paper is listed in Table 1.

3.1. Grouping Methods

Grouping methods are typically comprised of initial
segmentation of the image followed by grouping segments.
According to the applied segmentation and merging strategy,
the grouping methods can be further distinguished into three
types as proposed by Hosang et al. [8]. The most common
approach is to simply group initial segments based on a
diverse set of cues. Alternative approaches are based on
solving multiple graph cut problems with diverse seeds or
applying edge contours.

• Selective Search [20] is broadly used as a proposals
method in detection frameworks such as R-CNN
and Fast R-CNN [6], [7]. Initial segments are gen-
erated by the segmentation approach proposed by
Felzenszwalb et al. [5]. Then, segments are greedily
merged together based on the similarity between
neighboring segments. The similarity is calculated
based on simple features like colour or texture his-
tograms.

• Randomized Prim’s [15] merges segments by con-
necting subgraphs of a weighted connectivity graph
of the initial segmentation. Edge weights represent-
ing the probability that segments are from the same
object are based on similar features as in [20],
whereby the feature weights are learned. Starting
from a random segment, neighboring segments are
added to a subgraph if the according edge weight is
high until a stopping criterion is reached.

• Rantalankila [17] combines greedy merging of su-
perpixels and solving several graph cut problems on
a superpixel graph. The greedy merging is similar
to [20], however, different features are used.



• Endres [4] applies an occlusion boundary algorithm
that outputs four segmentations as well as the prob-
ability of occlusion and of foreground/background
label for each boundary in the segmentation. Seg-
ments are used as seeds for a graph cut problem.
The probabilities are used to compute the probability
that an other segment belongs to the same object as
the seed.

• Rigor [9] computes segments by using graph min-
cuts from multiple seeds as applied in [4]. How-
ever, the computation cost is considerably reduced
by reusing a single residual graph for starting the
parametric min-cuts for all different seeds.

• GOP (Geodesic Object Proposals) [10] computes a
boundary probability map that is used to produce
superpixel segmentation. Heuristic seed placement is
replaced by a learning-based approach. Foreground
and background masks are generated for each seed
and used as input for the geodesic distance trans-
form. The geodesic distance transform specifies an
image region that is used as object proposals.

• LPO (Learning to Propose Objects) [11] computes
superpixels similar to [10]. An ensemble of binary
segmentation models is trained and used to generate
a diverse set of foreground and background masks.
Foreground regions are used as object proposals.

• MCG (Multiscale Combinatorial Grouping) [2] per-
forms hierarchical segmentation based on detected
contours at different image scales. Multiscale seg-
ments are combined to object proposals based on
edge strength.

3.2. Window Scoring Methods

Window scoring methods are based on an initial set of
candidate windows. Candidate windows can be generated
by a sliding window approach or random sampling. Then
a score is calculated for each candidate window and used
to rank or filter these windows. Several cues have been
proposed to score candidate windows.

• Edge Boxes [21] uses an edge-based scoring func-
tion to score candidate windows generated by a
sliding window for various scales and aspect ra-
tios. The edge-based score measures the number of
edge groups within a candidate window, whereby
edge groups centered in the candidate window are
weighted low.

• Objectness [1] uses different cues including multi-
scale saliency, colour contrast, edge density and
superpixels straddling to score each candidate win-
dows. In case of considering multi-scale saliency
(default setting) that is based on the residual of
the FFT, the candidate windows are determined by
the scale used for calculating the FFT. Otherwise
a uniform or dense distribution is used to generate
candidate windows.

• Rahtu [16] generates an initial set of candidate win-
dows by superpixel segmentation, a prior distribution

Figure 1. Image section of the DLR 3K Munich Vehicle Aerial Image
Dataset. Annotated vehicles are highlighted by green bounding boxes.

learnt from training data and randomly sampled
windows. In addition to superpixels straddling as
proposed in [1], three features based on boundary
information and window symmetry are used to score
the candidate windows.

4. Experimental Results

In this section, we examine the applicability of 11 object
proposals methods for generating object proposals in aerial
images. Therefore, we only consider methods for which
source code is publicly available. The performance of the
selected methods is evaluated on the publicly available DLR
3K Munich Vehicle Aerial Image Dataset. The dataset com-
prises 20 images with annotated ground truth (GT). Each
image has a resolution of 5616×3744 pixels and a ground
sampling distance of approximately 13 cm. The annotated
GT objects are classified into different vehicle classes, e.g.
car, truck, bus. For our experiments, we divided each image
into tiles of size 936×624 pixels and we aligned all ground
truth boxes at the image edges as illustrated in Figure 1.
Aligned ground truth boxes are used to enable the com-
parison to both grouping and window scoring methods as
window scoring methods generate proposals that are aligned
at image edges. The first 10 images are used as training data
as training of parameters is required for several methods.
The other 10 images are used for testing the performance
of each method.

Metrics that are typically applied for evaluating the
performance and accuracy of object proposals methods, are
functions of intersection over union (IoU) between generated
object proposals and GT annotations [3]. IoU (also known
as Jaccard Index) is given by

IoU =
Aproposal ∩AGT

Aproposal ∪AGT
, (1)

where Aproposal and AGT are the area of the proposed
bounding boxes and the ground truth bounding boxes, re-
spectively. For our experiments, we use two metrics: Recall
as a function of IoU and recall as a function of the number
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Figure 2. Comparison of recall values between original methods (a) and methods adapted to aerial images (b).

of proposals. GT boxes are considered as recalled, if their
highest IoU value is greater than a threshold. Recall-IoU
curves are generated by varying this threshold value. As dif-
ferent object proposals methods generate a different number
of proposals, we plot the recall as a function of the number
of proposals for a fixed IoU threshold. Threshold values
at or above 0.5 are considered as relevant for subsequent
classification [6], [7].

4.1. Original vs. Adapted Methods

Recall-IoU curves of all original object proposals meth-
ods are shown in Figure 2 (a). Therefore, we applied the
original algorithms and parameters as proposed in the corre-
sponding literature. However, more proposals are considered
in case of window scoring methods as aerial images are
larger compared to images of datasets that are used to ex-
plore these methods. The best recall values are achieved for
the Selective Search method. The Selective Search method
exhibits recall values close to 1 for small threshold values.
However, the recall value decreases with increasing thresh-
old values. For example, the recall value for a minimal IoU
of 0.5 is less than 0.9 so that more than 10% of all GT
objects are not considered as recalled. The other object pro-
posals methods exhibit worse recall values and consequently
more GT objects are not considered as recalled. Hence, the
original algorithms are not applicable to generate candidate
windows in aerial images as too many GT objects are not
recalled. Reason for this is that the methods are developed
and optimized for datasets that considerably differ from
aerial images as described above.

In the following, we adapted seven object proposals
methods to take the characteristics of the aerial images into
account. The approaches Endres, Rantalankila and Rigor
are not considered as solving graph cuts with different
seeds are computational expensive [4, 8]. The computa-
tional cost would increase significantly for aerial images
as more seeds are required due to small objects and larger
images. MCG is not considered as the computation time is

higher compared to Rantalankila and Rigor [8]. To adapt
the algorithms to aerial images, we systematically analyzed
the impact of parameters as described below. Recall-IoU
curves of the adapted methods are given in Figure 2 (b).
All adapted object proposals methods exhibit considerably
improved performance. The best recall values for thresholds
below 0.55 are achieved for the method proposed by Rahtu
that slightly outperforms Selective Search and Randomized
Prim’s. All methods exhibit recall values close to 1 for small
threshold values except LPO. We expect that the segmenta-
tion models used for generating foreground and background
masks are reason for the low recall values. As the provided
segmentation models are trained on the Pascal VOC 2012
dataset that considerably differs from aerial images.

4.2. Adaptation to Aerial Images

All adapted methods show clearly improved recall values
as shown in Figure 2 (b). As the fundamental functions
differ for different methods, we analyzed the impact of pa-
rameters for each method separately. We examined amongst
others the impact of the segmentation and its corresponding
parameters, the impact of candidate sizes, the impact of
applied features or cues as well as post-processing strategies
such as Non-Maximum Suppression. Parameters that have
been trained on Pascal VOC 2007 are trained on the first
10 images of the dataset. In the following, we focus on
parameters that exhibit the most impact as a detailed survey
on all examined parameters is not possible in the context of
this paper.

In case of window scoring methods, the main improve-
ment is achieved by adapting the window sizes as illustrated
in Figure 3 (a) for Rahtu. The candidate windows are orig-
inally generated by superpixel segmentation and category
independent window prior from training data. However, the
prior distribution is not applicable for aerial images as ob-
jects can randomly occur. Instead, we apply randomly sam-
pled windows. Further improvement is achieved by reducing
the minimal size for superpixels as generated superpixels are
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Figure 3. Adaptation of parameters that show the most impact such as various initial windows for Rahtu (a), varying segmentation sizes for Selective
Search (b) and various number of seeds for GOP (c).

used as candidate windows. The impact of the minimal size
of superpixels on the window score is in contrast minimal.
The recall values for Objectness are clearly improved by
discarding the multi-scale saliency cue so that candidate
windows are defined by a uniform or dense distribution.
Adapting the minimal and maximal dimensions of candidate
windows to the object sizes further improves the perfor-
mance. Adapting the window sizes is also applied for Edge
Boxes, whereas other adaptations show minor impact on its
performance.

The performance of grouping methods is generally im-
proved by adapting the size of the initial segments as
exemplarily shown in Figure 3 (b) for Selective Search. The
size of initial segments is adjustable by varying the threshold
parameter k as described in [5]. Smaller values for k result
in smaller segments. Further improvement is achieved by
reducing the minimal dimensions for accepting segments as
proposals. Randomized Prim’s is based on the same segmen-
tation approach. Thus, similar adaptation results in improved
performance. The recall values are further improved by in-
creasing the approximated number of final proposals as more
subgraphs and consequently more proposals are generated.
The recall values of LPO are mainly improved by adapting
the initial segmentation as well. We increase the number of
computed superpixels by an order of magnitude, whereas
the impact of further adjustable parameters is minimal.

The main improvement for GOP is achieved by increas-
ing the number of seeds used to generate foreground and
background masks as shown in Figure 3 (c). More seeds
result in better recall values as the chance that objects are
covered by seeds increases. However, computation costs
increase significantly with the number of seeds. Hence, GOP
is not suited for aerial images with small objects.

The impact of parameters that are learnt on the first 10
images is small compared to the impact of candidate sizes
and segmentation, respectively.

4.3. Comparison to Sliding Window

Object proposals aim to reduce the number of candidate
windows to classify. To show how the number of candidate
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Figure 4. Selective Search and Rahtu show considerably improved recall
values with respect to the number of candidate windows.

windows is reduced, we compare the adapted Selective
Search and the adapted Rahtu method to a baseline ap-
proach. Therefore, we consider a sliding window approach.
We use three different window scales specified by the mean
window dimensions of the training data to consider dif-
ferent object sizes and aspect ratios. Figure 4 shows the
corresponding recall values as a function of the number of
proposals for a fixed IoU threshold of 0.5. In case of the
sliding window approach, we adapted the step size based on
the actual number of windows.

Both object proposals methods clearly outperform slid-
ing window for all numbers of proposals. Rahtu exhibits
high recall values for a small number of proposals as pro-
posals that are more likely to contain an object are better
ranked. Selective Search achieves recall values close to 1 for
comparable fewer proposals. Reason for that is the better
localization accuracy of proposals generated by grouping
methods [8]. In case of the sliding window approach, more
than 5% of all GT objects are not considered as recalled
even for 50,000 candidate windows. Hence, more different
scales and aspect ratios and consequently a higher number
of candidate windows are necessary to achieve recall values
close to 1, even though the used scales are adapted to the
mean dimensions of the objects in the training data.



5. Conclusion

In this paper, we have examined the applicability of
different object proposals methods for aerial images. We
have shown that the original methods are not applicable as
these methods are developed and optimized for datasets that
considerably differ from aerial images. The performance of
seven object proposals methods was significantly improved
by adapting these methods to the characteristics of the aerial
images. Therefore, we examined different parameter settings
and extensions for each method separately. The adaptations
that show high impact on the performance were discussed
for each method. Selective Search, Rahtu and Randomized
Prim’s seem to be suited for aerial images as these methods
achieve recall values close to 1 for an IoU threshold of 0.5 so
that almost all objects are recalled. Finally, we have demon-
strated the potential of applying object proposals methods
in a detection framework for aerial images as significantly
fewer candidate windows are generated in comparison to
sliding window. In future work, we will integrate the adapted
object proposals methods into a detection framework to
further evaluate the quality of generated object proposals.
Based on the results, we will implement an object proposals
method specifically for aerial images that takes the advan-
tages of different object proposals methods into account.
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[10] P. Krähenbühl and V. Koltun. Geodesic object proposals. European
Conference on Computer Vision, pages 725739. Springer, 2014.
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