
 Procedia CIRP 67 (2018) 167 – 172

Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

doi: 10.1016/j.procir.2017.12.194

ScienceDirect

11th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME '17

Challenges of production microservices
Benjamin Götza,*, Daniel Schela, Dennis Bauera, Christian Henkela, Peter Einbergera,

Thomas Bauernhansla
aFraunhofer IPA, Nobelstrasse 12, 70569 Stuttgart, Germany

* Corresponding author. Tel.: +49-711-970-1354 ; fax: +49-711-970-1028. E-mail address: benjamin.goetz@ipa.fraunhofer.de

Abstract

Current production systems use monolithic software solutions. This causes a lack of flexibility, scalability and prevents direct communication
between network nodes which is fundamental to face challenges of highly personalized mass production. In order to overcome these
drawbacks, the introduction of a service-oriented architecture (SOA) more specifically microservices in production are a promising approach.
SOA enables developers to distribute applications in a number of small services which communicate via an integration layer e.g. an enterprise
service bus. This paper proposes a data-driven approach for creating a SOA, based on microservices in an assembly focused production.
© 2017 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of “11th CIRP ICME Conference".

 Keywords: Microservice; Software; Service-oriented architecture; Monolithic architecture

1. Introduction

Global megatrends such as globalization, urbanization,
demographic change, growth of population and sustainable
development are not only influencing societies around the
world, but also have great impact on manufacturing
enterprises and lead to a paradigm change in all production
factors. This includes revolutionary changes in energy and
material consumption, staff and capital circulation as well as
massive demand movements towards emerging markets and
developing countries. It is expected, that by 2025 developing
countries will account for half of the global consumption [1].

Thus, addressing various markets will be far more a key
challenge than facing demand problems. Products for
developed countries need to be highly individualized, while
products for emerging markets need to be adapted to regional
needs including functionality, design and costs. In addition,
there is a trend to shortened innovation cycles. This leads to
an increasing complexity of the markets as well as a rise of
product variants while quantities per product and variant are
decreasing [2].

The proposed solution for these challenges from an IT
perspective is the concept of service-oriented architectures
(SOA) and microservices. While a SOA addresses challenges
of manufacturing enterprises, their implementation introduces

new challenges. Among these challenges are the architecture
design in terms of size of the microservices or their
orchestration and integration. Thus, this paper presents an
approach of how to overcome challenges of IT architecture
design and implementation in industrial production
environments to benefit from microservices.

2. Challenges in Production Systems

Information and communication technologies (ICT) will be
a key enabler for the described challenges of manufacturing
enterprises, where most of the innovations will take place. A
propagated solution addressing rising market complexity as
well as rising complexity within companies by ICT is the
smart factory, the next evolutionary stage of the fractal
factory. Cyber-physical systems (CPS) can build decentral
and autonomous networks – like fractals – to self-organize
and self-optimize. The level of autonomy and decentralization
rises with increasing complexity [2,3].

To enable these developments, manufacturing IT is
undergoing a fundamental change from the traditional
automation pyramid of monolithic systems to service-
orientation, also described as Everything-as-a-Service (XaaS).
This paradigm describes that everything, no matter if physical
or virtual, is offered as a service and originates from the three

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering

168 Benjamin Götz et al. / Procedia CIRP 67 (2018) 167 – 172

main cloud computing service layers Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) [4]. Table 1 summarizes and the following
chapters describe the ongoing changes in manufacturing IT.

Table 1 Comparison of traditional and emerging manufacturing IT

Traditional manufacturing IT Emerging manufacturing IT

Hierarchical Non-hierarchical networks

Centralized Decentralized

Software suites Services, Apps

Monolithic Fine-grained services

License fees Pay-per-Use

Complex integration Open standards

Delayed data (Near) real-time data

Roll-out within months/years Deployment within minutes

2.1. Traditional manufacturing IT

Traditional manufacturing IT is characterized by a
hierarchical structure defined in ISA-95 and often depicted as
the automation pyramid [5]. The automation pyramid is
divided in three levels: the operational shop floor level, the
tactical manufacturing execution system (MES) level and the
strategic enterprise resource planning (ERP) level on top.
Various planning and control tasks are performed on each
level [6].

Tools on each level of the automation pyramid are usually
centralized large software suites which require a significant
investment in license fees. In addition, they are often
monolithic and stick to self-defined interfaces instead of using
open standardized interfaces and communication protocols.
Therefore, the development and maintenance of interfaces
between various systems requires a high effort. With each
new version of a system, all corresponding interfaces need to
be updated because they are proprietary to the respective
software suites. Due to this effort, a holistic vertical and
especially horizontal integration is usually not realized. This
lack of real-time data caused by the missing integration often
requires short-term and expensive intervention to production
control. Furthermore, the process to introduce new software
suites is very inflexible and time-consuming, taking months to
years depending on the use case specifications [2,6,7].

2.2. Emerging concept for manufacturing IT

Today, the manufacturing IT is undergoing fundamental
changes enabled by technologies such as cloud computing and
associated concepts. The traditional automation pyramid is
dissolving and manufacturing IT is moving towards service-
orientation and app-orientation [4,8].

Software suites will be divided by functionality into
services and apps, decentralization offered by distributed
computing approaches like edge, fog computing concepts and
cloud platforms. These services and apps can be non-
hierarchically orchestrated in networks, where communication
between services based on open standards will become a key
factor for success. This overcoming of hierarchical structures
also allows for communication of real-time information [6,9].

Many manufacturing companies have noticed this shift to
service-orientation and have started to build their own cloud-
based platforms. Examples are the Bosch IoT Suite, GE
Predix or Siemens Mindsphere. However, most of these
platforms are tailored around the products and services
offered by the company and lack interoperability with other
platform providers. In contrast, there are platforms such as
Virtual Fort Knox [10] or the Fraunhofer initiative Industrial
Data Space [11] following a federative approach to enable
independent software vendors to participate in the ecosystem
and to prevent vendor lock-in effects.

3. Microservices

To give an introduction to the concept of microservices, we
compare it in the following first to the most obvious
alternative: the monolithic architecture.

3.1. Monolithic Architecture

The phrase monolithic is used to describe a software
application consisting of one piece. Traditional manufacturing
IT, as introduced in section 2.1, uses this typically. The
architecture is designed for running solely on one
computational instance. This may run multiple processes
which are distributed across multiple CPUs but all share the
same operating system and hardware.

If the system reaches a capacity peak, it needs to be
duplicated completely. This process might be executed
automatically by a continuous deployment system. The main
drawback is the lack of flexibility. For example, if a number
of users is reached that cannot be handled by one instance, a
monolithic system lacks the required horizontal scalability.
Instead, it has to be scaled vertically.

3.2. Service-Oriented Architecture

Generally, a microservice architecture is a SOA, utilized as
introduced in section 2.2. A service in a SOA is a software
component delivering one predefined functionality matching
one business activity and its specific results. The service is
self-contained which means that it does not rely on external
resources. All processing required by this service is performed
in itself. It includes all required resources like databases etc.
To consumers using the service it appears as a black box to be
accessed only via predefined interfaces. It may itself require
underlying services providing a certain sub-functionality [12].
A service which relies on a set of services is also called
aggregated service [13].

3.3. Microservice Architecture

Microservices refer to a new software architecture. We are
aiming to present an overview of the properties of this
architecture. The core concept is a fine-granular
decomposition of an application into such microservices.
While SOA refers to the general idea of encapsulating
functionalities into separate services, microservices
additionally specify the scale of this functionality as small
[14].

169 Benjamin Götz et al. / Procedia CIRP 67 (2018) 167 – 172

3.4. Concept

The services are organized around business capabilities.
This allows the development around key capabilities of the
system instead of predefined components. The service
instances are independent from each other. This applies to the
full life-cycle, including development, deployment and
maintenance. Microservices rely on loosely coupled,
lightweight communication protocols. This means that
services do not communicate directly but rather use
independently defined interfaces. This reduces the
dependencies between services and requires an enterprise
service bus (ESB) as an integration layer. Decentralized data
storage means that instead of relying on one central database,
a microservice architecture splits data storage across service
instances. The same applies to other resources such as
computational performance [15].

3.5. Benefits

Systems based on a microservice architecture can adapt to
rising capacity demands more easily. This property is
commonly referred to as horizontal scalability. This is
especially visible, if compared to previously mentioned
monolithic architectures. In a microservice architecture every
component can be duplicated for load balancing as required.
This makes the reaction to demand peaks faster and can
handle the demands more precisely. Furthermore, this
modularity also makes the system robust to faults. If one
microservice encounters an error, the rest of the system can
still function independently. Using automated deployment, the
faulty service may be replaced automatically. The
replacement can also happen pre-emptively by keeping
backup-instances of critical services running. Because the
services are independent, a flexibility in technology stack and
programming languages is introduced. Any microservice can
be implemented in the language and use the libraries that fit
best to provide its functionality.

4. Proposed Solution

4.1. Approach

The proposed solution for designing microservices in
production is based on a data-driven approach. This approach
needs a clear picture of the data structure as well as the
business processes applied in the company. Therefore, it is
recommended to identify all relevant entities, their attributes
and relationships as well as to visualize them. The process is
similar to creating database designs by means of Entity
Relationship (ER) modeling [16] (see Fig. 1). Based on that

overall structure, logical units have to be created which will
be managed by one microservice. The size of those logical
units depends on the need of flexibility and robustness of the
overall system as well as the frequency of data exchanged
between those units.

The frequency of data exchange between logical units is an
important key figure indicating whether two units should be
combined to one microservice. The reason for that is justified
by the use of an ESB for communication between all services
(see Fig. 2). In case services have a small size, the load of the
communication channel will rise unnecessarily because data
has to be sent between services rather than within one service.
Additionally, the effort for creating the routes between the
services will rise. In order to estimate the frequency of data
exchange between services, it is important not only to be
aware of the data structure but also the behavior of the
system. The business processes implemented in the company
mainly influence the behavior from which the data exchange
rate of services may be derived. Consequently, choosing the
right size of microservices is an optimization problem with
flexibility, robustness and resource consumption as criteria.

4.2. Data structure of microservices

After agreeing on a first draft of services, the data structure
of each service has to be derived from the overall data
structure. In order to retain relationships that exist between
entities of different services, measures of identifying entities
across service borders have to be introduced. A basic
identification measure is using unique keys of entities. This
keeps the level of redundancy low and minimizes the effort
for keeping data up to date.

For example, a “Service A” that stores all data about a
class of entities has to provide an application programming
interface (API) for accessing entities’ data from other
services. In order to address one specific entity, a “Service B”
has to send a request to “Service A” containing the unique key
of the requested entity. As a result, “Service A” provides all
data about the requested entity in a predefined manner to
“Service B”. By doing so, “Service B” will always get the
latest dataset of an entity without storing it by itself.

Fig. 1. Entity relationship (ER) model of entity A and entity B connected
via relation R1 and their attributes visualized by ovals.

170 Benjamin Götz et al. / Procedia CIRP 67 (2018) 167 – 172

The disadvantage of this approach is that each request will
strain the integration layer which transports data from one
service to another. In order to reduce the communicational
load, a subset of data may be stored in addition to or instead
of the unique key that is stored in “Service B”. This leads to
increased redundancy and the data integrity is no longer
guaranteed. Thus, this method is only recommended if data
does not have to be up to date for each request or measures for
updating redundant data are introduced among related
services. Furthermore, the raised level of redundancy
increases the amount of required storage. Finally, it depends
on the use case which approach should be selected and
whether the depicted disadvantages are relevant for the
implementation.

4.3. Business processes and routing

Based on the overall data structure, a sub-structure for each
service and a basic set of APIs is created. In order to realize
business processes based on a set of microservices, the
business processes have to be analyzed regarding temporal
data demands and availability. That is, which data is available
at the beginning of the process and which data is needed to
fulfill the process as well as where the data is obtained.
Starting from the machine or application at the starting point
of the business process, each of the required services can be
identified and the sequence in which the services are
addressed. Based on the resulting sequence, routes between
all the services have to be created by using the ESB as
communication channel.

In the proposed solution the shortest route between all
services and the route preserving the highest level of
independency are investigated. In case of the shortest route,
the service requesting a set of data (further referred to as
“Service A”) which is distributed on many data source
services (further referred to as “Service B” and “Service C”)
sends a request to Service B which provides the basis of the
overall data set. Because of the microservice structure and the
distribution of data to many services, Service B is not able to
fulfill the request entirely. Therefore, Service B has to
forward the result of the first request to Service C which is
able to complete the data set and to send the result back to
Service A (see Fig. 3a). By doing so, the service requesting
data is at the start as well at the end of the route. As a
consequence, the route is short and therefore less demanding
on the ESB but creates a high level of dependency among all
participating services. The dependency level is raised because
each service has to be aware of the data structure of the other
services which means that each change of the data structure of

one service causes a change of the structure of the other
services, too.

In order to avoid such a high level of dependency among
the services, a routing which is formed as a loop and starts at
the requesting Service A and enriches the data set on the fly
from Service B and Service C back to Service A is not
recommended. Instead, a direct routing between the service
sending the request (Service A) and the data sources (Service
B and C) is proposed (see Fig. 3b). By using this approach,
only Service A is aware of the overall data structure, while
Service B and Service C only have to be aware of the data
structure they were assigned to (see section 4.2). The
drawback of this routing method is a raised load on the ESB
because more requests are necessary to fulfill the request of
Service A.

Regardless of whether we chose the shortest route or the
route which avoids a high level of dependency among all
services, we are now able to map business processes to the
microservice structure and create routes to fulfill those
business processes.

5. Implementation / Example

The implementation of the proposed solution has been
carried out for an isolated assembly station at which a worker
builds sub-assemblies manually and feeds a station of a main
assembly line with those sub-assemblies. Furthermore, the
assembly station has a display to show the worker all
necessary information for the current order. The information
is intended to support the worker in correctly performing the
assembly.

Fig. 2. Three services connected by routes via an enterprise service bus
symbolized by the grey box in the middle of the figure.

Fig.3. a) Repesents the shortest route of a request starting at service A
and collecting data from service B to C and sending it back to service A.
b) Represents a routing preserving the independencey of the services by

only connecting services which are aware of each others data model. The
drawback of this approach is a raised load on the communication channel

(grey box in the middle of the figure).

171 Benjamin Götz et al. / Procedia CIRP 67 (2018) 167 – 172

In the first step the station receives an order number which
identifies a specific order. Based on this order number all
information necessary for the assembly has to be collected to
support the worker, starting with getting the product which
has to be produced. Each product consists of many assemblies
which are put together to produce the final product. To get the
right assembly according to the assembly station each
assembly station has capabilities that describe the assemblies
they are able to produce. Furthermore, a recipe is linked to
each assembly which describes necessary steps to perform the
assembly. By knowing the recipe, the capabilities as well as
the list of necessary assemblies, it is possible to identify the
assembly which has to be produced at the station. To finally
get the part information necessary to support the worker at the
station, the bill of material that is attached to the assembly
will be identified and based on that the part information will
be requested. The ER model describing all entities and their
relations is shown in figure 4.

Based on the data structure as well as the frequency of
requests that will take place during a working day, the logical
units/services for assembly, product, recipe and capability
have been created (see also Fig. 5).

Furthermore, Fig 5 also shows the implementation of the
relations as routes between entities which have to be managed
among the services. For this example, the manufacturing
service bus (MSB) is used to implement those routes. The
idea of the MSB is that all services provide a set of events and
functions and that an event of one service may be connected
with a function of another service through so-called
integration flows. The integration flows do not only trigger
the function of the service if the connected event takes place
but also enables the services to exchange data [17].

The assembly service handles parts, bill of materials as
well as assemblies. The product service which is responsible
for the products and the orders is connected to the assembly
service and the recipe service as shown in the ER model. The
recipe service just manages the recipes which describe how
assemblies have to be produced. Finally, the capability
service, which saves and provides the capabilities of working
stations, introduces the link between the real assembly station
as well as the assembly service.

In order to fulfill the business process described at the
beginning of this section, the assembly station first requests
the capability service’s capabilities. Therefore, each
workstation owns a unique identification number which is
sent to the service for that request. As a result, the assembly
station receives a list of assembly IDs that the station is able
to produce. Next, the worker scans the barcode that represents
the order ID of the next order to produce. This order ID is sent
to the product service which returns the product ID of the
respective order. To know which assemblies the product
consists of, the assembly station sends the product ID as well
as the list of assemblies, it is able to produce, to the assembly
service. The assembly service is now able to select all
assemblies which the product consists of in its database and
filters this query by the list of assemblies the station is able to
produce. As a result, the assembly service sends back the
assembly ID which has to be produced for the current order
and the bill of material containing all information about the
parts necessary. In the final step, the assembly station
forwards the assembly ID to the recipe service which looks up
all working steps for the assembly work and sends it back to
the station. Now the worker has all information that is
necessary to perform the assembly work. After finishing the
assembly, the barcode of the next order is scanned and the
process starts again.

Fig. 6 shows the alternative approach as described in
section 4.3, where the sequence of all requests between the
assembly station and the services. The requests have a star
topology with the assembly station in the center. This
provides a low level of dependency between all the services.
In comparison to the routes shown in there is no direct
connection between two services which would cause a mixing
of the different data structures of each service. Consequently,
each service may be replaceable if it provides the same
interface to the assembly station as the previous one.

Fig.4. ER Model describing the data structure of the underlying use case.
Fig. 5. Services derived from overall data structure and their data model
as well as the links through the manufacturing service bus according to

the overall data structure.

172 Benjamin Götz et al. / Procedia CIRP 67 (2018) 167 – 172

Fig. 1. Sequence of calls based on direct connections between assembly
station and services. In order to gather all data based on the order ID as well

as the ID of the assembly station the requests from ① to ④ have to be done.

6. Conclusion

The current megatrends (e.g. globalization, demographic
change, growth of population) force manufacturing companies
to accept paradigm changes in production in order to fulfill
new demands. One of those paradigm changes is abandoning
monolithic software systems in favor of SOA and the concept
of XaaS that support companies to create production systems
with an enhanced scalability, robustness and flexibility. A
specific concept of a SOA is designing services as
microservices in order to not only encapsulate functionalities
but also keep the size of the services small. Microservices in
particular improve the horizontal scalability and
modularity/robustness of the overall system.

In order to get a size that fits best for services, a data-
driven design approach is introduced that starts with the
creation of an overall data structure and modelling of relevant
business processes. In the next step, the overall data structure
is divided in logical units which are assigned to a
microservice. The size of the units depends on the demand of
flexibility and robustness as well as the level of resource
consumption of single services and the distribution of the
power load to all participants. For example, if the average size
of microservices is small, the load of the communication
channel that links all services will be higher in order to
perform a business process because more data has to be
exchanged between services. In comparison, if the services
are bigger there will be less communication but more load on
the single services, because each service has to perform more
tasks. Not only the size of services but also the routing
between the services has an impact on the load of all
components. Two different routing approaches have been
investigated: a) Shortest route that reduces the load of the
communication channel and b) Route preserving highest level
of independency for each service by creating a star-shaped
routing between the service requesting data in the middle and
the services providing data.

An implementation example has been shown on the basis
of an assembly station operated by a worker. The worker
receives an order ID at the beginning and based on this ID all
necessary data are collected to support the worker. Finally,

this use case is an experimentation site to detect the business
impact of the approach. The results of the experiments are
being further examined with regards to exchangeability of
services and hardware, usability in general as well as business
impact.

Acknowledgements

The findings presented in this paper result from work of
Fraunhofer IPA in the Project BEinCPPS (GA No. 680633). It
is funded by the European Union’s Horizon 2020 research and
innovation programme and is part of the I4MS initiative. The
authors are responsible for the content of this publication.

References

[1] Bauernhansl T. Zukünftige Rahmenbedingungen und
Entwicklungstrends in der Produktionstechnik. Galvanotechnik
2013;104:2185–2191.

[2] Bauernhansl T., ten Hompel M., Vogel-Heuser B. Industrie 4.0 in
Produktion, Automatisierung und Logistik. 2014. Wiesbaden: Springer
Vieweg; 2014.

[3] ten Hompel M. Software in der Logistik: Prozesse steuern mit Apps. 1.
München: Huss. 2013.

[4] Bauer D., Stock D., Bauernhansl T. Movement towards service-
orientation and app-orientation in manufacturing IT. 10th CIRP Conf
Intell Comput Manuf Eng 2016.

[5] ISA-The Instrumentation, Systems, and Automation Society. ISA-95
Manufacturing Execution Systems Standards. Research Triangle Park,
NC, USA: ISA-The Instrumentation, Systems, and Automation Society;
2005.

[6] Bauernhansl T. Industrie 4.0 - Opportunities for new IT Architectures.
Stuttgart: AZ SAP Summit 2015;

[7] Spath D., Ganschar O., Gerlach S, Hämmerle M., Krause T., Schlund S.
Produktionsarbeit der Zukunft – Industrie 4.0. Stuttgart: Fraunhofer
Verlag; 2013.

[8] Yale Y., Silveira H, Sundaram M. A microservice based reference
architecture model in the context of enterprise architecture. IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC) 2016; 2016: 1856-1860.

[9] Xu X. From cloud computing to cloud manufacturing. Robotics and
Computer-Integrated Manufacturing 2012; 28: 75–86.

[10] Holtewert P., Wutzke R., Seidelmann J., Bauernhansl T. Virtual Fort
Knox Federative, Secure and Cloud-based Platform for Manufacturing.
Procedia CIRP 2013;7:527–32.

[11] Otto B., Auer S., Cirullies J., Jürjens J., Menz N., Schon J. Industrial
data space. 1. München: Fraunhofer Verlage; 2016.

[12] The Open Group. SOA Source Book. Zaltbommel: Van Haren
Publishing; 2011.

[13] Erl T. Service-oriented architecture : concepts, technology, and design.
1. New Jersey:Prentice Hall; 2005.

[14] Mazzara M., Meyer B. Present and Ulterior Software Engineering. 1.
Cham: Springer International Publishing; 2016.

[15] Lewis J., Fowler M. Microservices – a definition of this new
architectural term. https://martinfowler.com 2014.

[16] Elmasri R., Navathe S. Fundamentals of database systems. Boston:
Pearson/Addison Wesley; 2007.

[17] Schel D., Henkel C., Stock D., Seidelmann J.. Manufacturing Service
Bus: an Implementation. 11th CIRP Conf. Intell. Comput. Manuf. Eng.,
2017.

