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Abstract 

Current production systems use monolithic software solutions. This causes a lack of flexibility, scalability and prevents direct communication 
between network nodes which is fundamental to face challenges of highly personalized mass production. In order to overcome these 
drawbacks, the introduction of a service-oriented architecture (SOA) more specifically microservices in production are a promising approach. 
SOA enables developers to distribute applications in a number of small services which communicate via an integration layer e.g. an enterprise 
service bus. This paper proposes a data-driven approach for creating a SOA, based on microservices in an assembly focused production. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Global megatrends such as globalization, urbanization, 
demographic change, growth of population and sustainable 
development are not only influencing societies around the 
world, but also have great impact on manufacturing 
enterprises and lead to a paradigm change in all production 
factors. This includes revolutionary changes in energy and 
material consumption, staff and capital circulation as well as 
massive demand movements towards emerging markets and 
developing countries. It is expected, that by 2025 developing 
countries will account for half of the global consumption [1].  

Thus, addressing various markets will be far more a key 
challenge than facing demand problems. Products for 
developed countries need to be highly individualized, while 
products for emerging markets need to be adapted to regional 
needs including functionality, design and costs. In addition, 
there is a trend to shortened innovation cycles. This leads to 
an increasing complexity of the markets as well as a rise of 
product variants while quantities per product and variant are 
decreasing [2]. 

The proposed solution for these challenges from an IT 
perspective is the concept of service-oriented architectures 
(SOA) and microservices. While a SOA addresses challenges 
of manufacturing enterprises, their implementation introduces 

new challenges. Among these challenges are the architecture 
design in terms of size of the microservices or their 
orchestration and integration. Thus, this paper presents an 
approach of how to overcome challenges of IT architecture 
design and implementation in industrial production 
environments to benefit from microservices. 

2. Challenges in Production Systems 

Information and communication technologies (ICT) will be 
a key enabler for the described challenges of manufacturing 
enterprises, where most of the innovations will take place. A 
propagated solution addressing rising market complexity as 
well as rising complexity within companies by ICT is the 
smart factory, the next evolutionary stage of the fractal 
factory. Cyber-physical systems (CPS) can build decentral 
and autonomous networks – like fractals – to self-organize 
and self-optimize. The level of autonomy and decentralization 
rises with increasing complexity [2,3]. 

To enable these developments, manufacturing IT is 
undergoing a fundamental change from the traditional 
automation pyramid of monolithic systems to service-
orientation, also described as Everything-as-a-Service (XaaS). 
This paradigm describes that everything, no matter if physical 
or virtual, is offered as a service and originates from the three 
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main cloud computing service layers Software-as-a-Service 
(SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-
Service (IaaS) [4]. Table 1 summarizes and the following 
chapters describe the ongoing changes in manufacturing IT. 

Table 1 Comparison of traditional and emerging manufacturing IT 

Traditional manufacturing IT Emerging manufacturing IT 

Hierarchical Non-hierarchical networks 

Centralized Decentralized 

Software suites Services, Apps 

Monolithic Fine-grained services 

License fees Pay-per-Use 

Complex integration Open standards 

Delayed data (Near) real-time data 

Roll-out within months/years Deployment within minutes 

2.1. Traditional manufacturing IT 

Traditional manufacturing IT is characterized by a 
hierarchical structure defined in ISA-95 and often depicted as 
the automation pyramid [5]. The automation pyramid is 
divided in three levels: the operational shop floor level, the 
tactical manufacturing execution system (MES) level and the 
strategic enterprise resource planning (ERP) level on top. 
Various planning and control tasks are performed on each 
level [6]. 

Tools on each level of the automation pyramid are usually 
centralized large software suites which require a significant 
investment in license fees. In addition, they are often 
monolithic and stick to self-defined interfaces instead of using 
open standardized interfaces and communication protocols. 
Therefore, the development and maintenance of interfaces 
between various systems requires a high effort. With each 
new version of a system, all corresponding interfaces need to 
be updated because they are proprietary to the respective 
software suites. Due to this effort, a holistic vertical and 
especially horizontal integration is usually not realized. This 
lack of real-time data caused by the missing integration often 
requires short-term and expensive intervention to production 
control. Furthermore, the process to introduce new software 
suites is very inflexible and time-consuming, taking months to 
years depending on the use case specifications [2,6,7]. 

2.2. Emerging concept for manufacturing IT 

Today, the manufacturing IT is undergoing fundamental 
changes enabled by technologies such as cloud computing and 
associated concepts. The traditional automation pyramid is 
dissolving and manufacturing IT is moving towards service-
orientation and app-orientation [4,8]. 

Software suites will be divided by functionality into 
services and apps, decentralization offered by distributed 
computing approaches like edge, fog computing concepts and 
cloud platforms. These services and apps can be non-
hierarchically orchestrated in networks, where communication 
between services based on open standards will become a key 
factor for success. This overcoming of hierarchical structures 
also allows for communication of real-time information [6,9]. 

Many manufacturing companies have noticed this shift to 
service-orientation and have started to build their own cloud-
based platforms. Examples are the Bosch IoT Suite, GE 
Predix or Siemens Mindsphere. However, most of these 
platforms are tailored around the products and services 
offered by the company and lack interoperability with other 
platform providers. In contrast, there are platforms such as 
Virtual Fort Knox [10] or the Fraunhofer initiative Industrial 
Data Space [11] following a federative approach to enable 
independent software vendors to participate in the ecosystem 
and to prevent vendor lock-in effects. 

3. Microservices 

To give an introduction to the concept of microservices, we 
compare it in the following first to the most obvious 
alternative: the monolithic architecture. 

3.1. Monolithic Architecture 

The phrase monolithic is used to describe a software 
application consisting of one piece. Traditional manufacturing 
IT, as introduced in section 2.1, uses this typically. The 
architecture is designed for running solely on one 
computational instance. This may run multiple processes 
which are distributed across multiple CPUs but all share the 
same operating system and hardware. 

If the system reaches a capacity peak, it needs to be 
duplicated completely. This process might be executed 
automatically by a continuous deployment system. The main 
drawback is the lack of flexibility. For example, if a number 
of users is reached that cannot be handled by one instance, a 
monolithic system lacks the required horizontal scalability. 
Instead, it has to be scaled vertically. 

3.2. Service-Oriented Architecture 

Generally, a microservice architecture is a SOA, utilized as 
introduced in section 2.2. A service in a SOA is a software 
component delivering one predefined functionality matching 
one business activity and its specific results. The service is 
self-contained which means that it does not rely on external 
resources. All processing required by this service is performed 
in itself. It includes all required resources like databases etc. 
To consumers using the service it appears as a black box to be 
accessed only via predefined interfaces. It may itself require 
underlying services providing a certain sub-functionality [12]. 
A service which relies on a set of services is also called 
aggregated service [13]. 

3.3. Microservice Architecture 

Microservices refer to a new software architecture. We are 
aiming to present an overview of the properties of this 
architecture. The core concept is a fine-granular 
decomposition of an application into such microservices. 
While SOA refers to the general idea of encapsulating 
functionalities into separate services, microservices 
additionally specify the scale of this functionality as small 
[14]. 
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3.4. Concept 

The services are organized around business capabilities. 
This allows the development around key capabilities of the 
system instead of predefined components. The service 
instances are independent from each other. This applies to the 
full life-cycle, including development, deployment and 
maintenance. Microservices rely on loosely coupled, 
lightweight communication protocols. This means that 
services do not communicate directly but rather use 
independently defined interfaces. This reduces the 
dependencies between services and requires an enterprise 
service bus (ESB) as an integration layer. Decentralized data 
storage means that instead of relying on one central database, 
a microservice architecture splits data storage across service 
instances. The same applies to other resources such as 
computational performance [15]. 

3.5. Benefits 

Systems based on a microservice architecture can adapt to 
rising capacity demands more easily. This property is 
commonly referred to as horizontal scalability. This is 
especially visible, if compared to previously mentioned 
monolithic architectures. In a microservice architecture every 
component can be duplicated for load balancing as required. 
This makes the reaction to demand peaks faster and can 
handle the demands more precisely. Furthermore, this 
modularity also makes the system robust to faults. If one 
microservice encounters an error, the rest of the system can 
still function independently. Using automated deployment, the 
faulty service may be replaced automatically. The 
replacement can also happen pre-emptively by keeping 
backup-instances of critical services running. Because the 
services are independent, a flexibility in technology stack and 
programming languages is introduced. Any microservice can 
be implemented in the language and use the libraries that fit 
best to provide its functionality. 

4. Proposed Solution 

4.1. Approach 

The proposed solution for designing microservices in 
production is based on a data-driven approach. This approach 
needs a clear picture of the data structure as well as the 
business processes applied in the company. Therefore, it is 
recommended to identify all relevant entities, their attributes 
and relationships as well as to visualize them. The process is 
similar to creating database designs by means of Entity 
Relationship (ER) modeling [16] (see Fig. 1). Based on that 

overall structure, logical units have to be created which will 
be managed by one microservice. The size of those logical 
units depends on the need of flexibility and robustness of the 
overall system as well as the frequency of data exchanged 
between those units. 

The frequency of data exchange between logical units is an 
important key figure indicating whether two units should be 
combined to one microservice. The reason for that is justified 
by the use of an ESB for communication between all services 
(see Fig. 2). In case services have a small size, the load of the 
communication channel will rise unnecessarily because data 
has to be sent between services rather than within one service. 
Additionally, the effort for creating the routes between the 
services will rise. In order to estimate the frequency of data 
exchange between services, it is important not only to be 
aware of the data structure but also the behavior of the 
system. The business processes implemented in the company 
mainly influence the behavior from which the data exchange 
rate of services may be derived. Consequently, choosing the 
right size of microservices is an optimization problem with 
flexibility, robustness and resource consumption as criteria. 

4.2. Data structure of microservices 

After agreeing on a first draft of services, the data structure 
of each service has to be derived from the overall data 
structure. In order to retain relationships that exist between 
entities of different services, measures of identifying entities 
across service borders have to be introduced. A basic 
identification measure is using unique keys of entities. This 
keeps the level of redundancy low and minimizes the effort 
for keeping data up to date.  

For example, a “Service A” that stores all data about a 
class of entities has to provide an application programming 
interface (API) for accessing entities’ data from other 
services. In order to address one specific entity, a “Service B” 
has to send a request to “Service A” containing the unique key 
of the requested entity. As a result, “Service A” provides all 
data about the requested entity in a predefined manner to 
“Service B”. By doing so, “Service B” will always get the 
latest dataset of an entity without storing it by itself.  

Fig. 1. Entity relationship (ER) model of entity A and entity B connected 
via relation R1 and their attributes visualized by ovals. 
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The disadvantage of this approach is that each request will 
strain the integration layer which transports data from one 
service to another. In order to reduce the communicational 
load, a subset of data may be stored in addition to or instead 
of the unique key that is stored in “Service B”. This leads to 
increased redundancy and the data integrity is no longer 
guaranteed. Thus, this method is only recommended if data 
does not have to be up to date for each request or measures for 
updating redundant data are introduced among related 
services. Furthermore, the raised level of redundancy 
increases the amount of required storage. Finally, it depends 
on the use case which approach should be selected and 
whether the depicted disadvantages are relevant for the 
implementation. 

4.3. Business processes and routing 

Based on the overall data structure, a sub-structure for each 
service and a basic set of APIs is created. In order to realize 
business processes based on a set of microservices, the 
business processes have to be analyzed regarding temporal 
data demands and availability. That is, which data is available 
at the beginning of the process and which data is needed to 
fulfill the process as well as where the data is obtained. 
Starting from the machine or application at the starting point 
of the business process, each of the required services can be 
identified and the sequence in which the services are 
addressed. Based on the resulting sequence, routes between 
all the services have to be created by using the ESB as 
communication channel.  

In the proposed solution the shortest route between all 
services and the route preserving the highest level of 
independency are investigated. In case of the shortest route, 
the service requesting a set of data (further referred to as 
“Service A”) which is distributed on many data source 
services (further referred to as “Service B” and “Service C”) 
sends a request to Service B which provides the basis of the 
overall data set. Because of the microservice structure and the 
distribution of data to many services, Service B is not able to 
fulfill the request entirely. Therefore, Service B has to 
forward the result of the first request to Service C which is 
able to complete the data set and to send the result back to 
Service A (see Fig. 3a). By doing so, the service requesting 
data is at the start as well at the end of the route. As a 
consequence, the route is short and therefore less demanding 
on the ESB but creates a high level of dependency among all 
participating services. The dependency level is raised because 
each service has to be aware of the data structure of the other 
services which means that each change of the data structure of 

one service causes a change of the structure of the other 
services, too. 

In order to avoid such a high level of dependency among 
the services, a routing which is formed as a loop and starts at 
the requesting Service A and enriches the data set on the fly 
from Service B and Service C back to Service A is not 
recommended. Instead, a direct routing between the service 
sending the request (Service A) and the data sources (Service 
B and C) is proposed (see Fig. 3b). By using this approach, 
only Service A is aware of the overall data structure, while 
Service B and Service C only have to be aware of the data 
structure they were assigned to (see section 4.2). The 
drawback of this routing method is a raised load on the ESB 
because more requests are necessary to fulfill the request of 
Service A. 

Regardless of whether we chose the shortest route or the 
route which avoids a high level of dependency among all 
services, we are now able to map business processes to the 
microservice structure and create routes to fulfill those 
business processes. 

5. Implementation / Example 

The implementation of the proposed solution has been 
carried out for an isolated assembly station at which a worker 
builds sub-assemblies manually and feeds a station of a main 
assembly line with those sub-assemblies. Furthermore, the 
assembly station has a display to show the worker all 
necessary information for the current order. The information 
is intended to support the worker in correctly performing the 
assembly. 

Fig. 2. Three services connected by routes via an enterprise service bus 
symbolized by the grey box in the middle of the figure. 

Fig.3. a) Repesents the shortest route of a request starting at service A 
and collecting data from service B to C and sending it back to service A.  
b) Represents a routing preserving the independencey of the services by 

only connecting services which are aware of each others data model. The 
drawback of this approach is a raised load on the communication channel 

(grey box in the middle of the figure). 
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In the first step the station receives an order number which 
identifies a specific order. Based on this order number all 
information necessary for the assembly has to be collected to 
support the worker, starting with getting the product which 
has to be produced. Each product consists of many assemblies 
which are put together to produce the final product. To get the 
right assembly according to the assembly station each 
assembly station has capabilities that describe the assemblies 
they are able to produce. Furthermore, a recipe is linked to 
each assembly which describes necessary steps to perform the 
assembly. By knowing the recipe, the capabilities as well as 
the list of necessary assemblies, it is possible to identify the 
assembly which has to be produced at the station. To finally 
get the part information necessary to support the worker at the 
station, the bill of material that is attached to the assembly 
will be identified and based on that the part information will 
be requested. The ER model describing all entities and their 
relations is shown in figure 4. 

Based on the data structure as well as the frequency of 
requests that will take place during a working day, the logical 
units/services for assembly, product, recipe and capability 
have been created (see also Fig. 5). 

Furthermore, Fig 5 also shows the implementation of the 
relations as routes between entities which have to be managed 
among the services. For this example, the manufacturing 
service bus (MSB) is used to implement those routes. The 
idea of the MSB is that all services provide a set of events and 
functions and that an event of one service may be connected 
with a function of another service through so-called 
integration flows. The integration flows do not only trigger 
the function of the service if the connected event takes place 
but also enables the services to exchange data [17]. 

The assembly service handles parts, bill of materials as 
well as assemblies. The product service which is responsible 
for the products and the orders is connected to the assembly 
service and the recipe service as shown in the ER model. The 
recipe service just manages the recipes which describe how 
assemblies have to be produced. Finally, the capability 
service, which saves and provides the capabilities of working 
stations, introduces the link between the real assembly station 
as well as the assembly service. 

 
 

In order to fulfill the business process described at the 
beginning of this section, the assembly station first requests 
the capability service’s capabilities. Therefore, each 
workstation owns a unique identification number which is 
sent to the service for that request. As a result, the assembly 
station receives a list of assembly IDs that the station is able 
to produce. Next, the worker scans the barcode that represents 
the order ID of the next order to produce. This order ID is sent 
to the product service which returns the product ID of the 
respective order. To know which assemblies the product 
consists of, the assembly station sends the product ID as well 
as the list of assemblies, it is able to produce, to the assembly 
service. The assembly service is now able to select all 
assemblies which the product consists of in its database and 
filters this query by the list of assemblies the station is able to 
produce. As a result, the assembly service sends back the 
assembly ID which has to be produced for the current order 
and the bill of material containing all information about the 
parts necessary. In the final step, the assembly station 
forwards the assembly ID to the recipe service which looks up 
all working steps for the assembly work and sends it back to 
the station. Now the worker has all information that is 
necessary to perform the assembly work. After finishing the 
assembly, the barcode of the next order is scanned and the 
process starts again.  

Fig. 6 shows the alternative approach as described in 
section 4.3, where the sequence of all requests between the 
assembly station and the services. The requests have a star 
topology with the assembly station in the center. This 
provides a low level of dependency between all the services. 
In comparison to the routes shown in  there is no direct 
connection between two services which would cause a mixing 
of the different data structures of each service. Consequently, 
each service may be replaceable if it provides the same 
interface to the assembly station as the previous one.  

Fig.4. ER Model describing the data structure of the underlying use case. 
Fig. 5. Services derived from overall data structure and their data model 
as well as the links through the manufacturing service bus according to 

the overall data structure. 
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Fig. 1. Sequence of calls based on direct connections between assembly 
station and services. In order to gather all data based on the order ID as well 

as the ID of the assembly station the requests from ① to ④ have to be done. 

6. Conclusion 

The current megatrends (e.g. globalization, demographic 
change, growth of population) force manufacturing companies 
to accept paradigm changes in production in order to fulfill 
new demands. One of those paradigm changes is abandoning 
monolithic software systems in favor of SOA and the concept 
of XaaS that support companies to create production systems 
with an enhanced scalability, robustness and flexibility. A 
specific concept of a SOA is designing services as 
microservices in order to not only encapsulate functionalities 
but also keep the size of the services small. Microservices in 
particular improve the horizontal scalability and 
modularity/robustness of the overall system. 

In order to get a size that fits best for services, a data-
driven design approach is introduced that starts with the 
creation of an overall data structure and modelling of relevant 
business processes. In the next step, the overall data structure 
is divided in logical units which are assigned to a 
microservice. The size of the units depends on the demand of 
flexibility and robustness as well as the level of resource 
consumption of single services and the distribution of the 
power load to all participants. For example, if the average size 
of microservices is small, the load of the communication 
channel that links all services will be higher in order to 
perform a business process because more data has to be 
exchanged between services. In comparison, if the services 
are bigger there will be less communication but more load on 
the single services, because each service has to perform more 
tasks. Not only the size of services but also the routing 
between the services has an impact on the load of all 
components. Two different routing approaches have been 
investigated: a) Shortest route that reduces the load of the 
communication channel and b) Route preserving highest level 
of independency for each service by creating a star-shaped 
routing between the service requesting data in the middle and 
the services providing data. 

An implementation example has been shown on the basis 
of an assembly station operated by a worker. The worker 
receives an order ID at the beginning and based on this ID all 
necessary data are collected to support the worker. Finally, 

this use case is an experimentation site to detect the business 
impact of the approach. The results of the experiments are 
being further examined with regards to exchangeability of 
services and hardware, usability in general as well as business 
impact. 
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