
On the current state of interoperable content
protection for internet video streaming

Stefan Pham, Franck Russel Kuipou, Stefan Arbanowski, Stephan Steglich
Future Applications and Media

Fraunhofer FOKUS
Berlin, Germany

Abstract— Over-the-top (OTT) media delivery or internet
video streaming subscription services like Netflix and Amazon
have become highly successful. Broadcasters and
telecommunication companies are increasingly investing in
creating video streaming platforms. This paper gives an overview
of current media streaming and content protection standards.
One of the main challenges for commercial content providers is
to stream to as many devices (mobile, desktop, TV, etc.) as
possible. Standards such as MPEG-DASH or HLS and related
standards help to achieve this in an efficient and interoperable
way. On the device side, different application platforms exist with
different playback models. In order to distribute premium
content, Digital Rights Management (DRM) systems are needed
to protect the media streams. Using only one DRM system to
protect the content is not enough to reach all relevant devices,
because a platform or device is usually tied to the vendor’s DRM.
As a result, a multi-DRM ecosystem is needed for OTT delivery
in order to protect content with more than one DRM system - the
MPEG Common Encryption (CENC) standard enables this. In a
multi-DRM backend, different entities exist that exchange
sensitive metadata such as DRM-specific information and
encryption keys. This communication can be interoperable
following the Content Protection Information Exchange Format
(CPIX) specification by the DASH-IF.

Keywords—CPIX; CENC; DASH; HLS; CMAF

I. INTRODUCTION
Commercial video streaming services require content

protection in order to meet requirements of copyright holders.
Given that the Internet is used for the distribution of content
and that it is used in many ways (such as file sharing) to get
free access to copyrighted media content, the common
solution to deal with content piracy is Digital Rights
Management (DRM). DRM is an access-control technology
used by manufacturers, publishers, and copyright holders to
limit the usage of digital devices or information [1]. Using
only one DRM to protect content is not enough, because this
particular DRM might not be supported on another device or
platform, because a platform or device is usually tied to the
vendor’s DRM. For OTT streaming, Microsoft PlayReady,
Google Widevine and Apple FairPlay are the most relevant
DRM systems. In order to create content that is protected with
multiple DRM systems, multiple DRM license servers are
needed. The entities involved in content creation have to
exchange sensitive information. This can be accomplished

using standardized interfaces following the Content Protection
Information Exchange Format (CPIX) [2].

Figure 1 OTT DRM Video Streaming Stack

A packager, which creates the adaptive streaming manifest
and segments should support MPEG-DASH or Dynamic
Adaptive Streaming over HTTP (DASH), which was ratified
as an international standard (ISO/IEC 23009-1) [3] in 2011.
Previously, HLS (HTTP Live Streaming) was developed by
Apple and initially released in 2009. Today, these two
standards can be considered established in the OTT market,
because they are supported on all major devices (iOS,
Android), Web browsers, Smart TVs and streaming devices
(Apple TV, Fire TV, Chromecast etc.). Moreover, with the
introduction of MPEG CMAF (Common Media Application
Format), DASH and HLS will support the same media format,
namely ISOBMFF (ISO Base media file format). Common
Encryption (CENC) [4], which is a standard for content
encryption and key mapping, is compatible with DASH and
HLS. CENC establishes an interoperable DRM ecosystem by
enabling support for multiple DRM systems in the same
streaming file format (e.g. ISOBMFF).

On the client side, we differentiate between applications
running in an HTML5 Web browser and those running in a
native environment (e.g. iOS and Android). When targeting
the HTML5 Web browser on a device, the W3C Media Source
Extensions (MSE) and Encrypted Media Extensions (EME)
become relevant. MSE enables Web apps to consume
ISOBMFF-based content (DASH or HLS), while EME
enables Web applications to acquire licenses from a DRM
license server.

Fig. 1 summarizes the aforementioned standards, which
are relevant in today’s OTT video streaming stack with DRM.
In this paper, we focus on the multi-DRM backend and the
CPIX standard as an enabler for interoperable multi-DRM
backend communication. In the following chapter, we discuss
the need for a multi-DRM backend. In chapter III related work
in this area is given. Chapter IV explains the CPIX standard
and chapter V describes the implementation of a multi-DRM
backend. We conclude the paper in chapter VI.

II. CURRENT STATE OF OTT STREAMING WITH DRM
 As can be seen in the Table 1, clients on various platforms
support different DRM systems, hence the need for a multi-
DRM backend in order to playback DRM-protected streams on
all platforms. We will focus on HTML5 browser-based
playback. Nevertheless, a multi-DRM backend is also needed
for apps running in a native environment (e.g. iOS or Android).

 The Netscape Plugin Application Programming Interface
(NPAPI) is deprecated in most browsers. Plug-ins like
Microsoft Silverlight used NPAPI to run within a Web
application. Flash plug-ins, which were also used for
streaming, are now also disabled by default in the most
common browsers. As a result, Web apps need to use the
HTML5 media extensions MSE and EME. The DRM client is
typically implemented as a CDM (Content Decryption
Module). As platforms implement different CDMs, a Web app
has to query the available DRM system and communicate with
the corresponding DRM license server through the EME API.
On the one hand, media playback on Web platforms can be
accomplished with the help of HTML5 media extensions MSE
and EME (often referred to as Type 3 streaming [5]). On the
other hand, if MSE and EME are not available, Type 1
streaming can be leveraged. Type 1 streaming refers to native
support for a streaming format (e.g. DASH or HLS) on a client,
which is usually implemented through HTML5 <video> or a
proprietary <object> video element.

Client Platform MSE EME PR WV FP

Chrome Desktop P P O P O

Firefox Desktop P P O P O

Safari Desktop P P O O P

Edge Desktop P P P O O

Android Mobile P P O P O

iOS Mobile O P O O P

Apple TV STB O O O O P

Fire TV STB P P P P O

Chromecast STB P P P P O

Samsung Smart TV P P P P O

LG Smart TV P P P P O

Panasonic Smart TV P P P P O

Philips Smart TV P P P P O

Sony Smart TV P P P P O

Table 1 Support of MSE, EME and DRM systems across
platforms as of 01-26-2017. PR = Playready, WV = Widevine,

FP = Fairplay

In order to reach all platforms as listed in Table 1 a multi-
DRM backend should include license servers from Microsoft
PlayReady, Google Widevine and Apple FairPlay.

There is another level of fragmentation that needs to be
considered: On the encryption level, CENC allows to encrypt
the content once for multiple DRM systems. However, DRM
systems such as PlayReady and Widevine use AES-CTR to
encrypt the media content. Apple’s Fairplay requires a different
encryption mechanism (AES-CBC). The DRM industry is
currently converging to a common AES encryption mode
eventually (AES-CBC), which will lead to a true “common
encryption”. However, it will take time until updated
PlayReady and Widevine DRM client implementations are
integrated into devices. From content provider perspective,
there will be legacy devices that do not get updated. As a
result, the encrypted media samples have to be duplicated
during content creation, in order to support DRM clients that
support either AES-CTR or AES-CBC.

III. RELATED WORK
CPIX is enabled by MPEG standards Common Encryption

(CENC) [4] and MPEG-DASH [3]. Moreover, it is compatible
with HLS (HTTP Live Streaming).

There are many published scientific papers on interoperable
DRM ecosystem such as [8], [7] or [8]. However, none of these
papers focus on the entities of a multi-DRM backend and how
they exchange information during the creation of content. This
paper shows how this exchange can be accomplished with the
help of a standardized approach like CPIX.

IV. CPIX
A typical OTT DRM architecture (see Fig. 2) has the

following entities:

• Packager: an entity, which defines the structure of the
media files.

• Encryptor: an entity, which encrypts the media files.

• MPD Generator: an entity, which creates the DASH
MPD.

• DRM Client: gets information from media files or
MPD and DRM license server to play the content.

• DRM (License) Server: deliver license to the DRM
client.

• Key Database: stores encryption/content keys,
referenced by Key IDs (KID)

During the creation of content, these entities have to
exchange sensitive data such as encryption key and DRM-
specific information. A standardized approach for a multi-
DRM backend like CPIX, specifies the interfaces between the
entities. This enables exchangeability of entities.

Figure 2 High-level Architecture

Content protection information consists of encryption keys
and DRM-specific information. The format for DRM-specific
information is specified in CENC as Protection System
Specific Header (pssh). This information has to be exchanged
between entities when an encrypted content is created. To
facilitate this, the DASH Industry Forum has published the
Content Protection Information Exchange Format (CPIX),
which aims to standardize the way entities involved in the
content creation workflow exchange protection information.
The CPIX format is an XML file. The CPIX document can be
used with any streaming format for on demand, as well as for
live content. It includes the following elements:
• CPIX: This root element contains all necessary

information to get the encryption key(s) and DRM-
specific information. It has two optional attributes. An
attribute “id” that specifies the identifier for this
presentation and an attribute “name” that specifies the
name of the presentation.

• DeliveryDataList: It is not mandatory and only required
when the information in the CPIX file is encrypted. It
contains DeliveryData elements. Each element specifies
an entity authorized to decrypt the content keys in the
CPIX document. It also contains all the information
needed for the decryption of the content keys.

• ContentKeyList: It contains ContentKey elements. Each
element has the key used to encrypt the content.

• DRMSystemList: It contains DRMSystem elements.
There is a single DRMSystem element per DRM Server
that is used to protect the media content. Information such
as a pssh is saved here.

• ContentKeyPeriodList: It contains ContentKeyPeriod
elements. Each element defines a period of time in which
a Content Key is used.

• ContentKeyUsageRuleList: It contains
ContentKeyUsageRule elements. Each element maps a

Content Key to a specific context. For example, a specific
content key should be used for UHD content.

• UpdateHistoryItemList: It contains UpdateHistoryItem
elements. Each element contains information, such as
which entity has made which changes and when.

• Signature: It contains the signature of the CPIX
document or of the part that was signed.

Although CPIX allows exchanging data without additional

encryption, it is recommended to protect them, even if the file
is sent over a secure protocol like HTTPS. Therefore, the
following key hierarchy is used to protect the sensitive data
(encryption key, pssh information) within the document itself.
For each CPIX document a document key is used to encrypt
each (CENC) content key using the AES256-CBC PKCS #7
padding algorithm. The document key is a 256-bit key and is
part of each DeliveryData element. It is itself encrypted with
the Delivery Key of each receiving entity using the RSA-
OAEP-MGF1-SHA1 algorithm. The Delivery Key of a
receiving entity is the public key of its key pair. The Delivery
Key is saved in the CPIX document in the DeliveryData
element as the X509 certificate of the recipient.

A CPIX document can be created from any entity.
Therefore, different workflows are possible depending on the
existing architecture and entities of a content provider.

In a simple workflow, only one entity produces the CPIX
file. For example, the Encryptor produces the CPIX file. Prior
to that public keys are exchanged between the Encryptor and
the DRM servers. Once this is done, it can then create and
protect the CPIX document using the above key hierarchy. On
receiving the file, the DRM servers can decrypt the content
keys using their private key, write their DRM-specific
information into the file, and send it back if the Encryptor
needs such information, or they can just save the content keys.
Fig. 3 illustrates this workflow.

Figure 3 Simple workflow: Encryptor as a producer. Public

Keys need to be exchanged prior before the first CPIX
Document is Sent. Based on [2]

In a more complex workflow, more than one entity consumes
the CPIX file and more than one produces it. In an example
with DASH content, the Packager, Encryptor and the DRM

server exchange public keys. The Packager defines the
structure of the media file, creates a CPIX document (CPIX
v1), and forwards the document to the Encryptor. The
Encryptor generates and encrypts the content key with the
DRM server’s public key, adds it to the CPIX document
(CPIX v2), and forwards it to the DRM Server. The DRM
Server decrypts the content key with its private key, saves the
content key, creates a “DRMSystem” element containing
DRM-specific information, protects these information with the
Encryptor’s and MPD Generator’s public key, adds the
“DRMSystem” element to the CPIX file (CPIX v3), and sends
it to the Encryptor and the MPD Generator. Each entity
records its changes in the UpdateHistoryItem elements. The
Encryptor uses information in the “DRMSystem” element to
write a “pssh” box in the media file. The MPD Generator uses
the same information to create a “ContentProtection” element
in the MPD. In this example workflow, the Packager and the
DRM Server are producers, Encryptor and MPD Generator
are consumers. Fig. 4 illustrates the workflow.

Figure 4 Workflow with multiple producers and consumers

workflow. Based on [2]

Each workflow has its advantages and disadvantages. The one
that is chosen depends on the requirements of the existing
architecture. For example, if the Encryptor knows the format
of the DRM-specific pssh, it is more efficient to let it create
the CPIX document and it thus becomes the producer.

On the other hand, if it is expected that a new DRM system
will be added, it is better that the Encryptor just produces the
content keys and receives the pssh information from the DRM
Servers. A new DRM Server can be added without the need
for the Encryptor to communicate with the new DRM Server.

In a complex workflow where many producers and
consumers exist, CPIX offers the most advantages. Likewise,
all new information can be easily recorded and read from the
entities that need them. The number of messages sent between
the entities is reduced because a lot of information can be sent
at once.

V. MULTI-DRM BACKEND IMPLEMENTATION
Based on our implementation experience of an

interoperable multi-DRM backend, creating multi-DRM
content with CENC means encrypting the media sample,
writing CENC directives into the MPD and adding each
DRM-specific pssh into the media file.

The protection systems used were: Microsoft PlayReady,
Google Widevine and W3C ClearKey. Note that ClearKey
should not be used in a productive environment, since the
content key is not embedded in a license but directly delivered
in the clear to the client. ClearKey was used for testing

purposes, in order to interact with multiple DRMs and because
the EME specification mandates all browsers supporting EME
to implement ClearKey.

Once content with a single DRM can be created, adding
multiple DRM systems into a media file becomes trivial. One
of the challenges in implementing a multi-DRM backend is
how to deliver encryption keys and KIDs across all DRM
servers, and to get the DRM-specific protection information
from the DRM server securely.
For the exchange of sensitive information between entities,
HTTPS in combination with a RESTful API, can be used to
secure messages in the transport layer. Moreover, a trust
relationship using public/private keys between entities in the
multi-DRM backend is recommended, in order to encrypt the
messages that are exchanged. For details see chapter 4 Key
Management of the CPIX specification [2].

 A simple algorithm, which avoids the need to send the
encryption key is defined by Microsoft. It can be used to
generate a content key based on a unique key seed (a secret
value in bytes) and the KID defined by the content user or
implementer. It works by hashing the KID and the key seed
for three times. After that, the resulting values are XORed to
create the content key. A detailed description can be found in
[9]. This algorithm can be used to solve the key sharing
problem. In fact, the entities involved in the content creation
like Encryptor, and the DRM Servers exchange a unique key
seed and implement the hashing algorithm. When the
encryption key is needed, they can use this algorithm to
generate it. This makes sure that they always have the same
content key and therefore do not need to send the clear content
key over the network.

Figure 5 Protection of DASH content with PlayReady,

Widevine and ClearKey using CPIX. CK = Content Key

An example workflow where clear content is protected
with PlayReady, Widevine and ClearKey is shown in Fig. 5.
Note, that in this example the encryption/content key is not
additionally secured via a public/private key mechanism or the
aforementioned hash algorithm. In the example the Encryptor,

after creating the CPIX document and writing the content key
into it, sends a POST request to the PlayReady server
containing the CPIX file as body. The PlayReady server
parses it, saves the content key it gets from parsing the file
into the Key Database if the key was not saved by another
server, creates the PSSH, adds the PSSH into CPIX file, and
sends it back as a response to the Encryptor. The preceding
process is repeated for the Widevine and ClearKey server.
After receiving the file from the Widevine server, the
Encryptor can create content protected with PlayReady and
Widevine.

Another example where CPIX offers advantages is when a
new protection scheme has to be added to an already
encrypted content.

Figure 6 Adding a new DRM system to already encrypted

content by using CPIX

In the example in Fig. 6, the new DRM system just gets the
CPIX file from the Key Database and adds its DRM-specific
information into the CPIX document. When the Encryptor is
notified to add the new DRM, it just connects to the Key
Database, parses the CPIX document, and gets the new DRM-
specific information. The Encryptor can then write this new
information into the media content or in case of DASH into
the MPD.
With this approach, more than one bit of information, like a
complete PSSH box and “ContentProtection” element for the
MPD can be sent at once. New information can be easily
tracked. For example, if PSSH information of a DRM has
changed (e.g. security restrictions have changed), the DRM
signals this by updating the CPIX file. This update can be
directly seen from other entities by reading the

“UpdateHistoryItem” element that saves when and which
entity made a change in the CPIX file.

VI. CONCLUSION
With the deprecation of NPAPI and Flash, HTML5 will soon
completely replace Adobe Flash and Microsoft Silverlight in
all browsers. HTML5 playback refers to usage of MSE and
EME to play encrypted content. Due to the fact that each
major browser vendor implements a different CDM and
therefore, a different DRM system, content providers cannot
avoid to implement a multi-DRM system to reach a majority
of platforms. To deploy such a system, entities involved in the
content creation have to exchange sensitive data like content
key and DRM-specific information. By using a standardized
approach like CPIX, transparency, scalability, interoperability,
and easy exchangeability of entities can be achieved.

REFERENCES

[1] EC-Council, Computer Forensics Investigating Network Instructions and
Cyber Crime, 1st ed., Cengage Learning, 2009.

[2] Content Protection Information Exchange Format (CPIX), DASH-IF
Impelementation Guidelines v2.0, 2016.

[3] Information technology – Dynamic adaptive streaming over HTTP
(DASH) – Part 1: Media Presentation description and segment formats.
International Standard, ISO/IEC 23009-1:2014, 2014.

[4] Information technology – MPEG systems technologies – Part 7:
Common Encryption in ISO base media file format files, ISO/IEC
23001-7:2014, 2014.

[5] D. Mebane and J. Smith. (2015, January 29). Simplified Adaptive Video
Streaming: Announcing support for HLS and DASH in Windows 10
[Online]. Available:
https://blogs.msdn.microsoft.com/ie/2015/01/29/simplified-adaptive-
video-streaming-announcing-support-for-hls-and-dash-in-windows-10/

[6] S. Kaiser and S. Pham, “DRM-interoperable MPEG-DASH end-to-end
architecture,” in Multimedia and Expo Workshops (ICMEW), Chengdu,
China, 2014.

[7] G. L. Heileman and P.A. Jamkhedkar, “DRM interoperability analysis
from the perspective of a layered framework”, in Proceedings of the
Fifth ACM Workshop on Digital Rights Management, Alexandria, VA,
USA, 2005.

[8] A. Mikityuk et al., “Content Protection in HTML5 TV Platforms:
Towards Browser-agnostic DRM and Cloud UI Environments”, in
TrustED ’15 Proceedings of the 5th International Workshop on
Trustworthy Embedded Devices, Denver, CO, 2015, pp. 43-52.

[9] Microsoft Corporation. (2015, August). PlayReady Header Object
[Online]. Available: https://www.microsoft.com/playready/documents/

