Fraunhofer Institut

Experimentelles
Software Engineering

Implementing Product Line Variabilities

Authors:
Michalis Anastasopoulos
Cristina Gacek

Submitted for publication in
Proceedings of the Symposium

for Software Reusability,

Toronto, Canada, 18-20 May 2001

I[ESE-Report No. 089.00/E
Version 1.0
November 6, 2000

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern

Executive Summary

Software product lines have numerous members. Thus, a product line infrastruc-
ture must cover various systems. This is the significant difference to usual soft-
ware systems and the reason for additional requirements on the various assets
present during software product line engineering. It is imperative that they sup-
port the description of the product line as a whole, as well as its instantiation for
the derivation of individual products.

Literature has already addressed how to create and instantiate generic product
line assets, such as domain models and architectures to generate instance spe-
cific ones [1, 2, 3], yet little attention has been given on how to actually deal
with this genericity at the code level.

This paper addresses the issue of handling product line variability at the code
level. To this end various implementation approaches are examined with respect
to their use in a product line context.

Keywords: Software product lines, product line variability, implementation approaches,
implementing variabilities, traceability

Copyright [Fraunhofer IESE 2000 vV

Vi

Copyright [J Fraunhofer IESE 2000

Table of Contents

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.1
4.12
413
4.14

Copyright [Fraunhofer IESE 2000

Introduction

Related Work

Requirements for implementation support

Framework for comparison of implementation

approaches

Aggregation / Delegation
Inheritance

Parameterization

Overloading

(Delphi) Properties

Dynamic Class Loading

Static Libraries

Dynamic Link Libraries
Conditional Compilation
Frames

Reflection

Aspect-oriented programming
Design Patterns

Approach Comparison Summary

Practical Experience
Conclusions
Acknowledgments

References

18

19

20

Vii

VI Copyright [J Fraunhofer IESE 2000

Introduction

1 Introduction

Software product lines have numerous members. Thus, a product line infrastruc-
ture must cover various systems. This is the significant difference to usual soft-
ware systems and the reason for additional requirements on the various assets
present during software product line engineering. It is imperative that they sup-
port the description of the product line as a whole, as well as its instantiation for
the derivation of individual products.

To reflect a product line, the generic assets have to cover all elements the prod-
uct family is built from, and their corresponding composition rules. Clarifying
how the various parts may be combined is a very challenging task.

Generic assets differ from specific ones in the fact that they embrace common
and variable product aspects. Generic assets can be instantiated, that is, prod-
uct-specific assets can be derived from them. Specific assets on the other hand
are uniquely mapped to product line members.

Products within a product line context consist of constant as well as variable ele-
ments. Dependencies between these elements do exist (e.g., elements may
exclude each other or one element may make the integration of a second one a
necessity). Hence only a subset of all combinations are correct and complete
configurations. Therefore we have to restrict the product line infrastructure to
cover only the set of valid family members.

A decision model structures the variability within a product line as a set of deci-
sions to be resolved. Interrelations between decisions are captured as well. Such
a model is also generic, that is, it can be also instantiated. In the instance all
decisions are resolved. Every diversity in each generic asset must be connected
to an open decision in the decision model. The presence of a decision model is
important because a decision model specifies an instance of each generic asset
and thus a complete product line member.

Literature has already addressed how to create and instantiate generic product
line assets, such as domain models and architectures to generate instance spe-
cific ones [1, 2, 3], yet little attention has been given on how to actually deal
with this genericity at the code level. Variabilities and their composition rules
must also be reflected at the code level, and be instantiated when creating indi-
vidual product instances.

This paper addresses the issue of handling product line variability at the code
level. To this end various implementation approaches are examined with respect

Copyright [Fraunhofer IESE 2000 1

Introduction

to their use in a product line context. The rest of this paper is structured as fol-
lows: section 2 introduces some of the relevant related work, this is followed by
a discussion on the types of variabilities to be supported and the requirements
for their implementation support (section 3), we then introduce our framework
for comparison of implementation approaches (section 4), discuss some of our
practical experience (section 3), and then conclude the paper with a short dis-
cussion of the various research needs we have been able to elicit so far

(section 6).

It should be noted that this paper’s purpose is not to impart profound insights
into the technologies but only to report on the possibilities of their use for han-
dling code variabilities in a product line. Finally we must mention that the set of
approaches presented here is not complete. We are certain that other
approaches may also be advantageous in this context.

2 Copyright [J Fraunhofer IESE 2000

Related Work

2 Related Work

James Coplien in his book “Multi-Paradigm Design for C++" [4] presents a
design method that takes advantage of the popular programming language’s
support for multiple paradigms, such as classes, over-loaded functions, tem-
plates, modules, and procedural programming. Each of those paradigms is
described as being uniquely suitable for solving a specific class of design prob-
lems. This conclusion is particularly important for product line engineering
because the book has a strong focus on problems related to the realization of
commonalities and variabilities.

David Sharp has studied [5] existing object oriented techniques that facilitate
anticipated variabilities between different software versions. Parameters of varia-
tions, which refer to the different aspects of software that can vary, are being
initially identified. Tailoring techniques featured by languages like C++ and
Ada95 are described next. Each technique is categorized with respect to the
supported combinations of variabilities for each parameter of variation. Scope,
flexibility, efficiency and applicability are some of the criteria by which the use of
the explored techniques are judged.

Mikael Svahnberg [6] presents a taxonomy of the technical solutions to manage
product differences, a historical essay of how components in a software product
line can evolve and what mechanisms are used to support this evolution. From
this he elaborates on the connection between evolution and variability. The
implementation mechanisms are assigned to phases of the development lifecy-
cle and consequences as well as examples of each mechanism are cited.

Mira Mezini in her Ph.D. dissertation [7] introduces a composition approach
named Variational Object-oriented Programming (also known as VOP). She iden-
tifies different kinds of variations and proves that standard object orientation
cannot deal with them effectively. Subsequently she defines an extension of the
standard object oriented programming model in order to support context-
dependend behavior variations.

Krzystof Czarnecki and Ulrich W. Weisenecker define Generative Programming
as: "a software engineering paradigm based on modeling software system fam-
ilies such that, given a particular requirements specification, a highly customized
and optimized intermediate or end-product can be manufactured on demand
from elementary, reusable implementation components by means of configura-
tion knowledge”[8]. The authors provide a broad survey of domain engineering
and implementation techniques that support the concepts of Generative Pro-
gramming. Aspect-oriented Programming (AOP), Subject-oriented Programming

Copyright [Fraunhofer IESE 2000 3

Related Work

(SOP) and VOP as well as Generic Programming, Generators and Intentional Pro-
gramming are covered.

AOP and SOP are covered below. The goal of Intentional Programming (IP) is to
develop a new kind of environment for transformational programming that per-
mits software to be composed from a set of independent design decisions or
“intentions”, using domain-specific notations and optimization strategies [9].

Copyright [J Fraunhofer IESE 2000

3

Table 1:

Table 2:

Copyright [Fraunhofer IESE 2000

Requirements for
implementation support

Requirements for implementation support

Every variability encountered in a product line context can be connected with a
corresponding feature the support of which is varying under specific conditions.
Since a feature implementation is usually spread across many source files and
modules the relation between features and variabilities (variation points) is 1:N.
This however does not hold for AOP and SOP as we will see in section 4.

Table 1 provides an overview of feature types and the criteria for inclusion of a
feature in a product line instance. As we will see later on, knowing the type of a
feature is important for the implementation because given a feature type a cer-
tain implementation technique can be recommended or not.

Feature Type Meaning

Mandatory The feature must be always included.

Optional The feature is an independent complement that may
be included or not.

Alternative The feature replaces another feature when included.

Mutually Inclusive In order for the feature to be included specific other

feature(s) must be included as well and vice versa.

Mutually Exclusive In order for the feature to be included specific other
feature(s) must be left out and vice versa.

Feature Types

The mutually inclusive and exclusive features are subject to specific constraints
and have been separated from the other ones in the above table because they
refer to different feature classes (e.g an optional feature can be also mutually
inclusive).

As postulated in [5] variabilities may be primarily classified as positive and nega-
tive. Positive variability adds functionality while negative removes. Variabilities
can be categorized as shown in table 2.

Variability Type Meaning

Positive Functionality is added

Negative Functionality is removed

Optional Code is included.

Alternative Code is replaced.

Function Functionality changes

Platform / Environment Platform or environment changes

Variability Types

Requirements for
implementation support

Additional assistance in handling variabilities at the code level can be provided if
the exact binding time of the variability is known. We classify binding time as
follows:

e Compile-time: The variability is resolved before the actual program compila-
tion (e.g., with preprocessor directives) or at compile time.

e Link-time: The variability is resolved during module or library linking (e.g.,
selecting different libraries with different versions of the exported operations)

e Runtime: The variability is resolved during program execution (e.g., depend-
ing on user rights functionalities get disabled or enabled with conditions in
the code)

e Update-time or Post-runtime: The variability is resolved during program
updates or after program execution(e.g., an update utility adds functionality
to existing modules)

After having the feature type and the binding timings identified we also need to
determine the parameters of variation [5], namely what exactly is varying, and
the variation points, i.e., the locations where changes occur.

The main parameters of variation as identified in [5] are the interfaces and the
corresponding implementations. We also consider the initializations of a module
as a possible parameter of variation. Initialization sectors are often encountered
in Delphi units where they are optional and contain statements that are exe-
cuted on program start-up.

In order to ensure effective maintenance and systematic change management
traceability must be provided from the architecture and the design to the code.
Traceability is the ability to document and follow the life of a concept through-
out system development. It is forward directed (post traceability: describing the
deployment and use of a concept) as well as backward directed (pre traceability:
describing the origin and evolution of a concept) [1].

A standard way of providing traceability is the establishment of cross reference
data. Such references can be expressed as links or matrices where connections
between the various artifacts in code and architecture/design are made explicit.
This presupposes that the artifacts to be traced have been firstly spotted which
brings up again the essential need of determining the variation parameters and
points.

A major issue which we have faced in our project experience is the scalability
issue. Many of the implementation approaches used in industry for handling
variability in a product line suffer when new products are engaged in or when
existing products are evolving. This impacts at first the overview over the varia-
tion points leading gradually to a degraded implementation structure. In many
cases developers try to manage the upcoming growth and evolution by rejiging
their implementation approaches or by introducing step-wise new ones.

Copyright [J Fraunhofer IESE 2000

Requirements for
implementation support

Another important issue is the Separation of concerns (SoC). SoC states that
important issues should be represented in programs intentionally (explicitly,
declaratively and with little or no “extra noise”) and should be well localized.
This facilitates understandability, adaptability, reusability and other qualities
since intentionality and localization allow easy verification of the way a program
implements its requirements. [8]

At the implementation level separation of concerns is very often achieved by
separating constant from variant parts into distinct modules. However, when
interdependencies between features and consequently between the implement-
ing modules exist they should be explicitly made clear. Otherwise maintenance
of the separated modules can cause serious defects. This recommendation holds
for each one of the affected techniques presented below.

As we will explore in the following sections an implementation technique clearly
counts on a chosen programming language. The decision of which language to
use is typically resolved upon a product instantiation. Therefore setting up and
describing a reference architecture for a product line as a basis for member
instantiation is one of the fundamental activities in this area.

Copyright [Fraunhofer IESE 2000 7

Framework for comparison of
implementation approaches

4 Framework for comparison of implementation approaches

In this section various approaches for coding variabilities are presented. We con-
sider the support of the different variability types and timings as the main criteria
for a comparison. Additional criteria involve scalability and separation of con-
cerns issues as described in section 3.

4.1 Aggregation / Delegation

Aggregation is an object oriented technique which enables objects to virtually
support any functionality by forwarding requests they can normally not satisfy to
so-called delegation objects which provide the requested services. To this end
“delegating” objects must:

1. hold references to the delegation objects,

2. define the operations to be delegated and implement them by solely invok-
ing the corresponding operations of the delegation objects

Variability can be handled by means of putting the standard or mandatory func-
tionality in the delegating object and the variant functionality in the delegation
object.

This technique can work with optional features but it is rather difficult with
alternative ones. In the former case there is only one indirection while in the lat-
ter case many indirections are necessary at the points of variation.

Another problem with aggregation comes up when the number of variants
(e.g., of an object function) starts to grow significantly. This growth necessitates
in most cases additional delegation classes and probably source files. The situa-
tion gets even worse when combinations of the already existing delegations are
required.

Aggregation typically causes the variability to be resolved at compile-time since
the delegation classes and the indirections are defined upon compilation. Link-
time resolution is however possible if indirections to external libraries are used.
Runtime resolution can be achieved in conjunction with dynamic class loading

(see below). Update-time is also possible. Imagine an update utility replacing a
delegation class file.

8 Copyright [J Fraunhofer IESE 2000

4.2

4.3

Copyright [Fraunhofer IESE 2000

Framework for comparison of
implementation approaches

Inheritance

Inheritance can be utilized to assign base functionality to superclasses and
extensions to subclasses. Inheritance is amenable to the following categories:

e Standard (class-based) Inheritance: A subclass is derived from one superclass
and may introduce new attributes and operations or overwrite or wrap exist-
ing ones.

e Virtual Inheritance: Like standard inheritance except that virtual class mem-
bers can be defined in the superclass and replaced dynamically in the sub-
class.

e Multiple Inheritance: A subclass derives properties from many superclasses.

e Mixin-based Inheritance: Mixins are similar to ordinary classes but they do not
adhere to an inheritance hierarchy. They only define differences to existing
classes. Therefore they cannot be instantiated. Mixins can be combined with
existing classes in order to extend their functionality. Mixins are supported by
the Ada programming language.

e Object-based Inheritance: Inheritance is shifted to the level of objects instead
of classes. Object-based inheritance is widely used with Smalltalk where an
object refers to itself with the variable self. Depending on the hierarchical
level the variable is set to the right object. This is done by rebinding the self
variable each time a message is sent.

e Parameterized Inheritance: The superclass is a parameter which is set to a
defined class upon instantiation.

Separation of variabilities into derived classes can be achieved with all types of
inheritance. However this means that the growth of the amount of different
variabilities carries along automatically the growth of the amount of subclasses
which in many cases leads to a complex, unclear inheritance tree.

Multiple options in terms of selecting many optional features of an object are
also difficult to manage since they require multiple or mixin-based inheritance
not being supported by many languages and bringing in new problems like
name clashing (e.g., when two or more ancestor classes have the same
method).

Parameterization

The idea of parameterized programming is to represent reusable software as a
library of parameterized components. Component behavior is determined by
the values parameters are being set to.

Parameterization avoids code replication by centralizing design decisions around
a set of variables. It can be applied to make data types or object classes flexible.
A typical example is the parameterized class “Stack” that holds a stack of ele-

Framework for comparison of
implementation approaches

ments the type of which can be set through a parameter. This becomes even
more interesting when the actions to be performed are figured out at runtime
depending on the values set (dynamic parameterization).

Parameterization can enhance reusability in a product line and also ease trace-
ability to design decisions. However centralizing code by defining parameters is
often a very complex task if not impossible. The strength of a parameter, that is
the set of entities a parameter can embody, is a major factor that depends on
the selected programming language.

All types of variability timing are supported by parameterization.

4.4 Overloading

Overloading means reusing an existing name, but using it to operate on differ-
ent types [10]. This name or symbol can be assigned to functions, procedures or
operators.

Overloading promotes code reuse under certain circumstances (e.g., if some
type declarations of a code segment change overloading can assure that the
affected places in the code will not produce invalid type errors). In spite that pro-
grams using overloading are error-prone because they are hard to understand,
they produce ambiguities and they often mislead the programmers to reuse
names for improper actions.

Overloading occurs at compile time. Other timings are considerable, we are not
aware though of comparable implementations.

4.5 (Delphi) Properties

Properties in Delphi are attributes of an object. A property associates specific
actions with reading or modifying its data. Properties provide control over access
to an object’s attributes, and they allow attributes to be computed.

A special kind of delegation is achieved when properties are used to delegate
implementation of an interface to a property in the class that claims to imple-
ment the interface. In this case the property refers to a class really implementing
the interface. The selection of the referenced class can be done at runtime
depending for instance on the user's profile.

10 Copyright [J Fraunhofer IESE 2000

Framework for comparison of
implementation approaches

4.6 Dynamic Class Loading

Dynamic class loading is a standard in Java where all classes are loaded into
memory as soon as they are needed. The standard way the Java runtime accom-
plishes this can be extended and controlled in order to address additional issues
like security while loading a class.

Dynamic Class Loading is interesting for a product line infrastructure because in
that way a product can query its own context and that of its user, and decide at
runtime which class versions to load. The traceability back to the decision model
is therefore ensured.

4.7 Static Libraries

Standard static libraries contain a set of external functions that can be linked to
an application after it has been compiled. The application and the library code
get loaded in the same memory space. The signatures of the functions are
known to the compiled code and therefore they must remain unchanged. The
implementations though can change by selecting different libraries and thus
providing some kind of variability support. Active libraries as presented earlier
remove this static nature of “traditional” libraries.

4.8 Dynamic Link Libraries

DLL's are libraries loaded when needed into applications at runtime. They can be
useful for the selection of variant functionalities. A special case are the ActiveX
controls. They are ready-to-run, parameterized components that can be loaded
dynamically in a container application. The loading can be in the same process
space (like ordinary DLL's) or in separated process spaces (like independent
EXE’s).

Separation of variability is reached by developing distinct controls. ActiveX com-
ponents support code reuse since they can embrace other controls. The compo-
nent-nature of an ActiveX-control implies that there are many design decisions
connected to it. Therefore many of the techniques presented above may be rele-
vant with the development of such components.

The decision of which control to load into an application is split across many
others subdecisions. The traceability in this case is a subject of further investiga-
tion.

Other component models like Java Beans and CORBA components can also be
similarly beneficial in a product line context.

Copyright [Fraunhofer IESE 2000 11

Framework for comparison of
implementation approaches

4.9

4.10

12

Conditional Compilation

Frames

Conditional compilation enables control over the code segments to be included
or excluded from a program compilation. Directives mark the varying locations
in the code.

One major advantage of this technique is the encapsulation of multiple imple-
mentations in a single module. The desired functionality is selected by defining
the appropriate conditional symbols.

Another benefit from the conditional compilation is the separation of variabili-
ties that can be reached when include directives are used. Include’s are used to
insert complete source files into base files.

On the other hand conditional directives do not support recursion or any other
kind of looping which makes advanced code selection algorithms impossible [8].
Besides that directives are usually intermingled in the code resulting on a lack of
overview and on difficulties in determining the scope of each conditional defini-
tion.

Following the decisions related to a conditional code selection is also not easy. A
solution to that is to interrelate directives hierarchically with a central include file
as a decision model at the top of the hierarchy.

Conditional compilation is accomplished at pre-compile time.

Paul Basset’s Frame Technology [15] provides the means to maximize code reus-
ability through the definition and use of adaptable entities called frames. The
goal is to form hierarchical reuse assemblies of such entities. Frames are source
files equipped with preprocessor-like directives which allow parents (overlying
frames) to copy and adapt children (underlying frames). On top of each hierar-
chical frame assembly lies a corresponding specification frame which collects
code from the lower frames and provides, after being processed, the ready-to-
compile module or application source. The developers can select the frame
assemblies specific to their needs.

A parent that wants to adapt a child must firstly copy the complete code from
the child. The adaptation is achieved in terms of:
1. inserting or replacing code at predefined locations and/or

2. setting frame parameters

Copyright [J Fraunhofer IESE 2000

Framework for comparison of
implementation approaches

The hierarchical nature of each frame setting causes, just like with inheritance, a
lack of overview when the structure evolves.

Separation of variability is achieved since overlying frames encompass the vari-
ants being inserted. However introducing frames in an existing product line code
can fall into difficulties since code restructuring to a large extent is probably nec-
essary.

Frame processing is performed at precompile-time, that is, the frame processor
translates the files with the frame-directives into ordinary source files that can be
compiled. Therefore the variability timing supported here is clearly (pre)compile-
time.

4.11 Reflection

Reflection is the ability of a program to manipulate as data something represent-
ing the state of the program during its own execution. Contrary to the RTTI
(runtime type identification) the compiler of a reflective program does not need
to know about the modules to be controlled at runtime.

Reflection relates strongly to metaprogramming where objects in higher levels of
abstraction (metalevels) are established to represent entities like operating sys-
tems, programming languages, processors, object models, etc.. Reflection
enables access to such metaobjects and therefore allows architecting flexible
systems.

Reflection can be combined with dynamic class loading in order to load modules
unknown until runtime, depending on the deployment context and invoke oper-
ations on these modules.

To a product line reflection is an appealing technique. Base functionality can be
“reflected” and manipulated according to a configuration. Nevertheless reflec-
tive programs are from their nature difficult to understand, to debug and to
maintain. Reflective techniques are therefore strongly recommended for special
systems (e.g. object inspectors) but their use in other systems should be handled
with care.

Manipulations through reflection are accomplished mainly at runtime. Program
optimizations or transformation in general are also possible after informations
during program execution are collected, namely at post-runtime. If however
reflection is seen as a general metaprogramming principle, compile-time code
manipulation is possible as well.

Copyright [Fraunhofer IESE 2000 13

Framework for comparison of
implementation approaches

4.12 Aspect-oriented programming

14

Aspect Oriented Programming (AOP) [11] is a technique developed at Xerox
PARC which enables the modularization of crosscutting concerns, namely
aspects, as well as the integration of join points. Join points are the locations in
systems that are affected by one or more cross-cutting concerns. The process of
integrating join points involves describing how a cross-cutting concern affects
code at one or more join points. The integration process is referred to as compo-
sition or weaving [13]. AOP supports the programmer in cleanly separating com-
ponents and aspects from each other by providing mechanisms that make it
possible to abstract and compose them to produce the overall system.

A similar approaches to AOP is the Subject Oriented Programming (SOP) [12]
approach that focuses on operation-level joining. That means that SOP considers
operations as the majority of join points of concern [13]. SOP extends the object
oriented paradigm by defining subjects as collections of classes or class frag-
ments. The aspect decomposition is achieved by separating subject-specific code
pieces from each other whereas rules determine how the later composition
occurs.

Examples of system issues that can be handled with AOP are logging, synchroni-
zation or exception handling facilities. In these cases aspect actions are defined

and executed dynamically based mostly on invocation events. An aspect can for
instance call a specific logging facility just before an important operation which

needs logging is executed.

Aspects cooperate nicely with object orientation and can be used to expand the
properties of objects. An aspect can for instance introduce a new interface and
the corresponding implementation into an object that was originally devoid of
such a functionality.

Aspects can also be used to implement design patterns by introducing the pat-
tern-specific code into an object or a set of objects. Some known problems with
design patterns like object schizophrenia can be even circumvented with AOP
(8].

System issues are often variant properties of a product line infrastructure. Basic
products support basic facilities (e.g., no logging) while the improved versions
provide additional facilities (e.g., logging, additional interfaces etc.). Conse-
guently aspects can be used to ameliorate such distinctions.

With AOP mandatory functionalities can be implemented in a standard way
while diversities can be encapsulated in aspects. The benefits can be accrued
from the fact that aspect combinations as well as different interpretations of an
aspect are easily realized. Traceability to a decision model is also promoted see-
ing aspects modularize resolved design decisions.

Copyright [J Fraunhofer IESE 2000

Framework for comparison of
implementation approaches

Some difficulties with AOP may come up when multiple options are needed. For
example, when logging is encapsulated in an aspect, some product line mem-
bers may support logging. If the logging facility must be further improved in
some products, the aspect code must be replicated and a new aspect version
must be produced. This could be bypassed if aspects were reusable in a hierar-
chical manner. Aspect), an aspect-oriented extension to Java, provides a sort of
aspect hierarchy where abstract aspects can be extended. To our knowledge the
developers of Aspect) consider to change this scheme and view aspects like reg-
ular object classes.

An aspect-oriented compiler requires the source files and the involved aspects.
Therefore, AOP relates to compile-time variability resolution.

If an aspect connects to a library this connection will remain and get composed

together with the aspect and so resolution at link-time could be possible. Active
Libraries [14] are an interesting development in that direction. They are “active”

because they may adapt the linked modules according to their deployment con-
text.

Runtime resolution with standard AOP is not possible since a program must be
composed out of the involved aspects before it can run. Active libraries can
change that too by optimizing aspect-oriented code at runtime.

4.13 Design Patterns

Design patterns can be exploited in a product line context since many of them
indentify system aspects that can vary and provide solutions for managing the
variation.

Object-oriented techniques along with parameterization are repeatedly
employed for the implementation of design patterns. The code corresponding
to a design pattern is in most cases intertwined with the rest of the code and
spread over many components. This in conjunction with subsequent change-
requests that cause the code to mutate make the traceability between pattern
code and design disappear.

4.14 Approach Comparison Summary
In this section, the various approaches discussed above are succinctly compared
by means of two tables. Table 3 presents their ranking according to the criteria

we use, and table 4 depicts which techniques can be supported by which pro-
gramming languages.

Copyright [Fraunhofer IESE 2000 15

Framework for comparison of
implementation approaches

Table 4:

Legend:

Q: possible

16

®: ineffective / difficult

Language Mapping

?: questionable

blank: not possible

Interface Implementation Inititalization Timing Other
o 2| o 2| &l <] 2| of 2| E] 4| 2| of 2| E] - -l ¢l &
S B EE R E EHEEE B
R T R B R R
5|3 5| 3 5] 3 2|2
Aggregation / Delegation Q| Q| Q|| e O] O] O| ol e O O O Ogeo| | O
Aspect-oriented programming e O| Ol OjO| | Ol O| O O| | O] Ol Of O| O] O ol O] O
Conditional Compilation O O] O O] Of O] O O] O| O O| O] ©O| O} Of O e o O
Dynamic Class Loading O O] O O] Of O| O O] O O o] O O] O
Dynamic Link Libraries O Ol O Of O O| O] Of O o] O O] O
Frames Q] O] O] O] O O O| O O O O O Q| O} Of O el O e
Inheritance ®) ®) Of O] O] O] O| O O O Q| O Of O o} e Ol O
Overloading ol O O ol O O ol O O o] e o | o
Parameterization O| O] O] O] Of O O O O O O O| O &| O| @
(Delphi) Properties Ol O| O| @o| o] O| O| O| o e O| O| Q| O eo| o o
Static Libraries o Q] O] Of O o O] © Q e o O
Table 3: Comparison Matrix
C++ Delphi Java Smalltalk
Aggregation / Delegation O o O o
Aspect-oriented programming O o
Conditional Compilation O o] O o]
Dynamic Class Loading O ?
Dynamic Link Libraries Q Q UNI*) O
Frames o} Q o Q
Inheritance O o] O o]
Overloading O o]
Parameterization O o O o
(Delphi) Properties O
Static Libraries O o] O o]

* possible with the Java Native Interface

Copyright [J Fraunhofer IESE 2000

Practical Experience

5 Practical Experience

In our project experience we came to the conclusion that:
1. deciding which approach is best suited when and

2. when to replace an approach with another
are the major issues.

An example of code we have recently looked into is written in Delphi and uses
exclusively preprocessor directives to handle the variabilities. The advantages
and disadvantages of this approach as we described them earlier became evi-
dent. Many implementations are encapsulated in a relatively small amount of
files but the overview of the variation points is a real distress.

We have tried to introduce other techniques in order to address this problem.
The Delphi language restricted however our possibilities and therefore we have
experimented with delegation, inheritance and frames. Other techniques like
parameterization were also imaginable, they would raise though the code com-
plexity.

The better separation of concerns achieved in some cases was balanced with the
additional burden of source files. Besides, aggregation could not be applied in
many cases where the delegation object was operating on itself. Multiple
options are also essential and could not be managed effectively with inheritance
and delegation.

Restructuring the system to a large extent was in each case a prerequisite, yet
our industrial partner did not have the time nor people available to undertake
such effort at this point in time. Consequently we have chosen to temporarily
keep the preprocessor directives and to try to manage them better. To this end
we used include’s to separate variant code. Hopefully, this decision will be revis-
ited soon, and system restructuring will take place.

Copyright [Fraunhofer IESE 2000 17

Conclusions

6 Conclusions

18

The systematic variability management at the code level is a rather immature
field. Further work in this area needs to be done. This includes the refinement of
the comparison framework presented here.

Migrating from systems with absent or poor variability management to systems
that support it, is another concern needing to be addressed. This also involves
suggestions for traversing from one technique to another.

Through our work we concluded that different approaches were needed to sup-
port different problems. No silver bullet was found. That means that techniques
need to be mapped to known problems. Moreover the combination of available
techniques is something that cannot be avoided. That makes research in this
direction imperative.

Beyond the technical particulars cultural issues including implementation habits,
company strategies and programmers’ ideologies as well as the chosen imple-
mentation language can play a significant role and therefore must be taken into
account.

Looking into an existing system and trying to improve it by adding variability
management is an interesting aspect also for the area of software reengineer-
ing. Reverse scanners could be built that factor out the encountered variability,
visualize it and help towards improvement. Future work in this field is consider-
able.

The set of research directions placed here could lead towards creating a com-
plete framework that enables capturing all kinds of product line variability, trac-
ing it back to design and architecture and composing it according to valid con-
figurations. Scalability issues as well as supporting and combining various
techniques would definitely be a concern in such an environment.

Copyright [J Fraunhofer IESE 2000

Acknowledgments

7 Acknowledgments

We would like to thank all members of the Software Product Line Department at
the Fraunhofer IESE for their precious feedback.

The work reported in this paper has been partially funded by the ESAPS project
(Eureka Z! 2023 Programme, ITEA project 99005).

Copyright [Fraunhofer IESE 2000 19

References

8

20

References

10.
11.

12.

13.

14.

15.

Michalis Anastasopoulos, Joachim Bayer, Oliver Flege and Cristina Gacek, A Process
for Product Line Architecture Creation and Evaluation PulSE-DSSA — Version 2.0,
Fraunhofer IESE Report No. 038.00/E, June 2000

Cristina Gacek and Anton Vukovic, “Vital: Representing Software Reference Archi-
tectures,” in Proceedings of the Fourth International Software Architecture Work-
shop (ISAW-4), Limerick, Ireland, pp. 105-110, June 2000.

Joachim Bayer, Cristina Gacek, Dirk Muthig and Tanya Widen, “PuLSE-I: Deriving
Instances from a Product Line Infrastructure,” in Proceedings of the Seventh IEEE
International Conference and Workshop on the Engineering of Computer-Based Sys-
tems (ECBS 2000), Edinburgh, Scotland, pp. 237-245, April 2000.

James Coplien, Multi-Paradigm Design for C++, Addison Wesley, 1995

David C. Sharp, “Containing and Facilitating Change Via Object Oriented Tailoring
Techniques,” to appear in Proceedings of The First Software Product Line Confer-
ence Denver, Colorado, August, 2000

Mikael Svahnberg, Variability in Evolving Software Product Lines, Licentitate thesis,
Blekinge Institute of Technology, Department of Software Engineering and Com-
puter Science, Karlskrona, Sweden, 2000

Mira Mezini, Variational Object Oriented Programming, Ph.D. Dissertation, Univer-
sity of Siegen, Germany, 1997

Krzystof Czarnecki and Ulrich W. Eisenecker, Generative Programming Methods,
Tools and Applications, Addison-Wesley, 2000

Oxford University Computing Laboratory, Programming Tools Group, Intentional Pro-
gramming Project (http.//web.comlab.ox.ac.uk/oucl/research/areas/progtools/inten-
tional.htm)

Peter Van der Linden, Expert C Programming, Deep C Secrets, Prentice Hall, 1994

Gregor Kiczales et al, " Aspect Oriented Programming”, Springer-Verlag, 1997, avail-
able under http://www.parc.xerox.com/csl/groups/sda/publications/papers/Kiczales-
ECOOP97/

Homepage of the Subject-oriented Research Project, IBM, Thomas J. Watson
Research Center, Yorktown Heights, NY, see http://www.research.ibm.com/sop

Harold Ossher and Peri Tarr, “Operation-Level Composition: A Case in (Join) Point,”
in Proceedings of ECOOP 1998 workshop on Aspect-Oriented Programming, Fin-
land, pp 116-120, 1998

K. Czarnecky, U.W. Eisenecker, R. Glick, D. Vandevoorde and T. Veldhuizen, “Gen-
erative Programming and Active Libraries”, to appear in Proceedings of the Dagstuhl
Seminar 98171 on Generic Programming, Schlo3 Dagstuhl, Germany, April 26-May
5, 1998, LNCS, Springer-Verlag, Berlin and Heidelberg, Germany, 1999, see http://

www.prakinf.tu-ilmenau.de/~czarn/dagstuhl99

Paul G. Basset, Framing Software Reuse, Yourdon Press Computing Series, 1997

Copyright [J Fraunhofer IESE 2000

Document Information

Title:

Date:
Report:
Status:

Distribution:

Implementing Product
Line Variabilities

November 11, 2000
IESE-089.00/E

Final

Public

Copyright 2000, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial

purposes.

