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Abstract

Facial image analysis has been an active research area in the past decades,
resulting in a myriad of applications in security, entertainment, human–
computer interaction, etc. Although human-level performance has been
reached or even surpassed by some recent systems on several benchmark
datasets, it can drop dramatically under non-cooperative conditions such
as surveillance scenarios, where the subjects are acquired at a distance with
arbitrary pose, expression and illumination, giving rise to diverse detrimen-
tal effects in the input images, in particular the low spatial resolution.

This thesis proposes to solve the low-resolution (LR) facial analysis problem
with face super-resolution (FSR). In contrast to generic super-resolution
(SR), FSR can leverage prior domain knowledge. The common face configu-
ration can be used to hallucinate high-resolution (HR) output images with
finer details. In order to provide FSR with such semantic guidance, a 3D
representation of the face is adopted, which offers accurate and dense cor-
respondence immune to shape and pose variation of the LR faces. However,
incorporating 3D modeling for FSR is extremely challenging, especially in
light of the ill-posed LR scenario.

To deal with this issue, a workflow coupling automatic localization of 2D
facial feature points and 3D shape reconstruction is developed, leading
to a novel LR fitting pipeline. First of all, the fundamental aspects of the
cascaded shape regression method including the core regression engine, fea-
ture descriptors and fitting strategies are incrementally revisited and evolved
to obtain state-of-the-art landmarking precision and robustness against
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Abstract

image quality degradation. The following dense shape reconstruction mod-
ule addresses the discrepancy of correspondences between detected 2D
points and annotated 3D vertices on the face model with an adaptive fit-
ting scheme. The nonlinear Levenberg–Marquardt Iterative Closest Point
(LM–ICP) algorithm with Distance Transform (DT) is employed to relax
the unfavorable fixed mapping assumption on the facial contour, which
achieves superior and stable shape recovery across pose.

In order to exploit the obtained 3D shape and pose for FSR, a resolution-
aware approach for registering the training 3D faces with the LR input is
designed to avoid warping the LR face. To facilitate hallucination of the
3D facial texture, the widespread LR image formation process from HR
images is first reformulated for the 3D face mesh using an intuitive and
straightforward interpolation procedure. On the basis of this interpretation,
the classic Lucas–Kanade algorithm is extended to the case of 3D deformable
models to rectify the imperfect landmark-based face modeling on LR images
in a posterior fashion. In this way, the final patch-wise SR stage is able to
produce a HR facial texture robust to intrinsic and extrinsic sources of
variation, and to faithfully synthesize the self-occluded half of the face for
non-frontal poses.

Moreover, a novel Real-FSR dataset, which contains both LR and HR pairs
acquired with a special dual-camera imaging system, is collected to study
the genuine image characteristics related to SR. Further experiments on
other publicly available datasets reveal the capabilities of the presented
3D FSR framework regarding high-quality SR for in-the-wild faces with an
interocular distance (IOD) of as few as five pixels. Finally, the frontalized
HR texture is also verified to help boost the performance of cross-pose face
recognition (FR).
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Zusammenfassung

Die Analyse von Gesichtsbildern ist in den vergangenen Jahrzehnten ein
aktives Forschungsgebiet geworden, was zu einer Vielzahl von Anwendun-
gen im Sicherheitsbereich, der Unterhaltung oder der Mensch–Computer–
Interaktion führt. Obwohl auf manchen Datensätzen die menschliche Leis-
tung von einigen neueren Systemen erreicht oder sogar übertroffen wird,
kann diese unter nicht kooperativen Bedingungen wie in Überwachungs-
szenarien deutlich fallen. Die Ursache hierfür sind Gesichter mit beliebigen
Kopfposen, Gesichtsausdrücken und Lichtbedingungen, welche zudem aus
der Ferne aufgenommen sind. Die daraus resultierenden Störfaktoren in den
Eingangsbildern, insbesondere die geringe Auflösung, wirken sich nachteilig
für die vorhandenen Ansätze der Gesichtsanalyse aus.

Diese Arbeit versucht, diese Problematik mittels Gesichtssuperresolution
(GSR) zu lösen. Im Gegensatz zur allgemeinen Superresolution (SR) kann die
GSR Vorkenntnisse aufgrund der Einschränkung auf Gesichter nutzen, so
dass hochaufgelöste Gesichter mit feineren Details erzeugt werden können.
Um der GSR solche semantische Information zur Verfügung zu stellen, wird
ein 3D-Modell des Gesichts verwendet, das eine dichte Korrespondenz und
Beständigkeit gegen Gestalt- und Posenvariation der niedrigaufgelösten
Gesichter bietet. Allerdings ist die Integration von 3D-Modellierung in die
GSR extrem anspruchsvoll, vor allem angesichts der mangelnden Auflösung.

Um diese Schwierigkeit zu bewältigen, wird eine neuartige Verarbeitungs-
kette bestehend aus einer automatischen Detektion von 2D-Merkmals-
punkten und einer 3D-Modellrekonstruktion speziell für niedrigaufgelöste
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Gesichter entwickelt. Zunächst werden die grundlegenden Aspekte des kas-
kadierten Regressionsverfahrens zur Landmarkenlokalisierung, d. h. der
Kernalgorithmus für die Regression, die Merkmalsdeskriptoren und die
Anpassungsstrategien verbessert, um eine sehr hohe Präzision und Robust-
heit gegenüber geringer Bildqualität zu erhalten. Das folgende Modul für die
dichte 3D-Modellrekonstruktion adressiert die Abweichung der Korrespon-
denz zwischen detektierten 2D-Punkten und annotierten 3D-Eckknoten
auf dem Gesichtsmodell mit einem adaptiven Anpassungsschema, das
den nichtlinearen Levenberg–Marquardt Iterative Closest Point (LM–ICP)
Algorithmus zusammen mit der Distanztransformation (DT) einsetzt, um
die ungünstige Annahme der festen Zuordnung auf der Gesichtskontur zu
lockern. Damit werden bessere und stabile Rekonstruktionsergebnisse über
verschiedene Kopfposen von bis zu ±45° erzielt.

Anschließend wird ein auflösungsadaptiver Ansatz für die Registrierung der
3D-Trainingsgesichter mit dem Eingangsbild entworfen, um Detailverluste
durch Verzerrungen des niedrigaufgelösten Gesichts zu vermeiden. Zur SR
der 3D-Gesichtstextur wird das Bildentstehungsmodell niedrigaufgelöster
Bilder auf das 3D-Gesichtsmodell mittels einfacher Interpolation ermög-
licht. Der klassische Lucas–Kanade Algorithmus wird dann anhand dieser
Formulierung auf den Fall der 3D-deformierbaren Modelle erweitert und
die grobe landmarkenbasierte 3D-Anpassung lässt sich dadurch nachträg-
lich verfeinern. Auf diese Weise kann eine realistische Gesichtstextur, auch
in der abgewandten Gesichtshälfte für nicht frontale Posen, in der letzten
3D-GSR Phase synthetisiert werden.

Zur Untersuchung tatsächlicher SR-Bildeigenschaften entstand darüber
hinaus im Rahmen dieser Arbeit ein neuer Datensatz, in dem niedrig- und
hochaufgelöste Bildpaare mit einem Zwei-Kamera-System gleichzeitig auf-
genommen werden. Durch weitere Evaluation auf mehreren öffentlichen
Datensätzen ist es klar ersichtlich, dass das vorgestellte 3D-GSR Verfah-
ren hochwertige SR-Ergebnisse für Gesichter mit einem Augenabstand ab
fünf Pixeln erzeugt. Abschließend kann gezeigt werden, dass die synthe-
tisierte Gesichtstextur durch eine Posennormalisierung die Leistung der
posenübergreifenden Gesichtswiedererkennung steigert.
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1 Introduction

1.1 Motivation
Face data compare favorably to other kinds of biometrics like fingerprint
and iris due to its convenience and non-intrusive nature of collection. Less
than two centuries after the oldest known portrait photograph of Robert
Cornelius was taken by himself (a.k.a. selfie, see Figure 1.1), acquiring
images of oneself or somebody else has never been as simple as it is today
thanks to the rapid development of digital imaging technologies in the past
few decades. As an example, for the case of photo or video selfies alone, a
total of 24 billion of those were uploaded to Google Photos in the first 12
months since its launch in May 20151. The ubiquitous access to the “Big
Bang” of data has not only benefited our daily life in the “Informatization”2

era, but also greatly pushed forward machine learning research, where suffi-
cient training data is of paramount importance. To this end, a number of
large-scale datasets [Hua08, Kem16, Ng14, Wol11] have been built upon a
tremendous amount of uncontrolled face data on the Internet.

The analysis of such data has attracted broad interest from the computer
vision society ever since the pioneering PhD thesis of Prof. Takeo Kanade
[Kan73]. With the aid of mass data from unconstrained environments,

1 https://blog.google/products/photos/google-photos-one-year-200-
million/

2 https://en.wikipedia.org/wiki/Informatization
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several confounding factors such as pose, expression, occlusion and lighting
are extensively studied, leading to recent advances in many facial analysis
tasks to close the gap to human-level performance, e.g., in face recognition
(FR) [Tai14] and facial landmark detection [Fan16], as well as a dramatic
boost of applications in multimedia [Bäu13], entertainment [Thi16], human–
computer interaction [vAgr08], etc.

Nowadays, analysis of face images acquired by

Figure 1.1: The oldest known
(self-)portrait photo taken in
1839 by Robert Cornelius1.

Closed-Circuit Televisions (CCTVs) has become
ever more prevalent in the context of security
and counter terrorism. Despite the high pub-
lic concern regarding invasion of privacy, a vast
increase of surveillance CCTVs has been esti-
mated. For instance, around five million surveil-
lance cameras had been installed in the United
Kingdom by 2013, or equivalently one for every
11 people2. In the year 2016 alone, more than
800,000 new camera systems were expected to
be put into operation in Germany, with a total of
5.2 million by the end of the year3. The deployed
CCTVs so far have been shown to be an invalu-
able source of information for law enforcement
agencies, as 95% of Scotland Yard murder cases
used CCTV footage as evidence in 20092.

On the other hand, where the amount of video footage quickly exceeds the
capacities of the prosecution authorities, automatic video analysis tech-
niques, e.g., FR4, can play a critical role to assist the traditional surveillance
systems with human operators in front of large video walls of monitors.
However, one pitfall that prevents most existing facial analysis algorithms
from successful incorporation into this practical setup is the low quality
and resolution of the captured images. In spite of the deployment of new

1 https://publicdomainreview.org/collections/robert-cornelius-self-
portrait-the-first-ever-selfie-1839/

2 http://www.telegraph.co.uk/technology/10172298/One-surveillance-
camera-for-every-11-people-in-Britain-says-CCTV-survey.html

3 http://www.professionalsecurity.co.uk/products/cctv/german-
surveillance-camera-market/

4 https://www.perpetuallineup.org/

2

https://publicdomainreview.org/collections/robert-cornelius-self-portrait-the-first-ever-selfie-1839/
https://publicdomainreview.org/collections/robert-cornelius-self-portrait-the-first-ever-selfie-1839/
http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
http://www.professionalsecurity.co.uk/products/cctv/german-surveillance-camera-market/
http://www.professionalsecurity.co.uk/products/cctv/german-surveillance-camera-market/
https://www.perpetuallineup.org/


1.1 Motivation

hardware like Full HD or even 4K cameras, this problem still cannot be
entirely circumvented, because wide-angle lenses are common choices for
surveillance purposes in order for the coverage area to be as large as possible.
As a consequence, the imaged faces often occupy a very small region, e.g.,
with a resolution of under 10 pixels in width from a Full HD camera cover-
ing 20 m wide area [Whe11]. Moreover, limited hardware and acquisition
conditions can also give rise to other deteriorations like interlacing, noise,
sensor and motion blur, etc.

To address the negative impacts as a result of the surveillance scenario,
especially the low-resolution (LR) problem, a sizable body of efforts has been
made for individual facial analysis applications, e.g., recognition [Hen08]
and expression analysis [Kha13]. In contrast, this thesis focuses on restoring
the high-resolution (HR) facial information that is lost during the LR imaging
process, with the goal that the existing algorithms can be utilized without
further adaptation. In particular, given a LR face image, the objective is to
generate a HR version with enhanced details of the target person. Typically,
such an image magnification task is realized with super-resolution (SR). In
the special case of faces though, the domain-specific face super-resolution
(FSR) approach is a natural choice compared to generic SR by virtue of the
exploitation of common facial features. Even with as few as a single input
image, learning-based FSR can take advantage of the external training data
to synthesize the non-existing high-frequency information in the LR face,
hence also called face hallucination (FH) in the literature [Bak02]. This
property is sometimes essential in practice, e.g., in a manhunt, as often no
usable frames with well-illuminated, blurring-free and non-occluded face
of the suspect can be extracted from the footage, due to the unconstrained
nature of video surveillance. Thus, FSR gives a sound solution for both
automatic face matching in the database and better human recognizability
for the authority and the public.

In order to leverage learning-based FSR, one needs to couple a number of
submodules, e.g., alignment, subspace mapping and artifact suppression.
While conventional 2D systems concentrate on improvements over variants
of the subtasks, the presented framework attempts to explore a novel 3D
workflow to solve the entire FSR problem, which can not only provide accu-
rate fitting of the complex facial geometry for aligning training and test data,
but also facilitate direct 3D texture SR. The latter allows for 3D frontalization
of the SR faces to compensate for head rotation, which is proved crucial for

3



1 Introduction

FR across pose [Bla03, Zhu16b]. Therefore, this appealing feature conveys
the ultimate goal of this thesis: generating a 3D face with pose-normalized
HR texture from a single non-frontal LR surveillance image.

1.2 Challenges
SR is an ill-posed inverse procedure to infer missing high-frequency infor-
mation lost in the image degradation process. On the other hand, fitting
3D face models to 2D images is also a very sophisticated optimization prob-
lem [Rom05]. Hence, one can expect that incorporating these two tasks
into a 3D FSR engine would pose an even bigger challenge. Furthermore,
the subject being captured can unintentionally or sometimes intentionally
behave in such a way that the performance of the system may be severely
impaired. In this section, various sources of these factors for the FSR routine
are discussed.

1. Image quality

• Resolution originates from the discrete sampling of the contin-
uous signal of the real-world objects acquired by the camera.
It is a measure of how much spatial information there is avail-
able for digital image processing. Faces of low image resolution
usually lack descriptive facial features, which are critical for the
preprocessing modules of 3D FSR, namely face detection [Hu17],
alignment [Her15] and 3D fitting [Hu12].

• Blurring can have different causes, including low spatial reso-
lution of the optics, out of focus, as well as object motion or
camera shake with long integration time at low illumination lev-
els. Blurring reduces contrast, sharpness and most importantly,
the amount of details in images.

• Noise is the undesired random deviation from the real pixel val-
ues produced during image acquisition. Noise is a common phe-
nomenon in surveillance footage taken under low-light indoor
condition with increased camera gain, which also becomes more
prominent in the context of LR images than for HR data.

2. Face variation

• Pose is one of the dominant extrinsic factors that can dramati-
cally alter the appearance of a 3D object in 2D images. Variation
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in the camera view angles relative to the subject leads to differ-
ent projections on the 2D image plane, causing the apparent
size and spatial distribution of facial components to vary. In
addition, the visibility of certain parts of the face may change
considerably w.r.t. the pose.

• Expression conveys the internal emotional state or intention in
social interaction, which also has a major impact on the facial
appearance. Depending on the type and intensity of the expres-
sion, facial components may alter shape, move location or even
become invisible, further aggravating the complexity of dense
face alignment for 3D FSR.

• Illumination has a direct bearing on the quality of the captured
images. Blurring and imaging noise are mostly prevalent in low-
light environment. On account of the complicated 3D geometry
of faces, strong directional light can cast shadows or create spec-
ular highlights on the face, resulting in inaccurate registration
and suboptimal texture SR.

• Occlusion occurs when objects are located on the line of projec-
tion in front of the face. Apart from self-occlusion of face parts
at non-frontal poses, accessories, such as glasses or hats, and
external sources may partially occlude the camera view, which
can cause areas of abrupt changes to the faces in images that
cannot be correctly modeled.

• Style is referred to as beard, mustache or makeup that substan-
tially increases the variation of facial appearance. Unlike exter-
nal objects in the case of occlusion, facial style can still be dealt
with by statistical models for face registration [Bla99, Coo98],
however, at the expense of robustness.

Besides the main challenging aspects summarized above, image or video
artifacts such as interlacing and ringing or blocking effects in consequence
of image compression [Gon07], aging effects like wrinkles and double chin
owing to overweight [Cas09] may adversely affect the FSR routine as a whole
or in part as well.

Typical samples related to low image quality and large face variation are
illustrated in Figure 1.2, which originate from a collection of several popular
in-the-wild face datasets [Sag13a]. Although each image is entitled with a
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single specific challenge, a combination of multiple detrimental effects can
be observed in most examples. Figure 1.2a demonstrates a LR face with
approximately 20 pixels in width, which is not yet an extremely LR scenario.
Nevertheless, the eyes are composed of merely a few dark pixels so that,
e.g., the lash, eyelids, and pupils are barely recognizable, which renders
the localization of fiducial facial landmarks and synthesis of plausible and
natural HR texture a tough task, while a similar situation is drawn by the
out-of-focus blur and shadow in the area around the eyes in Figure 1.2b. In
other cases, like the non-frontal head pose, the occluding space helmet and
the thick beard in Figures 1.2d, 1.2g and 1.2h, correspondence ambiguity
on the 3D model remains an open question. In-plane rotation with the
unseen half of the face due to out-of-plane rotation, and the unmodeled
external object in addition to the intrinsic appearance variation give rise to
severe degradation. Thus eventually, these combined factors can make the
images in Figure 1.2 more challenging in contrast to the first portrait photo
in Figure 1.1 taken more than one hundred years ago.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 1.2: Example face images with different kinds of challenges: (a) resolution, (b) blurring,
(c) noise, (d) pose, (e) expression, (f) illumination, (g) occlusion, (h) facial style [Sag13a].
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Among the aforementioned challenges, some appear to do more dam-
ages than others, especially resolution and pose in the respective cate-
gories, which are also the primary focus of the presented 3D FSR framework,
whereas the rest is not left unaddressed. For blurring, its mathematical
model—the blurring kernel, is explicitly defined in the standard observation
model of SR [Par03, Yan10a]. Although this means that a known kernel is
a prerequisite for SR [Mic13], class-specific deblurring methods for face
images, e.g., [Anw15], can offer a reliable estimate of it. The remaining chal-
lenges of FSR have likewise a close connection to the uncontrolled settings
as well. Therefore, robust landmark-based 3D fitting [Qu15d] in conjunc-
tion with HR 3D facial texture recovery based on local patches [Qu17] rather
than the conventional holistic procedure [Bla99] as in [Mor09, Sch15] is
exploited, since it tends to struggle with in-the-wild scenarios [Hu15, p. 86].
The proposed FSR work can instead leverage face data with richer variation
[Gro10] within locally independent patch subspaces to cope with extreme
illumination and facial styles. Even artifacts for non-neutral expressions can
thereby be ameliorated to a certain extent. At the same time, noise is also
implicitly mitigated thanks to the averaging effect of neighboring patches
[Ma10]. Note that expression and occlusion are not explicitly handled in
this thesis. Integrating extra expression variation into a bilinear face model
[Cao14a] and employing an occlusion-aware sparse landmarking [Bur13] or
dense fitting [Egg16] scheme usually suffice to bypass these problems.

1.3 Contributions
This thesis aims to design a performant 3D FSR system with a complete pro-
cessing chain consisting of submodules for 2D facial landmark localization,
3D face shape fitting and 3D facial texture SR. The work presented in this
thesis makes the following contributions to the field of LR facial analysis:

• A comprehensive review and critical analysis of the current approaches
that straddle the boundary of general and LR face alignment, model-
ing and SR are conducted.

• As opposed to the synthetically generated LR data widely applied so
far in the SR community, a novel FSR dataset with ground truth HR
and LR image pairs is collected with a dual-camera hardware setup in
combination with accurate HR–LR image registration, which is made
publicly accessible to researchers [Qu16].
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• The cascaded regression algorithm for sparse facial landmark detec-
tion is revisited and several core components w.r.t. the regression
method, local image feature and fitting strategies are explored, which
achieves top localization accuracy and low failure rate in the presence
of various nuisances as a result of unconstrained LR images [Qu15c].

• While analyzing the fundamental issue of inconsistent correspon-
dence of 2D and 3D landmarks caused by head pose for the landmark-
based 3D face shape reconstruction approach, a new problem of local-
ization ambiguity along the facial contour is identified for the first
time, and subsequently addressed jointly by a novel dynamic online
mapping algorithm [Qu14, Qu15d]. This leads to an automatic, effi-
cient, robust and illumination-invariant alternative to the traditional
fitting method.

• The proposed 3D FSR framework is the first ever attempt that inte-
grates the standard LR image formation model into a 3D patch-based
facial texture SR method. With a LR-friendly fitting strategy [Qu15b],
a 3D extension of the Lucas–Kanade registration algorithm combined
with a statistical morphable model is exploited to improve fitting and
FSR on ill-posed LR images. Moreover, patch-based FSR carried out
directly on the 3D face mesh is able to handle wide face variation and
filling the self-occluded facial texture because of non-frontal head
pose [Qu17].

• Extensive evaluation on several publicly available datasets demon-
strates superior FSR performance in both effectiveness and efficiency
over state-of-the-art approaches and remarkable improvement in FR
as an application of FSR. Furthermore, this is also the first 3D FSR
method capable of processing in-the-wild LR images.

1.4 Thesis Outline
This thesis is organized as follows:

Chapter 2: Related Work This study begins with an extensive survey
of the existing literature within the scope of this thesis, i.e., methods for
landmark detection, 3D face reconstruction and SR. For the sake of clar-
ity, the chapter is divided into separate sections related to the respective
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components. Current approaches covering one or multiple submodules are
introduced and their advantages and the potential room for enhancement
are reviewed.

Chapter 3: Concept This chapter depicts the design concept and choices
behind the proposed 3D FSR processing chain. Crucial differences to other
systems are discussed to briefly outline the theoretical merits of the pre-
sented workflow.

Chapter 4: Facial Landmark Detection Chapter 4 details the first mod-
ule of this work, which localizes 2D fiducial facial feature points given a face
image. Key improvements on the components of the cascaded regression
algorithm are made incrementally to present the process of building a more
robust landmark detector.

Chapter 5: 3D Face Reconstruction From Sparse Landmarks In this
chapter, the theoretical knowledge of 3D face modeling, which is used
throughout this thesis, and its practical adaptation for landmark-based 3D
face shape reconstruction are described first. Next, after introducing the
crux of the current problem in the facial contour landmarks, a novel adaptive
correspondence algorithm is proposed to alleviate the drifting landmarks.

Chapter 6: 3D Patch-Based Facial Texture Super-Resolution Given
the previously recovered 3D face shape, a resolution-aware 3D-assisted FSR
method across pose is devised first. On the basis of this approach, a pure
3D algorithm for direct facial texture SR on the mesh is detailed, which is
composed of a complete LR imaging model, an extra enhancement stage
to circumvent the ill-posed 3D fitting problem and a local patch-based 3D
texture SR approach.

Chapter 7: Experiments In the first part of Chapter 7, the newly col-
lected FSR dataset containing ground truth HR and LR image pairs and its
hardware and algorithmic implementation are described. Then, qualitative
and quantitative performance is systematically evaluated in the context of
the separate preprocessing submodules as well as the 3D FSR framework.
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Different aspects for the robustness analysis are taken into account and an
example application for LR FR is given.

Chapter 8: Concluding Remarks Finally, outcomes of this work are
summarized with directions for future research.
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An overview of the existing work that covers the relevant modules of this
thesis is given in this chapter. The goal is to exploit 3D information for
learning-based FSR. Therefore, the preprocessing stages like alignment and
reconstruction for faces in the presence of various challenging aspects play
as crucial a role as the actual SR engine. In this sense, the chapter is broken
down into three sections, i.e., facial landmark detection in Section 2.1 and
3D face reconstruction in Section 2.2 prior to the main SR part in Section 2.3.
Note that for lack of dedicated algorithms for the LR scenario, the majority of
the preprocessing work introduced here is originally designed for standard
face data, which may most probably suffer a decline in performance when
applied to LR images. This will also be discussed at the end of the sections.

2.1 Facial Landmark Detection
The fiducial facial landmarks convey semantic information of faces. Facial
landmark localization, a.k.a. face alignment, aims to detect these anchor
points usually located at facial features that have descriptive meaning, e.g.,
eyes, nose, mouth and chin. The sharp edges and corners near the feature
points are leveraged to approach the true landmark location.

Reliable landmark detection algorithms are of vital importance for a num-
ber of facial analysis routines. As an example, face alignment is named
after the traditional face recognition pipeline, i.e., face detection, landmark
localization, and eventually, image registration with linear or nonlinear
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transforms to obtain normalized faces for recognition [Gao09]. Similarly,
robust landmark detection can benefit a wide spectrum of other researches
and applications within the context of human faces, such as realistic face
swapping for animation [Gar14], deformable face tracking [Chr17], head
pose estimation [Mur09] or facial expression classification [Mar16], to name
a few, all of which require accurate correspondence of the non-rigid facial
structure across different images or video frames. Clearly, it is no exception
for FSR as well [Wan14b].

After decades of active research, automatic facial landmark detection has
developed into one of the spotlight topics in the facial analysis community
and reached recently a high level of maturity. In spite of a plethora of diverse
approaches to the problem so far, the most popular methods can be catego-
rized into a few classes, i.e., deformable appearance models, constrained
shape models and shape regression. Other classification schemes, like the
ones in [Jin16, Wan14a], are also found in the literature.

2.1.1 Deformable Appearance Models
Faces convey many pieces of intrinsic and extrinsic variations like shape,
skin color, expression, pose, illumination, etc., which are irreversibly blended
into a single bitmap image during the capturing procedure. Deformable
face models try to separate the face image into two simple parametric
representations—shape and appearance. A shape model is typically in the
form of a fixed sequence of the desired facial feature points, while appear-
ance refers to the facial texture in correspondence with the face shape
that helps to infer the appropriate shape w.r.t. the input image. As such,
deformable appearance models can be regarded as a joint optimization
problem in terms of shape and appearance to best fit the learned texture
description to the query face.

According to the modeling principles in pattern recognition, deformable
appearance models can be further grouped into generative and discrimi-
native ones. Generative methods seek to minimize the distance between a
rendered model instance and the face image. The Active Appearance Models
(AAMs) proposed by Cootes et al. [Coo98] are undoubtedly the most famous
generative appearance methods. In the data preparation phase of the AAM,
the face images are manually annotated with a fixed set of N feature points
s = [x1,x2, . . . ,xN ]> ∈R2N representing the face shape, where xi = [xi , yi ] is

12
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the 2D location of the i th landmark. After aligning all shapes and applying
Principal Component Analysis (PCA) to obtain a linear shape subspace with
reduced dimensionality, the shape model, namely the Point Distribution
Model (PDM), is constructed, which can be briefly interpreted as

s(ps ) = s̄+Sps , (2.1)

where ps denotes the shape coefficients of the eigenface dictionary S, and
s̄ is the mean shape. The appearance model can be obtained in a similar
fashion. Concretely, the face images need to be transformed onto the frame
of the mean shape s̄ before PCA is conducted, which yields

a(pa) = ā+Apa , (2.2)

where ā and A denote the mean and eigenvectors of the appearance respec-
tively, and pa is the parameter. Based on the models built offline, the online
fitting process is as described in a generative manner

min
ps ,pa

∥∥ā+Apa − I(W(ps ))
∥∥2

2 , (2.3)

where the image I is warped via the warping operator W parametrized by the
shape vector ps . This optimization problem has been extensively studied
since the original linear regression approach coupling shape and appear-
ance parameters by Cootes et al. [Coo98], leading to a gradient descent
version [Coo01] and several inverse compositional variants [Gro05, Mat04,
Tzi13] that can precompute Jacobian and Hessian matrices to increase effi-
ciency [Bak03].

Most conventional generative AAMs optimize on the whole facial texture.
However, this holistic approach is criticized for its lack of generalization
power for unseen subjects and image conditions. To overcome the high
dimensionality of the optimization problem, some recent generative AAM
methods [Ant15, Tzi14] choose to operate on the local neighborhoods sur-
rounding the facial landmarks only. Since part-based models are less sensi-
tive to occlusion and lighting, they are shown to outperform holistic AAMs
by a large margin and achieve state-of-the-art performance when trained
on in-the-wild face datasets.

In contrast to the generative AAM family, discriminative AAM fitting lever-
ages the learned correlation between the appearance feature and landmark
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displacement from the training data. A nonlinear boosted regression with an
ensemble of weak learners using rectangular Haar-like features is presented
by Saragih and Goecke [Sar07]. Only the shape parameters are updated
with the nonlinear mapping. Liu [Liu09] treats deformable fitting as a clas-
sification problem. Similar to [Sar07], integral features are employed by
weak classifiers to build a strong function to distinguish the correct PDM
parameters from the wrong ones. Following this discriminative approach,
Gao et al. propose a series of improvements exploring alternative features,
like pseudo consensus transform [Gao11] and random pixel intensity dif-
ferences [Gao13], as well as learning strategies like ranking and regression
trees [Gao12], greatly increasing fitting accuracy and robustness given noisy
initialization and data compared to generative AAMs.

2.1.2 Constrained Shape Models
Constrained shape models typically incorporate discriminatively learned
local detectors or regressors with a certain type of shape constraint. This
kind of methods has a long history in face alignment, dating back to the
pioneering Active Shape Model (ASM) by Cootes et al. in 1992 [Coo92]. The
ASM, along with a large body of succeeding work, belongs to the popular
Constrained Local Model (CLM) framework. CLMs fit the face shape to the
input image through a cost function jointly optimizing the shape prior and
local response maps. Standard CLMs share the same PDM with AAMs, which
serves as the prior knowledge of landmark configuration p(ps ) to constrain
the fitting process. By assuming conditional independence between each
landmark detector, the CLM objective is to maximize the posterior of the
shape parameter [Sar11], which takes the form

max
ps

p
(
ps

∣∣ {li = 1}N
i=1 ,I

)
(2.4)

= max
ps

p
(
ps

) N∏
i=1

p (li = 1 | xi ,I) , (2.5)

where li ∈ {1,−1} indicates whether the i th facial point is aligned or not.
Figure 2.1 illustrates the CLM optimization w.r.t. its two components, i.e.,
the PDM and the response maps of independent local experts, which can
have different implementations for computing the response of each detector
when convolved with an image patch during the exhaustive search. The
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ASM [Coo92] defines the 1D distance between the profile normal to the
edges. Linear Support Vector Machine (SVM) is utilized in [Sar11, Wan08]
to classify positive detections and those with large distance to the true
location as negative ones. Subsequently, logistic regression is employed to
obtain a probabilistic output. Within this framework, a range of methods
have been developed to approximate the true response maps to make the
gradient descent tractable, including isotropic Gaussian in the probabilistic
formulation of the original ASM [Coo92], anisotropic Gaussian [Wan08],
Gaussian Mixture Models (GMMs) [Gu08] and the nonparametric kernel
density estimation [Sar11].

p(l1|x1)

p(lN |xN )

Image and Search Windows Optimization Point Distribution Model

Figure 2.1: Illustration of the components of the CLM optimization: the response maps and
the PDM [Sar11].

Apart from the mainstream CLMs, new attempts explore the possibilities
to ditch the classic routine with PDM plus classifiers. Cootes et al. [Coo12]
replace the SVM experts with regression using random forest [Bre01] to
directly predict the shape update for each evaluated patch. Accumulated
votes then generate the response maps, boosting both runtime and accu-
racy. Asthana et al. [Ast13] also regress the PDM parameter update from
the low-dimensional projection of the response maps, and further adopt
the Histogram of Oriented Gradients (HOG) feature [Dal05] to outperform
raw pixel intensity on unconstrained face images. Finally, Belhumeur et
al. present a novel nonparametric exemplar-based approach in [Bel11] to
remedy the limitation of the PDM. On the basis of the rich patch represen-
tation using Scale-Invariant Feature Transform (SIFT) [Low04], the global

15



2 Related Work

shape is regularized by one of the closest transformed training exemplars
sampled with a Random Sample Consensus (RANSAC)-like strategy [Fis81].
Thanks to this flexible shape model, fitting performance is comparable
to that of human labeling on one of the first in-the-wild face alignment
datasets [Bel11], however, at the expense of a high computational burden.

2.1.3 Shape Regression
Despite the massive attention received in the past decades and considerable
progress achieved for deformable appearance and shape models, explicitly
optimizing the face shape is proved to be ineffective when dealing with
unconstrained face images. In particular, statistical shape models like the
PDM may struggle with novel faces. Furthermore, it is usually tricky to
balance the local and global constraints as well. To this end, a new group of
regression-based algorithms have emerged recently, which directly map the
image appearance features to the target shape

R :Φ(I) 7→ s, (2.6)

where R denotes the mapping of shape regressors based on the features
extracted from the image I byΦ. Unlike independent part detectors [Din08,
Vuk05], shape regression can implicitly learn to regularize the whole shape
to eliminate invalid point constellations through the training images.

The algorithm of Valstar et al. [Val10] is among the first attempts in this
case. By training the local regressors with Support Vector Regression (SVR),
direction and distance to the landmarks provide an initial prediction. The
pairwise relation of the nodes are then encoded to ensure invariance to in-
plane rotation, isotropic scaling and translation. The Markov Random Field
(MRF) optimization, although not an absolutely optimal solution, refines
the landmarking accuracy iteratively. But the ambiguity of local appearance
models as in CLMs remains unsolved.

In [Dan12], Dantone et al. extend the regression forest to condition on
the head pose to overcome the tendency of fitting the mean face due to
the averaging effect of the random forest [Bre01]. The fitting stage first
estimates the pose and then determines the tree distribution to be selected
in the separate forests trained on different poses. Subsequently, Yang and
Patras [Yan13d] propose to sieve regression voting with two levels of criteria,
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i.e., the distance to the center of the whole face and each accumulated map,
forcing the votes to be more reliable than in [Dan12].

Unarguably, the latest surge and explosive progress made in facial point
localization can boil down to the success of cascaded regression-based
approaches. Inspired by the novel cascaded pose regression by Dollár et
al. [Dol10], a series of regressors can be successively stacked to fit the land-
marks progressively, which circumvents the difficulty of regressing the face
shape in a single attempt. The core methodology of cascaded shape regres-
sion is illustrated in Algorithm 1. In each stage t , the shape-indexed feature1

φ(t−1) that depends on the previous shape estimate is extracted. Applying
the learned regressor R(t ) straightforwardly produces an update ∆s, which
is added to the current shape. After T iterations, the face shape is fitted in a
coarse-to-fine manner.

Algorithm 1: Face alignment with cascaded shape regression

Input: Image I and initial shape s(0)

Output: Fitted shape s(T )

1 for t = 1 to T do
2 φ(t−1) =Φ(

I,s(t−1)
)

. Extract shape-indexed feature
φ(t−1)

3 ∆s = R(t )
(
φ(t−1)

)
. Apply regressor R(t )

4 s(t ) = s(t−1) +∆s . Update shape s(t )

5 end

The breakthrough two-level boosted regression algorithm is devised by
Cao et al. in [Cao12]. Each of the first-level regressors R(t ) is composed
of a second-level cascade of random ferns [Özu10] with pixel-difference
features extracted from the whole image. A correlation-based random fea-
ture selection strategy is further adopted for real-time capability. Moti-
vated by the state-of-the-art performance of the two-level cascaded regres-
sion, Burgos-Artizzu et al. [Bur13] make several extensions of [Cao12]. The

1 Note that the shape-indexed feature in this thesis has a general meaning, which is not
restricted to the pixel-difference feature first proposed in [Cao12].
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pixel-difference features are computed using linear interpolation of two
landmarks rather than a fixed offset w.r.t. one landmark in [Cao12]. Their
regressors also involve an extra occlusion property in addition to the land-
mark update for robust reasoning of invisible facial parts. In [Kaz14], Kazemi
and Sullivan replace the random fern regressor [Özu10] with an ensemble
of regression trees [Has09], achieving top and stable results with perturbed
initialization [Yan15b] in the millisecond range.

In comparison with the two-level cascades, Xiong and De la Torre [Xio13]
give a concise and elegant formulation to the cascaded shape regression,
which regards the problem as a sequence of supervised gradient descent
steps. The handcrafted SIFT features [Low04] extracted around the facial
landmarks are fed into linear least squares and the descent direction is
learned to guide the current shape estimate towards the desired location.
Starting from the derivation of the nonlinear Newton optimization for
the AAM [Coo98], they show the advantages of such supervised Newton
update. Like other shape regression methods, though nonparametric in
both shape and appearance, the implicit shape constraint still holds since
each shape increment lies on the manifold of the training data, provid-
ing better generalization to novel faces. Inspired by the project-out AAM
[Mat04], Tzimiropoulos [Tzi15] learns the descent directions of PDM param-
eters in a subspace orthogonal to the facial appearance variation coined
Project-Out Cascaded Regression (PO–CR), which greatly propels robust-
ness under extreme conditions. Ren et al. [Ren14] argue the drawbacks
of both handcrafted features in [Xio13] and globally extracted features in
[Cao12], and design the local binary features. It bears some similarity to
[Kaz14] by using random forest [Bre01] to train local features as input to the
linear regressor cascade, resulting in even faster fitting than [Kaz14]. Zhu et
al. [Zhu15a] propose a cascaded shape search framework in a coarse-to-fine
fashion with various feature descriptors [Cal10, Low04] to compromise over
precision and speed, which accounts for large pose and local optima due
to poor initialization. In other work, solutions for incremental and parallel
training of different cascade stages [Ast14] and ranking of multiple shape
hypotheses [Yan13a] are studied as well.

Finally, amid the hot trend of unconstrained face alignment, two chal-
lenges for static images [Sag16, Sag13a] and one challenge for video tracking
[She15] have been organized within a short time span, leading to valuable
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datasets, algorithms and discussions, which will surely spur more research
interest in the future.

2.1.4 Discussion
The facial landmark detection research has traveled a long journey from
the person-specific AAMs [Coo98] to the state-of-the-art cascaded shape
regression and Deep Neural Networks (DNNs) [Sun13, Tri16, Zha15, Zha14a,
Zha14b, Zha16, Zho13] in uncontrolled environment. This justifies the
design choice of first localizing 2D facial points in this thesis for 3D face
SR, since some of the challenges discussed in Section 1.2 have already been
addressed, whereas it is obviously not the case for the common statistical 3D
face modeling algorithms [Hu15, Mor09]. Nevertheless, despite the broad
interest, face alignment for LR faces remains a largely unattended apart
from very few exceptions. Liu et al. [Liu06] build a pyramid of AAMs to
adapt to a variety of image resolutions. Dedeoǧlu et al. [Ded06] point out
that the traditional AAM procedure causes information loss when warping
the LR image onto the model coordinate frame. Instead, they devise an
inverse fitting algorithm that takes the LR image formation process into
consideration. With both approaches employing the aged generative AAM
engine [Coo98], the eligibility of newer methods for the LR condition must
be verified in the first place.

2.2 3D Face Reconstruction
The merit of a pose, expression and illumination invariant description of 3D
faces has attracted considerable attention and research effort over the past
decades. Hindered by the high cost and practical difficulties, 3D cameras
[Dri13] and structured light techniques [Zha10] are still limited from being
deployed outside of the lab. Hence, in this section, a compact review of
image-based 3D face reconstruction is given.

2.2.1 Statistical Morphable Model
The seminal work of the 3D Morphable Model (3DMM) by Blanz and Vetter
[Bla99] establishes the fundamental idea of describing human faces as linear
shape and texture subspaces obtained with aligned 3D scans. Particularly,
a collection of 3D face scans is first captured with a 3D scanner, where
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each scan consists of both geometry and albedo of the enrolled subject. To
enforce the same ordering and dense correspondence of each vertex across
all scans, an iterative registration process, e.g., [Amb07] in [Pay09], is applied
on the triangulated mesh, which in addition also fills the missing data (see
Figure 2.2a). An example of the cleaned result after registration is depicted
in Figure 2.2b. As such, the 3D shape and texture of human faces as shown
in Figure 2.2c can be written as

s = [
x1, y1, z1, . . . , xP , yP , zP

]> (2.7)

t = [
r1, g1,b1, . . . ,rP , gP ,bP

]> (2.8)

respectively, where P is the number of vertices of the registered faces. Apply-
ing PCA to the shape and texture data individually yields

s = s̄+Sα (2.9)

t = t̄+Tβ, (2.10)

where s̄ and t̄ are the mean vectors. S ∈R3P×Qs and T ∈R3P×Qt denote the
respective principal modes of variation rescaled by their standard devia-
tion. In this way, the 3DMM is representable as {s̄,S, t̄,T} and the normally
distributed coefficients α ∈RQs and β ∈RQt with unit variance suffice to
describe any valid face within the PCA subspaces [Pay09]. It is worth noting
that other shape models like local wavelet PCA is beyond the scope of this
thesis. The reader is referred to [Bru14] for a comparative study.

(a) (b)
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Figure 2.2: 3D registration for building a 3DMM: (a) a raw 3D scan, (b) the registered scan with
filled holes, (c) vectorized face representation in shape and texture [Pay09].
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2.2 3D Face Reconstruction

Fitting a 3DMM to a 2D image is treated as an analysis-by-synthesis problem
by Blanz and Vetter in [Bla99] akin to the AAM [Coo98], in which the model
is used to render an image and the error between the synthesized and the
input image is minimized to optimize the sought parameters. By explic-
itly modeling the Phong reflection γ [Hug13], the analysis-by-synthesis
objective is then

min
α,β,γ,τ

∥∥Iinput − Imodel
(
α,β,γ,τ

)∥∥2
2 , (2.11)

where τ denotes the camera parameters.

In their original work [Bla99], Blanz and Vetter simultaneously update all
parameters using stochastic optimization based on a random selection
of pixels, which is extended in [Bla03] with an additional term of several
manually annotated anchor points. Romdhani et al. [Rom03] introduce the
inverse compositional algorithm of 2D AAMs [Mat04] (see Section 2.1.1) into
the 3DMM for acceleration. Later, they propose the Multi-Features Fitting
(MFF) strategy to leverage auxiliary features like edge and specular high-
lights to diminish the risk of falling into local minima [Rom05]. Alternatively,
the joint fitting process can be decomposed into geometric and photometric
parts [Ald13, Rom02, Zha06a]. However, compromises on the camera and
lighting models must be made to simplify the separate optimization tasks.

(a) (b) (c) (d) (e)

Figure 2.3: Face reconstruction from a single image using the 3DMM: (a) an input image, (b) the
annotated feature points, (c) fitted initial shape using the features, (d) estimated illumination,
(e) final optimization result w.r.t. shape, texture, transformation and illumination [Bla03].

A sample workflow of fitting a 3DMM to a single image is demonstrated in
Figure 2.3. From the manually labeled features and shape initialization to

21



2 Related Work

the recovered illumination and the final textured face model, the analysis-
by-synthesis framework can generate highly detailed and photo-realistic
shape and texture. Nevertheless, drawbacks such as the low fitting speed
and the demand for high-quality images as input impede these 3D statistical
deformable models from broader application.

2.2.2 Shape from X
Instead of adopting the model-driven approaches, 3D shape of the face can
be recovered by traditional computer vision techniques as well.

Structure from Motion (SFM) can reconstruct a 3D scene with a sequence of
monocular images taken from different viewpoints, which resembles the
ability of human beings that perceive 3D information by moving around
objects. Many SFM algorithms begin with a track of sparse feature land-
marks and then infer their depth. Lee et al. [Lee11] construct a shape con-
version matrix to mitigate displacement of the self-occluded points in the
cheek area caused by head rotation while converting 2D landmarks to 3D,
and employ Thin-Plate Spline (TPS) [Boo89] for the dense mean model
adaptation. Roy-Chowdhury and Chellappa [Roy03] make use of optical
flow for SFM [Sri00] and regularize the output mesh with a generic head
template. In general, SFM-based approaches still require a reference face
model to densify the tracked sparse features. Yet the fidelity is limited and
single-frame reconstruction is not possible. Therefore, landmark-based
methods (see Section 2.2.3) that rely on statistical deformable shape models
have gained popularity over SFM.

Shape from Shading (SFS) can recover the surface normals using shad-
ing information from a single image [Hor70], which is a special case of
Photometric Stereo (PS), where multiple images under different lighting
conditions are used [Woo80]. Generally speaking, SFS has an ill-posed
setup with a large number of unknowns. Some authors integrate the sym-
metry of faces [Dov04, Zha01] as prior to reduce the ambiguity. In other
cases, it is more common to exploit a 3D reference model. In the work of
[Kem11a], Kemelmacher-Shlizerman and Basri “mold” the generic model to
the single input face image and solve for the unknown lighting, boundary
conditions and albedo. For personal or Internet image collections, PS is
applied to the near-frontal faces with normalized expression to obtain more
consistent normals locally [Kem11b] than the single-view reconstruction
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[Kem11a]. Motivated by the promising result, Roth et al. extend [Kem11b]
with a generic [Rot15] or personalized template [Rot16] to facilitate profile
poses to enhance the depth of 3D faces. In light of these applications, SFS
and PS are regarded as a complementary instrument to alleviate model
dominance of the statistical 3DMM, which can produce outstanding facial
details [Pat12].

2.2.3 Landmark-Based Shape Reconstruction
2D landmarks have long served as a plausible way to initialize the 3DMM fit-
ting [Bla03]. Despite the impressive achievements, the analysis-by-synthesis
framework is often criticized for its extremely time-consuming and challeng-
ing non-convex optimization w.r.t. the enormous parameter space for shape,
texture, camera calibration, lighting, etc. Fortunately, thanks to the latest
breakthrough of face alignment in the wild, by leveraging the fiducial feature
points, it is viable to dramatically reduce the dimensionality by leaving out
the entire motion, albedo and illumination parameters, as only the 3DMM
shape coefficients need to be reconstructed. Moreover, the shrinkage from
tens of thousands of dense vertices to merely dozens of sparse ones can also
contribute to a huge speedup.

Besides the well-known analysis-by-synthesis 3DMM fitting [Bla99], Blanz et
al. [Bla04] first show that landmarks alone are sufficient for obtaining useful
shape estimates in their own rights. With the aid of less than 20 manually
labeled anchor points, the complete 3D shape can be approximated via the
shape coefficients within the span of the underlying 3DMM

min
α

∥∥(
sR[1:2,:] (s̄l +Slα)+o

)− l
∥∥2

2 , (2.12)

where the subscript l denotes the corresponding vertices of the F ¿ P facial
landmarks l ∈R2F on the 3DMM. In order to have a closed-form formulation,
the weak perspective camera parameters including scale s, 2D projection
of the rotation matrix R[1:2,:] and translation o are linearized and solved
along withα using least squares. As such, 3D reconstruction is significantly
simplified and the prior knowledge from the 3DMM helps to overcome the
otherwise ill-posed problem using incomplete sparse features.

As an extension of [Bla04], Faggian et al. [Fag06] first involve facial land-
mark detection with the help of a person-specific AAM [Mat04] towards
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fully automatic shape reconstruction. By considering multiple images, an
extension of [Fag06] is devised to enhance robustness across frames [Fag08].
Jiang et al. [Jia05] also use a similar least squares approach to build an initial
personalized 3D face model from a single frontal image, which is interpo-
lated [Oli90] to better adapt to the 2D landmarks. Later, Zhao et al. [Zha06b]
propose to add a second profile shape model to improve the depth estimate.

Aldrian and Smith [Ald10a, Ald10b] loose the assumption in [Bla04] that
observations of all landmarks are subject to uncorrelated Gaussian noise
with a uniform variance, as they learn the individual generalization errors
by projecting out-of-sample data onto the 3DMM subspace. Without the
need for a 3DMM, Rara et al. [Rar11] exploit 3D faces directly with Principal
Component Regression (PCR) to model the 3D shape as a linear combina-
tion of the samples instead of 3DMM eigenfaces as in previous work. A
nearly identical evaluation result is reported. Following this idea, Dou et al.
[Dou14] learn a regression subspace for 2D and 3D sparse landmarks, and a
second dictionary for 3D sparse and dense shapes. By forcing them to share
the same weights in a coupled representation, their underlying relationship
is encoded. In this way, the 3D shape is reconstructed with the transfered
coefficients, whereas the pose is also implicitly recovered.

Self-Occlusion

In the previous efforts that try to connect automatic facial point localization
and 3D shape inference, a crucial difference between 2D face alignment algo-
rithms and 3D face models has been ignored while empirically assuming a
fixed mapping between 2D and 3D features. Since the contour landmarks of
2D AAMs are originally defined as the jawline that becomes easily occluded
even with small head poses, the points on the face boundary in the image
plane are detected instead, which have a considerable distance to their true
locations. This phenomenon is depicted in Figure 2.4. If the fixed anno-
tations in blue rather than the actual correct contour vertices in red are
utilized for shape reconstruction, bad distortion is likely to happen.

To mitigate the negative impact of the erroneous observation, Lee et al.
[Lee12] propose to discard these self-occluded landmarks while reconstruct-
ing non-frontal faces. Experimental results show that this straightforward
idea appears to be helpful. Asthana et al. [Ast11] are also aware of this
issue when normalizing poses for face recognition. They manually label
the 2D–3D correspondence for 199 poses with yaw angles from −45° to
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+45° and pitch angles from −30° to +30° to build a lookup table, leading
to good recognition scores with frontalized faces. Wang et al. [Wan04a]
employ an Expectation–Maximization (EM) algorithm to infer the shape
and pose parameters iteratively and set the directional constraints individ-
ually for contour points. In [Cao14a], Cao et al. are faced with an inverse
problem, which aims to locate the 2D landmarks from 3D faces. For this
purpose, dense samplings of vertices arranged in many horizontal lines are
annotated. Only one vertex perpendicular to the view direction per line
is connected as the contour curve, from which the corresponding vertices
to the 2D landmarks are selected equidistantly. Zhu et al. [Zhu15b] follow
[Cao14a] and present a landmark marching scheme, which integrates this
dynamic correspondence into the shape optimization step. Lately, Bas et al.
[Bas16] completely drop the contour landmarks and use edges of the face as
a substitute to constrain the facial geometry.

(a) (b) (c)

Figure 2.4: The phenomenon of vertex mismatch for contour landmarks. The blue points
on the 3D face are standard landmark annotations. The red ones are the actual vertices
corresponding to the self-occluded contour landmarks [Zhu15b].
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Chapter 5 again analyzes the phenomenon of vertex mismatch thoroughly
and details a novel soft correspondence approach that allows for a fast and
effective solution to the existing and newly identified challenges.

2.2.4 3D Shape Regression
3D approaches are widely accepted to have advantages over 2D w.r.t. rep-
resentational power and robustness to large pose. Recent advances in 2D
shape regression have raised the question whether a 3D interpretation is
possible, and to what extent the benefit will be.

Cao et al. [Cao13] employ the two-level cascades [Cao12] for facial land-
marks to track a person-specific blend-shape model in videos, which is
generalized to a person-independent system in [Cao14a]. A correction step
is needed to resolve inconsistency at the facial contour as stated in Sec-
tion 2.2.3. In comparison, without this step, Zhu et al. [Zhu15c] adopt HOG
feature around landmarks akin to [Xio13], which is only capable of regress-
ing frontal faces. Like [Cao13], Jeni et al. [Jen15] track 3D faces, which are
tessellated into a dense grid of 3D feature points, so vertex displacement for
2D silhouette landmarks does not occur. [Tul15] uses the same strategy to
tackle the problem. [Xio13] and [Kaz14] act as the regression backbones for
[Jen15] and [Tul15] respectively.

Similar to 2D shape regression (c.f . Section 2.1.3), DNNs are beginning to
prevail for discriminative 3D shape fitting. Jourabloo and Liu [Jou16] extract
local features using piecewise affine warping, which are collated into a single
image to feed the network that outputs the 3DMM shape coefficients. Zhu et
al. [Zhu16b] use the whole face image and the depth map of 3D coordinates
encoded in the RGB representation as the input, which is extended with an
extra normal map by Richardson et al. in [Ric17]. A novel unsupervised loss
emulating the SFS principle can generate additional fine details.

One advantage of 3D regression-based methods is that large pose can be
circumvented naturally and efficiently via the cascaded regression [Jou15]
or DNNs with end-to-end training [Jou16, Zhu16b]. Unfortunately, a major
downside emerges, which potentially renders the large body of in-the-wild
2D face datasets of little avail. The sought 3DMM shape parameter for
training is either fitted by means of 2D landmark-based approaches (see
Section 2.2.3) [Jou16], or generated by synthesizing random 3D faces [Jen16,
Ric16], which may hamper robustness and generalization for unconstrained
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data. Only in [Zhu16b], in-the-wild face profiling is conducted with their
full-head rotation technique including background warping [Zhu15b].

2.2.5 Discussion
The development of statistical 3D face models has significantly lowered the
barriers of entry for researchers, engineers and end-application developers
interested in recovering facial geometry for diverse purposes. Nevertheless,
the LR scenario puts a higher risk of failure for 3D frameworks by virtue of its
more complex parameterization and optimization. Few algorithms targeting
the LR problem are fully dedicated to the analysis-by-synthesis case for
faces in controlled quality, including a pyramid of 3DMMs for different
resolutions by Hu et al. [Hu12], and incorporation of the LR blurring into
[Bla03] by Schumacher et al. [Sch15] and MFF [Rom05] by Mortazavian et
al. [Mor12]. On the other hand, the prerequisite for DNN-based systems
is in most situations a high spatial resolution [Kri12] to allow for a deep
structure of convolution and pooling layers. Upscaled LR images turn out
to be inadequate for good performance [Her16]. Therefore, LR 3D face
reconstruction for surveillance data is not a trivial task.

2.3 Super-Resolution
SR offers an affordable way to boost quality and details of LR images after
acquisition. The basic idea behind SR is to exploit non-redundant cues
from internal or external sources to produce high-frequency details that are
permanently lost during the LR image formation

Yk = Dk Bk Wk X+nk , k ∈ {1,2, . . . ,K }, (2.13)

where Yk is the kth LR observation from the camera for the HR scene X.
Wk , Bk and Dk denote operations for motion compensation, blurring due
to out of focus, moving subject or camera, or the imaging device, i.e., the
Point Spread Function (PSF), as well as downsampling respectively, while
nk denotes the additive noise term.

Except for early frequency-domain techniques like the pioneering work
by Tsai and Huang [Tsa84], prevalent generic SR algorithms address this
ill-conditioned problem in the spatial domain, which can be roughly catego-
rized into reconstruction-based and learning-based methods. Furthermore,
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FSR that is designed for class-specific images, is gradually recognized as a
separate branch, which is of particular interest to this thesis.

2.3.1 Reconstruction-Based Super-Resolution
To combat the intractable SR problem, many approaches turn to multiple
LR frames to find out the missing HR details. Ur and Gross [Ur92] explore
several spatially shifted LR images with known displacement to register
and interpolate them on a HR lattice before applying restoration for blur
removal. Elad and Hel-Or [Ela01] present a fast algorithm for pure trans-
lational motion and space-invariant blur, where a similar idea is found in
current high-end cameras for generating a HR output using images taken
with high-speed sensor shift by a half and a whole pixel1. For interpolating
irregularly sampled data, Delaunay triangulation can be employed [Ler02].

In order to better regularize the HR result and account for registration error,
noise and blurring effects, statistical approaches have a Maximum a Posteri-
ori (MAP) interpretation minimizing the Lagrangian

X̂ = argmin
X

{Pr(X | Y)} (2.14)

= argmin
X

{Pr(Y | X,H)Pr(X)} (2.15)

= argmin
X

{‖Y−HX‖2
2 +λA (X)

}
, (2.16)

where H is the composition of image degradation operators W, B and D.
λ denotes the Lagrange multiplier balancing the fidelity to the data w.r.t.
the reconstruction constraint in the first term ‖Y−HX‖2

2, and the second
regularization term A (X) w.r.t. the HR image prior to control smoothness.

When the prior is not taken into consideration, the equivalent Maximum
Likelihood Estimation (MLE) is then purely dependent on the data term.
As an example, the popular Iterative Back-Projection (IBP) method by Irani
and Peleg [Ira91] back-projects the reconstruction error in Equation (2.16)
between the LR input and the simulated LR image onto the HR estimate to
iteratively minimize the energy of error.

1 https://www.dpreview.com/reviews/olympus-om-d-e-m5-ii/4
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The choice of the image prior A (X) is one of the main focuses of MAP algo-
rithms. Some heuristic priors can place spatial constraints on the local
image neighborhoods in a MRF fashion, e.g., the smoothness-preserving
Gaussian MRF prior in [Ngu01] and the edge-preserving Huber MRF in
[Sch96]. In [Far04], Farsiu et al. study the Total Variation (TV) [Rud92] prior
with `1 norm for its sparse gradient-preserving nature and noise resistance,
and devise a Bilateral Total Variation (BTV) generalization following the
bilateral filtering [Tom98] for fast and robust SR.

Most aforementioned methods assume a known motion model and PSF.
Tipping and Bishop [Tip02] address SR with a novel Bayesian formulation to
marginalize over the unknown HR image, which is later extended by Pickup
et al. in [Pic06] to integrate over the motion and blurring parameters for
speed concerns.

As another well-known stream in SR, Projection onto Convex Sets (POCS)
[Sta89, You78] treats multiple pieces of prior knowledge as convex sets with
non-empty intersections. POCS performs recursive projection of an initial
guess to these convex sets to find the HR image within the intersection set
fulfilling the desired constraints. To remedy the slow convergence, Elad and
Feuer [Ela97] propose a hybrid approach to embrace the merits of MLE,
MAP and POCS.

2.3.2 Learning-Based Super-Resolution
In spite of the popularity of reconstruction-based SR with multiple images,
Baker and Kanade [Bak02] prove that the SR reconstruction constraint pro-
vides less and less useful information as the magnification factor increases
and produces overly smooth outputs with very little high-frequency infor-
mation regardless of how many LR observations are used. Lin and Shum
[Lin04] go a step further and derive theoretical upper bounds for images with
local translation under realistic and synthetic conditions. As suggested by
[Bak02], internal or external cues can be exploited for SR with high upsam-
pling ratio. In the literature, this learning-based SR family is commonly
referred to as single-image SR. Indeed, apart from some exceptions using
natural image statistics [Kim10] and edge or gradient profiles [Fat07, Sun08],
the predominant and most successful single-image SR algorithms are the
learning-based ones [Yan14].
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Generic learning-based SR is also known as patch-based or example-based
methods, because the LR input image is partitioned into overlapping regions,
for which the closest LR patches in the training data are searched, so that the
HR reconstruction can be realized as a mapping from the LR patches. Free-
man et al. [Fre02, Fre00] propose a MRF to model the relationship between
the LR observation and the respective underlying HR patches, as well as
the compatibility between the adjacent HR patches. Specifically, from the
k-Nearest Neighbors (kNN) w.r.t. the LR patch, a loopy Belief Propagation
(BP) algorithm [Fre00] or a one-pass approximation [Fre02] is utilized to
select the best patch in favor of the Markov network. When merging the
HR patches, the pixels in the overlapping area are averaged for smooth
transition free of artifacts.
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Figure 2.5: Learning local LR and HR embeddings for SR: (a) the ground truth HR patch, (b)
five nearest neighbors in the training set are selected to linearly represent the LR patch, (c) SR
result using the same or mapped weights from the LR reconstruction [Cha04].

The crux of the example-based SR lies in the ambiguity of finding HR cor-
respondences solely based on the LR observation with a fraction of the
number of pixels compared to those in HR patches. Apparently, it is a one-
to-many problem, demonstrated exemplarily in Figure 2.5. The LR patch
and the closest patches in the training set determined by kNN with k = 5
are shown in Figure 2.5b. Although the third exemplar is visually akin to
the original LR patch, their HR counterparts have totally different image
gradient directions (c.f . Figures 2.5a and 2.5c). To this end, Chang et al.
[Cha04] explore local manifolds of LR and HR training data with Locally
Linear Embedding (LLE) [Sau03]. Rather than inferring the absolutely best
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match out of the kNN with BP [Fre02], linear weights wL are computed to
reconstruct the LR patch y

min
wL

∥∥∥∥∥y− ∑
yi∈N (y)

wL
i yi

∥∥∥∥∥
2

2

, s.t.
∥∥wL∥∥

1 = 1, (2.17)

where N
(
y
)

includes the neighbors of y among all training patches. Subse-
quently, the SR patch can be recovered using the corresponding weights wH

and neighbors in the HR manifold

x̂ = ∑
xi∈N (x)

wH
i xi , (2.18)

where N (x) is the HR version of N
(
y
)
. Following the heuristics that HR

and LR manifolds have similar local geometries, it can be assumed that
wH = wL. Otherwise, locality constraints can be imposed to validate the LLE
assumption [Li09].

By virtue of the efficacy of the LLE [Cha04], size of the patch database
can be made remarkably smaller than for the case of example-based SR
[Fre02]. However, the choice of k for the kNN is nontrivial. Yang et al.
[Yan08] offer a solution driven by the compressive sensing theory [Don06],
which indicates that with an over-complete dictionary, a test image patch
can be reconstructed with a sparse linear combination on the support of
the dictionary. By replacing the NP-hard `0 norm with the `1 norm, the
optimization problem is hereby tractable. In the follow-up version [Yan10b],
the authors train an optimal coupled dictionary of atoms instead of sampled
raw patches, achieving comparable results with far less patches. In [Wan12],
a semi-coupled dictionary with a mapping between LR and HR sparse codes
is used to relax the tightly coupled one in [Yan10b], which is claimed to
ensure fidelity of the hidden spaces.

Treating SR from the global perspective [Cha04] is believed to be neither
efficient nor effective on account of the low affinity between remote image
atoms in the embeddings. In this sense, methods exploiting locally linear
regression emerge. [Yan13c] groups the entire patch database into local
clusters and learns a regression function from LR to HR patches within each
cluster in advance. During the SR inference, a simple multiplication with the
mapping function of the right cluster suffices. Timofte et al. [Tim13] follow
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this local strategy, but employ ridge regression [Hoe70] with precomputed
inverse matrices for each neighborhood. Improvements incorporating atom
sharing among clusters and advanced training techniques are proposed in
[Tim15] and [Tim16] respectively.

Alongside the conventional external database driven SR, Glasner et al. [Gla09]
explore the possibility of solely exploiting the intrinsic LR and HR feature
recurrence of natural scenes across scales in the test image itself. To accel-
erate the time-consuming seek for self-similarity exemplars, Yang et al.
[Yan13e] restrict the search area to limited externally localized neighbor-
hoods. Huang et al. [Hua15] accommodate perspective transformation
for local patches to take advantage of the redundant textural appearance
variations in natural and urban images.

By intuition, DNNs are not originally intended to produce a HR output
from a LR input. In light of this, Dong et al. [Don14] upscale the LR patch
before feeding it into a Convolutional Neural Network (CNN) with three
layers that conceptually perform patch extraction and representation, non-
linear mapping and reconstruction, in various configurations [Don16a]. A
deconvolution layer [Zei11] is appended in the last stage to allow for fast
processing with a compact network operating on the LR grid [Don16b]. Shi
et al. [Shi16] also work on the LR input directly for real-time capability, but
simply reorder the second last channels as subpixels for the HR output. In
contrast to the shallow structures in the previous approaches, Kim et al.
present two very deep networks with residual learning [He16] and recursion
in [Kim16a] and [Kim16b] respectively, with impressive performance.

2.3.3 Face Super-Resolution
FSR is an emerging topic in computer vision. Unlike generic SR, which
produces HR images with finer details from a wide variety of LR images, e.g.,
landscape and text, FSR is able to generate faces with higher magnification
from input images of lower resolution owing to the constrained domain
[Yan10b]. On the other hand, contrary to single-image patch-based SR
applicable to universal image categories with no extra need of registration,
the HR–LR training data and the LR query image in FSR are preferably
well aligned, so that the prior knowledge of shared structural information,
e.g., eyes, noses and mouths, can be leveraged. Hence, FSR is nowadays
acknowledged as an independent branch within the SR family.
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Traditional Face Super-Resolution

The reconstruction-based SR in Section 2.3.1 is in general also suitable for
face images. In such methods, image registration is an indispensable step
[Par03], which aligns multiple LR frames to the HR grid w.r.t. an appropriate
motion model to estimate the HR image. Although simple assumptions can
be made for static scenes to compensate for frame-to-frame motion, the
complex geometry, non-rigid deformation and self-occlusion in human
faces may sometimes render global motion models useless. Therefore,
Wheeler et al. [Whe07] hinge on the LR AAM [Liu06] to warp triangulated
2D meshes from the facial landmarks to the reference frame. The `1 norm
for the reconstruction constraint and the BTV as regularization [Far04] are
utilized for SR. In [Yu08], Yu and Bhanu deform the virtual lattice overlay
using Free-Form Deformation (FFD) with B-splines [Hua06] to alleviate
slight expression changes in the video frames. Optical flow is another option
to obtain dense correspondence between images [Sch12], whereas special
attention must be paid to flow consistency [Zha02]. These non-rigid regis-
tration schemes can cope with very limited pose and expression variations.
Furthermore, reconstruction-based SR degrades dramatically and the overly
smooth HR outputs lack high-frequency details when the magnification
factor increases [Bak02].

The groundbreaking concept of FH [Bak00a] paves the way for learning-
based FSR. In this work and the subsequent theoretical analysis [Bak00b,
Bak02], Baker and Kanade establish pixel-by-pixel statistical gradient priors
from the training faces using feature pyramids and solve the FSR problem
in a MAP manner. Besides the likelihood term ensuring the faithfulness
of LR and the predicted HR image, the gradient priors model the relation-
ship between the training data and the test image for each specific location.
Inspired by the seminal studies of Baker and Kanade, Su et al. [Su05] argue
that a single pixel does not convey meaningful information and adopt steer-
able pyramids with a bank of oriented filter kernels in their gradient priors
to facilitate patch-based interference rather than that of independent pixels,
encouraging coherence of the output faces.

Like some early FR systems that function in a holistic fashion, the PCA
prior, or the eigenface algorithm [Tur91], is one of the most widely used
methods in FSR. Capel and Zisserman [Cap01] model the HR subspace with
PCA, where µ, V and Σ denote the mean, the eigenfaces, and their variance,
respectively. By assuming Gaussian noise, two MAP priors, namely the Face
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Space–Maximum a Posteriori (FS–MAP) and the Image Space–Maximum a
Posteriori (IS–MAP), are introduced. For FS–MAP, the PCA coefficient vector
c is obtained via

min
c

{∥∥H
(
µ+Vc

)−Y
∥∥2
Σ+λ‖c‖2

2

}
. (2.19)

In contrast, the IS–MAP directly solves for the HR face in the form of

min
X

{
‖HX−Y‖2

2 +λ
∥∥(

Iid −VV>)(
X−µ)∥∥2

2

}
, (2.20)

where Iid stands for the identity matrix. As such, the appearance variation is
projected out to make the estimated image lie near the PCA subspace. An
alternative to [Cap01] is the eigentransformation by Wang and Tang [Wan05],
i.e., projecting the LR input image onto the LR training PCA subspace and
reusing the same weights for HR face reconstruction on the HR subspace.

Since holistic approaches are susceptible to many kinds of nuisance factors,
Liu et al. [Liu01] devise a novel two-step FSR method, compensating for
the residual of the global PCA face with a MRF defined on the homoge-
neous image lattice [Fre02] to enhance local texture details. In [Liu07], they
elaborate more on the soft and hard constraint for the global PCA model,
add bilateral filtering [Tom98] as post-processing to remove artifacts, and
accurately align LR faces with the Lucas–Kanade algorithm [Luc81]. By
virtue of the theoretical and practical benefits, this two-step procedure even-
tually becomes a long-time rule of practice for FSR. Jia and Gong [Jia08]
replace PCA with a generalized hierarchical tensor analysis to simultane-
ously deal with multiple face modalities, e.g., identities, expressions, poses
and resolutions, and generate HR faces with different expressions regarding
the LR input. Zhuang et al. [Zhu07] employ Locality Preserving Projection
(LPP) [He04] for feature embedding extraction and Radial Basis Function
(RBF) regression for the global image SR, and the LLE SR technique [Cha04]
for local residual compensation. In [Par08] by Park and Lee, given a LR
frontal morphable model [Vet97], the shape displacement and texture are
super-resolved by example-based holistic HR face recovery similar to eigen-
transformation [Wan05]. Finally, as the second contribution of [Yan10b]
(c.f . Section 2.3.2), a two-step FSR system is proposed. Yang et al. argue that
PCA bases are suboptimal, which allow negative coefficients and tend to
generate smooth faces close to the mean, and turn to Nonnegative Matrix
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Factorization (NMF) for an additive part-based subspace, followed by sparse
coding SR [Yan08] for local detail refinement.

Ma et al. [Ma10] discuss the necessity of such two-step global–local frame-
work, and bypass it with the Position-Patch (PP), which borrows the idea
of the generic LLE SR and imposes explicit positional restriction for faces,
i.e., separate embeddings for each patch of a specific location on the face.
This strategy successfully incorporates the common facial structure as prior
information into SR within a single stage. Additionally, the time-consuming
global search in LLE [Cha04] is alleviated at the same time. Due to the sim-
plicity and performance edge, numerous extensions exist on top of [Ma10].
Jung et al. [Jun11] prefer sparsity [Yan10b] to the collaborative least squares
representation over the whole training samples in [Ma10]. Jiang et al. pub-
lish a series of studies [Jia12, Jia13] with a locality constraint to encourage
close matching between the query and training patches.

Modern Face Super-Resolution

Prevailing 2D FSR algorithms adopt simple alignment of faces as prepro-
cessing. Transformation by similarity using the eyes [Liu01, Wan05, Yan10b]
or affinity with an extra point at the tip of the nose [Bak02] or center of the
mouth [Ma10] is a widespread technique. On the other hand, pixel-wise
registration [Luc81] is arguably a better option for LR faces, which estimates
the transformation by energy minimization w.r.t. the entire image window
instead of a few feature points that may be localized imprecisely on LR
images [Jia08, Liu07]. In this thesis, this global parametric alignment is
deemed as the traditional routine to conduct FSR.

The latest success of 2D FSR is partly attributed to the advanced registration
techniques that remedy misalignment caused by out-of-plane rotation and
complicated facial geometry to a certain extent. Hu et al. [Hu11] make use
of optical flow [Bro04] to warp similar candidate training faces w.r.t. the
query image. Surrounding local pixel structure is explored to reconstruct
the HR patch. In [Li14], Li et al. favor sparse representation as the SR engine.
Tappen and Liu [Tap12] mitigate non-frontal poses by matching and warp-
ing training exemplars close to the LR face with PatchMatch [Bar09] and SIFT
flow [Liu11] respectively. A convex optimization scheme for the Bayesian SR
method in [Tap12] is proposed in [Inn13]. However, this system struggles
when the training set is small or it fails to find faces that can match the input
well. Yang et al. [Yan13b] handle different image components separately.

35



2 Related Work

On the basis of 2D AAM landmarks, main facial features are extracted and
similar exemplars are aligned. In addition, statistical edge prior and Patch-
Match [Bar09] are used to hallucinate contours and smooth regions. In
[Jin13], Jin and Bouganis devise a unified MAP formulation exploiting holis-
tic PCA prior to model blurring and motion, and prove that previous MAP
FSR algorithms like the FS–MAP and the IS–MAP in [Cap01] and the soft
and hard constraints in [Liu07] are just special cases of their framework,
which is extended with a probabilistic patch-wise approach in [Jin15] for
in-the-wild FSR. Nonetheless, homography in their parametric motion can
only cope with near-frontal poses. Kolouri and Rohde [Kol15] consider FSR
as a transport problem [Amb02], which constructs a nonlinear model for
both pixel intensity and displacement for face images. A linear subspace
that best describes the optimal transport is learned to constrain the space
of HR images to those that can be morphed by the reference. This method
is demonstrated to be pragmatic for frontal faces of very low resolution.

Opposite to DNNs for generic SR, which take image patches as input for
training the networks, dedicated DNNs for FSR are usually exercised on
the whole face crop to bring in domain knowledge. Zhou et al. [Zho15]
present a bi-channel CNN to learn the missing HR detail and a coefficient
for fusion with the LR image. Tuzel et al. [Tuz16] design a face upsampling
network comprised of sequential global detail generation on top of the
interpolated LR face with fully-connected layers and local refinement with
convolution layers. Yu and Porikli [Yu16] employ exclusively deconvolution
layers [Zei11] for generative FSR. Akin to [Tuz16], the Generative Adversarial
Networks (GANs) [Goo14] are exploited to synthesize realistic HR images
subject to the discriminative network. Either alternating fine-tuning [Tuz16]
or integrated `2 regularization with the adversarial loss [Yu16] are shown
to be effective. In [Zhu16a], Zhu et al. unite cascaded face alignment and
FSR with a Cascaded Bi-Network (CBN). With a face correspondence field
expressed in the form of 2D PDM, dense pixel displacement instead of sparse
landmarks can be inferred with PO–CR [Tzi15]. Its output then guides to
warp the high-frequency prior for facial components in a separate branch
parallel to the common one for holistic upscaling, which are joined with
a pixel-wise gate network. Thanks to the explicit modeling of spatial cues,
CBN works extremely well for non-frontal LR faces.
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3D Face Super-Resolution

In the previous part of this chapter, incorporating 3D information has
proven to be instrumental in the context of facial analysis. However, limited
application has been witnessed in FSR, probably because of the severe diffi-
culty of fitting 3D models onto LR images. Note that some 3D approaches
[Ber12, Pan06] focus on SR of the depth map rather than the facial texture,
which is not reviewed here.

Model Fitting
Texture 

Extraction

Texture

Super-Resolution

Texture Sample Set
3D

Model

Figure 2.6: Workflow of the 3D FSR method in [Mor09].

In [Mor09], 3D-assisted FSR shows its strong potential for the first time.
The processing chain suggested by Mortazavian et al. is composed of three
independent modules, i.e., model fitting, LR texture extraction and SR,
as illustrated in Figure 2.6. After reconstructing the 3D shape using the
standard analysis-by-synthesis algorithm [Bla03], the LR facial texture is
extracted and mapped onto a predefined canonical grid [Ten07], so that
facial geometry and pose are normalized, which is theoretically ideal for FSR.
In case of self-occlusion, the missing data is filled with estimated 3DMM
texture. Subsequently, the external texture set, stored in the same format,
serves as the training data for the MAP FSR method by Baker and Kanade
[Bak02]. It is worth mentioning that 3D models are merely leveraged to build
dense correspondence between the LR image and the training faces. The
3D facial texture is treated as an ordinary 2D image during FSR, neglecting
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the actual observation process of the LR texture on the 3D mesh. Hence, it
is strictly speaking a 3D-aided 2D approach, or 2.5D FSR.

(a) (b) (c)

Figure 2.7: Face mesh segmentation in [Des15]: The mean face in (a) is uniformly segmented
into patches in (b) at first, which are then enlarged to produce overlapping boundaries in (c).

The full capability of 3D FSR has been unleashed only until recently. Schu-
macher et al. [Sch15] modify the 3DMM fitting [Bla99] by adding the blurring
effect into image synthesis within the iterative procedure. Unlike [Mor09],
where an extra texture map SR is needed, the recovered 3D model here
already includes HR texture inherently after the fitting process. The authors
further fill details such as facial hair and blemish into the HR face from a
best match exemplar in the dataset. Although both shape reconstruction
and visual appeal are improved against the LR input, this holistic frame-
work is restrained to well-controlled images. To combat this drawback, the
novel example-based 3D FSR by Dessein et al. [Des15] is applicable. In this
first and only existing patch-wise 3D method, the mesh of the mean face is
segmented uniformly in the offline phase. In order to account for compat-
ibility between neighboring patches, they are then expanded to share the
boundary with adjacent cells, so that vertex color averaging in these areas
is possible (see Figure 2.7). However, as in [Mor09], the image formation
model is ignored and the LR pixels are directly back-projected onto the cor-
responding LR vertices to apply BP on the HR patches in a 3D MRF fashion
[Fre02]. Despite the positive results on simulated LR faces, the inverse image
formation model from LR pixels to LR vertices assuming Nearest Neighbor
(NN) interpolation and forward BP with HR vertices within patches of fixed

38



2.3 Super-Resolution

size rules out the flexibility to incorporate viable blurring kernels, since the
convolution operation always involves a larger vicinity.

2.3.4 Discussion
Image SR, in spite of its ill-posed nature, has evolved to a certain level of
maturity for both generic and face images (see the reviews for SR [Nas14,
Par03, Yan10a] and FSR [Wan14b], as well as the benchmark study [Yan14]).
A combined framework with successive modules, e.g., recognition [Hen08,
Wan16, Wan14c, Zou12], is also demonstrated to bring mutual benefits.
Yet there exist several critical questions that remain unanswered. All SR
algorithms are evaluated on synthetically downsized HR images for lack of
real LR data. Is such setup objective and justified in this vein? Is it possible
to obtain ground truth HR and LR image pairs? Moreover, except for very
little work [Jin15, Whe07, Zhu16a], most FSR, especially the 3D variants
[Des15, Mor09, Sch15], are all targeted for constrained face data acquired in
studio environment. Is LR 3D model fitting and FSR viable on in-the-wild
images? And if so, where is the limit for 3D FSR? The remaining part of this
thesis will shed some light upon those issues.
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The overall concept of the proposed framework is illustrated in Figure 3.1.
Given a LR face image as input, the three modules performing facial land-
mark detection, 3D shape reconstruction and facial texture SR are high-
lighted in successive order, of which the individual concepts and algorithms
will be detailed in the following chapters. Note that the 3D subsystem of
this thesis is a model-based approach, which is realized by involving a 3D
face dataset with preprocessed shape and texture data as prior knowledge,
visualized in the left part of Figure 3.1.

Considering that input images of the deployed system are usually captured
using surveillance cameras, 3D face reconstruction directly conducted on
the input images can be extremely difficult given the challenges discussed
in Section 1.2. Therefore, a more robust approach is to use sparse facial
feature landmarks as an intermediate instrument to assist 3D shape model-
ing, which can be reliably detected by virtue of the recent advances in this
field, immune to various negative impacts resulting from the unconstrained
image acquisition condition “in the wild” [Qu15c]. The output of this stage
as a list of 2D feature point locations w.r.t. the image coordinates can then
be used as the anchor points to guide the morphable shape model during
the process of 3D face reconstruction.

In order to recover the depth information from the 2D points, the intrinsic
shape variation of the scanned faces within the 3D face dataset is utilized.
With known correspondences and proper manipulation of the 2D and 3D
landmarks, the dense 3D face shape can be computed without taking into

41



3 Concept

account multiple aspects responsible for appearance changes, keeping the
computational complexity at a very low level [Qu14, Qu15d].

Low-Resolution Image

3D Shape Reconstruction

Facial Landmark Detection

Facial Texture Super-Resolution

3D Face Dataset

Figure 3.1: The overall concept of the proposed 3D FSR framework.

The final facial texture SR module is the essential part of the presented
workflow, which takes the LR face image, shape and texture information
from the 3D face dataset, as well as the previously obtained shape model
as input. Dense correspondence between the textures in the dataset as
training data and the LR face is established with the help of the fitted 3D
model [Qu15b]. This allows not only for the synthesis of the SR texture,
but also for a second-pass fine-tuning of the fitting result to improve the
accuracy, which is of particular interest for the processing chain, since the
initial shape reconstruction solely hinges on a few sparse landmarks located
on the LR image. As a result, a person-specific 3D face model with photo-
realistic facial texture and fine details is created [Qu17]. An example output
of the algorithm is shown in the lower-right corner of Figure 3.1. This 3D
face model, irrespective of the original head rotation of the input image,
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allows for normalization to the frontal pose or rendering a novel image in
an arbitrary perspective, which is advantageous for many facial analysis
applications, e.g., FR.

3D face modeling and FSR are both well-studied topics in computer vision.
A good deal of algorithms has been presented, which share similar ideas with
some part of this work. However, there are several significant differences
between the proposed concept and all of the existing ones in the literature:

3D vs. 2D

One of the dilemmas when designing computer vision systems is whether
to make the extra effort to model the problem in 3D or to simply stick with
the well-developed 2D methods. In the context of FSR, the related studies
reviewed in Section 2.3.3 demonstrate a wide spectrum of approaches, of
which the overwhelming majority is based on pure 2D information. More
specifically, both image registration and SR face synthesis are directly carried
out on 2D images.

Considering the challenges discussed in Section 1.2, FSR could take advan-
tage of 3D fitting to mitigate the negative factors of diverse head poses and
lighting conditions to generate plausible SR images. On the other hand,
limited image resolution and poor image quality render 3D face modeling
on LR data a highly difficult problem. Therefore, since properly aligning
training and input images is an indispensable prerequisite to maximize the
usage of information within the constrained face domain, most existing
methods choose to adopt available global or local 2D alignment techniques
and concentrate on novel FSR algorithms. Contrarily, this thesis makes
the observation from another perspective and shows that superior perfor-
mance can be achieved by leveraging the more precise 3D fitting, even with
standard FSR approaches [Qu15b].

An intuitive comparison between the widely applied 2D alignment tech-
niques and the employed 3D method in this thesis is depicted in Figure 3.2,
where the mean faces of the frontal HR Multi-PIE [Gro10] images are gen-
erated with the respective procedure. With the similarity transformation
using the center of two eyes, the nose and mouth are blurred in Figure 3.2a
due to the varied length of human faces which is not normalized. This
can be improved by adding the center of the mouth as a third point. By
applying affine transformation, the mouth in Figure 3.2b becomes sharper.
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Nevertheless, blurring in other facial components such as nose and eye-
brows remains. In contrast, 3D fitting ensures correspondence of the dense
vertices throughout all face samples, leading to rich details in Figure 3.2c.
In this sense, one can expect FSR, which shares a similar principle while
exploiting the training data, to benefit from a better alignment scheme.

(a) (b) (c)

Figure 3.2: Mean faces of the Multi-PIE [Gro10] images aligned with (a) eyes, (b) eyes and
mouth, and (c) the target 3D shape.

3D Fitting

Within the 3D FSR literature, some [Des15, Par08] assume pre-aligned input
and training faces, whereas the general applicability for real-world LR sce-
narios is not verified. Only very few papers [Mor09, Sch15] address the
LR fitting problem explicitly in a complete workflow, both of which fol-
low the spirit of the 3DMM algorithm by Blanz and Vetter [Bla03]. This
analysis-by-synthesis framework can generate accurate and photo-realistic
3D models given a wide range of pose and identity variations on HR data.
However, due to its complicated optimization problem, direct application
on “LR and small face yields unacceptable results” [Mor09]. At the same
time, computational cost is also extremely high. In comparison, an alter-
native strategy is adopted in this thesis, which depends on a small set of
facial feature points as shape constraints to fit the 3D deformable shape
using the 3DMM. Thanks to the rapid progress from the facial landmark
detection community in the past few years, the automatically detected
landmarks are highly robust against a number of nuisance factors, such as
pose, expression, occlusion and bad illumination. Unlike the comparative
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analysis-by-synthesis algorithms, which must compensate for appearance
variation in their optimization task, the landmark-based approaches only
need to take into account the fitting of these sparse landmarks to their corre-
spondence on the 3DMM so that dense shape recovery can be accomplished
highly efficiently [Qu14, Qu15d].

After reconstructing the shape of the LR face, the second design choice is
how to align the training data with it to perform FSR. Mortazavian et al.
[Mor09] extract the LR facial texture from the input image to a predefined
coordinate frame with normalized pose and identity. Subsequently, FSR is
conducted on this flattened texture frame. Alternatively, the training faces
can be projected forwardly onto the LR image coordinates in the hope of
preserving LR details, since this operation requires no interpolation of the
LR image. Such a strategy, which was first introduced in the FSR module of
the proposed processing chain [Qu15b], can also be found and is proved
effective in other 3D FSR work, e.g., [Des15, Sch15].

Facial Texture Super-Resolution

Dense model fitting can be straightforwardly regarded as a powerful tool to
establish dense mapping for FSR [Par08]. The rendered facial texture is then
treated as regular 2D image for conventional 2D methods. Despite the supe-
rior results owing to the better fitting, the advantage of involving 3D face
models is not yet fully exploited [Qu15b]. For the following facial analysis
tasks after the SR preprocessing stage, a textured HR 3D face is favorable. In
this case, pure 3D FSR instead of 3D-assisted 2D FSR is preferred.

The newly published FSR work [Sch15] of the analysis-by-synthesis frame-
work [Bla03] is able to generate 3D texture from the 3DMM within a unified
optimization task. For other 3D fitting schemes, however, like the landmark-
based one used in this thesis, a novel algorithm must be found. In addi-
tion, akin to the PCA model for 2D SR [Liu07], the holistic 3DMM texture
variations may not have enough expressiveness for all kinds of real-world
appearance and lighting conditions.

To overcome the aforementioned challenges, a novel patch-based 3D FSR
algorithm is developed [Qu17], which fundamentally differs from the recent
3D MRF approach [Des15] in that the LR imaging model observed from the
3D face mesh is formulated, facilitating the incorporation of any realistic
blurring kernels into the 3D FSR framework. Moreover, an extension of
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the Lucas–Kanade image registration method [Bak04a] for the applied LR
3D model-based scenario offers an extra post-refinement step to improve
the error-prone initial 3D fitting on the LR data using landmarks. Hence,
robustness of the proposed 3D FSR pipeline under degraded circumstances
is thereby guaranteed.

Summary

The entire processing chain is comprised of components which may be inter-
changeable with other alternatives. For instance, in the first two modules
which are responsible for 3D shape recovery, combined approaches using
3DMMs [Hu12, Mor12] or 3D dense face alignment [Jou15, Zhu16b] can be
deployed. It is worth noting that in some failure cases which are caused by
bad shape initialization in the early stage, minimal human assistance with
manual landmark annotation can be introduced. This is however cumber-
some for these methods to cope with. All in all, the whole concept proposed
in this thesis is carefully designed with a focus on efficiency, robustness,
automation and flexibility for the challenging problem of LR FSR.
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The first and foremost component in the processing chain of the proposed
3D FSR system is the detection of 2D fiducial facial feature points. Like many
state-of-the-art solutions, the work presented in this chapter builds on the
recent success of the cascaded shape regression algorithm [Cao12, Dol10,
Xio13], which progressively predicts the shape update based on the previous
shape estimate and its feature representation. Several core aspects of this
framework are revisited, accompanied by incremental improvement analy-
ses compared to the baseline [Xio13] on the benchmark Labeled Face Parts
in the Wild (LFPW) dataset [Bel11] to provide a preliminary performance
overview before extensive evaluation in Section 7.3.1.

The remainder of this chapter is mainly based on the author’s publication
[Qu15c], and is organized as follows. A brief introduction is given in Sec-
tion 4.1. Section 4.2 recalls the baseline framework. The individual proposed
improvements are discussed and analyzed in detail in Sections 4.3 to 4.5,
respectively. Finally, the work is summarized in Section 4.6. Notation that
commonly appears in this chapter is listed in Table 4.1.
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Table 4.1: Notation used in Chapter 4.

Symbol Description

D Feature dimensionality
K IRLS scaling factor for W
N Number of training samples
P Number of facial landmarks
s IRLS iteration number
S Number of iterations for IRLS
t Cascade level starting from initialization
T Number of cascades
γ Regularization weight for ridge regression
b Bias term for Regression
I Face image
Iid Identity matrix
r (I,x) A cascade for shape update
R Descent direction for Regression
R̃ Combined regressor composed of R and b
W Diagonal weighting matrix of IRLS
x Shape vector
x? Ground truth shape
∆x Shape displacement to the ground truth
∆X Stacked shape increment for all training samples
Φ (I,x) Operator for extracting shape-indexed feature
Φ̃ Stacked shape-indexed features for all training samples

4.1 Introduction
As described in Section 2.1, localization of facial feature landmarks, a.k.a.
face alignment, is an early but crucial step in the facial image analysis
literature for the latter processing stages, which is of course also applicable
to FSR [Wan14b]. Despite the broad interest and research effort since the
seminal work ASM [Coo92] and AAM [Coo98], there still remain challenges
under unconstrained conditions, e.g., occlusion, extreme lighting, pose and
shape variations.
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Classic ASM and AAM approaches jointly optimize the shape parameters
with local or global texture. In the last few years, a new family of face align-
ment algorithm has emerged, which directly learns regressors from image
feature descriptors to the target shape update. These regression-based
methods are gaining increasing popularity due to their leading performance
and high efficiency in the face alignment task. Although recent studies
[Cao12, Ren14] suggest that performance may have saturated on simple
uncontrolled indoor (e.g., BioID [Jes01]) or outdoor (e.g., LFPW [Bel11])
datasets, reliable detection of facial feature points is still a distant promise
on new challenging in-the-wild datasets (e.g., 300 Faces in-the-Wild Chal-
lenge (300-W) [Sag13a] and Caltech Occluded Faces in the Wild (COFW)
[Bur13]). Unlike previous approaches that try to mitigate the impact of
occlusion [Bur13], feature selection [Ren14] and initialization [Yan13a] with
specific solutions, this work instead revisits some of the low-level aspects
of cascaded shape regression. By reconsidering the essential assumptions
and design choices, it is possible to achieve a significant improvement and
state-of-the-art performance without bells and whistles.

In the spirit of the baseline cascaded shape regression [Xio13], the approach
in this thesis investigates the fundamentals and seeks for enhancement in
quest of successful in-the-wild landmark localization based on a series of
intermediate experiments. Highlights of this work include:

• Robust regression: As a core component of the underlying frame-
work, the quality of regression has a huge influence on the trained
model. Iteratively Reweighted Least Squares (IRLS) alleviates the
impact of outliers and noises which are inevitable in real-world data,
especially in the presence of extreme pose, occlusion and illumination
condition in unconstrained face datasets.

• RootSIFT: The Hellinger distance proves to be preferable in many
histogram-based matching problems [Ara12]. By taking the square
root during the feature map space conversion, small histogram bin
values get more emphasized. In this way, face alignment accuracy is
boosted dramatically.

• Fitting strategies: Pose, novel expression and occlusion can all cause
the initialized landmarks to drift far away from the true location. Thus,
a larger local image patch size and compensation for in-plane face
rotation account for fast convergence in early cascade stages, whereas
a smaller patch size ensures high precision in the final stages.
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4.2 Cascaded Shape Regression
Within the framework introduced in [Cao12, Dol10, Xio13], face alignment
is naturally interpreted as a regression problem for the target output shape
x given an input image I and an initial shape x(0), which is typically chosen
as the mean shape of the training data scaled and translated w.r.t. the region
of interest (ROI) of the detected face. Here the vectorized shape

x = [x1, . . . , xP , y1, . . . , yP ] ∈R1×2P (4.1)

is parametrized by the image coordinates of the P facial landmarks, which
is P = 29 for the LFPW annotation in Figure 4.1. The scattered points of all
samples are a result of the unconstrained collection of Internet face data.
A statistical shape model, like the PDM in conventional face alignment, is
most of the time unnecessary (with the exception of the PO–CR [Tzi15]).

The objective is then to learn a regression function r(·, ·) that returns an
updated shape by minimizing the Euclidean distance to the ground truth x?

N∑
i=1

∥∥∥r(Ii ,x(0)
i )−x?i

∥∥∥2

2
, (4.2)

where i denotes the index of the totally N training samples. While a one-
pass regression is incapable of understanding the high complexity of the
problem [Xio13], composition of multiple regressors

r = r(T ) ◦ r(T−1) ◦ . . .◦ r(1), (4.3)

a.k.a. a cascade of regressions, proves to be effective, where the output shape
of the previous regressor r(t−1) is fed to the following one r(t ) as the input
shape and T denotes the total number of stages.

Thanks to the additive nature of the linear shape updates, as long as the
initial shape x(0) is valid, the subsequent shapes {x(t )} are guaranteed to lie in
the linear subspace of the training shapes by regression. This implicit shape
constraint not only makes the algorithm exempt from an explicit shape
model, but also encourages to fit to novel shapes that share little similarity
with the mean shape, which is favorable for in-the-wild settings.
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Figure 4.1: Aligned shapes of the training data on LFPW [Bel11] w.r.t. face detection and the
resulting mean shape.

Next, the regression function r(t ) is specified as

r(t )
(
Ii ,x(t−1)

i

)
= x(t )

i = x(t−1)
i +Φ

(
Ii ,x(t−1)

i

)
R(t ) +b(t ), (4.4)

whereΦ (I,x) ∈R1×PD extracts the local shape-indexed feature as in CLMs,
such as raw intensity, binary difference features [Bur13, Cao12, Ren14] or
SIFT [Xio13], in the proximity of x on the image I, where D is the dimen-
sionality of the feature. The descent direction R(t ) ∈RPD×2P and bias term
b(t ) ∈R1×2P characterize the stage regressor r(t ) and are learned by incorpo-
rating Equation (4.4) into Equation (4.2)

min
R(t ),b(t )

N∑
i=1

∥∥∥∆x(t−1)
i −Φ

(
Ii ,x(t−1)

i

)
R(t ) −b(t )

∥∥∥2

2
, (4.5)

where ∆x(t−1)
i = x?i −x(t−1)

i is the desired optimal increment regarding the

current shape x(t−1)
i .
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(a) (b) (c) (d)

Figure 4.2: Example fitting procedure of cascaded shape regression: (a) shape initialized from
the detected face, (b) extracted shape-indexed feature, (c) first update iteration from the initial
shape, (d) final fitting result.

The quadratic optimization problem in Equation (4.5) is usually solved with
Newton’s method. However, on the one hand, the shape displacement ∆x
is unknown at test time. On the other hand, the shape-indexed featureΦ
often appears to be non-differentiable. Hence, cascaded shape regression
substitutes gradient descent with supervised learning on the training images.

In particular, starting from the (perturbed) initial landmarks
{

x(0)
i

}
, after

extracting the appearance feature
{
Φ

(
Ii ,x(0)

i

)}
and computing R(0) and b(0)

using least squares to minimize Equation (4.5), a new set of training shapes{
x(1)

i

}
is generated by applying Equation (4.4) to the regression output. A

small number of iterations then suffice to successively converge
{

x(t )
i

}
to{

x?i
}

. Apparently, the fitting procedure is done with exactly the same routine,
which is depicted in Figure 4.2. After the first cascade in Figure 4.2c, though
a rough alignment is already fulfilled, further iterations are still needed for
accurate localization.

4.3 Regression Algorithm
Minimizing Equation (4.5) is widely known as the linear least squares prob-
lem. In order to simplify the solution and obtain the regression parameters{

R(t ),b(t )
}

in closed form, a common practice is to concatenate the descent
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direction and bias term as a single unknown, and stack all N training sam-
ples, which yields
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∆X(t ) =

∆x(t )
1

...
∆x(t )

N

 ∈RN×2P (4.6)

Φ̃
(t ) =


[
Φ(I1,x(t )

1 ),1
]

...[
Φ(IN ,x(t )

N ),1
]
 ∈RN×(PD+1) (4.7)

R̃(t ) =
[

R(t )

b(t )

]
∈R(PD+1)×2P . (4.8)

To avoid the singularity problem, one can append a regularization term to
Equation (4.5) as ridge regression [Hoe70]

min
R̃(t )

∥∥∥∆X(t−1) − Φ̃(t−1)
R̃(t )

∥∥∥2

F
+γ∥∥R̃(t )∥∥2

F , (4.9)

which can be solved straightforwardly

R̃(t ) =
(
Φ̃

(t−1)>
Φ̃

(t−1) +γIid

)−1
Φ̃

(t−1)>
∆X(t−1). (4.10)

Note that ‖·‖F in Equation (4.9) stands for the Frobenius norm for matrices.

Due to the inevitable existence of noise in the training data, including anno-
tation errors and severe degradation, upright linear regression assuming
the error to be normally distributed is suboptimal. In fact, it is well acknowl-
edged that even a small number of gross outliers can hugely exacerbate the
regressed model1.

4.3.1 Iteratively Reweighted Least Squares
IRLS offers an iterative solution to diminish the negative influence of noisy
data samples [Gre84]. At each iteration stage s, the original formulation of

1 http://www.mathworks.com/help/stats/robustdemo.html
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the cascaded shape regression in Equation (4.5) is extended with a weighted
least squares version

http://www.mathworks.com/help/stats/robustdemo.html
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min
R(s),b(s)

N∑
i=1

w (s)
i

∥∥∆xi −Φ(Ii ,xi )R(s) −b(s)∥∥2
2 , (4.11)

where w (s)
i are the entries of the diagonal weighting matrix

W(s) = diag
(
w (s)

1 , . . . , w (s)
N

)
(4.12)

with the initial values set to w (0)
i = 1, which means at the beginning, each

training face image contributes equally to the regressor. For the purpose of
clarity, the superscript (t ) denoting regression stage is omitted here. Akin to
Equation (4.10),

R̃(s+1) =
(
Φ̃

>
W(s)Φ̃

)−1
Φ̃

>
W(s)∆X. (4.13)

Intuitively, the weighting matrix W(s) should be updated inversely propor-
tional to the residual after applying regressor R̃(s). Specifically, in case of the
`1 norm,

w (s)
i = K∥∥∆xi −Φ(Ii ,xi )R(s) −b(s)

∥∥
1

, (4.14)

where the scaling factor K as well as the regularization parameter γ from
Equation (4.10) are experimentally determined.

The algorithm stops when W(s) converges, which usually takes merely a
few iterations in experiments. The mathematical representation of IRLS
reduces the significance of outliers to the lowest level, which keeps the
learned regression model as little affected as possible and robust against
unconstrained conditions in the training data.

4.3.2 Experiments and Discussion
Intermediate experiments are conducted to briefly validate the necessity of
each proposed improvement for building the final landmark detector and
the progress incrementally. To keep the compactness of the experiments in
this chapter, more details are discussed in Section 7.3.1. The widely used
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LFPW dataset [Bel11] is chosen as the benchmark. As some volatile URLs
in LFPW are no longer valid, only 810 and 220 of the original 1,132 and
300 images could be collected for training and evaluation respectively. The
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baseline cascaded regression implementation resembles [Xio13] with ordi-
nary least squares and SIFT feature. It is worth a mention that by reason of
different size of data (c.f . [Bel11]), multiple initializations (c.f . [Cao12]) and
manual correction of erroneous annotations in [Xio13]1, the exact numbers
as reported in the respective papers on LFPW cannot be reproduced.
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Figure 4.3: Performance on LFPW [Bel11] by combining better regression methods. NMEs are
reported in parentheses.

As illustrated in Figure 4.3, simple ridge regression performs surprisingly
well with considerable improvement in both precision and convergence.
Here, a high precision is characterized with the curve located close to the
left side of the plot, signalizing more results having a smaller error. Conver-
gence, in contrast, suggests the curve approaching the top of the graphic,
converging to 100% of all images, especially for difficult ones. With the

1 By direct correspondence with the author.
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adoption of IRLS, localization accuracy further increases by a small margin,
indicating a more robust model against outliers during the learning. How-
ever, convergence remains almost unchanged, possibly because nearly all
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of the images have already a Mean Normalized Error (NME) less than 10% of
the interocular distance (IOD). In Section 7.3.1, the benefit is more evident
as expected.

4.4 Shape-Indexed Feature
Obviously, in the fundamental principle of training and using cascaded
shape regression in Equations (4.4) and (4.5), the choice of feature extractor
Φ is a key design factor. Thus, it is reasonable to experiment with other
features and mappings than SIFT alone in the baseline method [Xio13]. In
this section, three popular image feature descriptors in computer vision,
namely SIFT [Low04], HOG [Dal05] and Local Binary Patterns (LBP) [Oja02],
are investigated.

A typical use case of SIFT is for matching local regions. Nevertheless, the key-
point descriptor computing gradient histograms of patches around interest
points can be leveraged separately for the facial landmarks. HOG is designed
for object detection in the entire image frame. It resembles SIFT but intro-
duces additional normalization within neighboring spatial bins. On the
contrary, the LBP descriptor compares surrounding pixels with the value
in the middle to make a binary number of zeros and ones, and builds a
histogram of all possible patterns in the image window. Its illumination-
invariant property [Oja02] could be helpful for uncontrolled face images.

Given the fact that SIFT, HOG and LBP are all histogram-based, the ques-
tion naturally arises if the Euclidean distance employed in the regression
objective in Equation (4.5) also yields inferior results in comparison with the
square root (Hellinger) kernel, which is observed in many tasks like image
retrieval [Ara12] and FR [Wol08].

Suppose u and v are SIFT histograms with unit Euclidean norm, i.e., ‖u‖2 =
‖v‖2 = 1. The conventional dot product of these two vectors is

〈u,v〉 =∑
i

ui vi . (4.15)

56

In contrast, the Hellinger kernel for `1 normalized vectors u′ and v′ with∥∥u′∥∥
1 =

∥∥v′
∥∥

1 = 1, is defined as

H
(
u′,v′

)=∑
i

√
u′

i v ′
i . (4.16)
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It is straightforward to prove that comparing transformed histograms in
Euclidean space is equivalent to comparing the original descriptors in the
Hellinger space [Ara12]. With the extra square root in Equation (4.16), the
Hellinger distance augments counts belonging to small histogram bins,
which are overwhelmingly suppressed by values of large bins in the Euclidean
space. Therefore, to obtain higher localization precision, the benefit of `1

normalization and taking square root prior to utilizing the evaluated off-the-
shelf feature descriptors is also studied.

4.4.1 Experiments and Discussion
With the IRLS algorithm fixed as the regression method according to the
outcome of the previous section, SIFT, HOG and LBP with optional Hellinger
distance mapping are tested as the shape-indexed feature, leading to six
experimental analyses. Standard settings of HOG and LBP, namely 8×8 cell
size, 2-by-2 blocks and 50% overlap for HOG, as well as LBPu2

8,2 with eight
sampling points of radius two and uniform patterns with at most two bitwise
transitions, are deployed, which implies that SIFT, HOG and LBP have the
dimensionality R128, R324 and R59, respectively. The Hellinger mapping is
computed on the fly. Following Arandjelović and Zisserman [Ara12], the
special case of SIFT in Hellinger space is denoted RootSIFT.

Figure 4.4 presents the contribution of the respective feature descriptors.
At first sight, only HOG and SIFT+Hellinger (RootSIFT) successfully bring
smaller NME than the baseline SIFT. Both LBP variants in Euclidean and
Hellinger space cannot compete with the rest. Interestingly, HOG+Hellinger
performs a bit worse than the original HOG, which is the only one of the
three histogram-based features that fails to improve under Hellinger feature
map. SIFT+Hellinger (RootSIFT) reveals the best result in spite of the degra-
dation in convergence. This trend is visible in HOG and LBP as well, though
less obvious. The reason might be self-explanatory by referring to the def-
inition of the Hellinger space. Whilst emphasis on small bins improves
fine fitting precision, suppression of larger bins leads to lower sensibility to
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severe shape variations. In the next section, this issue is addressed by look-
ing for better fitting strategies to boost the convergence property on LFPW.
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Figure 4.4: Performance on LFPW [Bel11] by comparing various feature descriptors and the
Hellinger feature map. NMEs are reported in parentheses.

4.5 Fitting Strategy
In face alignment, the initial shape is usually determined as the mean shape
of the training data scaled and translated w.r.t. the bounding box returned
from a face detector. In addition, random perturbation is imposed to the ini-
tial shapes in the training stage to take into account more harsh conditions
and accommodate imprecise initializations in the test phase. Asthana et al.
[Ast14] show that in the course of training the cascaded regressors, the vari-
ance of the shape displacement reduces gradually, approaching the ground
truth in the final stages. A similar tendency also exists in the fitting, which
is demonstrated side by side in Figures 4.2c and 4.2d. After just one single
iteration, the fitted landmarks are already very close to the ground truth.
Subsequent cascades till the last one mainly refine the positions rather
than correcting much discrepancy [Zhu15a]. Hence, a rational strategy is
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to use large local patches for feature extraction at early stages to allow for
more uncertainty, whereas at later stages, fine-scale local patches facilitate
accurate landmark localization.
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Apart from that, modern face detectors, even trained for frontal upright
faces, can tolerate a certain extent of in-plane rotation. On the other hand,
most widely used feature descriptors for face alignment operated on ordi-
nary image patches, e.g., standard SIFT, HOG and LBP, are not rotationally
invariant. The regressor must then model an extra degree of freedom, i.e.,
the angle between the upright features in the image and the rotated face.
This redundancy is mitigated by a two-pass strategy in fitting. In the first
pass, an approximate shape is computed with the trained regressor. After-
wards, the similarity transform to the upright mean shape is calculated and
this temporary shape is discarded. Finally, the regressor is applied in the sec-
ond pass to the features extracted from the pose-normalized image scaled,
rotated and translated subject to the similarity transform obtained in the
previous step. For training, in order not to double the number of cascaded
regressors through the second pass but still conform to the fitting scenario,
similarity transform is carried out at the beginning of each iteration, which
turns out to be effective in the test.

Figure 4.5 reveals a schematic comparison between the baseline and the
proposed fitting strategy.

(a) (b) (c)

Figure 4.5: Local image feature extracted from (a) the original image and the pose-normalized
image in (b) initial and (c) final cascade stages.
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4.5.1 Experiments and Discussion
In the last section, the RootSIFT feature loses a few percent in convergence
on the cumulative error curve while propelling the precision. Fortunately,
this loss is immediately reclaimed and improved with the adaptive local
patch size for different stages, which is demonstrated in Figure 4.6. The
capability of covering a larger vicinity of the initial landmarks seems to
be instrumental for challenging faces. The NME further decreases to the
state-of-the-art level with the compensation of in-plane rotation in both
learning and fitting. In Section 7.3.1, this fine-tuned landmark detector will
be extensively benchmarked.
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Figure 4.6: Performance on LFPW [Bel11] by combining better fitting strategies. NMEs are
reported in parentheses.

4.6 Summary
Following the design flow of the cascaded regression framework, the essen-
tial components are revisited and a superior regression algorithm, a local
feature descriptor and fitting strategies pursuing robust in-the-wild facial
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landmark localization are presented, which is summarized in Algorithm 2.
As is seen in Figure 4.7, progressive experiments stage by stage help to
identify the positive factors that get the best out of the baseline method
[Xio13]. Ultimately, the final product is a composition of straightforward
and essential improvements, yet strong enough to achieve top results over
more sophisticated systems. Nevertheless, this approach is non-excludable.
It is believed that incorporating these ideas in other state-of-the-art engines
may provide further boost for the face alignment performance. All in all, a
reliable module for 3D modeling within the 3D FSR processing chain of this
thesis is found in the proposed landmark detector.
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Figure 4.7: Overview of the performance gain through each proposed improvement on top of
the baseline evaluated on LFPW [Bel11]. NMEs are reported in parentheses.
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Algorithm 2: Training of the proposed cascade shape regression
method.

Input: Face images {Ii } and labeled landmarks
{

x?i
}

Output: Learned regressors
{

R(t ),b(t )
}

1 Detect face ROIs
2 Compute mean shape x̄

3 Perturb x̄ as initialization
{

x(0)
i

}
4 for t = 1 → T do

5 Normalize
{

x(t−1)
i

}
w.r.t. x̄ using similarity transform

6 Extract
{
ΦSIFT

(
Ii ,x(t−1)

i

)}
w.r.t. the ROI size subject to t

7 Compute the Hellinger mapping
{
ΦRootSIFT

(
Ii ,x(t−1)

i

)}
8 Conduct PCA on

{
ΦRootSIFT

(
Ii ,x(t−1)

i

)}
for dimensionality

reduction

9 Compute
{
∆x(t−1)

i

}
10 Initialize W(0) with Iid

11 for s = 1 → S do
12 Compute R̃(s) via Equation (4.13)

13 Update W(s) via Equation (4.14)
14 end

15 Update
{

x(t )
i

}
via Equation (4.4)

16 end
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5 3D Face Reconstruction From
Sparse Landmarks

This chapter elucidates the reconstruction of the dense 3D face model with
the aid of a set of sparse 2D facial landmarks detected with the method
from the previous chapter. This approach offers an automatic, efficient
and illumination-invariant alternative to the standard analysis-by-synthesis
3DMM fitting routine [Bla99], but at the same time suffers from inconsistent
correspondence of 2D and 3D landmarks at the facial contour due to head
rotation and localization ambiguity along the chin edge. After thoroughly
analyzing the cause of this issue, a novel algorithm with fast convergence
in mind is proposed to address the problem, facilitating adaptive landmark
correspondence and dynamic fitting for robust estimation of the 3D face
shape against pose variation.

The work presented in this chapter is mainly based on two of the author’s
publications [Qu14, Qu15d], and is organized as follows. An introduction to
the general shape and pose estimation is given in Section 5.1. Section 5.3
first elaborates on the encountered problem as the motivation before going
into details about the adaptive fitting framework. Finally, the work is con-
cluded in Section 5.4. General notation used in this chapter can be found in
Table 5.1.
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Table 5.1: Notation used in Chapter 5.

Symbol Description

D,Dx ,D y Scalar pixel value of the DT image as well as its gradient
images in x-direction and y-direction, given a pixel position

D,Dx ,Dy Vector of pixel values of the DT image as well as its gradient
gradient images in x-direction and y-direction, given a vector
of pixel positions

F Number of facial landmarks
M Number of principal vectors for shape variation
nz z-component of the normal vector
P Number of vertices in the 3DMM
η Regularization weight for ridge regression
Iid Identity matrix
Q Simplified notation for shape variation w.r.t. the landmarks
r 2D image coordinates of the facial landmarks
s 3D dense shape of the face
s̄ Mean 3D shape of the 3DMM
S Principal modes of shape variation of the 3DMM
y 2D landmark coordinates with the projection of the mean

3D shape subtracted
α 3DMM shape coefficients
Π Projection matrix
Φ Matrix for mapping all dense vertices to those corresponding

to the sparse landmarks

5.1 Introduction
Since the emergence of the 3DMM by Blanz and Vetter [Bla99], 3D face
modeling with statistical face models has attracted broad interest and seen
numerous applications in various facial analysis tasks, as is already intro-
duced in Section 2.2. So one may ask why new approaches for 3D face recon-
struction are required or why the existing methods are not or less applicable
here. The motivation for that is the low quality and unconstrained condi-
tions of the images. For instance, 3DMMs are originally intended for HR
faces to allow for high-quality modeling in computer graphics [Bla99]. Fit-
ting them to in-the-wild images still remains an open challenge according to
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the recently published PhD thesis of Hu [Hu15, p. 86]. Also, the small input
size of LR images limits the allowed depth of DNN architectures, which
could support the reconstruction. Upsampled LR faces lead to a significant
performance drop as well [Her16].

LM–ICP

3DMM Landmark Annotations

Figure 5.1: Overview of the proposed 3D face shape reconstruction algorithm using sparse
landmarks. Blue and red points denote inner and candidate contour landmarks respectively.

Consider that for 3D FSR, 3D models primarily serve as a tool for finding
accurate shape correspondence of the HR training and LR input data in
terms of the real facial texture. The process of the analysis-by-synthesis
3DMM fitting [Bla99, Rom05], which models shape, texture and lighting
parameters and solves for them simultaneously with gradient descent,
results in prohibitively slow convergence and local minima for the actually
unnecessary estimation of the albedo. To this end, the optimal strategy is to
recover merely the 3D shape of the face. Unlike the analysis-by-synthesis
framework, for lack of causal relation between the dense shape and the
appearance in the whole face region, the fiducial facial landmarks are com-
monly leveraged as auxiliary points to guide the face shape reconstruction.
Using these 2D landmarks manually labeled, or automatically localized as
in Chapter 4, rigid motion and 3DMM shape parameters can be estimated
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with the help of the correspondence of these points on the 3D model. In
some existing work [Ald10a, Bla04, Fag06, Jia05, Rar11], a fixed mapping
from 2D to 3D is employed. However, this assumption is shown to be valid
only for faces close to frontal view, since in the less visible half of the face,
the 2D contour landmarks deviate greatly from the true 3D location because
of self-occlusion in non-frontal poses. This phenomenon is illustrated in
Figure 2.4 and partially discussed in Section 2.2.3.

This work goes a step further to account for ambiguous landmark positions
along the facial contour for both halves of the face. In the course of shape
reconstruction, fixed (inner) and flexible (contour) landmarks are distin-
guished and separately treated. Instead of directly minimizing the distance
of the corresponding landmarks, Distance Transform (DT) is first applied to
the line segments bounded by the 2D contour landmarks. At the same time,
the proper 3D vertices can be chosen from a small candidate set. Subse-
quently, together with the fixed points, the projected distance is minimized
by the Levenberg–Marquardt Iterative Closest Point (LM–ICP) algorithm and
the 3DMM shape coefficients as the optimization parameters are obtained
within a few iterations. The overall workflow of the proposed framework
is depicted in Figure 5.1 and the main contributions of this chapter are
summarized as follows:

• It is argued that not only the self-occluded landmarks on the facial
contour, but also the visible ones are susceptible to 2D–3D correspon-
dence discrepancy.

• By formulating the 3D face shape reconstruction as a general-purpose
LM–ICP optimization problem incorporated with DT, a robust and
unified solution for fixed and flexible landmark mapping is given
without the loss of efficiency.

• A fast and effective method is presented to estimate the 3D silhouette
vertices online in LM–ICP iterations.

5.2 Landmark-Based Shape Reconstruction
3DMMs [Bla99], built from 3D laser scans of several hundred subjects, usu-
ally consist of tens of thousands of vertices to densely represent human faces,
resulting in a morphable model of 3D geometry and albedo. Contrary to
conventional 3DMM fitting algorithms that reveal photo-realistic rendering
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at the cost of computational time, landmark-based methods are only inter-

ested in the recovery of the 3D geometry s = [
x1, y1, z1, . . . , xP , yP , zP

]> ∈R3P

using incomplete sparse points, where the number F of the facial landmarks
is much smaller than that of the 3D vertices, i.e., F ¿ P .

5.2.1 Landmark Mapping for 3D Models

Figure 5.2: Annotation of the 68 facial
landmarks on the BFM [Pay09].

Figure 5.3: Manual feature point and
directional annotation in [Bla04].

In order for this simplified 3D reconstruction pipeline to work, the map-
ping of the fiducial facial feature points from 2D images to the 3DMM
should be known. In reality, though, the first and foremost step is to select
a decent landmark annotation scheme. The reason is shown in an exem-
plary way in Figure 5.4. It is obvious to see in the example face images from
six widely used public datasets, i.e., Annotated Faces in the Wild (AFW)
[Zhu12], Labeled Faces in the Wild (LFW) [Dan12, Hua08], LFPW [Bel11],
Multi-PIE [Gro10], FaceWarehouse [Cao14b] and Helen [Le12], the creators
follow completely different strategies when labeling the face data for their
own purposes. For instance, Zhu and Ramanan [Zhu12] need merely few
reliable feature points to estimate the head pose, while to make possible
the high-quality editing of portraits, tight and dense landmarks as in ASM
[Coo92] is essential for Le et al. [Le12]. This leads to diverse markups of
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non-interchangeable semantic meaning of the features1, with the number
ranging from six to a total of 194. Regarding 3D face modeling in this the-
sis, the contour of the face is highly important for constraining the general
shape of the face. Also, Helen’s markup is not optimal due to the compu-
tational burden for its large number of landmarks and lack of annotation
on the tip of the nose, which might help to infer the depth for non-frontal
faces. Therefore, the 68-point scheme in Multi-PIE is chosen. Compared to
that of FaceWarehouse acquired under controlled conditions, it is one of the
standard formats for in-the-wild images in the face alignment literature, as
Sagonas et al. [Sag13a] re-annotate the AFW, LFPW and Helen datasets with
this markup.

(a) (b) (c)

(d) (e) (f )

Figure 5.4: Example face images from six publicly available datasets with different landmark
annotations: (a) AFW [Zhu12] with 6 points, (b) LFW [Hua08] with 10 points [Dan12], (c) LFPW
[Bel11] with 29 points, (d) Multi-PIE [Gro10] with 68 points, (e) FaceWarehouse [Cao14b] with
74 points, (f) Helen [Le12] with 194 points.

1 Their inherent relationship can still be exploited [Zha15].
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These 68 landmarks are then manually labeled on the 3DMM, specifically,
the Basel Face Model (BFM) [Pay09] in this work. To ensure precise anno-
tation, the labeling procedure is done on all of the ten example 3D faces in
BFM, and subsequently averaged in position to get the index of the near-
est vertex. Symmetry is also taken into account for the landmarks on left
and right face halves as well as for the ten points in the middle of the face.
The final result is superimposed on the rendered mean face in Figure 5.2.
Note that this offline annotation process is required just once for each land-
marking scheme and 3DMM dataset. Online labeling for the directional
constraints depicted in Figure 5.3 as for [Bla04] is not necessary.

5.2.2 Shape and Pose Estimation

With the fixed landmark mapping to hand, denotedΦ ∈RP×F , an efficient
method for shape parameter estimation under unknown pose is developed.
Obviously, in an ideal situation, the 2D facial landmarks r ∈R2×F are the
2D projection of the corresponding vertices on the 3DMM, which can be
expressed as

r =ΠΨ3×P (s̄+Sα)Φ, (5.1)

where s̄ ∈ R3P and S ∈ R3P×M are the mean vector and principal varia-
tion matrix of the shape in the 3DMM respectively. The Ψ3×P (·) operator
reorders the 3D point entries and outputs a 3×P matrix. Since real-world
faces are in general not aligned with the 3D model, it is essential to com-
pute the non-trivial affine camera projection matrixΠ ∈R2×3 representing
scaling, rotation and translation.

The problem of Equation (5.1) with two unknownsΠ andα is decomposed
into two interleaved procedures, i.e., estimation of the head pose, or the
camera projection matrix Π, with the 3D–2D landmark correspondence,
and 3D shape recovery using the obtained pose information.

Pose Estimation

The task of finding the camera projectionΠ given the point correspondence
of 2D and 3D landmarks resembles the traditional computer vision problem
of computing the unknown linear point mapping from world to image. Thus,
the Gold Standard Algorithm presented by Hartley and Zisserman [Har04]
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can be adopted here, too. With x ∈R2F and X ∈R3F as the vectorized 2D and
ground truth 3D coordinates of the facial landmarks, the desired camera
matrixΠ should fulfill

xi =ΠXi (5.2)

for each landmark i . If x̃ ∈R3×F and X̃ ∈R4×F are the homogeneous coor-
dinates of the respective points, and given more than four such correspon-
dences, there exists an over-determined solution of the normalized matrix
Π̃ ∈R3×4 with MLE minimizing the reprojection error∑

i

∥∥x̃i − Π̃X̃i
∥∥2

2 (5.3)

subject to the affine constraint under the assumption of Gaussian measure-
ment error. Stacking the individual correspondences in Equation (5.3) into
a matrix representation of linear equations yields[

X̃> 0
0 X̃>

][
Π̃

>
[1,:]

Π̃
>
[2,:]

]
=

[
x̃>[1,:]
x̃>[2,:]

]
, (5.4)

where the subscript [ j , :] denotes the j th row of the matrix. This equation
system can be solved straightforwardly using least squares. Afterwards,
Singular Value Decomposition (SVD) is applied to find the best-fit rotation
matrix. Note that the 2D and 3D data are normalized to approximately the
same range to guarantee numerical stability [Har04].

Alternatively, Blanz et al. [Bla04] linearize the scaling, rotation and trans-
lation as vectors and treat them as ordinary principal components of the
shape variation S to allow for a closed-form solution.

Shape Estimation

Based on the 3D to 2D landmark projection in Equation (5.1) and assuming
global zero-mean Gaussian white noise in the presence of 3DMM general-
ization error, the MAP formulation of the objective function is

E(α) = min
α

{‖ΠΨ3×P (Sα)Φ− (r−ΠΨ3×P (s̄)Φ)‖2
2 +η‖α‖2

2

}
(5.5)

= min
α

{∥∥Qα−y
∥∥2

2 +η‖α‖2
2

}
. (5.6)
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5.3 Pose-Invariant Shape Reconstruction

Here simplification is made by substituting the projected shape variation
regarding S with Q and the mean-normalized 2D landmark coordinates r
with y. The reason for adding the regularization term η‖α‖2

2 is that other-
wise it tends to minimize the absolute projection error whenever possible,
yielding overfitted and perceptually unrealistic shape coefficientsα [Hoe70].
Finally, by setting

∇∇∇αE = 0, (5.7)

the solution can be obtained in a regularized least squares fashion

α= (
Q>Q+ηI

)−1
Q>y. (5.8)

In practice, as none of the shape and pose parameters is known at the
beginning of the iterating process, the mean shape of the 3DMM withα= 0
is used for the Gold Standard Algorithm. Despite the rough initialization,
typically the entire procedure is able to converge very fast.

5.3 Pose-Invariant Shape Reconstruction
Following the key idea introduced in the previous section for dense 3D
face shape recovery using feature points localized by off-the-shelf landmark
detectors, this section details fully automatic approaches to achieve pose-
invariant reconstruction. To start with, the necessity of facilitating a flexible
2D–3D mapping of landmarks is argued and a novel algorithm that can
effectively deal with self-occlusion and inaccurate landmark localization at
the facial contour is proposed.

5.3.1 The Crux of Contour Landmarks

Self-Occlusion

According to Section 2.2.3, in the previous efforts towards automated 3D
shape reconstruction by means of facial feature point detection, either they
are exclusively applicable to frontal faces, or special measures must be
taken to mitigate this landmark deviation issue that is raised by the gap in
representation power between 2D face alignment and 3DMMs. Interestingly,
as one of the original and most influential 2D frameworks, the AAM is a
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5 3D Face Reconstruction From Sparse Landmarks

sibling of the 3DMM, which is as well a joint statistical model of shape and
texture to fit an input image in an analysis-by-synthesis manner. A major
practical difference lies in the dimensionality of the feature points, as the
number of 3DMM vertices is orders of magnitude larger than that of the
hand-labeled salient landmarks in AAMs. Hence, the distinction in the
shape model imposes a great impact on the appearance model. 3DMMs
represent the texture per vertex. Thanks to the dense sampling, the whole
facial texture can be realistically rendered and self-occluded vertices are
handled by nature with the 3D texture. On the other side, AAMs employ the
whole image inside the convex hull of the landmarks while CLMs exploit the
image structure surrounding the landmarks. That means, AAMs and CLMs
only take advantage of 2D statistical texture models by design. Therefore, as
can be observed in Figure 5.5, the automatically detected 2D facial contour
landmarks in red differ remarkably from the respective 3D ground truth
vertices in green. Obviously, with increasing yaw angle, huge deviation
is seen in the self-occluded half of the face, since the 2D texture features
are not able to infer the hidden 3D structure and only the detection of the
face silhouette is possible, whereas the real invisible jawline of non-frontal
faces turns out to be intractable, even with a 2.5D extension of the AAM
[Mat07]. On the contrary, 3DMMs offer a much denser representation. Both
geometry and albedo information is tightly coupled into the 3D vertices,
which always correspond to the same place on the face independently from
the pose variation.

(a) (b) (c) (d)

Figure 5.5: Correspondence errors of 2D (red) and 3D (green) facial contour landmarks w.r.t.
yaw angles of (a) 0°, (b) 10°, (c) 20° and (d) 30°.
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5.3 Pose-Invariant Shape Reconstruction

To counteract the inappropriate fixed 2D–3D mapping scheme, an intuitive
reconstruction method is first provided, which is illustrated in Figure 5.6.
For non-frontal poses, the landmarks under potential occlusion situation
are excluded from the pipeline introduced in Section 5.2.2. In this way,
the 3D face shape is recovered on the basis of the remaining landmarks by
optimizing the same objective function in Equation (5.6). Furthermore, this
closed-form solution can be easily extended to multiple frames to compen-
sate for the ignored feature points [Qu14].

(a) (b) (c)

Figure 5.6: 3D reconstruction using visible landmarks for non-frontal faces with yaw angles of
(a) 10°, (b) 20° and (c) 30°.

Correspondence Ambiguity

In spite of the continuous pursuit of pose-invariant landmark-based model
fitting in the facial analysis society, all of the focus has been devoted to
solving the occlusion problem. Nevertheless, after careful review of the
original cause, the surprising outcome is that the issue related to the facial
contour is more than just self-occlusion alone. A second view on Figure 5.5
reveals that the visible 2D and 3D contour landmarks are also affected by
ambiguous correspondence, which again boils down to the 2D landmark
localization routine.

It has long been demonstrated in the face alignment literature that the
landmarking difficulty and precision of feature points in different parts of
the face may vary considerably [Bel11], and the outer landmarks pose a
larger challenge than the inner ones [Yan13a]. Most authors attribute it
to pose, occlusion, vague boundary between foreground and background,
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5 3D Face Reconstruction From Sparse Landmarks

etc. Irrespective of these extraneous causes, it is claimed in this thesis that
intrinsic factors like the localization mechanism play a major role as well.

While detecting or regressing contour landmarks, change of the image gradi-
ent perpendicular to the jawline or the silhouette offers helpful information
for determining the overall profile of the curve. However, unlike for the
inner facial components such as the center of the pupil or the corner of the
mouth, it lacks distinct image features to tell the absolute position on the
contour, leading to the fact that those landmarks can freely move along the
curve to a certain extent. Due to this ambiguity, an exact correspondence
of the contour landmarks cannot be necessarily guaranteed. This implies
that even in the frontal view, a fixed 2D–3D mapping scheme could well
result in erroneous correspondence, which can be verified in Figure 5.5a.
Unfortunately, authors in 2D and 3D areas are so far unaware of this crucial
phenomenon that may influence both design and evaluation of 2D and 3D
fitting approaches.

5.3.2 Fast Detection of Silhouette Vertices
After identifying the major cause that hinders landmark-based shape recon-
struction, the question now arises as to how to alleviate these two issues
effectively and efficiently. Discarding the occluded 2D landmarks during
the fitting [Qu14] to combat self-occlusion in Section 5.3.1 is not considered
here due to loss of valuable information in the first place. Furthermore,
the visible landmarks cannot be ignored for the second situation, either.
Otherwise the face shape would be totally unconstrained. Hence, a dynamic
adaptation scheme for the annotated vertices of the contour landmarks
must be conceived.

Recall that the 2D landmarks are always located at the boundary of the
rotated faces, which varies w.r.t. shape and pose variations. A straightfor-
ward approach is to compute the boundary vertices using 3D geometric
constraints. Mathematically, assuming a weak perspective camera model,
the tangent plane of those vertices on the 3D face surface is perpendicular
to the image plane

z = zc , (5.9)

where zc is a constant, which is equivalent to the fact that the normal vector
of silhouette vertices is parallel to this plane. In other words, the projection
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onto the z-axis of the world coordinate system is equal to zero. It is then an
intuitive idea to treat those satisfying

|nz | < t (5.10)

as silhouette points [Rom05], where t stands for the upper bound for the
absolute z-component of the normal vector |nz |. By carefully choosing
the threshold t and an appropriate face region, an example detection is
shown in Figure 5.7d. At first sight, this method seems to give legitimate
results. However, a universally valid threshold for all cases is hard to find,
leaving the number of the selected vertices unstable. Secondly, the spatial
distribution is uncontrollable, too. Both nuisance factors make it extremely
challenging to derive a robust closed-form solution in connection with the
facial landmarks. As a last point, the high computational effort of densely
evaluating the normals rules out the possibility of online calculation within
iterative methods, e.g., LM–ICP in this thesis.

(a) (b) (c) (d)

Figure 5.7: Fast detection of silhouette vertices using (a) a few annotated candidates. (b) and
(c) show the same result in different views compared to the direct approach in (d).

On the basis of this observation, though, a fast approach free of the afore-
mentioned drawbacks for specifying the closest 3D silhouette vertices to the
2D landmarks can be presented. First, starting from each original contour
landmark mapping on the 3D model, a maximum of 20 extended vertices
towards the center of the face are labeled offline. During the fitting process,
the ones with the smallest |nz | on each horizontal line are chosen. Despite
following the principle of the direct approach [Rom05], the additional path
constraints reduce the number of evaluated vertices while calculating the
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5 3D Face Reconstruction From Sparse Landmarks

normals by two orders of magnitude to approximately 100. Moreover, the
same number of 3D silhouette vertices as 2D landmarks with a uniform
spatial distribution is guaranteed. An overview of the proposed silhouette
detection method is illustrated in Figure 5.7. In contrast to Figure 5.7d, the
vertices in Figures 5.7b and 5.7c preserve the smoothness and constant
distance of the virtual contour landmarks.

Note that these vertices, now like those in the visible half of the face, are still
subject to positional uncertainty along the path of 2D contour landmarks.
The adaptive fitting in Section 5.3.3 addresses this point.

5.3.3 Adaptive Contour Fitting
In consequence of the apparently non-isotropic uncertainty w.r.t. the corre-
spondence of contour vertices and landmarks (see Figure 5.5a), 3D shape
recovery by separately modeling noise variances for each landmark [Ald10b]
is not applicable. Since deviation of the 3D vertices detected in Section 5.3.2
should not be penalized, as long as they stay on the curve formed by the 2D
landmarks, it makes sense to exploit the continuous curve instead of the
discrete landmarks when reconstructing the shape. As a side effect, though,
the coupled correspondence of 2D–3D contour feature points is lost, as
all 2D coordinates on the curve are now eligible to give an optimal match.
The new 2D features are exemplarily depicted in Figure 5.8a. Note that the
contour landmarks are plotted solely as a reference. The actual features are
just the connected edges in between.

In order to better understand the impact of the modified 2D features on the
reconstruction algorithm in Section 5.2.2, it is helpful to start from scratch
and revisit the basic formulation in Equation (5.6) to seek the solution.
Assuming that the 2D–3D correspondence of the inner facial landmarks is
detected plausibly by virtue of their informative image features, separating
all landmarks in Equation (5.6) into two disjoint subsets of fixed and contour
ones according to Figure 5.8 leads to

E(α) =
∥∥∥∥[

Qcontour

Qfixed

]
α−

[
ycontour

yfixed

]∥∥∥∥2

2

+η‖α‖2
2 . (5.11)
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An unknown mapping denoted φ(i ) = j which selects, for each 3D contour
vertex i , the corresponding 2D pixel j with the shortest distance, is now also
a part of the minimization process

E(α,φ) =∑
i

∥∥Qiα−yφ(i )
∥∥2

2 +
∥∥Qfixedα−yfixed

∥∥2
2 +η‖α‖2

2 (5.12)

E(α) =∑
i

min
j

{∥∥Qiα−y j
∥∥2

2

}
+∥∥Qfixedα−yfixed

∥∥2
2 +η‖α‖2

2 . (5.13)

As a result, estimation of the shape parameter α is formulated as a “mini-
mization of minimization” problem

min
α

{∑
i

min
j

{∥∥Qiα−y j
∥∥2

2

}
+∥∥Qfixedα−yfixed

∥∥2
2 +η‖α‖2

2

}
. (5.14)

(a) (b)

Figure 5.8: (a) Improved 2D features with connected contour lines and (b) the realization using
the Bresenham’s algorithm [Bre65].

A common practice for solving such correspondence problem is the Iterative
Closest Point (ICP) algorithm, which computes φ given fixedα and updates
α on the basis of φ in a suboptimal alternating manner. Fitzgibbon [Fit01]
addresses the deficiency with the LM–ICP algorithm, which tolerates a larger
basin of convergence and allows for a closed-form solution and speedup.
The Levenberg–Marquardt (LM) optimization procedure is in particular
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suited to the cost function E (α) in Equation (5.13) which is a sum of squared
residuals. However, like conjugate gradient and Gauss–Newton, the require-
ment for first derivatives seems intractable for the discrete minimization
over j within the summation in Equation (5.14). The trick to circumvent
this difficulty is to apply DT to the 2D features, as shown in Figure 5.8b.

(a) D (b) Dx (c) Dy

Figure 5.9: (a) An example DT image of Figure 5.8b with its derivatives in (b) x-direction and
(c) y-direction.

On the 2D image lattice x, DT assigns each image pixel with the distance to
its closest point on the contour lines

D(x) = min
j

∥∥x−y j
∥∥

2 . (5.15)

Specifically, to retrieve all discrete contour pixels as binary code on a bitmap
image, the Bresenham’s algorithm [Bre65] is utilized, which counts as one
of the earliest computer graphics algorithms to rasterize the line drawing
using cheap operations. Once the DT image of the 2D contour is efficiently
computed, it is reusable for the entire reconstruction procedure by virtue
of its independence of the model parameter α. The Bresenham’s and DT
outputs of Figure 5.8a are illustrated in Figures 5.8b and 5.9a respectively.
To make it possible for the matched vertices to be located above the top
contour landmarks on each side, the first and last line segments are extended
upwards (c.f . Figures 5.8a and 5.8b).
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The merit of DT lies in that it precomputes the distance energy as a discrete
“field” and the mapping function φ(i ), or the minimization over j in the cost
of Equation (5.12), then vanishes and is thereby simply replaced with

D(Qiα) = min
j

∥∥Qiα−y j
∥∥

2 . (5.16)

Integrating Equation (5.16) into Equation (5.13) and vectorizing the DT over
all contour vertices i yields

E(α) = ‖D (Qcontourα)‖2
2 +

∥∥Qfixedα−yfixed
∥∥2

2 +η‖α‖2
2 . (5.17)

Rather than the sum of squares E(α) in Equation (5.17), LM–ICP demands
the stacked vector of residuals

e (α) =
 D (Qcontourα)

Qfixedα−yfixedp
ηα

 . (5.18)

Differentiating the first entry in Equation (5.18) analytically subject to the
shape parameterα is possible with the chain rule [Rom05]

∂Di

∂α j
= ∂D

∂x
fi ·

∂fx
i

∂α j
+ ∂D

∂y
fi ·

∂fy
i

∂α j
, (5.19)

where fi = Qiα, and thus ∂D
∂x fi = Dx (Qiα) and ∂D

∂y fi = D y (Qiα), i.e., the
pixel values of the precomputed gradient images w.r.t. x-direction and y-
direction in Figures 5.9b and 5.9c respectively, are applied to calculate the
discrete derivatives of the contour cost ∇∇∇αD (Qcontourα). The target Jacobian
matrix Ji j = ∂ei

∂α j
is then

J =
Dx (Qcontourα) ·Qx

contour +Dy (Qcontourα) ·Qy
contour

Qfixedp
ηIid

 , (5.20)

where the superscript in Qx
contour and Qy

contour stands for the first two rows
in the matrices. The closed-form Jacobian matrix dramatically reduces
reconstruction time in comparison with finite difference approximation.
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The final estimate of the 3DMM shape coefficientsα is solved for iteratively
by means of the LM algorithm [Fit01], which is a damped version of Gauss–
Newton [Mad04] combined with gradient descent for function minimization.
In each iteration k, the first-order approximation of the objective function
in Equation (5.17) w.r.t. the shape increment∆α gives

E(α+∆α) ≈ e>e+∆α>J>e+∆α>J>J∆α. (5.21)

Differentiating this equation subject to∆α and equating with zero reveals

∇∇∇∆αE(α+∆α) = J>e+ J>J∆α= 0, (5.22)

so that the Gauss–Newton solution is

∆α=−(
J>J

)−1
J>e (5.23)

providing the full-rank Jacobian matrix J. Alternatively, gradient descent
defines a factor λ to control the distance along the gradient direction in

∆α=−λ−1J>e (5.24)

to ensure the reduction of E with a sufficiently large λ, which is not neces-
sarily the case with Gauss–Newton in general. By contrast, the convergence
in the proximity of the stationary point may be slow compared to that of
Gauss–Newton where the approximation holds. Therefore, a simple strategy
that takes advantage of the strengths of both sides in the form of

∆α=−(
J>J+λIid

)−1
J>e (5.25)

is devised in the LM algorithm [Lev44, Mar63], which can interpolate flexibly
using the damping parameter λ. Finally, the shape update is obtained by

α(k) =α(k−1) +∆α(k) (5.26)

=α(k−1) −
(
J(k)>J(k) +λIid

)−1
J(k)>e(k). (5.27)

Discussion

Romdhani and Vetter [Rom05] also employ LM–ICP [Fit01] to simultane-
ously find the 2D–3D correspondence and minimize the error function in
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their MFF. Major differences that distinguish the contribution of this chap-
ter from theirs are: (i) The contour is an indispensable 2D feature for the
presented 3D shape reconstruction, while in MFF, it is merely one of the sev-
eral supplementary features, e.g., textured edges and specular highlights, to
the analysis-by-synthesis framework [Rom03]; (ii) 2D contour landmarks in
both face halves are exploited here, whereas MFF detects silhouette edges in
the occluded face half; (iii) The proposed fast detection of silhouette vertices
ideally facilitates online update within LM–ICP iterations. By comparison,
direct global estimation in MFF can be done only once on the initial shape
owing to performance reasons.

5.4 Summary
This chapter revisits the general framework of 3D face shape reconstruc-
tion from automatically localized 2D facial features and demonstrates the
importance of properly modeling the entire contour landmarks. Instead of
using the individual landmark positions, the connected curve feature lever-
aging DT and LM–ICP is studied, rendering the fitting algorithm flexible to
tolerate discrepancy of 2D–3D correspondence, yet constrained enough to
achieve robustness along the facial contour independent of pose variation.
On the other hand, fast detection of silhouette vertices allows to keep the
computational cost of the complex optimization process at a very low level.
The workflow is summarized in Algorithm 3.

It is arguable whether the recovered 3D face solely based on less than a
hundred feature points without any texture information is adequate for
the following 3D FSR module. Nevertheless, in [Has15], Hassner et al. fit a
single, non-deformable 3D model onto the face images and conduct pose
normalization that effectively boosts the FR performance. Similarly, for the
ill-conditioned LR data, the employed landmark-based method is an ideal
compromise between efficiency, accuracy, and—finally but importantly—
flexibility, since manually correcting a few 2D landmarks is always easier
than manipulating the analysis-by-synthesis 3DMM fitting procedure.
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5 3D Face Reconstruction From Sparse Landmarks

Algorithm 3: Adaptive 3D face shape fitting from 2D facial landmarks
robust to pose variation.

Input: Facial landmarks and a 3DMM with annotations for inner and
candidate contour vertices

Output: 3DMM shape coefficientsα
1 Compute the DT image and its gradient images w.r.t. the face ROI

2 Initializeα(0) with frontal mean 3D shape
3 for k = 1 → K do
4 Estimate camera projection with the Gold Standard Algorithm
5 Compute normals of the extended contour vertices
6 Select silhouette vertices with the smallest |nz |
7 Compute the residual vector e(k) via Equation (5.18)

8 Compute the Jacobian matrix J(k) via Equation (5.20)

9 Perform LM to compute shape update∆α(k) via Equation (5.25)

10 Update current shapeα(k) via Equation (5.26)
11 end
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6 3D Patch-Based Facial
Texture Super-Resolution

As the last and most important component of the proposed framework, the
FSR algorithm in this chapter should be capable of intelligently utilizing
the 3D face structure recovered in the previous module and simultaneously
avoid or better ameliorate the accompanying shortcomings in order to
faithfully super-resolve the LR facial texture. In this sense, a resolution-
aware approach for aligning the HR training faces with the input LR image
is devised. By extending the 2D LR image formation process to the 3D
domain, the classic Lucas–Kanade algorithm is exploited to improve the
precision of the error-prone 3D model fitting on LR images. The established
correspondence between the input image and 3D training textures then
facilitates reconstruction of HR patches directly on the mesh, which can be
employed to render realistic frontal faces for follow-up modules, e.g., FR.

The content of this chapter is mainly based on two of the author’s publi-
cations [Qu15b, Qu17], and is organized as follows. After the introduction
in Section 6.1, the workflow for training data preparation is described in
Section 6.2. Section 6.3 first presents a 3D-assisted 2D FSR method as a pro-
logue and motivation of the novel 3D framework. Finally, a brief summary
is given in Section 6.4. Common notation can be found in Table 6.1.
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Table 6.1: Notation used in Chapter 6.

Symbol Description

m Upscaling factor for SR
P Number of vertices in the 3DMM
Qs Number of principal vectors for shape variation
Qt Number of principal vectors for texture variation
s Scaling factor for the 3D face shape
H LR image representation of 3D faces
I HR image representation of 3D faces
Iid Identity matrix
k Blurring kernel of dimension K ×K
P′ Diagonal matrix of PCA eigenvalues of the training textures
R 3D rotation matrix
s Dense 3D shape of the face
s− Subsampled dense 3D shape of the face
s̄ Mean 3D shape of the 3DMM
S Principal modes of shape variation of the 3DMM
Sm Matrix representation for downsampling of factor m
t Dense 3D texture of the face
t− Subsampled dense 3D texture of the face
t̄ Mean 3D texture of the 3DMM
t′ Intermediate HR texture with FS–MAP
t2D 2D translation vector
T Principal modes of texture variation of the 3DMM
T′ Principal modes of texture variation of the training textures
Tk Toeplitz matrix representation of k
W (s−;θ) Warping of the sparse 3D shape s− parametrized by θ
x HR image of dimension mN1 ×mN2

z Input LR image of dimension N1 ×N2

α 3DMM shape coefficients
β 3DMM texture coefficients
β′ Texture coefficients of the training textures
θ Warping vector for global and local transformations
ω 3D rotation vector
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6.1 Introduction
Contrary to generic learning-based SR normally with no extra need of regis-
tration, FSR can leverage shared information of similar facial features in a
more restricted domain, achieving higher hallucination quality when prop-
erly aligned [Wan14a]. To this end, the question regarding the impact of
various alignment techniques on the final FSR result may arise. To answer
the question, the performance of the reviewed literature in Section 2.3.3
categorized into traditional and modern 2D approaches as well as the 3D
ones is shown to more or less conform to the registration behind, and the
general understanding of the capability of each method family listed in
Table 6.2, too. Obviously, 3D fitting is ideal to compensate for the complex
global motion, local deformation and pose variation of human faces.

Table 6.2: Summary of the capability of different alignment methods.

2D basic 2D advanced 3D

Global motion 3 3 3
Local deformation 7 3 3
Out-of-plane rotation 7 7 3

Then, given the dense 3D face model from the preceding pipeline, what is
the best way to put the LR input face and the HR training data into corre-
spondence? In this work, a fundamentally different scheme to the prior art
[Mor09] is presented, which does not interpolate and map the LR image
onto the canonical coordinates to prevent unnecessary degradation to the
already poor LR texture. As such, 3D modeling can be straightforwardly
utilized as a registration tool to render the 3D training textures as 2D images
for conventional 2D FSR in the sequel.

In order to facilitate pure 3D FSR, a novel framework is proposed, of which
the basis is a proper reinterpretation of the observation model from the
mesh surface to the LR image plane. Moreover, fitting 3D models to 2D
images is a challenging task, and the LR input could make things even
worse for lack of high-frequency facial details. With this in mind, the classic
Lucas–Kanade algorithm [Bak04a] can then be naturally extended to the

85



6 3D Patch-Based Facial Texture Super-Resolution

3DHR–2DLR scenario for robust fitting refinement in terms of both global
motion (rotation, scaling and translation) and local deformation (3D shape)
with the aforementioned imaging model. Patch-based FSR is then directly
conducted on the mesh surface to give complete and dense HR texture (even
for self-occluded regions), which can be deployed to render frontal face
images to alleviate FR across pose. Highlights of this work are summarized
as follows:

• A resolution-aware 3D alignment without interpolating the LR facial
texture is devised.

• To the best of the author’s knowledge, this is the first FSR algorithm
that integrates the LR image formation model into a robust 3D patch-
based facial texture SR method.

• The 3D extension of the Lucas–Kanade algorithm combined with
a statistical texture model greatly improves fitting and FSR on the
ill-posed LR images.

• Patch-based 3D FSR on the mesh naturally fills the hidden facial
texture caused by large head poses.

6.2 Resolution-Aware HR–LR Alignment
Employing 3D modeling in learning-based FSR can remedy extra degrees of
freedom in comparison with 2D registration, but the principal idea remains
the same, i.e., bring the HR training data as close as possible to the LR face
so as to maximize similarity during SR inference. There are actually two
possibilities to serve this purpose. After the 3D model of the LR test image
is recovered, the intuitive idea would be to extract the LR texture from the
image, and subsequently project it to a canonical frontal reference frame,
which is the standard routine for many 2D or 3D face analysis methods, e.g.,
AAMs [Coo98]. Mortazavian et al. [Mor09] (see Figure 2.6) follow the exact
same concept and define a texture coordinate frame that is independent
of the initial subject’s shape and pose [Ten07]. Then, the pixel-based MAP
algorithm of Baker and Kanade [Bak02] is performed on the 2D map to
super-resolve the facial texture. The advantage of this approach lies in that
merely the input image needs to be warped during the test time, while the
set of training data can be transformed to the reference space offline.
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(a) (b) (c)

(d) (e) (f )

Figure 6.1: Example illustration for the impact of interpolating LR images: (a) a non-frontal LR
input face, (b) the warped face of (a) after being projected onto the canonical frame, (c) the real
LR image of the frontal face, (d) HR ground truth of (c), (e) FSR result of (b), (f) FSR result of (c).

However, it is argued in this thesis that the convenience comes at the cost
of image quality loss. To explain the problem in detail, a closer look at the
texture extraction in 3D modeling is taken. The polygon mesh of the fitted
model is first projected to the image plane. Next, because the 3D texture
is stored on the vertices in the 3DMM, which are scattered in the image
with subpixel shifts, their values have to be interpolated non-uniformly
from the image pixels. As a consequence, there is a certain degree of image
deterioration resulting from the interpolation. It is known that in the context
of SR, loss of LR details is critical, which is demonstrated in Figure 6.1 on the
basis of the Multi-PIE images [Gro10] from multiple views. A non-frontal
LR face in Figure 6.1a warped onto the canonical grid following a similar
registration principle as in [Mor09] is illustrated in Figure 6.1b. Compared
to the original frontal face in Figure 6.1c, the interpolated version lacks in
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contrast and loses some details, e.g., of the eyes and nostrils. The subtle
differences, though, are shown to have profound influence on the FSR
results, where Figure 6.1e from the interpolated input Figure 6.1b has clearly
the tendency towards the mean face. Contrarily, Figure 6.1f shares more
personal characteristics with the HR ground truth in Figure 6.1d.

3D Training Textures

Shape-Registered Textures

3D-Registered Textures

2D Training Images

α

{s,ω,tu ,tv }

Figure 6.2: Overview of the proposed resolution-aware alignment for FSR.

Inspired by Dedeoǧlu et al. [Ded06], who reverse the AAM fitting process
for LR images to avoid warping the LR data, a resolution-aware approach
is presented in Figure 6.2, which inversely warps all training HR textures
and directly registers them with the target-specific 3D shape. In particular,
the 3D shape of each training face is first recovered in the offline stage for
preparation of the 3D training set (above the dotted line in Figure 6.2). Only
the textures on the vertices of the 3DMM extracted from the 2D images
based on the 3D correspondence is stored, while the 3D shape information
is discarded. In contrast, given a test LR face, its 3DMM shape coefficients
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α and pose parameters {s,ω,tu ,tv } are simultaneously estimated, while the
LR texture is not extracted.

The alignment procedure in which the training 3D textures are projected
onto the 3D shape of the test image yields identical face shape to the ref-
erence with different HR training textures. If the newly generated shape-
registered textures are compared with the original data, it is obvious that
the shape of the eyes and eyebrows as well as the thickness of the lips in
the samples are already adapted to the input image respectively, while the
actual textures stay unaffected. Subsequently, the estimated pose parame-
ters for rotation, scaling and translation are imposed on the shape-registered
textures, revealing the fully 3D-registered textures. As a result, it ensures that
independently from the identity and pose, roughly the same part of the face
is located at the same position in the image, which fulfills the prerequisite
for FSR. Note that for learning-based FSR, the HR–LR training set is built
from the HR textures, whereas the original LR image remains untouched.

6.3 3D Facial Texture Super-Resolution
After the offline data preparation for the 3D training textures, this section
details the main 3D framework for super-resolving LR images with an initial
fitting of the faces. To start with, a straightforward 2.5D FSR method leverag-
ing the alignment scheme is introduced as the prelude of the 3D algorithm,
which is made possible by revisiting the LR image formation model on the
mesh surface. With this formulation, the 2D Lucas–Kanade image registra-
tion is generalized to the non-rigid 3D domain. Finally, a patch-based 3D
approach is presented and the benefit of 3D FSR is demonstrated.

6.3.1 3D-Aided 2D Face Super-Resolution
3D-aided 2D FSR, a.k.a. 2.5D FSR, differs from the conventional 2D family
in that a 3DMM is fitted to create correspondence in lieu of 2D registration
such as geometric transformation or flow methods. In accordance with the
notation in Equations (2.9) and (2.10) of Section 2.2.1 for the PCA subspaces,
the coefficientsα ∈RQs andβ ∈RQt suffice to describe any valid face within
the linear subspaces.

When the 3D-registered textures are available after Section 6.2, a person-
specific 2D training set w.r.t. the LR face can be set up by first rendering the

89



6 3D Patch-Based Facial Texture Super-Resolution

3D textures on the HR lattice of dimension mN1 ×mN2 determined by the
original LR size and the SR upsampling ratio m as the HR training images.
In the sequel, the LR counterpart is built by blurring and shrinking the HR
images. In this spirit, 3D alignment serves as a preprocessing instrument
for 2D FSR. In [Qu15b], the two basic 2D FSR methods eigentransformation
[Wan05] and PP [Ma10] are incorporated. In spite of their simplicity, eval-
uation results superior to more complicated state of the art are achieved,
validating the capability of the resolution-aware 3D registration.

Although impressive competence of the 2.5D framework [Qu15b] is shown
in both FSR and FR on synthetically generated LR data, several areas of
possible improvements are spotted:

• 3D shape reconstruction is performed solely based on a few automat-
ically detected facial landmarks, of which the accuracy is susceptible
to image resolution, especially for unconstrained settings [Her15].

• A redundant interpolation step is required to obtain the 3D facial
texture, which may again be encountered with quality loss in the
course of texture extraction.

• While rendering novel views of the super-resolved face, the real texture
in the self-occluded region remains intractable.

Fortunately, these unfavorable aspects can be addressed elegantly with the
proposed 3D system.

6.3.2 Image Formation Model
The widely used 2D LR observation process [Par03, Yan10a] depicted in
Figure 6.3 models the LR image z of N1×N2 pixels as a downsampled version
of the HR image x of mN1 ×mN2 pixels with

z = (Bk ◦W(x;θ))↓m +n, (6.1)

where W first warps the original signal via parametrized motion θ. Then B
imposes the blurring effect with kernel k and ↓ denotes decimation with
magnification factor m. The imaging noise, often assumed to be white, is
reflected in the additive term n.

Learning-based SR brings in extra knowledge from internal or external
sources to counteract the ill-posed problem of recovering x in Equation (6.1).
In conventional 2D or 2.5D methods, the motion θ is compensated for by

90



6.3 3D Facial Texture Super-Resolution

2D or 3D alignment techniques and the training data can be warped or
rendered to super-resolve the input z.

W

k

↓

Figure 6.3: The 2D LR image formation process.

Elevating the setup to the 3D level requires estab-

Figure 6.4: Illustration of a
3D face.

lishing a direct connection between the 3D shape
s, exemplarily illustrated in Figure 6.4, and the LR
image z, where the key challenge is to take into
account the blurring kernel k. For the 2D case,
a simple convolution operation suffices to serve
the purpose, whereas the irregularly distributed
vertices on the 3D face make the problem appear
intractable. For instance, Dessein et al. [Des15]
just ignore it and back-project the LR pixel values
to the corresponding LR vertices. This oversim-
plified NN-like approach violates the image for-
mation model [Efr13] and is supposed to struggle
with blurred LR faces in real-world imagery.

Vertex Subsampling

Considering that integrating the blurring kernel k directly into the 3D model
is not trivial, the idea is to add an intermediate stage to interpolate the 3D
surface as an ordinary image before convolving it with kernel k. The initial
LR 3D shape is first upscaled by factor m onto the HR image coordinates
w.r.t. Equation (6.1). Since a 3DMM usually has tens of thousands of vertices
and involving all of them causes extra computational overhead (e.g., for
triangulation) with hardly any qualitative improvement for rendering, just a
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small fraction of them is actually necessary and taken into consideration.
Only one of those that fall into each HR pixel grid is selected by

s−i = argmin
v∈Vi

∥∥v−pi
∥∥

2 (6.2)

after the visible vertices are determined, where Vi denotes all vertices inside
the unit square centered at pixel pi , revealing a reduced set s− of roughly
the same cardinality as the number of pixels in the HR face. This nearly
one-to-one mapping between vertices and pixels targets to ensure fidelity
when downscaled.

(a) {s−,t−} (b) I(s−)t (c) I (W(s−;θ))t (d) H (W(s−;θ))t

Figure 6.5: From 3D shape to LR image: (a) the subsampled vertices s−, (b) interpolated result
of (a), (c) image output with extra rotation applied using the same vertex subsampling s−, (d)
final LR output z of (c).

Figure 6.5a depicts an image with the pixels from the associated subsampled
vertices s− of an example 3D face found with Equation (6.2). Note that
holes emerge at regions like forehead or jaw where no vertices are present
owing to the non-uniform distribution of the mesh. However, these less
structured places on s− are ignored as they can be completely eliminated
by the subsequent interpolation step (see Figure 6.5b). Even after rotating
the face by 15°, the original subsampling s− can still generate natural image
output with enough details in Figure 6.5c. This is critical for the 3D extension
of the Lucas–Kanade algorithm for post-processing the initial 3D fitting,
which alters the face geometry and motion in each iteration.
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LR Interpolation for 3D Vertices

After sampling the scattered point cloud s−, it is interpolated on the HR
lattice to obtain a 2D image. Specifically, Delaunay triangulation is carried
out on the projected 2D coordinates of s− and indices of the triangles in
which each pixel is located can be found. At the same time, the barycentric
coordinates for the HR pixels w.r.t. the triangulated vertices can also be
computed efficiently. Importantly, the whole procedure of linear interpo-

lation is representable as a sparse matrix I(s−) ∈Rm2N1N2×P depending on
the current subsampled shape s−, which has as many rows as the number
of HR pixels, and as many columns as the number of 3D vertices. In each
row of this matrix for calculating a pixel value pi , there are exactly three
entries storing the barycentric coordinates {b1,b2,1−b1 −b2} of the relevant
vertices {v1, v2, v3}. In this way, one can interpolate pi with

pi = b1t1 +b2t2 + (1−b1 −b2)t3. (6.3)

Accordingly, the vectorized representation for the entire HR image x is

vec(x) = I(s−)t, (6.4)

which is a simple matrix multiplication with the grayscale texture t ∈RP .

Figure 6.6: Interpolating image pixel values from the scattered 3D vertices.
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This operations so far are depicted in Figure 6.6. The grid placed over regular
image coordinates (in squares) indicates the neighborhood of the pixels.
When subsampling of 3D vertices (in circles) is finished, some are discarded
w.r.t. Equation (6.2), which are grayed out in the figure. For the shaded pixels
that have no vertex associated to them, interpolation is still possible. As an
example, the value of the blue pixel in the middle can be inferred with the
three surrounding red vertices by Equation (6.3).

Subsequently, the convolution and decimation operators in Equation (6.1)
are converted into sparse matrices Tk and Sm respectively, where Tk denotes

a Toeplitz matrix [Lev11] for filter k and Sm ∈ZN1N2×m2N1N2 is a shrinkage
matrix, i.e., for each LR pixel represented by row i , only column j corre-
sponding to the selected HR pixel is set to one.

Therefore, the complete LR image observation process from the 3D surface
can be formulated as a matrix multiplication

vec(z) = H (W(s−;θ))t+n, (6.5)

where H = Sm TkI is a composition matrix of dimension N1N2×P integrating
all related operations. Both H and I are dependent on the (warped) 3D shape.
An example LR image generated by this model is illustrated in Figure 6.5d.

6.3.3 Fitting Enhancement
LR faces pose a huge challenge on 3D fitting because of a significant amount
of information loss and diverse nuisance factors such as blur and noise from
various sources. Whereas the accuracy of fitting propels the quality of FSR, it
can also introduce adverse impact when the precision degrades. Motivated
by the classic Lucas–Kanade image registration framework [Bak04a, Luc81],
a new algorithm that iteratively optimizes both global motion and 3DMM
deformation tailored for LR images is developed.

The original goal of the Lucas–Kanade algorithm is to minimize the Sum
of Squared Error (SSE) between a template and an image warped onto the
coordinate frame of the template using a predefined parametrized represen-
tation. When applied to 3D FSR, the formulation yields

1

|Ω|
∥∥H (W(s−;θ))t′−vec(z)

∥∥2
2 , (6.6)
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normalized by the pixel count of the facial regionΩ in the LR template z.
Subject to the parametrized warping vector

θ = [
s,ω>, tu , tv ,α>]> ∈R6+Qs , (6.7)

which consists of scaling s, 3D rotation vector ω = [ω1,ω2,ω3]> [Sze11b]
and 2D translation t2D = [tu , tv ]> on the image grid for rigid motion, as
well as the 3DMM shape coefficientsα for local deformation. The warping
operation W(s;θ) transforms the 3D face shape via

W(s;θ) = sR[1:2,:]Ψ3×P (s̄+Sα)⊕ t2D (6.8)

onto the image coordinate system, where ⊕ stands for element-wise addi-
tion for the respective matrix rows, and R[1:2,:] for 2D projection of the 3D
rotation matrix

R = Rω3 Rω2 Rω1 . (6.9)

It is worth noting that minimizing the expression in Equation (6.6) is a
nonlinear optimization task, even if W(s;θ) were linear in θ, because the
rendered pixel values are nonlinear in the 3D shape s [Bak04a]. Instead
of minimizing Equation (6.6) for the warping parameter θ at one go, the
Lucas–Kanade algorithm solves for the incremental update∆θ, such that

1

|Ω|
∥∥H (W(s−;θ+∆θ))t′−vec(z)

∥∥2
2 (6.10)

is minimized subject to ∆θ, which suits the problem setup of this thesis
perfectly, as an initial estimate of the 3D geometry is available with the
previous 3D reconstruction module.

Before proceeding to the actual optimization of Equation (6.10), though,
the crux regarding t′ in this expression must be addressed. The 3D Lucas–
Kanade algorithm requires HR facial texture to guide the warping parameter
update towards the “template” z, while up to this stage of the processing
chain, the facial texture SR has not taken place yet. On the other hand,
applying the nonparametric patch-based SR as in Section 6.3.4 here is sub-
optimal, since it attempts to hallucinate the HR texture by reconstructing
the patches in z with the training data, even at incorrectly fitted location.
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Thus, to fully account for the semantic connection between the 3D shape
and texture model, the holistic PCA texture prior is exploited.

In particular, given an approximate fitting, an intermediate estimate of the
HR texture t′ for the Lucas–Kanade algorithm can be computed using the
FS–MAP approach [Cap01] with the presented 3D image observation model.
In theory, the PCA-based 3DMM texture model

{
t̄,T

}
would be the proper

choice as the low-dimensional prior. However, the texture model in the
3DMM is pure albedo with the illumination normalized out. In order to
cover a wide range of changes, a new PCA model is constructed on the
basis of (in-the-wild) faces with richer variation, which can be shared with
the downstream FSR task. Concretely, performing PCA on the extracted
textures gives the mean texture µ, a matrix D composed of eigenvectors and
a diagonal matrix P of eigenvalues resembling Equation (2.10). The texture
coefficient β′ on the PCA space and the resulting holistic HR FS–MAP face

t′ =µ+Dβ′ (6.11)

are solved for in closed form via

β̂′ = argmin
β′

∥∥H(s−)
(
µ+Dβ′)−vec(z)

∥∥2
2 +γ

∥∥β′∥∥2
P−1 (6.12)

= PD>H> (
HDPD>H>+γIid

)−1 (
vec

(
z−Hµ

))
(6.13)

based on the initial fitting, where a penalty proportional to the Mahalanobis
distance of the features inβ′ to the mean inµ. Capel and Zisserman [Cap01]
refer to this as FS–MAP, i.e., a prior over the face space, since the solution is
constrained to lie on the subspace spanned by the PCA model, which is later
proved to be identical to the soft constraints in [Liu07] by Jin and Bouganis
in [Jin13].

Finally, the nonlinear optimization task in Equation (6.10) is linearized by
first-order Taylor expansion evaluated at (s−;θ) [Bak04a], which yields

1

|Ω|
∥∥∥∥H (W(s−;θ))t′+∇∇∇Ht′

∂W

∂θ
∆θ−vec(z)

∥∥∥∥2

2
. (6.14)
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In this expression, ∇∇∇Ht′ is the gradient of the rendered image at (s−;θ), and
∂W
∂θ is the Jacobian of the warp defined in Equation (6.8), which can be

derived as

∂W

∂θ
=

[
∂Wu
∂s

∂Wu
∂ω1

∂Wu
∂ω2

∂Wu
∂ω3

∂Wu
∂tu

∂Wu
∂tv

∂Wu
∂α

∂Wv
∂s

∂Wv
∂ω1

∂Wv
∂ω2

∂Wv
∂ω3

∂Wv
∂tu

∂Wv
∂tv

∂Wv
∂α

]
(6.15)

=
[

Ru [u,v,z]> 0 s cos(ω2)z −s cos(ω3)y
Rv [u,v,z]> −s cos(ω1)z 0 s cos(ω3)x

1 0 sRu HS
0 1 sRv HS

]
(6.16)

using the chain rule, where the subscripts u and v denote the respective rows
in the matrix w.r.t. the image grid and the last column stands for the shape
dictionary in Equation (2.9) projected onto the LR coordinates. Note that to
obtain the partial derivative of the rotation vector ∂W

∂ω , the approximation

R = Rω3 Rω2 Rω1 ≈
 1 −sinω3 sinω2

sinω3 1 −sinω1

−sinω2 sinω1 1

 (6.17)

is used by setting the cosines to one, if the rotation increment is small [Bla04],
which is satisfied with the iterative fashion. The extended Lucas–Kanade
algorithm for improving LR fitting is summarized in Algorithm 4. Regarding
the nonlinear optimization technique in practice, the LM algorithm is pre-
ferred by virtue of its robustness against the more complex problem setup
[Bak04a] to Gauss–Newton, e.g., for homography in [Jin15].

An instance of the complete fitting process is visualized in Figure 6.7. At first
sight, the 3D FS–MAP texture hallucinated on the initial fit in Figure 6.7b
seems plausible. But comparison with Figure 6.7d demonstrates how much
the 3D fitting can be improved in all respects. Not only the head pose and the
facial contour, but also the local deformation (e.g., the shape of the mouth)
better conforms to the HR ground truth in Figure 6.7f. It can be observed
that in the first few iterations, mainly the global rotation and translation
are corrected to rapidly decrease the error, while in the later stage, local
adjustment is made to fine-tune the details.
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Algorithm 4: 3D Lucas–Kanade fitting enhancement for LR faces.

Input: Rough 3D fitting initialization and intermediate HR texture t′
Output: Improved 3D fitting

1 while ‖∆θ‖ ≥ ε do
2 Alter the 3D face by θ via W(s−;θ)
3 Obtain the LR projection matrix H (W(s−;θ))
4 Compute error image vec(z)−Ht′
5 Compute the image gradient ∇∇∇Ht′ of Ht′

6 Evaluate the Jacobian of warping ∂W
∂θ at (s−;θ) via Equation (6.16)

7 Obtain the steepest descent image ∇∇∇Ht′
∂W
∂θ

8 Perform nonlinear optimization for∆θ
9 Update the warping parameter θ← θ+∆θ

10 end

Discussion

According to [Bak04a], the proposed Lucas–Kanade extension falls under the
Forwards Additive variant (c.f . [Bak04b]). In general, the quadratic expres-
sion in Equation (6.10) is non-convex and hence not guaranteed to converge
globally. However, unlike the 3DMM fitting [Bla03] initialized with the mean
appearance, it starts from relatively good shape and texture estimates so
that as few as ten iterations are found sufficient for convergence in practice.
Furthermore, not taking into account the illumination parameters gives rise
to a considerable benefit in runtime with only a fraction of a second for each
iteration. Finally, the well-defined LR observation process ensures excellent
versatility w.r.t. different image degradation models in real world compared
to, e.g., a fixed number of trained LR 3DMMs [Hu12].

Employing the Lucas–Kanade algorithm to register images for FSR is not
new. Liu et al. [Liu07] first adopt affine transformation based on solely the
mean image, which is revised by Jia and Gong [Jia08] to take into consider-
ation the PCA face space prior and solve the optimization problem in an
alternating manner. Jin and Bouganis [Jin13, Jin15] incorporate the more
advanced homographic transformation into their unified MAP framework.
Nevertheless, the presented work is the first 3D extension for LR fitting of
deformable face models, which can also be regarded as a simplified version
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of the analysis-by-synthesis 3DMM algorithm specially designed for fine-
tuning on LR faces.

(a) LR (b) 1st iteration (c) 5th iteration

(d) 10th iteration (e) FSR (f ) HR

Figure 6.7: Improving 3D fitting: From a LR input image in (a), the initial fitting, the results
after 5 and 10 iterations with 3D FS–MAP, as well as the final 3D FSR image are shown in (b) to
(e), respectively. (f) is the HR ground truth of (a).

6.3.4 Patch-Based Facial Texture Super-Resolution
A key difference of 3D FSR to 2.5D systems as in Section 6.3.1 lies in that the
HR 3D texture is directly obtained rather than being extracted separately
from the HR image after it is super-resolved by 2D FSR.

The “interface” developed to facilitate 3D FSR, i.e., the image formation
model from 3D faces to LR images in Section 6.3.2, is naturally compatible
to most 2D FSR methods, if properly redesigned for the 3D case. Similar
to Section 6.3.1 (c.f . [Qu15b]), the simple idea of the 2D patch-based FSR
[Ma10] to divide the LR image into overlapping patches and enforce local
subspaces is followed to demonstrate the power of accurate 3D alignment.
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(a) (b)

(c) (d)

Figure 6.8: 3D patch-based FSR: (a) LR input image, (b) a 3D patch superimposed on the HR
image, (c) texture extracted from 2.5D FSR, (d) directly super-resolved texture by 3D FSR.

After the segmentation of LR patches, the FSR procedure is conducted on
the face mesh. First, the subset of s− belonging to each patch is determined
straightforwardly with the sparse imaging matrix H in Equation (6.5), i.e.,
for the respective rows representing the LR pixels, the column indices for
vertices with non-empty entries in H are selected. Figure 6.8b illustrates the
corresponding vertices of a patch in solid red. On account of convolution
with the blurring kernel, the actual vertices in light red involved for LR
patch reconstruction normally have a larger vicinity. For each of the local
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patch j , the optimal weights w j ∈RL are then obtained by minimizing the
reconstruction error with constraint
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min
w j

∥∥∥∥∥ L∑
l=1

w l
j H

(
W

(
s−j ;θ

))
tl

j −vec
(
z j

)∥∥∥∥∥
2

2

, s.t.
L∑

l=1
w l

j = 1 (6.18)

by virtue of the 3D observation model, where the superscript l denotes
the index of the totally L 3D textures in the training data. To solve Equa-
tion (6.18), assume that Y j ∈RN1N2×L is the matrix of all training samples

H
(
W

(
s−j ;θ

))
tl

j stacked in columns. The local Gram matrix is defined as

G j =
(
vec

(
z j

)
1>−Y j

)> (
vec

(
z j

)
1>−Y j

)
, (6.19)

where 1 ∈ZL is a column vector of ones. In this manner, the constrained
least squares problem for w j has the closed-form solution [Cha04]

w j =
G−1

j 1

1>G−1
j 1

. (6.20)

Alternatively, one can solve the linear system of equations

G j w j = 1 (6.21)

and subsequently normalize the sum of the weight vector w j to one. In the
end, the complete set s is recovered using the same weights as for s−, where
the values of the overlapping vertices are averaged.

Note that because there exists no texture outside of the head model in
the training data, the border effect must be handled for patch SR. In the
implementation, it is discovered that a pragmatic way is to copy the outer
area of the LR test image to the training samples, weighted by a reversed
face mask, which is interpolated from the hard HR face mask imposed on
the background.

A favorable byproduct while directly conducting 3D FSR is the intrinsic
filling of the self-occluded texture. In Figure 6.8d, the hidden side of the
nose consistent with the illumination condition is learned from the train-
ing data and blended seamlessly to the rest of the facial texture, whereas
in Figure 6.8c, despite utilizing a dedicate hole-filling technique for faces
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regarding illumination fidelity and realistic rendering [Qu15a], artifacts can-
not be overcome entirely. Even for large poses as in the last one of Figure 7.20,
nearly the whole face half under occlusion is still hallucinated realistically.
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Moreover, often visible gains w.r.t. sharpness and details are observed (c.f .
the eyes in Figures 6.8c and 6.8d).

Discussion

It is worth noting that the recent 3D MRF [Des15] is a patch-based FSR
approach as well, which uses irregular 3D patches segmented straight on
the 3D face model (see Figure 2.7). The advantage of this segmentation
scheme is that the patches are divided into approximately the same size,
independently from the identity, pose and resolution of the test subject.
As such, the compatibility cost of the MRF over the full training set can
be precomputed offline. Nevertheless, since the MRF inference with BP is
carried out completely on the 3D mesh after the LR pixel values are mapped
by the NN principle onto the vertices, the connection to the image space
is lost and it is then cumbersome to further incorporate convolution with
different blurring kernels as in this work.

6.4 Summary
This chapter concludes the algorithmic part of the proposed 3D facial texture
SR system in this thesis. The importance of image alignment for FSR is
studied and a resolution-aware approach for 3D FSR under arbitrary poses
is presented, which inversely maps the HR textures to the LR input face to
generate person-specific training samples, avoiding loss of details through
warping the LR image.

In order to allow for a robust 3D texture hallucination framework, the funda-
mental aspects of LR 3D face fitting and SR are revisited. A novel formulation
of the LR image formation process on the 3D mesh is devised, which opens
up the possibilities to improve fitting accuracy for the LR scenario and to
directly super-resolve the 3D facial texture with natural handling of self-
occluded parts of the face.

Algorithm 5 summarizes the work in this chapter. Previous concerns about
inaccurate 3D fitting with only automatically detected landmarks on LR
faces are successfully addressed. Thanks to precise definition of the actual
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problems and compact solution proposals, the merit of an efficient and
effective workflow is preserved.



6.4 Summary

Algorithm 5: Robust 3D patch-based facial texture SR.

Input: Rough 3D fitting on the LR face
Output: HR 2D and 3D face with refined fitting

1 Determine the sparse LR vertex set s−
2 Compute the 3D image formation matrix H
3 while 3D motion θ not converged do
4 Compute intermediate texture t′ with 3D FS–MAP
5 Update θ with the 3D Lucas–Kanade extension
6 Update H
7 end
8 Divide the LR image into overlapping patches
9 Compute SR weights for the patches on s−

10 Reconstruct t using the same weights

103





7 Experiments

This chapter extensively evaluates the approaches introduced previously
within the context of the entire processing chain. Representative existing
work in the literature is compared to the proposed methods in a qualitative
and quantitative manner. In Section 7.1, a major flaw of the widespread SR
evaluation protocol is addressed with a new FSR dataset collected using a
novel dual-camera imaging system. Other public datasets and the evalua-
tion metrics employed in this thesis are described in Section 7.2, before the
performance is benchmarked module by module in Section 7.3. Finally, the
outcome is summarized in Section 7.4. Table 7.1 lists widely used notation
in Chapter 7.

7.1 Capturing Ground Truth
Super-Resolution Data

SR offers an effective approach to boost quality and details of LR images to
obtain HR images. Despite the theoretical and technical advances in the
past decades, it still lacks plausible methodology to evaluate and compare
SR algorithms. The main cause to this problem lies in the missing ground
truth data for SR. Unlike in many other computer vision tasks, where existing
image datasets can be utilized directly, or with extra annotation work, evalu-
ating SR requires that the dataset contain both LR and the corresponding
HR ground truth images of the same scene captured at the same time.
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Table 7.1: Notation used in Chapter 7.

Symbol Description

f Focal length of the lens
F Number of facial landmarks
k Severity index for image quality degradation
K IRLS scaling factor
m Upscaling factor for SR
P Number of vertices in the 3DMM
s Base for image quality degradation
T Number of triangles in the 3DMM
w Width of the face image
β Factor for image quality degradation with blurring
γ Regularization weight in IRLS for 2D landmark detection
ζ Factor for image quality degradation with noise
η Regularization weight for landmark-based 3D shape recon-

struction
σ Standard deviation of the Gaussian blurring kernel
Iid Identity matrix
k Blurring kernel of dimension K ×K
ni Reconstructed normal of the i th vertex
n?i Ground truth normal of the i th vertex
si Reconstructed 3D coordinates of the i th vertex
s?i Ground truth 3D coordinates of the i th vertex
Sm Matrix representation for downsampling of factor m
Tx Rearranged image x by expanding blocks into columns
W(ξ;θ) Warping of the pixels ξ parametrized by ξ
x HR image of dimension mN1 ×mN2

xi Detected location of the i th facial landmark
x?i Ground truth location of the i th facial landmark
z Input LR image of dimension N1 ×N2

θ Warping vector for translational motion
ξ Pixel coordinates

This section, which is based on the author’s publication [Qu16], presents a
novel prototype system to address the aforementioned difficulties of acquir-
ing ground truth SR data. Two identical image sensors equipped with a
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wide-angle lens and a telephoto lens respectively, share the same optical
axis by placing a beam splitter into the optical path. The back-end program
can then trigger their shutters simultaneously and precisely register the
ROIs of the LR and HR image pairs in an automated manner free of subpixel
interpolation. Experimental results demonstrate the unique characteristics
of the captured HR–LR face images compared to the simulated ones.

The remainder of this section is organized as follows. Section 7.1.1 gives an
brief introduction to the motivation and approach. The hardware setup of
the proposed prototype is then demonstrated in Section 7.1.2. After acquir-
ing the raw image pairs with the camera system, the algorithmic details for
registration and analysis of the images with quantitative and qualitative
results are discussed in Section 7.1.3 and Section 7.1.4 respectively. Finally,
the section is concluded in Section 7.1.5.

7.1.1 Introduction
In general, many existing computer vision algorithms can only be applied
to image data of standard size and quality. When the resolution of the test
images falls under a certain limit, the performance is expected to drop dra-
matically. Instead of employing HR camera systems or specific algorithms
for LR data, SR provides the possibility of reusing the existing data and
tools. As opposed to interpolation-based methods, SR is able to recover the
missing high-frequency information in the original LR image by combining
multiple images with subpixel shifts among them [Far04], or through infer-
ence of local HR structure from similar HR–LR pairs from external training
data [Bak02] or from the internal pyramid of the LR image itself [Gla09].

Considering the surge of interest in SR research, datasets for evaluation
purposes have received significantly less attention. Despite the fact that
a huge number of datasets have been built in the computer vision soci-
ety and many of them can be leveraged in various tasks [Gro10, Rus15],
unfortunately, evaluation of SR requires a pair of HR–LR images of the same
scene, one as input for the algorithms, and the other as ground truth for
quantitative assessment of the output. Therefore, to the best of the knowl-
edge of the author, all of the previous work has made a compromise by
synthetically generating the LR images using the available HR images in
existing datasets, pretty much like the recently published benchmark paper
[Yan14]. Nonetheless, if and how much the simulated LR image can model
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the complicated optical properties of the real image is yet to be justified.
Even for the synthesis, strategies regarding blurring, resizing and noise still
remain controversial [Efr13].

On the other hand, strict conditions must be met when a new SR dataset
is collected, of which the biggest challenges include temporal and spatial
consistency. Thus the possibility of taking two images consecutively or
the adoption of a parallel multi-camera system similar to stereo vision is
eliminated, as different capturing time is not suitable for most scenes which
are not completely static, and parallax of the latter setup is also not preferred
for the evaluation.

To circumvent these challenging requirements, a prototype of a novel dual-
camera setup is proposed. The key idea is to utilize a beam splitter, often
found in many optical interferometer systems like the autofocus sensor
in CD/DVD/BluRay players [Bey16], which converts the original optical
path into two identical ones and redirects them towards the sensors of two
cameras respectively. In this way, as long as the images are taken simultane-
ously, both the temporal and spatial prerequisites are fulfilled. Capturing of
LR and HR images is realized with a wide-angle lens and a telephoto lens
mounted on the cameras respectively. Automatic image registration based
on the Lucas–Kanade algorithm [Bak04a, Luc81] aligns the same ROIs for
the pairs of images without subpixel shifts. For the purpose of this thesis, a
face SR dataset is collected with the proposed device, which is analyzed in
diverse aspects to show its distinct image properties.

7.1.2 Hardware Setup
Capturing ground truth image data for evaluating SR algorithms is not a
trivial task. The LR image is given as input to compute the SR result with
higher resolution, which should be compared with the original HR image
for quantitative or qualitative assessment. Since the SR image is directly
computed from the LR input, in order to conduct valid evaluation, the HR
image is required to be captured exactly for the same scene at the same
instant of time as that of the LR image. Some existing schemes, e.g., taking
the HR–LR image pairs in sequence, or on the basis of a stereo camera setup,
can only partly meet the prerequisites. Violation of temporal consistency
due to unsynchronized recording in the first case, and spatial consistency
due to parallax in the second case, forces the method to be applicable to
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completely static scenes or those with a very large distance, respectively.
In comparison, the novel dual-camera setup presented here successfully
bypasses these limitations.

Telephoto Lens

Beam SplitterWide-Angle Lens

Figure 7.1: Scheme of the proposed dual-camera imaging system.

The scheme of the system is depicted in Figure 7.1. The core idea is the intro-
duction of a beam splitter into the optical path, which splits the incident
light from the scene into two identical parts. This can be realized with a
beam splitter of 50:50 split ratio. When the light enters through the entrance
face of the cube and hits the dielectric coating applied to the hypotenuse
surface, which serves as an interference filter, half of the light is reflected
and the rest is transmitted. Two identical cameras are directed at the exit
faces of the beam splitter, on which a wide-angle lens and a telephoto lens
are mounted respectively, such that the first camera with larger field of view
(FOV) captures a wider scene with lower resolution, and the other one with
smaller FOV captures zoomed HR details.

The upcoming problem is the choice of lenses and the positions of the cam-
eras to achieve the desired magnification factor for the HR–LR image pairs
in SR. According to the thin lens formula [Hec01] illustrated in Figure 7.2,
the magnification factor mObject, i.e., the size of the image in proportion to
the size of the original object is

mObject =−S2

S1
= f

f −S1
= f −S2

f
, (7.1)
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where f denotes the focal length of the lens, and S1 and S2 are the dis-
tances from the lens center to the object and the image respectively. For the
magnification factor m which is of more interest, the approximation applies

m = fHR

fHR −S1

/
fLR

fLR −S1
≈ fHR

fLR
, (7.2)

where the object distance is similar for both cameras and much larger than
the focal length, i.e., S1 À f . On the other side, since mObject for non-
macro lenses is very small, one has S2 ≈ f , then from Figure 7.2, the camera
positions can be determined by

S2,HR −S2,LR ≈ fHR − fLR, (7.3)

when the focal lengths for HR and LR cameras are approximately computed
by Equation (7.2) for the given magnification factor m.

Object

Image

f f

S1 S2

Figure 7.2: Image formation with a thin lens.

However, by virtue of the complex optical elements in real objectives, the
thin lens approximation does not always apply. As a consequence, Equa-
tions (7.2) and (7.3) do not necessarily hold. Instead of employing prime
lenses with the exact focal lengths, zoom lenses are utilized as a workaround,
so that the focal lengths can be fine-tuned in the proximity of the theoretical
values. An interactive adjustment process is presented in Section 7.1.3.
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The built prototype system for the scheme in Figure 7.1 is depicted in Fig-
ure 7.3. A 50:50 beam splitter for visible light in the range of 400–700 nm is
located at the intersection of the two camera axes. The C-mount cameras
possess a large 1/1.2′′ CMOS sensor with merely two megapixels (1920×
1200), which allows for higher Signal-to-Noise Ratio (SNR) thanks to larger
pixel size. A wide-angle 4.8 mm f/1.8 prime lens, which serves as the LR lens,
and a 12.5–75 mm f/1.2 zoom lens for the HR images are mounted on each
camera. The 6× zoom ratio is ideal to experiment with different magnifi-
cation factors m. The large aperture of both lenses is also fast enough for
low-light indoor scenarios, as only half of the light can reach each sensor.
In order to mitigate in-plane rotational discrepancy between the pair of
images, one camera is installed on a kinetic mounting surface for pitch and
roll adjustment.

Figure 7.3: Prototype of the proposed camera system.

In summary, the final prototype is able to account for scaling and rotation in
the registration process, leaving just the translational offset to be determined
algorithmically. As such, concerns that a posterior compensation in scaling

111

and rotation with interpolation could deteriorate the original image quality
are addressed.



7 Experiments

7.1.3 Image Registration
The hardware prototype in Section 7.1.2 performs a rough presetting of the
desired SR ground truth capturing workflow. Raw HR–LR image pairs with
approximately the desired magnification factor can be acquired. However,
further processing must be done, before the images are ready for evalua-
tion. Since the HR image covers only a small region in the center of the
corresponding LR image, the surrounding irrelevant part should be filtered
out. In the meantime, fine-tuning of the magnification factor m obtained in
Equation (7.2) can also be done in the course of the registration procedure.

Given a coarse alignment in scaling and rotation from the hardware system,
only translational motion needs to be estimated, which greatly reduces
the degree of freedom (DOF) and computational complexity to exploit the
classical but yet powerful Lucas–Kanade algorithm [Bak04a, Luc81, Sze11a],
as is already adopted in Section 6.3.3. The objective here is to obtain the
update∆θ of the parametrized motion θ by minimizing the SSE between
the fixed template T and moving image I∑

ξ

‖I (W (ξ;θ+∆θ))−T(ξ)‖2
2 (7.4)

subject to warping W(ξ;θ) of the pixels ξ [Luc81]. Leveraging Taylor series
expansion and the partial derivatives with respect to θ, a closed-form solu-
tion can be obtained. Later, it is proved that performing inverse update on
the template T instead of I∑

ξ

‖I (W (ξ;θ))−T (W (ξ;∆θ))‖2
2 (7.5)

can substantially boost the efficiency, as the inverse Hessian and steepest
descent images can be precomputed at the initial (ξ;0) rather than the
current iteration (ξ;θ) [Bak04a].

Concretely, with a pair of HR–LR images, the template T is first set as the cen-
ter of the LR image, or as the ROI detected by some algorithm (e.g., faces by
[Vio04]). The moving image I to be aligned is obtained by downsampling the
HR image with the desired magnification factor m. The initial translation
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and tilt on the kinetic platform and the focal length fHR for the HR camera,
accurate alignment of HR–LR image pairs without subpixel interpolation
is computed. The whole image registration procedure is summarized in
Algorithm 6.

Algorithm 6: Interactive registration for HR–LR image pairs.

Input: Roughly registered HR–LR image pair
Output: Precisely registered HR–LR image pair

1 Initialize ROIs for HR and LR images
2 Crop template T from the LR image
3 Shrink the HR image with factor m as image I

4 Initialize translation θ(0)
t for I

5 while not aligned do
6 Compute θt using the Lucas–Kanade algorithm
7 Crop I based on θt

8 Compare error image of T and cropped I
9 if in-plane rotation not aligned then

10 Adjust tip and tilt of the kinetic platform
11 end
12 if magnification not aligned then
13 Adjust fHR

14 end
15 end

7.1.4 Image Analysis
As is already studied in Section 6.3.2, the observation model of the conven-
tional image acquisition process for SR turns the HR image x of dimension
mN1 ×mN2 into the captured LR image z of dimension N1 ×N2 with Equa-
tion (6.1). The objective of SR is to reversely model the image formation
process given the LR image z, which is an ill-posed problem requiring extra
knowledge from internal or external sources [Nas14, Wan14a].
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In this current task, though, since both the ground truth HR–LR image pairs
x and z are captured and the motion θ is compensated for by the image reg-
istration process in Section 7.1.3, analysis of the images w.r.t. the unknown
blurring kernel k is a lot easier compared to SR. Akin to Section 6.3.2, manip-
ulation of Equation (6.1) must be performed to convert the intractable
convolution and decimation operators into matrix multiplication to allow
for further calculation. However, slight modification has to be made w.r.t.
the convolution k∗x. Because this time the blurring kernel k is of interest, it
is not transformed into a Toeplitz matrix. Rather for the HR image x, each of
its K ×K window is vectorized as a row vector and stacked vertically, which
yields a m2N1N2 ×K 2 matrix Tx. As such, the 2D convolution is replaced
again with a matrix multiplication. Thus, Equation (6.1) is equivalent to

vec(z) = Sm Tx vec(kmirror)+n, (7.6)

where the K ×K square blurring kernel k is mirrored and vectorized into

vec(kmirror) ∈RK 2
.

Assuming independent noise n with uniform variance facilitates straightfor-
ward least squares solution of the blurring kernel k with MLE by minimizing
the SSE

‖Sm Tx vec(kmirror)−vec(z)‖2
2 , (7.7)

which can also be found in the blind deconvolution literature [Lev11]. A
globally optimal solution for the kernel exists by solving for the convex
quadratic programming problem [Noc06] in the form of

min
y

{∥∥Ay−b
∥∥2

2 = min
y

y>A>Ay−2b>Ay
}

. (7.8)

Imposing non-negative and unit `1 norm constraints ensures a valid esti-
mate of the blurring kernel. Optionally, to resemble Gaussian kernels, an
additional symmetry constraint is applicable.

Experimental Analysis

The presented camera system is deployed in an indoor environment to take
HR–LR face images for FSR evaluation. A face detector [Vio04] is employed
to automatically extract the ROIs from the raw image pairs. The commonly
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used magnification factor m = 4 is chosen as in [Nas14]. The dataset con-
sisting of 31 participants taken at different views, which is made publicly
accessible to spur research interest1.

(a)

(b)

(c)

(d)

Figure 7.4: Center crops of an example pair of (a) HR and (b) LR images captured by the camera
system with registered (c) HR and (d) LR ROIs.

An example of the captured and registered images is illustrated in Figure 7.4.
By cropping out the background of the LR image, the ROI in Figure 7.4b is
roughly equivalent to that of the HR image in Figure 7.4a, with 1/4 of the
pixels in both dimensions. The resulting LR face has a width of less than
30 pixels, covering only the central 1.5% of the total 1920 pixels, where opti-
cal and chromatic aberration of the 4.8 mm wide-angle lens are negligible,
which is critical to the camera system without distortion calibration for
being completely free of interpolation.

1 http://ies.anthropomatik.kit.edu/publ.php?key=ies_2016_qu_capturing
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σ= 2.0

σ= 2.2

(a) (b) (c)

σ= 2.4

(d)

Figure 7.5: Image characteristics analyzed on the sample HR–LR image pairs: (a) the error
images between the LR and HR images blurred with the recovered kernels without symmetry
constraint in (b) and downsampled, (c) the recovered kernels with symmetry constraint, (d)
Gaussian kernels with the lowest HR–LR reconstruction errors.

In Figure 7.5, the blurring kernels for three image pairs are computed and
the results are demonstrated. Obviously, the registration process incorpo-
rating hardware and algorithmic solutions achieves high precision in both
magnification and translational offset. Solely at the silhouette of the faces,
where aliasing effects could happen in LR images, more visible error can be
spotted in Figure 7.5a. Notably, the true blurring kernels in Figure 7.5b do
not resemble the widely accepted Gaussian kernels. By enforcing a symme-
try constraint in quadratic programming, the obtained kernels in Figure 7.5c
are more akin to the best Gaussian kernels subject to reconstruction error
in Figure 7.5d. Moreover, for images with higher error, larger kernel size is
seen to smooth out the outliers.
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Since noise exists prominently in the data, possibly leading to overfitting the
individual kernels to noise, the globally optimal kernels are also recovered
by providing Tx and vec(z) in Equation (7.7) with all HR and LR images
respectively, which reveals a more Gaussian-shaped result with vertically
a wider span than in horizontal direction (see Figure 7.6a). In terms of
Normalized Root Mean Square Error (NRMSE) w.r.t. the dynamic range, the
Gaussian kernel in Figure 7.6c is deemed a good approximation. However,
note that a slightly wider Gaussian kernel in Figure 7.6d can yield a much
higher error. Hereby the unique image properties of ground truth SR data
and the importance of accurate blurring kernel estimation for SR algorithms
are shown.

(a) NRMSE: 2.14% (b) NRMSE: 2.16%

σ= 2.2

(c) NRMSE: 2.18%

σ= 2.6

(d) NRMSE: 2.34%

Figure 7.6: Image characteristics analyzed over all HR–LR image pairs. Top row: average
error images between all LR and HR images blurred with the kernels in the second row and
downsampled. Bottom row: recovered kernels using all HR–LR image pairs (a) without and (b)
with symmetry constraint, (c) Gaussian kernel with the lowest HR–LR reconstruction error, (d)
an alternative Gaussian kernel.

7.1.5 Summary
The challenges of acquiring a ground truth SR dataset are addressed in this
section. A dual-camera imaging system featuring a beam splitter to allow for
capturing of HR and LR images with temporal and spatial synchronization
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is proposed. An interactive process is presented for the nontrivial pixel-
accurate registration of the HR–LR image pairs.

The SR community has paid relatively little attention to the impact of the
blurring kernels. Those that do often assume Gaussian kernels with the
width known beforehand. Hence, the meaning of such ground truth data for
SR is justified by the experimental analysis of the unique image characteris-
tics. In the subsequent part of this chapter, the evaluated FSR algorithms
are benchmarked on the collected data.

7.2 Experimental Setup
The experimental setup for this chapter regarding evaluation metrics and
datasets is elaborated in this section. By reason of the different objectives for
the several components of the proposed 3D FSR framework, the respective
parts are introduced separately for each submodule.

7.2.1 Evaluation Metrics

Facial Landmark Detection

Since the output of face alignment are the discrete facial landmarks, the
overall quality of the methods is commonly evaluated by the distance w.r.t.
the ground truth annotations. Among the various metrics found in the
literature, the normalized error of the F landmarks is the most widely used
one, which has the definition∑F

i=1

∥∥xi −x?i
∥∥

2

F ·dIO
·100%, (7.9)

where xi and x?i are the automatically detected location and the ground
truth for the facial point i respectively, and dIO is the IOD, i.e., the Euclidean
distance between the center of the eyes. This measure can eliminate unrea-
sonable variations caused by different scales of the input faces in compari-
son with the absolute error [Jin16].

On the basis of the normalized metric for a single image, there are mainly
two variants of it for measuring the performance on the entire dataset,
i.e., the mean of the normalized errors averaged over all N images, and
the Cumulative Error Distribution (CED) curve visualizing the cumulative
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proportion of the test images with the increase of the normalized error,
which is already investigated for the incremental evaluation in Chapter 4.
The strength of the CED curve is its robustness against outliers, whereas for
the NME, a few samples with extreme errors can have a huge impact on the
overall score.

With the dramatic progress of face alignment in the past few years, a nor-
malized error below 5% is conjectured to be close to human level [Yan15b].
On the other hand, some authors consider errors over 10% as failed cases.
Thus, the failure rate is a popular measure among the existing work [Bur13,
Dan12], too.

3D Face Reconstruction

The 3D face shape reconstruction algorithm in this thesis converts the input
set of sparse 2D landmarks into a dense 3D face model. Similar to the 2D
case, the recovered shape can be evaluated by the average distance of the P
vertices to those of the ground truth 3D shape

εs =
∑P

i=1

∥∥si −s?i
∥∥

2

P
(7.10)

in the original size of the 3DMM, which is measured in mm, where si and s?i
are the reconstructed and the ground truth 3D coordinates of the i th vertex
respectively. In addition to the absolute Euclidean error, the faithfulness of
3D reconstruction is also heavily dependent on the normal of the mesh faces,
which measures the resemblance of the two surfaces w.r.t. the orientation
of the mesh triangles. Such a metric is defined as

εn = 1

T

T∑
i=1

arccos
ni ·n?i∥∥ni
∥∥

2 ·
∥∥n?i

∥∥
2

(7.11)

given the reconstructed and the ground truth normal vectors ni and n?i
respectively, which can be computed straightforwardly leveraging the cross
product of the vectors of the face edges. T denotes the number of triangles
of the 3DMM.

In this sense, both the mean shape error εs and the mean normal error εn are
adopted as the benchmark metrics, since they reflect on the reconstruction
quality in the vertex and facet perspectives, respectively.
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3D Facial Texture Super-Resolution

According to the notation in Table 6.1, SR is able to augment a LR input
of N1 ×N2 pixels by m times in both dimensions into mN1 ×mN2, which
usually has the same size as the HR image. Then, no matter if the LR image
is obtained by synthetic downsampling from the HR image or with the
dual-camera system in Section 7.1, objective assessment can be made by
matching the similarity of the SR output to the HR ground truth. The most
frequently used measure for evaluating SR algorithms is probably the Peak
Signal-to-Noise Ratio (PSNR), which is closely related to the Mean Square
Error (MSE)

εMSE = 1

m2N1N2

mN1∑
i=1

mN2∑
j=1

∥∥ISR
(
i , j

)− IHR
(
i , j

)∥∥2
2 , (7.12)

where I
(
i , j

)
denotes the value of the pixel

(
i , j

)
in the respective SR or HR

images. Correspondingly, the PSNR is in the form of

ρPSNR = 10log10
I 2

max

εMSE
= 20log10

Imax

εRMSE
, (7.13)

where the Root Mean Square Error (RMSE) is the square root of the MSE
in Equation (7.12). Imax stands for the maximum range of image pixels,
which, in the case of the common 8-bit color depth, is 255. By virtue of the
logarithmic scale, PSNR is reported in dB. Typical values for lossy image
compression for wireless transmission, as an example, is between 20 to
30 dB [Tho06]. For an identical image pair, the PSNR is infinite, because the
MSE in the denominator of Equation (7.13) is zero.

A vital difference in the SR output of 3D approaches is that only the image
part inside the face region is hallucinated (c.f . 2D and 3D results in Fig-
ures 7.20 and 7.21). Therefore, as is noted in [Jin15] as well, it is more mean-
ingful to consider solely this masked area provided by the fitted 3D model
than the entire crop of the face image, which is actually biased concerning
the large portion of background pixels (often more than 50%). To this end,
another popular Structural Similarity (SSIM) index [Wan04b] measuring
image statistics within small windows of the images is not compatible due
to the irregular masks. It is noteworthy that the 3D FSR output can be later
seamlessly integrated into the interpolated image for better visual appeal.
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Like most SR algorithms in the previous work [Wan14b], the 3D FSR algo-
rithm developed in this thesis is applied to the luminance channel only,
which is justified by the fact that the human vision system is much more
sensitive to variations in intensity than in color [Lee08]. Likewise, evalua-
tion is carried out on the grayscale representation. For color images, the
chrominance components are bicubicly upsampled and merged back with
the luminance channel processed by SR.

7.2.2 Datasets

Facial Landmark Detection

Apart from the LFPW dataset [Bel11], which is introduced in Chapter 4 for
the intermediate evaluation to measure the performance gain w.r.t. each
improvement for cascaded shape regression, two more recent and challeng-
ing in-the-wild datasets are employed.

• 300-W is created for the 300 Faces in-the-Wild Challenge [Sag13a],
which combines several existing indoor and outdoor datasets, e.g.,
LFPW [Bel11], AFW [Zhu12] and Helen [Le12], as well as a new collec-
tion named IBUG, with annotations of a unified 68-point Multi-PIE
markup [Gro10] (see Figure 5.4d). Since the original test dataset is
held for future challenges, the whole data are split into a training set of
totally 3148 images, consisting of AFW and the training sets of LFPW
and Helen, and a test set of 689 images, composed of IBUG and the
test sets of LFPW and Helen. Following [Ren14], the 300-W test set is
also divided into a common subset of LFPW and Helen, and a chal-
lenging subset of IBUG, which contains extremely large variations in
pose, expression, occlusion and illumination. An overview of 300-W
is given in Table 7.2.

• COFW is short for Caltech Occluded Faces in the Wild [Bur13], which
complements LFPW [Bel11] with more occluded faces and occlusion
annotation for landmarks. All 1,345 training and 507 test images
have the same 29-point scheme as LFPW. Note that the occlusion
mask is not used to train an occlusion-aware model as in [Bur13].
Instead, standard cascaded regression with exclusively the devised
improvements is exploited.
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Table 7.2: Overview of the 300-W dataset.

Train Test

Dataset # Subset Dataset #

AFW Full LFPW + Helen + IBUG 689
LFPW 3148 Common LFPW + Helen 554
Helen Challenging IBUG 135

3D Face Reconstruction

As opposed to benchmarking 2D landmark detectors, where a plethora of
images can be easily crawled from the Internet and annotated by hand
or semi-automatically [Sag13b], 3D face datasets are far more difficult to
collect, not only requiring expensive and bulky 3D scanners, but involving
tedious point cloud registration and a hole filling procedure as well. There-
fore, the choice is quite limited. In this work, the high-quality and popular
BFM [Pay09] is utilized as the 3DMM.

• BFM is built by Paysan et al. [Pay09] from the chair of Prof. Thomas
Vetter at the University of Basel, who is one of the authors of the
pioneering 3DMM paper [Bla99]. The morphable model of BFM is
trained with 3D face scans of 100 male and 100 female subjects with
an age range from young children to old persons. The registered
face model has 53,490 vertices and the resulting 3DMM contains
199 principal modes each for the shape and texture models. Notice
that the 200 faces for training PCA are not released. For evaluation
purposes, the rendered ten out-of-sample 3D faces included alongside
in the dataset are exploited.

• CMU–PIE is the abbreviation for the CMU pose, illumination, and
expression (PIE) database [Sim02], which is acquired in the 3D room
at CMU [Kan98] equipped with multiple cameras and flashes for tak-
ing images across pose and illumination simultaneously. CMU–PIE
records in total 68 male and female individuals with a wide span of age
and ethnicity background. Although there is no 3D information for
the faces in CMU–PIE, BFM reconstructs a subset of the faces using
the analysis-by-synthesis framework. The recovered 3D shapes with
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high precision are regarded as ground truth for benchmarks on real
data in addition to the synthetically rendered test subjects in BFM.

3D Facial Texture Super-Resolution

Three publicly available face datasets, ranging from indoor scenarios with
controlled pose variation to the outdoor environment with unconstrained
conditions, are selected to make qualitative and quantitative assessment of
the state-of-the-art FSR systems.

• Multi-PIE [Gro10] is the successor of the CMU–PIE database [Sim02].
To further advance researches in facial analysis across pose and illumi-
nation, Gross et al. address the limitations of CMU–PIE by capturing a
larger dataset with more participants across multiple sessions. Since
the underlying BFM as the 3DMM for 3D fitting lacks modeling of
facial expression and accessories, 120 subjects without glasses appear-
ing in at least two sessions with poses from 0° to 45° (cameras 05_1,
05_0, 04_1 and 19_0) are included in the test subset. The original
images are downsized by 50% and cropped according to the face
detector [Vio04] as HR data. LR images are blurred with a Gaussian
kernel with σ= 2.4 and subsampled by the scale factor m = 4.

Additionally, a total of 214 Multi-PIE HR shots are employed as the
training data for both 2D and 3D methods. Example 3D textures
extracted from these images can be seen in Figure 6.2. A fair out-of-
sample evaluation in the Multi-PIE experiments is ensured by tem-
porarily excluding the tested subject from the training data.

• Real-FSR is the name of the self-collected FSR dataset using the dual-
camera setup introduced in Section 7.1, which embodies 31 subjects
with yaw and pitch head rotation. Three poses, i.e., frontal, yaw as well
as yaw plus pitch, which are abbreviated as F, Y and Y+P respectively
in Tables 7.7 to 7.9, are recorded with totally 93 HR–LR image pairs.
No preprocessing is needed for Real-FSR as both ground truth LR and
HR faces are simultaneously acquired. Upsampling factor is m = 4
like in the Multi-PIE experiments.

• PubFig83 [Pin11] is a refined version of the original PubFig [Kum09],
which is made up of a collection of 83 celebrities downloaded from
the Internet. The images are cropped by the face bounding boxes and
resized to a resolution of 100×100 pixels, which are directly used as
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the HR ground truth. Altogether 300 images without partial occlusion
are chosen to demonstrate 3D FSR primarily in a qualitative point of
view. In this sense, the public figures in this dataset are advantageous
to verify whether the hallucinated faces are consistent with the actual
identities. Following [Jin15], σ= 1.6 is applied before shrinkage and
SR of two to eight times in terms of m.

7.3 Evaluation Results
With the aforementioned metrics and datasets for evaluation, the methods
proposed in this thesis are compared against approaches taken from the
literature. Evaluation results on 2D alignment, 3D reconstruction and facial
texture SR are discussed individually in the respective subsections.

7.3.1 Facial Landmark Detection

Parameters

Before going into details of the face alignment experiments, the technical
implementation of the cascaded regression framework is explained. The
initial shape for the first cascade stage is generated with the face bounding
box either localized by an off-the-shelf face detector [Vio04] for LFPW or
included in 300-W and COFW. Rectangular bounding boxes are squared
with the mean edge length and their centroids remain unchanged w.r.t. the
original ones. Because of the tight bounding boxes provided, the actual face
ROIs are expanded by 25% in the directions of the four edges. Afterwards,
the mean shape is scaled and centered regarding the normalized square.
The feature descriptors are computed initially on 32×32 local support and
then projected to the PCA subspace with 98% variance retained to reduce
dimensionality. To augment the training data [Xio13], ten perturbed samples
per training image, with a standard deviation of 0.05 for translation and
scaling, 5° for in-plane rotation, as well as horizontal flipping, are generated.
Merely four cascade stages suffice to obtain satisfactory results.

The presented extension of the cascaded regression algorithm has a few
parameters that need to be tuned to achieve optimal landmarking accuracy,
most notably the regression weight γ and IRLS scaling factor K in Equa-
tions (4.9) and (4.14) respectively. γ is responsible for the strength of the
regularization, where a higher value penalizes large entries in the regressor.
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A sequence of choices for γ in different cascade stages is specified in this
test, i.e., constant and monotonically decreasing or increasing values. In
IRLS, parameter K controls the weighting matrix W(s) in Equation (4.14) as
well as the convergence speed. In Table 7.3, validation results on LFPW in
terms of the NME (with the percentage sign dropped for succinctness) w.r.t.
a range of variations for these two parameters are demonstrated, which
clearly reveals the outstanding performance with a NME of 3.58% given the
parameters γ= [400,300,200,100] and K = 3. It can be observed that fixing
one parameter across identities yields the least average error and highest
stability through all test cases against varying values of the other one. It
is interesting to see that a decreasing regularization factor γ subject to the
cascade stages mostly leads to smaller error in contrast with constant or
increasing values, which indicates the necessity of adopting a stronger regu-
larization in early cascades, where significant shape update takes place. The
IRLS parameter K , though, tends to have a relatively stable contribution.

Table 7.3: NMEs tested with different IRLS parameters γ and K on LFPW.

γ K Mean Std.

1 3 5 7

20 3.74 3.87 3.90 3.94 3.86 0.07
50 3.60 3.72 3.75 3.77 3.71 0.06

100 3.60 3.63 3.65 3.67 3.64 0.03
200 3.68 3.60 3.61 3.62 3.63 0.03

20 ∼ 80 3.65 3.73 3.75 3.76 3.72 0.04
50 ∼ 200 3.65 3.64 3.66 3.68 3.66 0.02

100 ∼ 400 3.76 3.64 3.66 3.66 3.68 0.05
200 ∼ 800 4.01 3.70 3.69 3.70 3.77 0.13

80 ∼ 20 3.62 3.77 3.80 3.83 3.76 0.08
200 ∼ 50 3.57 3.63 3.66 3.68 3.63 0.04

400 ∼ 100 3.65 3.58 3.61 3.62 3.61 0.02
800 ∼ 200 3.90 3.61 3.61 3.62 3.68 0.12

Mean 3.70 3.68 3.69 3.71
Std. 0.13 0.08 0.09 0.10
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Regarding the overall performance reported on LFPW, the proposed work
(3.58%) is also on par with the best available methods, e.g., Consensus of
Exemplars (CE) [Bel11] (3.99%), Explicit Shape Regression (ESR) [Cao12]
(3.43%), Supervised Descent Method (SDM) [Xio13] (3.47%), Robust Cas-
caded Pose Regression (RCPR) [Bur13] (3.5%), Ensemble of Regression Trees
(ERT) [Kaz14] (3.8%) and Local Binary Features (LBF) [Ren14] (3.35%). Thus,
for the experiments on 300-W and COFW, the parameters above are utilized
in favor of those yielding the absolute best result of 3.57%, which might be
an exception because K = 1 generally gives the worst localization accuracy.

Table 7.4: NMEs and failures on 300-W and COFW.

Method 300-W COFW

Full Common Challenging Error Failure

ESR [Cao12] 7.58 5.28 17.00 11.2 36%
DRMF [Ast13] 9.22 6.65 19.79 — —
SDM [Xio13] 7.52 5.60 15.40 — —
RCPR [Bur13] 8.35 6.18 17.26 8.5 20%
LBF [Ren14] 6.32 4.95 11.98 — —
CFAN [Zha14a] — 5.50 — — —
HPM [Ghi14] — — — 7.5 13%
RPP [Yan15a] 6.69 5.50 11.57 7.5 16%

Baseline 7.40 5.90 13.57 9.9 37%
Proposed 6.24 4.83 12.02 6.7 10%

Human — — — 5.6 0%

Comparison

In spite of the state-of-the-art performance on LFPW, it is worth a men-
tion that in consequence of the different size of retrieved data from the
URLs released in [Bel11], diverse initialization and restart strategies [Bur13,
Cao12], etc., the results are not comparable and conclusive. Particularly, as
pointed out in [Wan14a], some deployed face detectors struggle with diffi-
cult face images and they are removed from the evaluation, which question-
ably elevates the average score. Contrarily, 300-W and COFW both provide a
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fixed number of images and bounding boxes for initializing shapes. Burgos-
Artizzu et al. [Bur13] note that the performance on standard LFPW is almost
saturated, as the lower bound created by human labeling is 3.28%.
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Figure 7.7: CED curves on 300-W. NMEs are reported in parentheses.

The NMEs on 300-W and COFW of existing face alignment approaches,
if applicable, are listed in Table 7.4, of which the quantitative results are
directly taken from the respective papers. Besides the prior arts evaluated
for LFPW, further methods such as Discriminative Response Map Fitting
(DRMF) [Ast13] and Coarse-to-Fine Autoencoder Networks (CFAN) [Zha14a]
for 300-W, as well as Hierarchical Part Model (HPM) [Ghi14] and Region
Predictive Power (RPP) [Yan15a] for COFW are added. Note that the baseline
is the own implementation of SDM [Xio13] of this thesis, which performs
slightly better than that reported in [Ren14].

Evidently, DRMF within the traditional constrained shape models family
(see Section 2.1.2) cannot compete with the rest in the table, which produces
the highest error for all test sets on 300-W. RCPR, as an occlusion-aware
version of ESR, is of no avail for 300-W, either. Compared to the global
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binary feature pool in ESR and RCPR learned in the entire face area, the
handcrafted SIFT feature of SDM extracted from local patches appears to
be more robust for the hard samples. In this spirit, LBF successfully builds
on the advantages of the both sides with locally learned binary features,
which remarkably improves localization precision for the IBUG subset. By
comparison, the developed extension focuses on the essential aspects of
the cascaded regression framework, which functions comparably for the
challenging subset (12.02% vs. 11.98%), and achieves better results for the
common images (4.83% vs. 4.95%) and the entire set (6.24% vs. 6.32%).
Moreover, it outperforms DNN-based CFAN on this subset. Interestingly,
the power of facial region prediction in RPP is more effective for generic
challenging cases in 300-W than for specific occluded faces in COFW.
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Figure 7.8: CED curves on COFW. NMEs are reported in parentheses.

In contrast to the outcome on 300-W, the occlusion learning in RCPR greatly
reduces alignment error and failure w.r.t. its baseline ESR. Two newer algo-
rithms with occlusion handling, i.e., HPM and RPP, make further improve-
ments over RCPR. Surprisingly, even without taking into account the occlu-
sion information in the training, the proposed method outperforms all
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evaluated systems with explicit occlusion handling, for instance, RCPR by
significant error and failure reduction of 20% and 50% respectively.

The CED curves for investigating the performance gain over the baseline
are plotted in Figure 7.7 for 300-W and Figure 7.8 for COFW. Obviously,
even for the easy subset of 300-W, the blue curve in Figure 7.7 is still worse
than Figure 4.7 for the more simple LFPW dataset. The improved cascaded
shape regression mainly benefits images of medium difficulty, i.e., with a
normalized error of around 5%. It is not until 15% that better convergence
emerges for the IBUG subset. That means, it is unable to lower the failure
rate for faces with more than 10% fitting error, which consists of over 40% of
all IBUG data. On COFW, larger contribution from IRLS is observed than
on LFPW in Figure 4.6. The overall localization discrepancy falls 20% from
9.9 to 7.8 for the NME and 50% from 37% to 17% for failure when only ridge
regression is applied alongside other presented enhancements. With IRLS,
the numbers continue to decrease by approximately 15% to 6.7% and 40%
to 10% respectively, which highlights the extra robustness against outliers
from partial occlusion brought by IRLS alone.

In Figures 7.9 and 7.10, example detections on the challenging 68-point
IBUG subset of 300-W and the 29-point COFW are illustrated. Despite the
mixture of diverse unconstrained circumstances including pose, expression,
lighting variations and occlusion, good results can still be achieved partly.
However, for non-frontal faces, the outline of the face is difficult to localize
for lack of distinct features, as discussed in Section 5.3.1. On the other hand,
landmarks around the mouth are heavily affected by facial expressions. The
extremely large variation considerably impedes their correct localization.

Impact of Image Quality

Facial analysis in the LR domain suffers more seriously than in the HR
domain. By studying the prior work in this context, Wang et al. [Wan14c]
claim that faces smaller than 32×24 pixels, or with an IOD under ten pixels,
are almost at the limit of the conventional FR systems. Nevertheless, due to
various nuisance factors in uncontrolled conditions like image blur, noise
and other artifacts, a minimal resolution, or a general definition of LR images
is hard to determine, since such a boundary varies among different datasets
and methods.
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Figure 7.9: Example face alignment results on the challenging IBUG subset of 300-W containing
a mixture of unconstrained circumstances including pose, expression, illumination variations
and occlusion. Successful fittings and some failure cases are highlighted with green and red
frames respectively.
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Figure 7.10: Example face alignment results on COFW mainly comprised of occluded faces.
Successful fittings and some failure cases are highlighted with green and red frames respectively.
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combination, is conducted and their impact on face alignment as the first
module of the entire pipeline is analyzed. The focus here is laid on the
effects that are most commonly present in LR scenarios, in particular, spa-
tial resolution, image blur and noise, which also exactly model the LR image
acquisition in Equation (6.1). The simulated experiments are carried out in
several degradation levels, which are manipulated by the severity index k
and a base s > 1.

Table 7.5: Control parameters for different effect severities.

k sk wk (IOD) σk ζk

0 1.0 32 (14.1) 0.64 0.000
1 1.2 27 (11.8) 0.77 0.002
2 1.4 22 (9.9) 0.92 0.004
3 1.7 19 (8.3) 1.11 0.007
4 2.1 15 (6.9) 1.33 0.011
5 2.5 13 (5.8) 1.59 0.015

• Resolution is the most critical factor with direct relation to LR imagi-
nary. Starting from a normalized face width of w0, which is empirically
set to 32 pixels following [Wan14c], further downscaled images with a
face width of wk are generated by

wk = s−k ·w0. (7.14)

• Blurring weakens the high-frequency components and smooths out
the gradient transition of structural elements in images. To synthet-
ically blur the base image I0 with 2D convolution, the widely used
Gaussian kernel is adopted, characterized with the standard deviation

σk =βsk ·w0. (7.15)
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In this part of the evaluation, based on the preliminary research from the
author’s publication [Her15], a simulation of several crucial degradation
aspects on image quality, namely resolution, blurring, noise, and their
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to deteriorate the original image I0 in an additive fashion, which can
be formulated as

Ik = I0 +ζ
(
sk −1

)
·g, g ∼N (0,Iid) , (7.16)

where the random noise g follows the normal distribution with zero
mean and unit variance.

Six levels of degradation are used to evaluate the landmark detection per-
formance. Besides the simulation of the individual effects, a combination
of them according to the image formation model defined in Equation (6.1)
is exploited, too. The scaling factors β and ζ for image blur and noise are
chosen in such a way that realistic deteriorations can be reflected on. With
this in mind, β= 0.02 and ζ= 0.01 are picked, which, together with the base
value s = 1.2, leads to the parameters in Table 7.5. Sample images from the
LFPW dataset are depicted in Figure 7.12.
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Figure 7.11: Mean alignment errors w.r.t. different kinds and severities of image quality degra-
dation on LFPW.
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• Noise contaminates the source image with random fluctuations of
brightness of color values. The typical Gaussian noise is synthesized
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Original

k = 0
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k = 5
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Figure 7.12: Effects of several image quality degradations: (a) resolution, (b) blurring, (c) noise,
(d) all combined. The first row shows the original image. Severity level k increases from the
second row on.

Figure 7.11 shows how the accuracy of the presented face alignment algo-
rithm trained on 300-W drops with increasing severity on the 68-point LFPW
subset of 300-W [Sag13a] (c.f . the initial 29-point LFPW in [Bel11]). Because
even at the 0th grade, the blurring operation in Equation (7.15) produces a
non-zero σ, the starting error at k = 0 is slightly higher than the green and
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the purple curves standing for resolution and noise respectively. Similarly,
the NME for the original images marked with a triangle is lower (under 5%)
than for the images rescaled to a face width of w0 = 32 (around 6%). As k
goes up, the localization precision against single degradation begins to fall
gradually with approximately the same rate. From k = 3 on, resolution and
blurring simultaneously cause more damage with a more steep slope, while
the noise curve barely surpasses the 10% mark at the highest level k = 5. The
reason behind is that in spite of the strong and detrimental visual impact
from image noise, there is a relatively good chance to faithfully identify the
contour of the eyes under the glasses in the last image of Figure 7.12c com-
pared to Figures 7.12a and 7.12b with fewer details. As expected, combining
all three types of degradation almost doubles the error for large k. However,
the extreme image quality and up to below six pixels of IOD renders the
landmark detection task challenging even for humans.

In summary, the proposed cascade shape regression extension demon-
strates stability and robustness against a number of adverse factors w.r.t. the
image quality, including resolution. Nonetheless, the post-refinement step
developed in Section 6.3.3 is still a complementary and compelling feature
for reliable FSR.

7.3.2 3D Face Reconstruction

Parameters

Unlike the cascaded shape regression for localizing fiducial facial feature
points, the landmark-based 3D face model reconstruction does not feature
a training procedure to learn the regressors for the shape update. Thus,
the parameters are only involved in the inference stage, more specifically,
during the LM–ICP optimization.

Instead of operating in the continuous 3D shape space for most part of the
algorithm, DT works on the discrete image lattice with the contour lines
drawn on it (see Figure 5.8b). Hence, the dimension of the DT image is
set to 300×300, which is adequate to guarantee reconstruction precision
without slowing down the method. The `2 regularization parameter for the
least squares is η = 106 according to [Bla04] in order to balance between
person-specific modeling in contrast to the mean shape of the 3DMM and
overfitting to noise.
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Table 7.6: Influence of the number of LM–ICP iterations on the 3D mean reconstruction errors.

# LM–ICP iterations 1 3 5 10 20 30 40 50

εs (mm) 5.49 5.47 5.49 5.48 5.45 5.47 5.47 5.47
εn (°) 9.32 9.27 9.28 9.28 9.25 9.25 9.25 9.25

Another variable directly related to LM–ICP is the number of iterations for
the optimization process. The Euclidean distance and the deviation of the
normal direction of the mesh faces against the ground truth BFM scans,
averaged over all tested subjects and poses, are listed in Table 7.6. Interest-
ingly, even with a single iteration of LM–ICP, the performance is almost on
par with that of the best option. With an increasing number of iterations, the
least errors in both shape and normal, despite merely marginal difference,
are reached after 20 iterations, which costs approximately one second, still
orders of magnitude faster than the analysis-by-synthesis 3DMM fitting
framework [Bla99, Rom03, Rom05] with over one minute. Therefore, fast
convergence and stability of LM–ICP are hereby demonstrated.
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Figure 7.13: Mean 3D shape error in given poses, averaged over ten BFM sample faces.
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Comparison

The two algorithms introduced in Chapter 5, coined Visible Contour Fitting
(VisCF) (see Section 5.3.1 and [Qu14]) and Adaptive Contour Fitting (AdaCF)
(see Section 5.3.3 and [Qu15d]), are evaluated.

Results on BFM The first experiments to measure the efficacy of the
devised occlusion-aware shape reconstruction approaches against the prior
arts are conducted on BFM. Each of the ten 3D face scans for testing is
rendered in seven poses of yaw rotation from −30° to 30° with 10° interval. 68
facial feature points of the rendered images are detected with the cascaded
shape regression developed in Chapter 4. The 3D inner and contour vertices
conforming to the 2D correspondences are annotated offline, as is illustrated
in Figures 5.2 and 5.7a, respectively.
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Figure 7.14: Mean normal direction error in given poses, averaged over ten BFM sample faces.
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Figure 7.15: BFM sample face No. 4 in (a) and its reconstruction error maps of (b) [Bla04], (c)
HPEN [Zhu15b], (d) VisCF and (e) AdaCF.
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relaxes the uniform variance assumption in [Bla04] w.r.t. all landmarks. The
uncorrelated Gaussian noise in feature point location in Equations (5.5)
and (5.6) is boiled down to generalization error in the model. The indi-
vidual noise variances are obtained by projecting the out-of-sample face
scans onto the PCA shape model to approximate the closest possible face
model in a least squares sense, and subsequently computing the mean
Euclidean errors of all samples for each of the points. Both [Bla04] and
[Ald10b] are implemented in this thesis. Concerning [Ald10b], the noise
variances for the 68-point labeling are calculated with the ten BFM test faces.
Considering that [Ald10b] and VisCF are mutually non-exclusive, integrat-
ing both approaches makes it possible to build a strong baseline, which is
denoted [Ald10b]+VisCF. Moreover, the state-of-the-art High-fidelity Pose
and Expression Normalization (HPEN) published lately in [Zhu15b] is also
taken into consideration. Similar to AdaCF in this work, HPEN exploits the
parallel auxiliary points for horizontal landmark marching on the occluded
half of the face, however, without the DT to facilitate flexible vertical move-
ment on the facial contour. The original source code of HPEN released by
the authors is adopted1.

On the basis of the mean 3D shape errors w.r.t. yaw angles plotted in Fig-
ure 7.13, clear “U”-shaped curves are seen in the cases of [Bla04] and
[Ald10b], which do not take into account the correspondence mismatch of
contour vertices at all and thus fail at large angles as anticipated. Employing
simple occlusion handling by discarding the invisible contour points in
VisCF shows enhanced accuracy for these cases. In contradiction to the the-
oretical advantage of separate landmark variance modeling in [Ald10b], it is
of no avail alone to cope with incorrect correspondence by pose variation.
But interestingly, the incorporation of VisCF, namely [Ald10b]+VisCF, turns
out to provide remarkable added value to establish itself as the best method
among all compared ones, since the assumption in [Ald10b] is only appli-
cable to the visible feature points, which is here validated by VisCF for the
automatic landmarking results. Unexpectedly, HPEN struggles with increas-
ing yaw angles, demonstrating merely minor improvement over [Bla04]

1 http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/HPEN/main.htm
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The basic method [Bla04] takes all 2D landmarks to model the face shape,
which is conjectured to be flawed for non-frontal poses. Its variant [Ald10b]

http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/HPEN/main.htm
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and achieves pose-invariant 3D face shape reconstruction with the lowest
errors and the most stable error curves across all tested poses. Even for
frontal faces, the precision is still higher than the rest, which is attributed
to the flexible contour fitting with the continuous feature using DT rather
than the discrete point feature easily contaminated by complex landmark
discrepancy owing to changing head pose. In Figure 7.14, the mean normal
direction errors reveal analogous curves as in Figure 7.13. Note that in both
graphs, ±10° sometimes yields better results than the frontal pose. This
conforms to the outcome in [Bla03]. An explanation would be that, slight
rotation of the head does not impair the face alignment accuracy, but has
instant influence on the 3D information, which allows for better inference
of the depth, e.g., for the nose.

To help understand the curves in Figures 7.13 and 7.14, fitted face models are
depicted in Figure 7.15. The 3D shape error is rendered as skin texture using
heat maps on the reconstructed faces respectively. [Bla04] fails to recover the
facial form starting from already 10° of yaw angle. VisCF undergoes less per-
formance degradation with increasing head rotation and plausible shapes
can be generated at 30°. Nevertheless, reconstruction quality of both the
outer area and the inner structure is still heavily limited by not leveraging the
valuable self-occluded information and the flawed fixed correspondence on
the facial contour. In contrast, superior and constant performance invariant
to pose changes is achieved by AdaCF, which matches the quantitative eval-
uation in Figure 7.13. Although there are no landmarks in the neck and ear
region, the error there from AdaCF is massively smaller than from the other
approaches. This phenomenon suggests that the possibility of freely moving
along the contour prevents skewing these areas, which is unfortunately the
case for the fixed 2D–3D mapping scheme.

Results on CMU–PIE The encouraging outcome on the BFM test faces is
now verified on CMU–PIE. Unlike the synthetically rendered face images in
BFM with just ten samples, CMU–PIE is composed of real capturings in a lab
environment with 68 enrolled persons (c.f . Figures 7.15a and 7.18a). Given
the fact that the cameras deployed in CMU–PIE are positioned approxi-
mately 22.5° apart horizontally, five yaw angles from −45° to 45° are adopted
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and [Ald10b], and is outperformed by both VisCF variants, which implies
the necessity of AdaCF to extra model the localization ambiguity along the
facial contour. By contrast, AdaCF adaptively deals with all contour features
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of 22.5° is selected for each person as the ground truth by virtue of the
aforementioned reason.
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Figure 7.16: Mean 3D shape error in given poses, averaged over 68 faces on CMU–PIE.

The overall shapes of the curves in Figures 7.16 and 7.17 resemble that
on BFM in Figures 7.13 and 7.14. [Ald10b] yields marginally lower shape
and normal direction errors, both within 1 mm and 1°, in comparison with
the basic [Bla04] except for the frontal case. The gap between VisCF and
[Ald10b]+VisCF is much smaller on CMU–PIE, which comes down to the
fact that the individual generalization errors learned from the in-sample
BFM test faces are less beneficial to the out-of-sample CMU–PIE faces. For
the state-of-the-art HPEN method, the huge competitive disadvantage in
BFM is finally rectified on the real face images. It has comparable shape
error and slightly better fidelity in facet orientation w.r.t. [Ald10b]+VisCF
for non-frontal poses. In spite of its lack of continuous feature on the facial
contour, the performance on frontal faces is very close to AdaCF, presum-
ably owing to the different parameter and annotation settings in their own
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for the experiments. However, BFM only releases fitted face models for three
poses on CMU–PIE, i.e., 0°, 22.5° and 90°. Hence, the BFM reconstruction
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Figure 7.16 is even smaller than that in Figure 7.13. But it is worth noting
that this is in part caused by the different references in the tests, i.e., the
registered 3D scans in BFM vs. the 3DMM fittings in CMU–PIE.
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Figure 7.17: Mean normal direction error in given poses, averaged over 68 faces on CMU–PIE.

Qualitative illustrations of the CMU–PIE reconstructions with HPEN, VisCF,
[Ald10b]+VisCF and AdaCF on CMU–PIE can be exemplarily found in Fig-
ure 7.18. To visualize the recovered face models of pure occlusion-aware
algorithms, the weak baseline [Bla04] in Figure 7.15 is replaced with the
stronger [Ald10b]+VisCF. HPEN, in contrast to the proposed VisCF and
AdaCF, still shows signs of struggling with large yaw rotation of ±45°. The
forehead and cheek areas are more twisted. By ignoring the self-occluded
feature points, VisCF and [Ald10b]+VisCF leave the shape constraints on
the entire face to the underlying 3DMM, which successfully mitigates the
skewed effect in Figure 7.18b, at the cost of information loss. For instance,
the reddish vertical stripes near the mouth in Figures 7.18c and 7.18d reveal
the lowest quality within the face region, which are exactly located on the

142

implementation. Nonetheless, AdaCF still tops the benchmark with high
robustness against head rotation up to 45°. The absolute shape error in
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distinction between VisCF and [Ald10b]+VisCF lies in the nose of the frontal
face, which is the consequence of the deficient noise modeling of [Ald10b]
for this specific subject in CMU–PIE. Notice that AdaCF also generates the
most stable and similar shapes across pose. The nose of HPEN, as an exam-
ple, leans towards left or right for non-frontal faces.

(a) (b) (c) (d) (e)
0

3

6

9

12

15

ε s
(m

m
)

Figure 7.18: CMU–PIE subject 4068 in (a) and its reconstruction error maps of (b) HPEN, (c)
VisCF, (d) [Ald10b]+VisCF and (e) AdaCF.
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discarded face silhouette when rotated. On the contrary, AdaCF effectively
takes advantage of it to produce highly precise face models. The only visible
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7.3.3 3D Facial Texture Super-Resolution

Comparison

Head-to-Head vs. [Mor09] In the first part of the extensive benchmark
against the state of the art, the presented 3D FSR work is qualitatively com-
pared with Mortazavian et al. [Mor09], which is one of the first ever 3D
approaches in the literature.

(a) (b) (c)

Figure 7.19: Qualitative comparison against Mortazavian et al. [Mor09]: (a) LR input images
and 3D FSR outputs from (b) [Mor09] and (c) the proposed work respectively.

Back to Section 6.2, an explanatory experiment showing the potential dam-
age of warping the LR input image as in [Mor09] is done in Figure 6.1 to
argue the benefit of the resolution-aware fitting strategy in this thesis. Here
in Figure 7.19, a comparison regarding the FSR quality is provided, where
the LR images and the FSR results of [Mor09] are directly imported from
[Mor13]. With an IOD of around 12 pixels, the XM2VTS [Mes99] images
are considered less challenging. Nevertheless, the hallucinated faces in
Figure 7.19b from [Mor09] are quite blurred with apparent color artifacts.
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The faces in Figure 7.19c, on the contrary, are not only sharper, but also
full of details, e.g., in the nasolabial folds of both subjects, which might be
already lost during the LR texture extraction stage in [Mor09]. Furthermore,
in the bottom example with a head pose of 45°, the fitting error along the
silhouette causes gross errors in the facial texture to [Mor09] starting from
the left eye horizontally, whereas the devised patch-based 3D FSR fills visu-
ally pleasing and homogeneous skin texture in this area. It is noteworthy
that the discontinuity close to the left ear is outside the FSR mask, where the
super-resolved texture is seamed with that from the mirrored visible half of
the face [Qu15a].

Results on Multi-PIE and Real-FSR The performance of the 3D FSR
framework in this thesis is first evaluated against prior arts on Multi-PIE
and Real-FSR. For 2D methods [Inn13, Ma10, Tap12, Yan13b], the respective
authors’ original code is employed. Following [Jin15], the convex approach
[Inn13] can be regarded as a performance indicator for the Bayesian algo-
rithm [Tap12], as it is shown to be as good as [Tap12]. The texture-normalized
version of 3D MRF is further implemented with the same parameters as
in [Des15]. For quantitative evaluation, the 3D-aided 2D FSR using the
resolution-aware scheme of Section 6.3.1, abbreviated as 2.5D FSR, is also
included. An identical 3D fitting engine, namely AdaCF of Section 5.3, is
used for all 2.5D and 3D systems, allowing for a fair and convincing com-
parison. Experimental results are reported in Table 7.7 and Figures 7.20
and 7.21.

Patch-based FSR using positional subspaces is sensitive to deficient fitting
caused by the average LR faces with an IOD of merely six to ten pixels
on Multi-PIE depending on head rotation. Improved fitting remarkably
boosts the final results for all 2D and 3D methods in Table 7.7, where 3D
FSR tops all situations except for the frontal pose on Multi-PIE. Qualitative
comparison shows that with increasing yaw angle, the visual advantage
becomes prominent where 2D registration suffers from large out-of-plane
rotation. Notice that for the last subject of Multi-PIE in Figure 7.20, which
has 45° yaw rotation, the 3D pose is not perfectly recovered (c.f . the nose of
the HR and 3D FSR images), which fortunately can still be tolerated by the
patch-based facial texture SR approach to generate a realistic hidden half of
the face.
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HR

Bicubic

[Ma10]

[Yan13b]

[Inn13]

[Des15]

3D

3D-F

Figure 7.20: Qualitative FSR results on Multi-PIE.
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HR

Bicubic

[Ma10]

[Yan13b]

[Inn13]

[Des15]

3D

3D-F

Figure 7.21: Qualitative FSR results on Real-FSR.
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7.3 Evaluation Results

On the LR faces of Real-FSR with apparent sensor noise, the frontal case of
3D FSR also outperforms the 2D baseline [Ma10] (c.f . the eyes of [Ma10]
and 3D FSR in Figure 7.21). By contrast, despite the sophisticated alignment
mechanism in [Inn13, Tap12, Yan13b], the output images either are impaired
by artifacts and outliers or look blurry. Since the faces in Real-FSR with
approximately 12 pixels of IOD are less challenging for most state-of-the-art
landmark detectors, such as the one of Chapter 4 here, fitting refinement is
less advantageous than for the smaller Multi-PIE faces. Nevertheless, the
impact of higher fitting accuracy reiterates the significance for FSR to exploit
spatial cues.

As is discussed at the end of Section 6.3.4, the exemplar-based 3D MRF
[Des15] generates highly detailed faces, however, with neither realistic
appearance nor competitive scores using the simplified image formation
model. Apart from the ability of natural frontalization, 2.5D and 3D FSR
yield initially almost identical PSNR values by sharing the core fitting and
FSR algorithms. The final edge is mainly attributed to the subtle details with
improved fitting for 3D FSR, as is revealed in Figures 6.8c and 6.8d.

Results on PubFig83 Figure 7.24 goes beyond controlled environment
to testify the robustness on the in-the-wild PubFig83 dataset, where all
results except 3D FSR are imported from [Jin15]. Under the challenges of
uncontrolled conditions, especially in combination with the faces of as
small as approximately six pixels in terms of IOD, the 3D framework in this
thesis achieves the most appealing visual quality, surpassing the state-of-
the-art [Jin15] in both sharpness and details of facial components with far
less training data.

Considering that the picked images in Figure 7.24 from [Jin15] are nearly
frontal, well lighted faces, more example results from the 300 subset on
PubFig83 are shown in Figures 7.22 and 7.23, which embodies richer vari-
ations such as unconstrained poses, expressions and illuminations than
in Figure 7.24. Obviously, the entire 3D framework from 2D landmarking
to facial texture SR is able to cope with extreme LR scenarios, synthesizing
identity-preserving high-quality faces for the celebrity images spanning a
variety of age, ethnicity, facial form and style, including beard and makeup.
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Angelina
Jolie

Barack
Obama

Beyoncé Brad
Pitt

Cameron
Diaz

Charlize
Theron

Christina
Ricci

Colin
Powell

Daniel
Radcliffe

David
Beckham

George
Clooney

Harrison
Ford

Hugh
Jackman

Hugh
Laurie

Figure 7.22: Example 3D FSR results on PubFig83. From top to bottom are LR, bicubicly
interpolated, 3D FSR and HR images, respectively.
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Jennifer
Lopez

Jessica
Simpson

Kate
Moss

Kiefer
Sutherland

Leonardo
DiCaprio

Matt
Damon

Morgan
Freeman

Nicole
Kidman

Orlando
Bloom

Scarlett
Johansson

Shakira Silvio
Berlusconi

Tom
Cruise

Victoria
Beckham

Figure 7.23: Example 3D FSR results on PubFig83 (cont.). From top to bottom are LR, bicubicly
interpolated, 3D FSR and HR images, respectively.
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neutral facial expression, hallucination of novel expressions like in the Will
Smith example of Figure 7.24 could lead to artifacts on the mouth. This
can be bypassed by adding expression variations, e.g., the FaceWarehouse
[Cao14a] as in HPEN [Zhu15b]. Furthermore, missed details such as the
glasses of Colin Powell and the aging effect of Morgan Freeman in Fig-
ures 7.22 and 7.23 respectively are owed to the extreme resolution in the
LR images, where they are completely blurred out from the few remaining
pixels. Lastly, the inconsistent gaze directions of Shakira causes poor visual
impression as well.

HR Bicubic [Yan13b] [Inn13] [Jin15] 3D

Figure 7.24: Qualitative FSR results on PubFig83 images of Colin Farrell, Ben Affleck, Reese
Witherspoon and Will Smith extracted from [Jin15].

Application to Face Recognition

FR is performed with the previous FSR results as probe images to verify the
practical application of FSR. Frontal images of the so far unused second
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In spite of the largely positive results on PubFig83, a couple of flaws can yet
be identified. On account of the BFM as the utilized 3DMM with exclusively



7.3 Evaluation Results

Results are reported for each probe set as identification rate, denoting the
fraction of probe images which is correctly recognized.

Following [Aho06], faces are first divided into local regions and each region
is described by an LBP histogram. All regions are then concatenated to
build the final face descriptor. Afterwards, the element-wise square root
[Wol08] is computed to enable the matching of LBPu2

8,1 patterns with eight
sampling points of radius one and uniform patterns with at most two bitwise
transitions [Aho06] in the Hellinger space [Ara12].

Evidently, all SR images except 3D MRF [Des15] contribute to higher FR
scores w.r.t. bicubic interpolation, justifying the importance of FSR for the
LR recognition problem. Overall, the identification rate in Table 7.8 is in
accordance with the promising FSR outcome. By frontalizing the 3D FSR
faces (referred to as 3D-F in Table 7.8), which can be seen in the last rows
of Figures 7.20 and 7.21, a significant boost is observed and nearly perfect
matching scores are achieved on Real-FSR, even outperforming HR images
by a large margin for faces with only moderate yaw and pitch rotation. The
synthesized frontal 3D facial texture is hereby verified to be helpful to FR.

Impact of Fitting Enhancement

It is worth noting that as opposed to some 2D and 3D work [Des15, Ma10]
where alignment is done manually or on HR images, a more pragmatic setup
is adopted in the experiments of this thesis to carry out face alignment and
3D fitting on LR data. To quantitatively evaluate the benefit of 3D fitting
enhancement, the NMEs of 2D inner facial landmarks from Equation (7.9)
are reported in Table 7.9.

Table 7.9: NMEs for inner facial landmarks without (7) and with (3) fitting enhancement on
Multi-PIE and Real-FSR.

Multi-PIE Real-FSR

0° 15° 30° 45° F Y Y+P

7 4.23 4.53 6.69 8.49 3.76 5.12 4.72
3 4.28 4.75 6.19 7.72 3.57 4.84 4.45
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subset of the 120 Multi-PIE images serve as gallery. For the Real-FSR data,
since only one session is present, the frontal faces are selected instead.
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Generally speaking, compared to the initial results, refinement does suc-
cessfully increase landmarking accuracy. Since the improved landmarks
are projected back from the 3D shape, a discrepancy could have negative
impact on the error numbers. That means, except for the near-frontal poses
on Multi-PIE, this extra stage demonstrates excellent capability to correct
the error-prone fitting initialized on LR faces, which is proved to be crucial
in the previous FSR experiments.

1.4 1.8 2.2 2.6 3
27

27.1

27.2

27.3

27.4

27.5

27.6

27.7

27.8

27.9

28

Gaussian kernel width σ (pixel)

P
SN

R
(d

B
)

Kernels recovered w/o symmetry
Kernels recovered w/ symmetry
Gaussian kernels

Figure 7.25: Impact of blurring kernels on PSNR values on Real-FSR.

Impact of Blurring Kernels

This study aims to explore the importance of having a correct blurring ker-
nel for SR. The question is extensively analyzed and confirmed in the prior
work by Efrat et al. [Efr13] using synthetic LR data. The Real-FSR dataset
recorded in this thesis with ground truth HR and LR pairs, though, appears
to be an ideal instrument to answer if this finding stands for real LR images.
Figure 7.25 plots curves of PSNR values with different kernels applied to 3D
FSR. The green and blue straight lines are results from individual kernels in
Figures 7.5b and 7.5c reconstructed by solving the quadratic programming
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problem in Equation (7.8) without and with symmetry constraint respec-
tively. The red curve corresponds to standard Gaussian kernels of the given
widths, which indicates the optimal standard deviation σ for Real-FSR is
around 2.2 to 2.6 pixels. Larger or smaller widths cause detrimental effect
to the PSNR values of FSR, which becomes more severe with higher dis-
crepancy w.r.t. the target width. On the other side, the kernels computed
with symmetry are at least as good as the optimal Gaussian kernels, which
partly validates the correctness of the empirical image formation model
in Equation (7.6) employed throughout this thesis and in the SR literature
[Par03, Yan10a]. The subpar performance from the asymmetrical kernels
probably stems from overfitting due to registration error around the contour
of fine structures, e.g., hair (see Figure 7.6), whereas FSR is benchmarked
within the facial masks.

(a) (b) (c) (d) (e)

Figure 7.26: Qualitative robustness analysis against motion blur on the PubFig83 image of Kate
Winslet. The top row shows the intermediate blurred images with the overlaid (a) Gaussian or
(b)–(e) motion blur kernels of 0° to 135°. The bottom row illustrates the HR and the respective
3D FSR results.

Figure 7.26 tries to investigate whether the 3D extension of the LR imaging
formulation in Equation (6.5) is capable of dealing with practical cases
with non-Gaussian blurring kernels. The top row displays the intermediate
images blurred with the respective kernels on the lower right corners before
being downscaled by m = 4 to the LR inputs for 3D FSR, where the smear
effect of the facial components is clearly visible. This tougher condition than
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the standard PubFig83 setup seems to be well manageable by the proposed
3D framework, as long as the correct blurring kernels are provided, as overall
consistent hallucinated faces are observed, especially the gaze, although
not in conformity with that in the HR image.

Impact of Input Resolution

The LR input images for the diverse experiments so far have an average IOD
of approximately 8 pixels for Multi-PIE, 12 pixels for Real-FSR and 6 pixels for
PubFig83, dependent on the original image size of the datasets. However, it
is also of paramount interest to delve deeply to see where is the lower bound
of the LR faces for 3D FSR. To answer this question, four representative
IODs are picked, i.e., 3, 5, 8 and 12 pixels, which correspond to the LR image
dimension of 12×12, 20×20, 32×32 and 47×47 respectively on PubFig83 with
HR images of 100×100 pixels. Accordingly, these images are super-resolved
by two to eight times with 3D FSR (see Table 7.10), and the HR images are
slightly downsampled to the target resolutions when necessary to measure
the performance. In order to exclude the negative influence of erroneous
landmark localization on the FSR quality, the detection is conducted on the
HR faces and subsequently rescaled to the LR coordinates.

Table 7.10: Mean PSNR values of 3D FSR from LR inputs with varying IODs on PubFig83.

IOD (pixel) 3 5 8 12
↑ 8× 4× 3× 2×
Bicubic 20.47 22.75 24.49 25.11
3D FSR 22.15 24.86 27.11 25.59
Improvement 1.68 2.11 2.62 0.48

The mean PSNR scores of 3D FSR vs. bicubic interpolation on the PubFig83
subset are listed in Table 7.10. Increasing the IOD of input images from 3 to
8 pixels gradually opens up the gap between the two counterparts, before
it becomes closer for the IOD of 12 pixels, where the SR factor is just two.
The qualitative examples in Figure 7.27, on the contrary, acknowledge that
the hallucinated details of 3D FSR are still far richer than those from the
interpolated ones for this relatively easy case. The quality of 3D FSR remains
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stable until the IOD reaches 5 pixels. Downwards, it is believed to be too
challenging for the algorithm to recover meaningful HR faces, which tends
to generate unrecognizable facial texture instead. For instance, the eyes and
noses of all samples deviate significantly from the real HR faces.

IOD: 3 pixels IOD: 5 pixels

Ashton

Kutcher

IOD: 8 pixels IOD: 12 pixels

IOD: 3 pixels IOD: 5 pixels

Jennifer

Aniston

IOD: 8 pixels IOD: 12 pixels

IOD: 3 pixels IOD: 5 pixels

Uma

Thurman

IOD: 8 pixels IOD: 12 pixels

Figure 7.27: Qualitative results of 3D FSR from LR inputs with varying IODs on PubFig83. The
leftmost column depicts the HR images. In each triplet for the specified IOD, from left to right
are LR, bicubicly interpolated and 3D FSR images.
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7.4 Summary
The complete 3D FSR processing chain works fully automatically. The only
hyper-parameters to be manually set are the blurring kernel and the upsam-
pling factor. In case of unknown kernels, class-specific face deblurring
[Anw15] can be leveraged to obtain an accurate estimate. Regarding the
runtime, the unoptimized MATLAB® implementation takes approximately
7 to 25 seconds on a desktop PC with an Intel® Core™ i7 CPU of 3.4 GHz
depending on the target HR dimension, markedly below that of the com-
peting algorithms [Des15, Inn13, Tap12, Yan13b] with 2 to 5 minutes and
[Jin15] with over 15 minutes.

On a final note, Figure 7.28 reveals a typical failure case of 3D FSR due to
incorrect detection of the lips in Figure 7.28c, which produces a phantom
mouth at the wrong location. Even the LR fitting refinement in Section 6.3.3
designed for such situation is of no avail. Fortunately, by rectifying a few
landmarks, the FSR result in Figure 7.28d is greatly improved in a simple
fashion, which shows higher flexibility over all-in-one analysis-by-synthesis
approaches [Mor09, Sch15] or DNNs [Tuz16, Yu16, Zhu16a].

Daniel
Craig

(a) (b) (c) (d)

Figure 7.28: A typical failure case of 3D FSR due to incorrect LR landmark detection: (a) HR
image, (b) LR and bicubicly interpolated images, (c) 3D FSR given the wrong facial landmarks,
(d) revised 3D FSR output with corrected landmarks.
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In this closing chapter, the improvements made in this thesis, limitations
and potential extensions of the proposed 3D FSR framework are outlined
with some final remarks.

8.1 Conclusions
Towards effective FSR in real-world applications, where the acquired LR face
images cover a range of variations such as blurring, noise, unconstrained
pose and illumination, a complete processing chain leveraging 3D face mod-
els is presented. 3D representation has long been proved to be a powerful
tool for a plethora of computer vision tasks. However, it is extremely chal-
lenging to incorporate 3D modeling for FSR. The main reason behind this is
the difficulty of directly fitting 3DMMs to uncontrolled images, especially in
combination with the ill-posed LR condition. To deal with this problem, a
workflow coupling automatic localization of 2D facial feature points and 3D
shape reconstruction is developed to obtain a pragmatic solution to the LR
scenario, leading to a novel “2D landmarks → 3D dense shape → LR fitting
refinement” pipeline. A number of contributions are made thereof to propel
robustness and quality of 3D FSR.

The foremost 2D face alignment is built upon the popular cascaded shape
regression. The fundamental aspects of this framework including the core
regression algorithm, feature descriptors and fitting strategies are revisited.
The respective improvements, namely the IRLS, RootSIFT and coarse-to-fine
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two-pass alignment are evaluated in a progressive manner to demonstrate
the benefit of each individual component. State-of-the-art landmarking pre-
cision measured on several unconstrained datasets and resistance against
image quality degradation sum up to the capability of the approach.

The discrepancy of correspondences between detected 2D points and anno-
tated 3D vertices on the face model is addressed in the second dense shape
reconstruction module. Along with an intuitive method excluding the self-
occluded ones on the silhouette, an adaptive fitting scheme employing DT
and nonlinear LM–ICP is devised to maximize the utility of such landmarks,
which at the same time relaxes the unfavorable fixed mapping assump-
tion on the facial contour and achieves superior and stable shape recovery
across pose.

In order to exploit the obtained 3D shape and pose for FSR, a resolution-
aware approach for registering the training 3D faces with the LR input is
designed to avoid warping the LR face, which is confirmed to inevitably
result in a loss of discriminative facial details. To facilitate hallucination of
the 3D facial texture, the widespread LR image formation procedure from
HR images is first reformulated for the 3D face mesh using a straightforward
interpolation process. On the basis of this interpretation, the classic Lucas–
Kanade algorithm is extended to the case of 3D deformable models to rectify
the imperfect landmark-based face modeling on LR images in a posterior
fashion. In this way, the final patch-wise SR stage is able to produce a
realistic facial texture robust to intrinsic and extrinsic sources of variation,
and to synthesize the self-occluded half of the face for non-frontal poses.

Moreover, a novel Real-FSR dataset, which contains both LR and HR pairs
acquired with a special dual-camera system, is collected to study the gen-
uine image characteristics related to SR. Extensive analysis and evaluation
on Real-FSR validates the correctness of the underlying imaging model
within the 3D FSR framework. Further experiments on other benchmark
datasets reveal its exceptional ability regarding faithful SR for in-the-wild
faces with an IOD of as few as five pixels. Finally yet importantly, the frontal-
ized HR texture is also verified to help boost the performance of FR.

8.2 Outlook
Although the proposed framework reports impressive and consistent SR
results for LR input faces of broad scope, it still has its limitations. During
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the course of this thesis, room for further advancements is also identified.
Thanks to the modular design, the individual submodules can be exchanged
without influencing the rest of the system.

• A major restriction of the applied landmark-based fitting engine is
the maximum permissible head pose of around ±45° in yaw rota-
tion. Beyond this angle, the landmarks on the hidden half of the
face will become completely occluded by the nose and mouth. The
vanished feature on the 2D image causes problems not only to face
alignment algorithms, but also to the reliability w.r.t. the manually
labeled ground truth. As a consequence, one needs to resort to exter-
nal sources, e.g., 3DMMs [Jou15], to cope with the large-pose train-
ing issue. Since the invisible silhouette can no longer be utilized,
additional transformation between the 2D and 3D correspondences
[Bul17] is required to introduce further constraints for 3D shape
reconstruction. Otherwise, direct 3D dense shape regression with
DNNs [Jou16, Zhu16b] offers an alternative option. Their adaptation
and applicability to LR images would be an interesting avenue for
future work.

• As mentioned earlier, one shortcoming of the present workflow with
BFM as the 3DMM is the lack of shape representation for non-neutral
expressions, which can be circumvented relatively easily by means of
a bilinear 3DMM with separate PCA subspaces for identity and expres-
sion [Chu14, Zhu15b]. For the downstream FSR, though, the extra
texture of the teeth and tongue for expressions like smile, surprise
or scream has to be handled. In practice, the 3D training textures
can be noted with an additional flag for whether the mouth is open.
After determining the status of the LR input face by the location of the
feature points, facial texture SR can be carried out on the respective
subset of the training data.

• Furthermore, there are some visionary ideas in terms of the essential
SR algorithm. Considering the challenge of accurate LR fitting and the
adverse impact of incorrect alignment, it would be preferable to allow
the local training patches to deform subject to the LR correspondence
[Hua15]. Relatively simple 2D transformation should suffice by virtue
of the 3D normalization for the face geometry.
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8 Concluding Remarks

• Another point worth to investigate is the runtime of SR, as the current
implementation is still far from real-time capable despite the advan-
tage over prior arts. When more faces are added to the training data,
the efficiency is expected to drop further. To alleviate this problem,
locally linear regression [Tim13, Yan13c] is able to partition the patch
space with clustering and thus greatly reduces computational load.
Alternatively, discriminatively learned DNNs provide a feed-forward
approach to resolve this issue elegantly.

• Instead of the conventional per-pixel MSE which prefers blurred SR
output and produces high error even for two identical images with one
pixel offset, advanced loss functions that favor perceptually pleasing
results can be adopted by DNNs [Joh16]. The possibilities of incorpo-
rating GANs [Goo14] for realistic SR [Led17] and pose-invariant FR
[Yin17] are among the most promising topics as well.

• Finally, unconstrained FSR is a long-standing challenge. The 3D FSR
pipeline presented in this thesis with the ability to process a single
LR input is believed to be a step in this direction. However, although
images of reasonably good quality are mostly scarce in surveillance
footage, different perspectives of the query face in video data embody
supplementary information of the facial texture. Hence, despite the
probabilistic solution for similar LR images [Jin15], how to exploit
multiple video frames with large pose variation to enhance learning-
based FSR robust to illumination and expression changes remains an
open question.
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Facial image analysis has been an active research area in the past dec-
ades. Although human-level performance has been reached on several 
benchmark datasets recently, it can drop dramatically in non-cooperative 
surveillance scenarios, where the subjects are acquired at a distance, 
giving rise to a number of detrimental effects in the input images, in 
particular the low spatial resolution. This book proposes to solve the 
low-resolution (LR) facial analysis problem with 3D face super-resolution 
(FSR). A complete processing chain is presented towards effective 3D FSR 
in real-world applications. To deal with the extreme challenges of incor-
porating 3D modeling under the ill-posed LR condition, a novel workfl ow 
coupling automatic localization of 2D facial feature points and 3D shape 
reconstruction is developed, leading to a robust pipeline for pose-invariant 
hallucination of the 3D facial texture. Extensive evaluation demonstrates 
state-of-the-art performance and high-quality 3D face synthesis for 
in-the-wild images with an interocular distance of as few as fi ve pixels.
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