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Abstract

This paper proposes an algorithm that can be used to reaohatB-D environment on a mobile robot. As sensors, color
and time-of-flight cameras are used. 2-D features are g¢gttdcom color images and assigned 3-D coordinates. Those
are the input for a modified fastSLAM algorithm that is capeadl rendering environment maps for small environments
online in order to execute manipulation tasks. The methegiatuated on the service robot Care-O%3t

1 Introduction manipulation tasks in small and dynamic environments,
state-of-the-art algorithms cannot be used out-of-the-bo
Also, we use different sensors on our robot, the Care-O-
3-D environment perception is one of the key technologieot® 3 [4]. Instead of 3-D laser ranger finders, as used for
for human-scale service robots. A three-dimensional vievexample on the PR2 [3], the Care-O-B& is equipped
of the surroundings of a robot is crucial for accomplish-with an agile sensor head. As shown in figure 1, two color
ing tasks like navigation and manipulation in a fully au- and one 3-D time-of-flight (TOF) camera are mounted on
tonomous way in incompletely known environments. Also,the head. Those are different pre-conditions for 3-D envi-
for tele—operation of robots a visualization of the environ ronment perception than in most of the other research ac-
ment in a human-readable way is important for an intu+jyities. Because the Care-O-508 is also equipped with
itive user interface. Because the data of State'of'the'afhree 2-D laser ranger finders for navigation’ it can use
sensors is bound to error and the robot position is usualljhpse to get a rather good position estimate of the robot.
completely unknown or only roughly known, a transfor- a|so, those objects in the environment that can hardly be
mation of the single sensor readings w.r.t. the robot posimoved (e.g. walls, kitchen shelves, heavy furniture) are
tion does not lead to sufficient results. Therefore, methmodeled in a static map. This map is used for localization.
ods that minimize those errors are of great importance. Ifror manipulation tasks the 2-D map is augmented by 3-D
the past decades, there has been a lot of research in thgjects obtained from the 3-D perception algorithm. The
field of simultaneous localization and mapping (SLAM). goal is to create a dense dynamic 3-D map that renders the
Most of the algorithms like EKF SLAM are based on the syrroundings of the manipulation area, e.g obstacles that

Bayesian filter theory. A promising approach is fastSLAMmay be in the planned manipulator path or influence pos-
[5] that decomposes the SLAM problem into a robot lo-sjple grasp strategies.

calization problem and a collection of landmark estima-

tion problems. Because of that, fastSLAM has logarith-

mic complexity with respect to the number of landmarks

N whereas EKF SLAM ha®(N?).

Other approaches for 3-D environment modeling use the it-
erative closest point algorithm (ICP). The ICP tries to find

a transformation between two point clouds that minimizes
the distance between the points. The algorithm is iterated
as long as the distance error is below a given threshold.
Nuchter et. al. [2] evaluated many variants of the ICP and
were able to develop a method to create 3-D point maps
from laser scanner readings while moving the robot with

full 6 degrees-of-freedom.

Most of the above mentioned methods were designed for
the use of 2-D or 3-D laser range finders. Also, almost
every SLAM algorithm is intended to be used mainly for Figure 1: Sensor head of Care-O-508. Two color cam-
navigation in large-scale environments. As we focus oreras and one time-of-flight camera.

291



The innovation of this paper is the application of the fast-SURF descriptor to describe those points. It outperforms
SLAM 2.0 [10] algorithm for manipulation tasks on Care- the formerly introduced SIFT [7] both in robustness and
O-bof® 3. Therefore, 2-D features have to be extractedspeed.

from color camera images and assigned 3-D coordinates the feature extraction only provides 2-D features in im-
with help of the TOF camera. Furthermore, fastSLAM age coordinates, the corresponding 3-D coordinates have
is modified in order to use descriptor-based data associée be associated. The use of a colored point cloud [8]
tion and handle multiple observations per timestep. In thamakes it possible to assign 3D coordinates to the feature
way, a 3-D feature map of the environment is obtainedpoints. Either a stereo camera system or the time-of-flight
If the density of the map is not sufficient, the raw datacamera in combination with one color camera can be used
point clouds can be transformed according to the correcteth obtain a colored point cloud.

robot position in order to get a consistent point cloud of the

whole scene.

The remainder of this paper is organized as follows. Sec-

tion 2 gives an overview of sensor data preprocessing, fod FastSLAM for Environment Re-
lowed by Section 3 which describes the feature extraction. .

Section 4 proposes a modified fastSLAM algorithm for en- construction

vironment reconstruction and Section 5 presents the actu_@la_lh_ ion d ibes the fastSLAM alaorith df
implementation on Care-O-ifot3. Finally a conclusion IS section describes the fast algorithm used for

and outlook is given in Section 6 environment reconstruction. FastSLAM 2.0 was first in-
' troduced in [10]. It is a particle filter approach to simul-
taneous localization and mapping (SLAM) which is based
i on the assumption that if robot’s true path were known,
2 Sensor Data Preprocessmg the SLAM problem would be an estimation problem of in-
ec}ependent landmarks. So it can reduce the complexity in

As time-of-flight cameras are inaccurate compared to las ) . .
g P mparison to EKF SLAM t@ (M log N), with M being

range finders, methods to remove noise and erroneo e number of particles and the number of landmarks
measurements have to be considered. The main err6 P

sources are presented and simulated in [5]. The key effecL@ the map. Because of the particle structure it is able to

: : Lo : ; . andle multi-hypothesis data association.
are flying pixels, wiggling, motion blur and noise. Flying : . .
pixels mainly occur on edges and object boundaries due @S visual SURF features have a descriptor that consists of

depth inhomogeneities, wiggling is the systematic devia- 4 valutets, ;het ongmalifz;stSLgI:/Ihhas. to ?r? mod|f|e(: Vtv.'th |
tion error. The influence of those effects on image qualit);eSpeC 0 data association. erwise the computationa

cost of the data association would slow down the algorithm

is small, so they are ignored. Motion blur arises from fast”. ificantlv. Furth handi f multiole ob
camera motions due to temporal integration of the phast?-,Ignl Icantly. Furthermore, handling of multipie observa-

image. This problem can be solved by performing SIOWt|on per time step is necessary because of the sensors used.

robot motions during measurements or incremental moveReI"Med o [11], all of the detected features are stored in

ments with sensor data acquisition in between. a kd-tree whereas the SURF descriptor is used as search

Noise mainly comes from reflections in the surrounding attt(:]rn].c Tthe I?ﬁ\fst .Of thg treed %onj[am a u?_lquef|(tj§n'[t|f|er
of the sensor. Other artifacts similar to noise are genérate or tne feature that IS assigned during creation ot the tree.

when objects in the sensor’s view are further than the non';Or associating a feature point, a nearest neighbor search i
erformed within the tree that returns the ID of the feature

ambiguity range. Those pixels appear to be much nearé;)r_th th ¢ similar d ot
than they are and tend to be scattered. Both noise and o ! € most similar descriptor.

of-range pixels are characterized by low amplitude and in- ecal#se ”:E reklj PO cq:;]/enl'[entt)waybtqlf\df(: or rer?]ove fe?‘
tensity values. Because of that, intensity-based filterin uresiromthe ka-tree, ithas to be reburlt atter each associ

can be performed. The coordinates of a poiate masked tion step. That is the reason why global data association
with 0 if I, < I,5, with the intensity of the poinf; and the is used rather than per-particle association. Doing this in

intensity threshold;;,. As those values can never occur &Y particle W.OUId be mefﬂment as building a balanced
tree out ofn points. This has at leagd(nlogn) com-

during normal sensor operation, they can be clearly identi . .

uring r op y y plexity, depending on the search method. Also, as SURF

fied in later processing steps. : . o ,
features are robust and yield few misassociations, we don’t
loose much by neglecting the per-particle association.

3 Feature Extraction chh ID of the qssouated features is pas;ed to. the filter.
Within each particle the features are stored in a binary tree

and a search is done by ID. In order to detect misassoci-

Sensor readings for feature extraction come from a COlortions the importance of the measurement is calculated
camera, mounted on the sensor head of the mobile rob I8 ' b e

A robust feature detector and descriptor for color images
is SURF (Speeded Up Robust Features) [6]. It uses a fast- . 1 P
hessian detector to identify keypoints in an image and the ~ » = [27Z] * exp{—5(z — 2)" 27 (- 2)}
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with the actual measurementthe predicted measurement before and after filtering. It can be seen that most of the
Z and the covariance&. Features with low importance noise is removed. However, there are still points with in-
are rejected as they are probably wrongly associated. Beorrect depth values remaining. Those will be removed by
cause of the global data association a misassociation withe fastSLAM filter during data association.

be propagated to every particle. So we have to make sure,

that those features do not affect the weight of the particle

by setting their importance to 1. )

Because of the sensors used, multiple observations pe /
time step are obtained. So the fastSLAM algorithm is mod- :
ified by sampling the robot’s pose once per time step anc
updating all observed landmarks for that pose. The weigh
of a particlei is then calculated by multiplying the impor-
tance of all features

W= ]-i-[lpj Figure 2: Point cloud before (left) and after (right) inten-
= sity filtering.
with the number of new observatioms Those features
rejected by the best particle, i.e. the particle with the max
imum weight after incorporating all observations of that5.2 Feature Extraction and Data Association

time step, are added as new features both to the global kci‘-he colored point cloud is obtained by combining sensor

tree and all the particles. ta from a color camera and a time-of-flight camera. Th
After the update step the particles have to be resampled ag?a om a color camera and a ime-of-flight camera. the

cording to their weight. The particles with a higher Weight_two sensors are calibrated to each other and the point cloud

are resampled more often than those with lower Weightf; conlstructed by_ t;ar][f]fo[rn(ﬂ)lrllg the 2-D colé)_r dtata frf[)m
During resampling, the distribution of the particles chang € color camera Into the camera coordinate system.

and after resampling they are distributed according to thg hose features masked by the |nten§|ty filtering step are re-
posterior. moved and not used for data association. At an overlap of

70 % between two images 5-20 data associations are found
(see figure 3). The rate of misassociations is smaller than

5 Environment Reconstruction on 5%.
Care-O-bot® 3

The 3-D environment modeling method used on Care-O
bot® 3 is meant to reconstruct single dynamic scenes o
rather small environments out of colored point clouds. The
purpose of the map is to model obstacles for navigatior=c
and manipulation. As presented in section 3, 2-D feature!o
from color images are used to associate the data of sulk
sequent sensor readings. The fastSLAM algorithm from
section 4 performs the map aggregation and corrects tHeigure 3: Extracted features (blue circles) and correspon-
robot position provided by laser scanner localization. dences (red lines) between two images.

For many manipulation tasks a dense map is needed that

makes it possible to create geometric objects. Featune-onl

maps cannpt guarantee a specific density. For this reasn3 System Model

the raw point clouds are transformed into a consistent poi
cloud of the whole scene based on the feature map.

r]{‘he robot movement is estimated by the odometry motion
model [12]. The robot only performs planar movements,
so the robot state has three DOF, the position and orienta-
S tion. The system model represents

5.1 Intensity filtering

Care-O-bdt 3 is equipped with a SwissRanger 4000. Due p(sefu, st-1)

to reflections and areas that are out of sensor range, intef};ith the robot states — (z,y, ¢) and the controk. The

sity filtering according to section 2 has to take place. Thqnirol of the odometry motion model is given by
intensity values range in the inten@l, 30000) for our test

environment (see figure 4) and good filtering results are (ztl)
u = .

obtained forl;;, = 1000. Figure 2 shows a point cloud Xt
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Figure 4: Image of the kitchen environment (left), feature point mayddle), raw point cloud map (right)

As Care-O-bdt 3 relies on laser range finders for localiza- 5.5  Map Aggregation
tion, that information is used instead of real odometry data

Nevertheless, the pose output of the localization compol "€ output of the fastSLAM algorithm is a 3-D feature

nent can be considered as odometry information. point map. Depending on the environment structure (i.e.

During simulation, additional noise is added to the posdh® number of detected features), the density of the map
estimate. The covariance of the Gaussian noise can change. For some tasks the density of a sole feature

point map can be sufficient. But for accurate manipulation

0.0001 0 0 in populated environments or as a base for the identifica-
N = 0 0.0001 0 tion of geometric objects a raw point cloud map is a better
0 0 0.00029 input. Using the corrected robot position the raw point

is found heuristically. As can be seen, the position un£louds can be transformed and merged into a single point
certainty for our system is rather small due to laser-base@loud of the scene. Figure 4 shows the feature map and the

localization instead of odometry measurements. raw point cloud map of a kitchen environment. The data
is acquired in a single sweep and the head is not moved

during data acquisition which yields a map that does not
cover the full height of the kitchen.

As measurement model a feature-based model as intro-
duced in [12] is used. This model basically reflects the
transformation of a feature point from global to robot co- 5
ordinates. This is a coarse modeling, but sufficient for our
needs and easy to implement. Practical experiments yield results concerning perfor-
With the robot positions and the landmark positiof the  mance, data association and map aggregation. A test sce-
measurement, i.e. the landmark position in robot coordi- nario is created by rotating the sensor head by 45° in steps

5.4 Measurement Model

.6 Experimental Results

nates can be calculated by of 5° and performing a measurement after each move-
. O, - o855 — O, - sin sy + 5 ment step. The rotational movement is done back and

L [ T Y x . . .
(Zy) = ((% - sin 8 + Oy - COS 5 + Sy) forth several times. The expectation is that the number of

newly observed features decreases with each sweep over
Since the robot only moves planarly, the height of the landthe scene. Furthermore, the error of the estimated robot
marks is notincorporated in the measurement update. Thjsosition should be bounded.

is the reason why the robot pose does not provide informaon the whole, a sequence of 46 pictures is taken. With a
tion in that coordinate. SUREF detection threshold of 500, in total 3625 SURF fea-
This modeling is rather crude because it does not take int@ures are extracted. The threshold for data associati@t is s
account the physical measurement process. Because tofa descriptor error of 0.1 and 3308 data associations are
that, the covariance matrik cannot be determined analyt- found. During filter update mismatches are rejected. Af-
ically. So we have to identify this matrix by experiments. ter this step, 2466 correct data associations remain, which
The main uncertainty comes from the time-of-flight cam-is about 75 % of all observed features. Figure 5 shows
era. Therefore, images of a plain wall are taken from sevthe number of features in the map over the rotation an-
eral distances and compared to the manually measured digle. It can be seen that the number of features in the map
tances. With that it is possible to identify the mean and thenly grows slightly after the first rotation direction chang

variance of measured values which yield and is finally bounded. The increase of features can be ex-
plained by illumination change during the experiment and
0.0025 0 ) . o :
R= 0 0.0025 new features near the image boundaries at 0° and 45° due

to inaccurate sensor movement. The estimated rotation an-
as covariance. gle of the robot is shown in brackets on the x-axis. The
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maximum error is 0.5° and does not grow over time.
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Figure 5: Number of features during a rotational move-

ment of the robot.

6 CONCLUSIONS AND FUTURE
WORKS

(2]

(3]

[4]

[5]

[6]

The paper proposed a method that is capable of reconi’]

structing environment maps in 3-D. The method relies on

2-Dfeatures extracted from color cameraimages and trans-

formed into 3-D features using a time-of-flight camera or
stereo-vision. The algorithm was evaluated on Care-O-

bot® 3 and proved to be able to handle given tasks.

In the area of environment modeling there are some im-

(8]

provements to be done in order to increase performance of

the algorithm. As the kd-tree that holds all features grows
during runtime and has to be rebuilt in every time step the
update cycle of the algorithm slows down significantly for
larger scenes. This can be tackled by hierarchical kd-treesq
The idea is to group the features according to their position
in the environment. Therefore, only the subtree belonging

to the currently observed area has to be rebuilt.

At the moment, only feature or raw data point clouds can

be constructed. Feature-only may not be dense enough for
rendering obstacles in manipulation tasks, depending of10]

the environment. The raw data point clouds contain many

duplicate points due to overlapping scans. The map quality

could be improved by introducing a resampling step that

removes duplicate values and generate a point cloud with

equally distributed points.
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