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Abstract

This paper proposes an algorithm that can be used to reconstruct a 3-D environment on a mobile robot. As sensors, color
and time-of-flight cameras are used. 2-D features are extracted from color images and assigned 3-D coordinates. Those
are the input for a modified fastSLAM algorithm that is capable of rendering environment maps for small environments
online in order to execute manipulation tasks. The method isevaluated on the service robot Care-O-bot® 3.

1 Introduction

3-D environment perception is one of the key technologies
for human-scale service robots. A three-dimensional view
of the surroundings of a robot is crucial for accomplish-
ing tasks like navigation and manipulation in a fully au-
tonomous way in incompletely known environments. Also,
for tele-operation of robots a visualization of the environ-
ment in a human-readable way is important for an intu-
itive user interface. Because the data of state-of-the-art
sensors is bound to error and the robot position is usually
completely unknown or only roughly known, a transfor-
mation of the single sensor readings w.r.t. the robot posi-
tion does not lead to sufficient results. Therefore, meth-
ods that minimize those errors are of great importance. In
the past decades, there has been a lot of research in the
field of simultaneous localization and mapping (SLAM).
Most of the algorithms like EKF SLAM are based on the
Bayesian filter theory. A promising approach is fastSLAM
[5] that decomposes the SLAM problem into a robot lo-
calization problem and a collection of landmark estima-
tion problems. Because of that, fastSLAM has logarith-
mic complexity with respect to the number of landmarks
N whereas EKF SLAM hasO(N2).
Other approaches for 3-D environment modeling use the it-
erative closest point algorithm (ICP). The ICP tries to find
a transformation between two point clouds that minimizes
the distance between the points. The algorithm is iterated
as long as the distance error is below a given threshold.
Nüchter et. al. [2] evaluated many variants of the ICP and
were able to develop a method to create 3-D point maps
from laser scanner readings while moving the robot with
full 6 degrees-of-freedom.
Most of the above mentioned methods were designed for
the use of 2-D or 3-D laser range finders. Also, almost
every SLAM algorithm is intended to be used mainly for
navigation in large-scale environments. As we focus on

manipulation tasks in small and dynamic environments,
state-of-the-art algorithms cannot be used out-of-the-box.
Also, we use different sensors on our robot, the Care-O-
bot® 3 [4]. Instead of 3-D laser ranger finders, as used for
example on the PR2 [3], the Care-O-bot® 3 is equipped
with an agile sensor head. As shown in figure 1, two color
and one 3-D time-of-flight (TOF) camera are mounted on
the head. Those are different pre-conditions for 3-D envi-
ronment perception than in most of the other research ac-
tivities. Because the Care-O-bot® 3 is also equipped with
three 2-D laser ranger finders for navigation, it can use
those to get a rather good position estimate of the robot.
Also, those objects in the environment that can hardly be
moved (e.g. walls, kitchen shelves, heavy furniture) are
modeled in a static map. This map is used for localization.
For manipulation tasks the 2-D map is augmented by 3-D
objects obtained from the 3-D perception algorithm. The
goal is to create a dense dynamic 3-D map that renders the
surroundings of the manipulation area, e.g obstacles that
may be in the planned manipulator path or influence pos-
sible grasp strategies.

Figure 1: Sensor head of Care-O-bot® 3. Two color cam-
eras and one time-of-flight camera.
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The innovation of this paper is the application of the fast-
SLAM 2.0 [10] algorithm for manipulation tasks on Care-
O-bot® 3. Therefore, 2-D features have to be extracted
from color camera images and assigned 3-D coordinates
with help of the TOF camera. Furthermore, fastSLAM
is modified in order to use descriptor-based data associa-
tion and handle multiple observations per timestep. In that
way, a 3-D feature map of the environment is obtained.
If the density of the map is not sufficient, the raw data
point clouds can be transformed according to the corrected
robot position in order to get a consistent point cloud of the
whole scene.
The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of sensor data preprocessing, fol-
lowed by Section 3 which describes the feature extraction.
Section 4 proposes a modified fastSLAM algorithm for en-
vironment reconstruction and Section 5 presents the actual
implementation on Care-O-bot® 3. Finally a conclusion
and outlook is given in Section 6.

2 Sensor Data Preprocessing

As time-of-flight cameras are inaccurate compared to laser
range finders, methods to remove noise and erroneous
measurements have to be considered. The main error
sources are presented and simulated in [5]. The key effects
are flying pixels, wiggling, motion blur and noise. Flying
pixels mainly occur on edges and object boundaries due to
depth inhomogeneities, wiggling is the systematic devia-
tion error. The influence of those effects on image quality
is small, so they are ignored. Motion blur arises from fast
camera motions due to temporal integration of the phase
image. This problem can be solved by performing slow
robot motions during measurements or incremental move-
ments with sensor data acquisition in between.
Noise mainly comes from reflections in the surroundings
of the sensor. Other artifacts similar to noise are generated
when objects in the sensor’s view are further than the non-
ambiguity range. Those pixels appear to be much nearer
than they are and tend to be scattered. Both noise and out-
of-range pixels are characterized by low amplitude and in-
tensity values. Because of that, intensity-based filtering
can be performed. The coordinates of a pointi are masked
with 0 if Ii < Ith with the intensity of the pointIi and the
intensity thresholdIth. As those values can never occur
during normal sensor operation, they can be clearly identi-
fied in later processing steps.

3 Feature Extraction

Sensor readings for feature extraction come from a color
camera, mounted on the sensor head of the mobile robot.
A robust feature detector and descriptor for color images
is SURF (Speeded Up Robust Features) [6]. It uses a fast-
hessian detector to identify keypoints in an image and the

SURF descriptor to describe those points. It outperforms
the formerly introduced SIFT [7] both in robustness and
speed.
As the feature extraction only provides 2-D features in im-
age coordinates, the corresponding 3-D coordinates have
to be associated. The use of a colored point cloud [8]
makes it possible to assign 3D coordinates to the feature
points. Either a stereo camera system or the time-of-flight
camera in combination with one color camera can be used
to obtain a colored point cloud.

4 FastSLAM for Environment Re-
construction

This section describes the fastSLAM algorithm used for
environment reconstruction. FastSLAM 2.0 was first in-
troduced in [10]. It is a particle filter approach to simul-
taneous localization and mapping (SLAM) which is based
on the assumption that if robot’s true path were known,
the SLAM problem would be an estimation problem of in-
dependent landmarks. So it can reduce the complexity in
comparison to EKF SLAM toO(M log N), with M being
the number of particles andN the number of landmarks
in the map. Because of the particle structure it is able to
handle multi-hypothesis data association.
As visual SURF features have a descriptor that consists of
64 values, the original fastSLAM has to be modified with
respect to data association. Otherwise the computational
cost of the data association would slow down the algorithm
significantly. Furthermore, handling of multiple observa-
tion per time step is necessary because of the sensors used.
Related to [11], all of the detected features are stored in
a kd-tree whereas the SURF descriptor is used as search
pattern. The leafs of the tree contain a unique identifier
for the feature that is assigned during creation of the tree.
For associating a feature point, a nearest neighbor search is
performed within the tree that returns the ID of the feature
with the most similar descriptor.
Because there is no convenient way to add or remove fea-
tures from the kd-tree, it has to be rebuilt after each associ-
ation step. That is the reason why global data association
is used rather than per-particle association. Doing this in
every particle would be inefficient as building a balanced
tree out ofn points. This has at leastO(n log n) com-
plexity, depending on the search method. Also, as SURF
features are robust and yield few misassociations, we don’t
loose much by neglecting the per-particle association.
Each ID of the associated features is passed to the filter.
Within each particle the features are stored in a binary tree
and a search is done by ID. In order to detect misassoci-
ations, the importancep of the measurement is calculated
by

p = |2πZ|
−

1

2 exp{−
1

2
(z − ẑ)T Z−1(z − ẑ)}
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with the actual measurementz, the predicted measurement
ẑ and the covarianceZ. Features with low importance
are rejected as they are probably wrongly associated. Be-
cause of the global data association a misassociation will
be propagated to every particle. So we have to make sure,
that those features do not affect the weight of the particle
by setting their importance to 1.
Because of the sensors used, multiple observations per
time step are obtained. So the fastSLAM algorithm is mod-
ified by sampling the robot’s pose once per time step and
updating all observed landmarks for that pose. The weight
of a particlei is then calculated by multiplying the impor-
tance of all features

wi =

n
∏

j=1

pj

with the number of new observationsn. Those features
rejected by the best particle, i.e. the particle with the max-
imum weight after incorporating all observations of that
time step, are added as new features both to the global kd-
tree and all the particles.
After the update step the particles have to be resampled ac-
cording to their weight. The particles with a higher weight
are resampled more often than those with lower weight.
During resampling, the distribution of the particles change
and after resampling they are distributed according to the
posterior.

5 Environment Reconstruction on
Care-O-bot® 3

The 3-D environment modeling method used on Care-O-
bot® 3 is meant to reconstruct single dynamic scenes of
rather small environments out of colored point clouds. The
purpose of the map is to model obstacles for navigation
and manipulation. As presented in section 3, 2-D features
from color images are used to associate the data of sub-
sequent sensor readings. The fastSLAM algorithm from
section 4 performs the map aggregation and corrects the
robot position provided by laser scanner localization.
For many manipulation tasks a dense map is needed that
makes it possible to create geometric objects. Feature-only
maps cannpt guarantee a specific density. For this reason
the raw point clouds are transformed into a consistent point
cloud of the whole scene based on the feature map.

5.1 Intensity filtering

Care-O-bot® 3 is equipped with a SwissRanger 4000. Due
to reflections and areas that are out of sensor range, inten-
sity filtering according to section 2 has to take place. The
intensity values range in the interval(0, 30000) for our test
environment (see figure 4) and good filtering results are
obtained forIth = 1000. Figure 2 shows a point cloud

before and after filtering. It can be seen that most of the
noise is removed. However, there are still points with in-
correct depth values remaining. Those will be removed by
the fastSLAM filter during data association.

Figure 2: Point cloud before (left) and after (right) inten-
sity filtering.

5.2 Feature Extraction and Data Association

The colored point cloud is obtained by combining sensor
data from a color camera and a time-of-flight camera. The
two sensors are calibrated to each other and the point cloud
is constructed by transforming the 2-D color data from
the color camera into the TOF camera coordinate system.
Those features masked by the intensity filtering step are re-
moved and not used for data association. At an overlap of
70 % between two images 5-20 data associations are found
(see figure 3). The rate of misassociations is smaller than
5 %.

Figure 3: Extracted features (blue circles) and correspon-
dences (red lines) between two images.

5.3 System Model

The robot movement is estimated by the odometry motion
model [12]. The robot only performs planar movements,
so the robot state has three DOF, the position and orienta-
tion. The system model represents

p(st|u, st−1)

with the robot states = (x, y, φ) and the controlu. The
control of the odometry motion model is given by

u =

(

xt−1

xt

)

.
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Figure 4: Image of the kitchen environment (left), feature point map (middle), raw point cloud map (right)

As Care-O-bot® 3 relies on laser range finders for localiza-
tion, that information is used instead of real odometry data.
Nevertheless, the pose output of the localization compo-
nent can be considered as odometry information.
During simulation, additional noise is added to the pose
estimate. The covariance of the Gaussian noise

N =





0.0001 0 0
0 0.0001 0
0 0 0.00029





is found heuristically. As can be seen, the position un-
certainty for our system is rather small due to laser-based
localization instead of odometry measurements.

5.4 Measurement Model

As measurement model a feature-based model as intro-
duced in [12] is used. This model basically reflects the
transformation of a feature point from global to robot co-
ordinates. This is a coarse modeling, but sufficient for our
needs and easy to implement.
With the robot positions and the landmark positionΘ the
measurementz, i.e. the landmark position in robot coordi-
nates can be calculated by

(

zx

zy

)

=

(

Θx · cos sφ − Θy · sin sφ + sx

Θx · sin sφ + Θy · cos sφ + sy

)

.

Since the robot only moves planarly, the height of the land-
marks is not incorporated in the measurement update. This
is the reason why the robot pose does not provide informa-
tion in that coordinate.
This modeling is rather crude because it does not take into
account the physical measurement process. Because of
that, the covariance matrixR cannot be determined analyt-
ically. So we have to identify this matrix by experiments.
The main uncertainty comes from the time-of-flight cam-
era. Therefore, images of a plain wall are taken from sev-
eral distances and compared to the manually measured dis-
tances. With that it is possible to identify the mean and the
variance of measured values which yield

R =

[

0.0025 0
0 0.0025

]

as covariance.

5.5 Map Aggregation

The output of the fastSLAM algorithm is a 3-D feature
point map. Depending on the environment structure (i.e.
the number of detected features), the density of the map
can change. For some tasks the density of a sole feature
point map can be sufficient. But for accurate manipulation
in populated environments or as a base for the identifica-
tion of geometric objects a raw point cloud map is a better
input. Using the corrected robot position the raw point
clouds can be transformed and merged into a single point
cloud of the scene. Figure 4 shows the feature map and the
raw point cloud map of a kitchen environment. The data
is acquired in a single sweep and the head is not moved
during data acquisition which yields a map that does not
cover the full height of the kitchen.

5.6 Experimental Results

Practical experiments yield results concerning perfor-
mance, data association and map aggregation. A test sce-
nario is created by rotating the sensor head by 45° in steps
of 5° and performing a measurement after each move-
ment step. The rotational movement is done back and
forth several times. The expectation is that the number of
newly observed features decreases with each sweep over
the scene. Furthermore, the error of the estimated robot
position should be bounded.
On the whole, a sequence of 46 pictures is taken. With a
SURF detection threshold of 500, in total 3625 SURF fea-
tures are extracted. The threshold for data association is set
to a descriptor error of 0.1 and 3308 data associations are
found. During filter update mismatches are rejected. Af-
ter this step, 2466 correct data associations remain, which
is about 75 % of all observed features. Figure 5 shows
the number of features in the map over the rotation an-
gle. It can be seen that the number of features in the map
only grows slightly after the first rotation direction change
and is finally bounded. The increase of features can be ex-
plained by illumination change during the experiment and
new features near the image boundaries at 0° and 45° due
to inaccurate sensor movement. The estimated rotation an-
gle of the robot is shown in brackets on the x-axis. The
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maximum error is 0.5° and does not grow over time.
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Figure 5: Number of features during a rotational move-
ment of the robot.

6 CONCLUSIONS AND FUTURE
WORKS

The paper proposed a method that is capable of recon-
structing environment maps in 3-D. The method relies on
2-D features extracted from color camera images and trans-
formed into 3-D features using a time-of-flight camera or
stereo-vision. The algorithm was evaluated on Care-O-
bot® 3 and proved to be able to handle given tasks.
In the area of environment modeling there are some im-
provements to be done in order to increase performance of
the algorithm. As the kd-tree that holds all features grows
during runtime and has to be rebuilt in every time step the
update cycle of the algorithm slows down significantly for
larger scenes. This can be tackled by hierarchical kd-trees.
The idea is to group the features according to their position
in the environment. Therefore, only the subtree belonging
to the currently observed area has to be rebuilt.
At the moment, only feature or raw data point clouds can
be constructed. Feature-only may not be dense enough for
rendering obstacles in manipulation tasks, depending on
the environment. The raw data point clouds contain many
duplicate points due to overlapping scans. The map quality
could be improved by introducing a resampling step that
removes duplicate values and generate a point cloud with
equally distributed points.
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