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Abstract 
Aiming for an integrated approach to computational materials engineering in an industrial 
context poses big challenges on the development of suitable materials descriptions for the 
different steps along the processing chain. The first key component is to correctly describe the 
microstructural changes during the thermal and mechanical processing of the base material 
into a semi-finished product. Explicit representations of the microstructure are most suitable 
there. The final processing steps and particularly component assessment then has to describe 
the entire component which requires homogenized continuum mechanical representations. 
One of the main challenges is the step in between, the determination of the (macroscopic) 
materials descriptions from microscopic structures, which can be seen as a virtual testing 
laboratory.  

In the first part this manuscript gives a short overview of the different methods to include 
microstructure into descriptions of the deformation of metals. In the second part it 
demonstrates the central steps of the simulation along the processing chain of an automotive 
component manufactured from a dual phase steel. The simulation of the cold rolling of the 
steel sheet provides the morphology, texture and deformation history of the individual grains 
in a representative microstructure, which is then evolved in a virtual thermal treatment into 
the dual phase ferritic-martensitic structure from which the anisotropic yield surface of the 
sheet can be calculated. The simulations are compared to dedicated experiments performed at 
each step. The results demonstrate the enormous potential of such a systematic computational 
approach. 
 

1 Introduction 
Industrial success in materials related technologies relies on the possibility to specifically 
engineer materials and products with improved performance. The key success factor is the 
ability to make these material-related developments timely and at relatively low cost. This 
demands not only the rapid development of new or improved processing techniques but also 
better understanding and control of material structure, performance, and durability. Such 
control of materials involves multiple length and time scales and multiple processing stages or 
the coupling of processing and performance assessment. To achieve this, the materials 
descriptions and the flow of information necessarily have to be based on materials 
microstructure characteristics. Such inclusion of materials specifics in engineering simulation 
still is one of the major challenges for the development of improved materials modeling and 
simulation (cf. [1], [2]). 
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The linkage between materials microstructure and materials properties is at the heart of 
materials modeling in general but very specifically so for the description of materials 
deformation. Multiscale approaches (cf. Figure 1) are required to make the link from the 
discrete dislocations, grain and phase boundaries which constitute the materials 
microstructure, to the continuum plasticity descriptions appropriate at larger scales. While it 
may certainly be appropriate to investigate micro-components directly at the level of discrete 
defects, like the dislocation dynamics investigations of thin films (e.g. [3], [4]), micro-pillars 
[5] or micro-bending bars [6], large scale components mandate the final treatment of the 
component in a continuum mechanical framework [7]. Although there have been many 
attempts to include the discrete dislocation behavior rigorously in continuum mechanical 
materials modeling (see e.g. [8]), the mathematical frame for such inclusion has only recently 
been developed (see [9], [10]) and is still far from being applicable. Consequently the 
materials models are either effective materials descriptions or have come to be physically 
based to at least include some direct microstructural information. Similarly it is neither 
desirable nor intended to include the grain or phase morphology of a material explicitly in the 
materials modeling at large scale. One therefore either uses effective representations of 
texture or homogenization techniques to arrive at continuum mechanical models. The first 
part of this manuscript describes these different modeling techniques for the continuum 
mechanical modeling of plastic deformation in single and polycrystalline materials.  

 
Figure 1: Scheme of a continuum mechanical framework for polycrystal-polyphase 
mechanics with various ingredients describing the material behavior indicating various 
options for the choosing the adequate degree of microstructure coarse graining and 
homogenization. 
  
In the second part of this manuscript, the applicability of modern microstructure-based 
modeling in industrial forming simulations is assessed [11]. The drive towards 
microstructure-based models comes on the one hand from process simulation and the 
optimization of individual processing steps or the entire processing chain during 
manufacturing and on the other hand from the requirement of higher precision in the 
simulation of component manufacturing and component assessment. Figure 2 pictorially 
displays such a processing chain and the final component assessment.  
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Figure 2: Process chain from the hot rolled sheet to the crashed part. 
 
Today, microstructure-based simulations are used for example in the process simulation of 
semi-finished parts in the aluminum industry [12]. This aids process optimization and the 
specific adjustment of materials properties of the sheet material. For aluminum, alloy 
development and the individual processes determining the microstructure are reasonably well 
understood and modeling is developed to a relatively high level [13]. Other materials and 
particularly the steels are less well understood and detailed microstructural modeling is still 
rare. This is in part due to the many complex phase transformation phenomena and kinetic 
pathways involved (cf. [14], [15]). In the overall component design which involves an 
assessment of the crash worthiness of automotive components, or even the shape, springback 
or property predictions of components out of the deep drawing and stretching steps, 
microstructural modeling is basically not yet employed. However, the perspectives for 
microstructure-based modeling in this field are great. It can for example correctly represent 
the anisotropic yield surface and its non-uniform evolution during deep drawing and thereby 
not only enable much more precise prediction of the local properties of a component but also 
allow for integrated product optimization through the entire process chain. As an application 
example of such integral materials modeling we report here simulations of the final steps in 
the processing chain of a dual phase carbon manganese steel sheet, which is intended for use 
in automotive components. In this manuscript we end with the prediction of the complex yield 
surface from microstructure-based simulations of the forming behavior of the modeled 
microstructure after annealing. Application of these models in industry demonstrates their 
excellent performance and predictive capability. 
 

2 Crystal plasticity in the framework of continuum mechanics 
During the last decades, extensive experimental investigations on single crystals and the 
evolved physical knowledge about the occurring deformation mechanisms in metals, has 
stimulated the development of appropriate constitutive theories in the framework of 
continuum mechanics. The continuum mechanical representation is restricted to suitable 
problems but at the same time the best way to represent certain parts of a complex process 
chain.  An important ingredient when aiming at through-process models is the use of internal 
variable constitutive formulations that are capable of tracking history dependent behavior.  
Typical internal variables are dislocation density, grain size, and second phase dispersion.  
The use of external variables (such as strain) cannot describe inheritance of microstructures 
through a sequence of processes. 
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2.1  Finite strain single crystal plasticity  

2.1.1 Kinematics 
The kinematics of finite deformation (cf. [16]) describes a situation where a material point 
that is originally in a reference configuration is deformed to the current state by a combination 
of externally applied forces. The local changes in space are given by the deformation gradient, 
which transforms tangent vectors on material lines from the reference configuration in tangent 
vectors of material lines in the current configuration (see Figure 3). In order to distinguish 
between elastic and plastic deformations, the idea of Kröner [17] (see also [18], [19]) to 
incorporate a multiplicative decomposition of the deformation gradient into an elastic and 
plastic part is nowadays well established: The elastic part results from the reversible response 
of the lattice to external loads and displacements including rigid-body rotations while the 
plastic part of the deformation gradient is an irreversible permanent deformation that persists 
when all external forces and displacements are removed. In this sense, transformation of the 
reference state by the plastic part of the deformation gradient leads to an intermediate 
configuration which is free from external stresses and which is generally considered to 
maintain a perfect lattice (cf. Figure 4).  

The velocity of each material point of a body in motion forms a vector field measured 
in the current state. The spatial gradient of this velocity field describes the change in time of 
tangent vectors on material lines in the current configuration. The previously introduced 
multiplicative decomposition of the deformation gradient leads to an additive decomposition 
of the spatial velocity gradient into an elastic and plastic part. In general, the plastic part is 
influenced by elastic deformations. However, if the velocity gradient is expressed on the 
intermediate configuration, the resulting plastic part depends only on plastic deformations.  

In the case of dislocation slip, the plastic part of the deformation gradient on the 
isoclinic intermediate configuration can be formulated as sum of the shear rates on all slip 
systems. The idea behind the isoclinic intermediate configuration is that the slip vectors and 
the normal vectors have the same orientation in the reference configuration and the 
intermediate configuration. Consequently, the rotational part of the plastic part of the 
deformation gradient is fixed and therefore only the push forward to the current configuration 
leads to changes in the orientation of the material substructure in form of the crystal lattice 
(cf. Figure 4).  

In addition to the dislocation slip, mechanically driven displacive transformations, i.e. 
twinning and martensitic phase transitions, plays an important rule in many metals 
(magnesium, titan, modern steel grades like TRIP- and TWIP-steels, etc.). In general, there 
are several ways to incorporate the displacive transformations in the kinematics of crystal 
plasticity.  The displacive transformations are incorporated in form of additional slip systems 
(cf. [20], [21], [22], [23]) or by using a multiple multiplicative decomposition of the 
deformation gradient (cf. [23], [24]), which consists of an elastic and plastic part and an 
additional part for representing the transition. Due to this, an additional intermediate 
configuration arises.  

Finally, it is worth to mention that the sketched kinematic relations for representing 
the plastic deformations are identical for both phenomenological and physical based models.  
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Figure 3: Representing finite deformations in the framework of continuum mechanics 
 
 

 
Figure 4: Representing finite plastic deformations by means of a multiplicative 
decomposition of the deformation gradient 

2.1.2 Phenomenological constitutive models 
Based on the above mentioned kinematical relations for modeling the main deformation 
mechanisms in metals, different types of phenomenological models for representing crystal 
plasticity can be introduced. The most important constituents are the elasticity relation, the 
constitutive equations for representing the kinetic of slip or transition processes and the 
hardening behavior.  

The anisotropic elastic behavior of crystalline structures can be incorporated by 
hypoelasticity (e.g. [25]), Cauchy elasticity (cf. [21], [26]), or hyperelasticity (e.g. [16]). As 
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long as the elasticity relation does not possess a strain energy function, as in the case of many 
hypolelastic formulations, it has been well discussed in literature (cf. [27]) that energy 
dissipation occur if closed cycles of deformation are considered. This is a strong disadvantage 
of such elasticity relations.  

So far, the kinematic relation (cf. Figure 4) describes only the geometrical aspects of 
the evolving plastic anisotropy. In addition, the kinetic of the plastic deformation on the glide 
systems, i.e. the shear or slip rate, must be defined. Due to the physical understanding, the 
shear rate on a slip system depends mainly on the resolved shear stress on the slip system and 
is often influenced by deformation rates. For representing the slip and in particular the slip 
rate (cf. [28]), concepts in the framework of viscoplasticity with yield limit (cf. [16], [29]) and 
without yield limit (cf. [25], [30]) has been proposed and applied. In contrast to rate-
independent plasticity models, the current yield point is influenced by the deformation rate 
(cf. [28]).  Independent on which formulation is preferred, the relation between the resolved 
shear stress on the slip system in relation to the critical stress is the most important quantity 
for the amount of plastic slip.   

In phenomenological theories, the evolution of the critical resolved shear stress is 
modeled by means of history dependent internal variables. Mostly, the strain hardening 
behavior is represented as a function depending on the accumulated slip (cf. [25], [31]). While 
this allows for the description of fundamental hardening phenomena including tension-
compression asymmetries in basal textured magnesium alloys by means of a suitable twinning 
model (e.g. [20]), the modeling of some anisotropic hardening phenomena like the 
Bauschinger effect requires additional internal variables, i.e. back stresses on the slip system 
(cf. [16], [29], [32]).   

The deformation of metals depends strongly on temperature and is accompanied by 
dissipation phenomena. From this point of view, modeling in the framework of continuum 
thermodynamics leads to valuable insights. In such thermodynamic frameworks (e.g. [16], 
[24], [29], [33]), the energy storage phenomena are modeled by using a thermodynamic 
potential like a free energy function, which depends on the temperature, the elastic part of the 
deformation gradient, and internal variables. The evaluation of the 2nd Law of 
Thermodynamics leads to potential relations for the stress tensor and the entropy as well as a 
remaining dissipation inequality, which must be fulfilled by the evolution equations for the 
internal variables. For example, an important consequence of such finite strain 
thermodynamic considerations is that the projection of the Mandel stress tensor [18] on the 
glide system in the isoclinic intermediate configuration is the driving stress for occurring slip.  

2.1.3 Physically based models 
In contrast to conventional viscoplastic hardening models, physically based constitutive 
formulations use internal variables that describe the material state and its history in terms of 
microstructure parameters. In the case of plasticity the most relevant microstructural state 
variable is the dislocation density.  

When using dislocation-density based constitutive models, the individual shear rates 
on each glide system, expressed by the plastic part of the velocity gradient tensor, are coupled 
via the Orowan equation to the underlying density of mobile dislocations that carry this shear 
rate. The evolution of the total dislocation density (including both, mobile and immobile 
dislocations) is described through a set of rate formulations that quantify annihilation, 
multiplication, immobilization, and mobilization events on each individual slip system in a 
statistical manner. Depending on the specific model design different types of dislocation 
classes can be defined together with their respective evolution equations and activation 
barriers reflecting the underlying dislocation processes. Typical examples are the use of edge 
versus screw dislocation kinetics or the use of dislocations in cell walls and in cell interiors. 
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Details about such formulations and comparisons with experiments can be found in [23] and 
[34]. 

Further parameters for characterizing the microstructure are for instance the grain size, 
second phase fractions, and precipitates. Some of these parameters (grain size, precipitates) 
can enter for instance into the mean free path equation for the mobile dislocations or as 
constants that quantify the increase in friction stress as a function of composition (solutes). 
Alternatively, grains can be treated individually, where each grain is represented by a set of 
integration points of identical initial crystal orientation.  

High second phase fractions above about 10 vol.% can be considered either in from of 
a full-field approximation where different phases occupy different finite elements or in an 
averaged form where the stress response from a two-phase assembly at one integration point 
is calculated by a separate homogenization model. 

The use of physically based models is particularly relevant for precise stress, shape, 
and texture predictions for forming at small scales [35], [36], and [37], under complex loading 
paths, for damage initiation [38], for Bauschinger effects (e.g. [39], [40]), and for the behavior 
of instable texture components [41]. Fine details of the constitutive laws are less essential for 
simulating large scale forming problems with simple loading paths and microstructure history. 

2.2 Representing the behavior of polycrystals 
The considerations are so far focused on the modeling of single crystalline materials or 
ensembles of a few individual grains. In contrast, polycrystalline and also multiphase metallic 
materials are of particular interest in technical applications. In this situation, the 
inhomogeneity in the microstructure due to texture, precipitations, different phases, etc. 
requires suitable homogenization schemes for the transition from single crystals to 
polycrystals. 

2.2.1 Mean-field methods  
A reasonable way to obtain the effective properties of a material is given by homogenization 
schemes on the basis of simplified assumptions about the material behaviour and the 
morphology of the microstructure. In such mean-field approaches the microstructure can be 
considered as a system of an inclusion that is embedded in a matrix. The most basic 
assumptions would be either uniform stress or uniform deformation gradient among all phases 
or respectively grains present in the microstructure. These cases were suggested by Reuss [42] 
and Voigt [43] for elasticity. The fully constrained Taylor [44] model for plasticity or the 
extension of Lin [45] for elasto-plasticity correspond to the uniform strain assumption. Both 
assumptions ignore the shape and specific local neighbourhood of the inclusions and 
generally violate strain compatibility and stress equilibrium, respectively. More sophisticated 
mean-field assumptions make use of the Eshelby-solution [46] to the problem of an elastic 
ellipsoidal inclusion in an infinite elastic matrix.  

Out of those, the most frequently employed are the self-consistent approach originally 
suggested by Kröner [47], and the scheme introduced by Mori and Tanaka [48]. In the former 
method, each inclusion is treated as isolated within a matrix having the unknown integral 
stiffness of the compound. The latter approach embeds each inclusion into the original matrix 
but considers the average matrix strain to act as far-field strain on the overall composite. 
However, extension of such homogenization schemes from the linear to the non-linear case 
faces difficulties, most significantly because the stiffness, i.e. strain(rate)-sensitivity of stress, 
is typically inhomogeneous for a given phase due to its heterogeneous strain. The stiffnesses 
are usually homogenized by using the average strain per phase as a reference input into the 
respective constitutive law. In order to establish a link between stress and strain per phase, 
secant (connecting total stress to total strain) and tangent (connecting stress increments to 
strain increments) formulations for the moduli are employed (cf. [49]). As an example, the 
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viscoplastic self-consistent mean-field approach (VPSC) has been successfully applied to 
represent the texture evolution in different types of polycrystalline metals: e.g. zirconium 
alloys [49], TWIP-steels [50], and tungsten [51]. Recent developments incorporate elasiticity 
in the model [52] enabling a more accurate description of the material behavior.  

An alternative set of mean-field polycrystal approaches are the grain-cluster models. 
They represent an intermediate approach between the mean-field schemes and full-field 
solutions. They reduce the high computational cost of the latter by restricting the degrees of 
freedom to a small number of regions with (typically) homogeneous strain inside each region. 
Those areas are grains or phase, thus extending the mean-field approaches by taking into 
account direct neighbor–neighbor interactions among the constituents of a polycrystalline and 
potentially also multiphase aggregate. The introduction of grain aggregates allows relaxation 
of the assumption of homogeneous strain in each constituent (Taylor)—which generally led to 
an overestimation of the polycrystalline strength and rate of texture evolution—by enforcing 
compatibility only in an average sense for the aggregate as a whole. Typical examples of such 
models were suggested by Van Houtte (cf. [53], [54]), Gottstein (cf. [55]), and Eisenlohr [56] 
(cf. Figure 5). The reasonable numerical effort for solving mean-field problems enables the 
coupling of the homogenization schemes in finite element algorithm (cf. [7], [56], [57], [59]) 
for solving more complex initial boundary value problems like the deep drawing of a cup (see 
Figure 5) or study the texture evolution during rolling (cf. [57]).  
 

 
Figure 5: Right hand side: Example of a grain-cluster approximation (RGC [56]) where the 
constraints are placed on the corners of the aggregate while internal relaxations are admitted; 
Left hand side: two simulation runs using two different homogenization models (courtesy of 
D. Tjahjanto) 

2.2.2 Full-field methods  
Full-field models of crystal mechanics pursue strategies for solving initial boundary value 
problems of polycrystalline unit cells. In contrast to the mean-field methods, full-field 
methods provide a more realistic representation of the stress and strain state in each grain and 
also the accompanied gradients, along with an accurate description of the grain morphology, 
an improved quantitative description of the texture, and a reasonable representation of the 
interaction between the considered constituents, i.e. grains, phases, etc. Most of the current 
numerical treatments of the full-field homogenization schemes are based on the finite element 
method. Examples on this approach were given by [29], [58], [60], and [61] for material 
science applications as well as [22] and [62] for simplified bulk metal forming processes like 
rolling and wire drawing. Without appropriate strategies (cf. Section 3.2), such full-field 
approximations are usually too time consuming for applications in through-process modeling. 
To remedy this problem fast Fourier transform (FFT) based methods can be applied [63]. In 
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comparison to the high computational demand of FE based methods, FFT based full-field 
solutions require much less computer times [64].  

3 Application of multiscale models for solving engineering 
problems 

3.1 Virtual laboratory 
In the industrial practice of simulating complex forming operations, the prediction of exact 
shapes, material flow, thinning, wrinkling, earing, and springback effects is a challenge, 
particularly when materials with complex textures and microstructures are involved. In the 
simulation packages that are currently in commercial use, for instance, in the automotive 
industry, only empirical constitutive laws are available. As these formulations provide only 
limited empirical access to the material anisotropy and heterogeneity they do not properly 
take into account the effects of microstructure and texture and their evolution during 
deformation. The crystal plasticity finite element method (CPFEM) bridges the gap between 
the polycrystalline texture and macroscopic mechanical properties and opens the path to a 
more profound consideration of metal anisotropy in commercial forming and process 
simulations.  

The example presented in this section is an application of the CPFE method for the 
concept of virtual material testing (virtual laboratory) using a representative volume element 
(RVE) approach. By using such numerical test protocols it becomes possible to determine the 
actual shape of the yield locus as well as corresponding anisotropy coefficients (i.e. Lankford 
parameters, r-values) directly through CPFE simulations, and to use this information to 
calibrate empirical constitutive models used, for example, in the automotive industry. Along 
with standard uniaxial tensile tests, other strain paths can be simulated, such as biaxial tensile, 
compressive or shear tests. The analysis of loading condition which can not be realized 
experimentally (like biaxial compression of sheet metal) is also of interest to extend the 
experimental available data. For practical application, the homogenized results obtained from 
the virtual lab can be processed in the same manner as conventional experimental results. In 
the present example the use of the CPFE method for virtual testing is demonstrated for a dual-
phase C-Mn steel grade where the parameters of an empirical yield surface function were 
calibrated by the full-field crystal plasticity predictions (cf. Figure 10). 

3.2 Representation of process chains 
While simulation solutions for single process steps are applied successfully to virtually study 
the ability to process or service parts, a unified approach that reuses knowledge and results 
from previous steps along the production chain is still an exception. Especially the gap 
between numerical steel design and corresponding simulation techniques in sheet metal 
forming and crash simulation is a challenging topic for industrial applications.  

In this example (cf. [65]), a process chain simulation is presented that covers the 
consecutive stages of production of a dual phase steel DP800 material. It starts with the hot 
rolled strip which is followed by cold rolling, heat treatment, deep drawing and finally the 
analysis of the crashworthiness of the deep drawn component. An important aspect to take 
into account is the microstructure evolution during the different process steps for an 
appropriate modeling of the material behavior. Depending on the process step, different 
simulation strategies on different length scales are applied (see Figure 6). 
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Figure 6: Modeling strategy for representing the process chain for sheet metal production 

 
The first process step to be simulated is cold rolling. Here, a full field simulation approach 
(RVE) in combination with a CPFE model is used. Different experimental analysis procedures 
were carried out to account for the initial state of the hot rolled sheet material. Micrographs 
were used to analyze the ferritic-pearlitic microstructure. To obtain a realistic distribution of 
the pearlite phase within the ferrite matrix, a statistical reconstruction scheme based on [66] 
was applied. EBSD data are used to consider a realistic initial texture. Finally, the parameters 
of the single crystal plasticity material model are calibrated using macroscopic tensile and 
compression tests (Figure 7). 
 

  
Figure 7: Tensile test on the hot rolled sheet. 
Comparison between experimental data and 
the calibrated microstructure model. 

Figure 8: Tensile tests on the (hard, as rolled) 
cold rolled sheet (hard as rolled) for different 
degrees of rolling. The initial thickness of the 
hot rolled sheet is 3.5 mm. 

 
A prescribed deformation was applied on the RVE-model to simulate the cold rolling process. 
Three different degrees of rolling were considered with final sheet thicknesses of  2.20, 1.75 
and 1.45 mm.  According to real tensile test on the as rolled material, similar virtual tests were 
performed on the rolled RVE-models. Figure 8 shows the very good agreement between the 
tensile test and the prediction of the model. The hardening behavior can be predicted 
independently from the applied deformation. 

During the subsequent thermal treatment the final dual phase steel microstructure 
composed of ferrite and martensite is obtained. The corresponding simulation aim at  
describing the microstructure change (phase transition, recrystallization and recovery) due to 
the annealing procedure.  The simulation of the thermal treatment is carried out by a cellular 
automaton [67].  The morphology of the cold rolled RVE-model is mapped onto a regular 
grid.  Data concerning the grain number, the orientation of the crystal lattice and the 
accumulated plastic strain were provided from the rolling simulation to define the initial state 
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for the annealing simulation. The accumulated plastic strain is used to estimate the dislocation 
density which acts as a driving force within the annealing simulation. 

 
Figure 9: Simulation of the microstructure evolution during the annealing procedure. 
 
For practical application of deep drawing simulations, models which directly consider the 
microstructure are not appropriate due to the high numerical cost and the complexity of the 
material description. Usually, deep drawing simulations are continuum-based which describe 
the yielding and hardening behavior with phenomenological models. For this reason,the 
obtained data from the annealing simulation were homogenized using the virtual lab as 
described in Section 3.1. The obtained macroscopic uniaxial stress-strain curves are used – 
similar to experimental data – to adjust the parameter of the phenomenological plasticity 
models. Here, the Barlat89 [68] yield function is applied to describe the initial yielding of the 
dual phase steel. In Figure 10 this procedure is illustrated. The yield points obtained from the 
virtual lab and the Barlat89 yield locus which is calculated from experimental data do agree 
very well.  Depending of the number of virtual tests, more complex yield functions with more 
parameter can also be fitted. After the determination of the material behavior by means of the 
virtual laboratory, the resulting material parameters are used to calibrate macroscopic models 
for complex deep drawing simulation (cf.  [69]).  

Finally, the crashworthiness of the deep drawn component is virtually analysed. To 
obtain accurate failure predictions, the load history from the previous deep drawing process is 
considered. Therefore, the local thinning of the sheet and the actual hardening of the material 
at the end of the deep drawing simulation is mapped to the crash simulation (cf. [70]).  
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Figure 10: Application and results of the virtual laboratory on a dual phase steel 
 

4 Conclusions 
We have demonstrated here how to build up a simulation set-up along the central steps of the 
processing chain of an automotive component manufactured from a dual phase steel. This 
requires dedicated experimentation along with the development of the models, which involves 
not only mechanical testing at intermediate stages but also detailed determination of 
microstructure, grain morphology and texture before and after the individual processing steps.  

From an initial microstructure, the cold rolling of the initial ferritic-perlitic 
microstructure of a C-Mn steel sheet was evolved in a CPFE simulation to give the texture 
changes and a grain-specific deformation. This information was sufficient to feed the 
simulation of the recrystallization processes during heat treatment. With the dual phase 
microstructure after recrystallization, virtual testing of the deformation behavior was 
performed. This required two simple calibration experiments but then nicely predicted 
multiaxial deformation behavior. In the subsequent deep drawing and crash simulations one 
then has access to local changes in the mechanical properties of a component, which goes far 
beyond classical component analysis. 

On the basis of appropriate numerical treatments, the discussed constitutive theories are 
capable to represent the microstructure evolution and the resulting effective properties of 
complex polycrystalline and also multiphase metallic materials. This results in a deeper 
insight into the process and the interactions between the process steps. This knowledge will 
help to optimize individual process steps and also to improve the complete process chain. 
Once established, the modeling along the processing chain allows for both virtual process 
development and component assessment in unprecedented detail and with unprecedented 
precision.  
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