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A B S T R A C T

Halloysite nanotubes (HNTs) are abundant naturally-occurring hollow aluminosilicate clay mineral fibers with a
typical diameter < 100 nm and an aspect ratio of up to 200. Here we assessed the potential inhalation exposure
to HNTs in an industrial research laboratory. Inside a fume hood, ten times 100 g of HNTs were poured at rate of
0.5 kgmin−1, which increased concentrations from the background level up to 2900 cm−3 and 6.4 μm2 cm−3.
Inside the fume hood, the respirable mass concentration was 143 μgm−3 including background particles.
Outside the fume hood we did not measure elevated concentrations. We classified 1895 particles according to
their length and aspect ratio. Five particles were in aspect ratio > 3 and in length > 2 μm. These particles were
agglomerated and/or aggregated particles where the longest individual fiber was 2 μm in length. The occupa-
tional exposure limits for refractory mineral fibers vary from 0.1 to 2 fibers cm−3. Following standard protocols
for fiber analysis, detection of 0.1 fibers cm−3 would require analysis on 4× 104 images when the filter loading
is good. Thus, the fiber sampling and quantification procedures needs to be improved significantly if nanofi-
bers< 100 nm in diameter are included in regulatory exposure assessment. Due to very limited toxicological
information of HNTs we recommend avoiding inhalation exposure.

1. Introduction

Halloysite nanotubes (HNTs) are a low cost and naturally occurring
abundant clay mineral of the kaolin group (Joussein et al., 2005). HNTs
are hollow insoluble mineral fibers with lengths of up to 30 μm and
aspect ratio values of up to 200 (Makaremi et al., 2017). They are
characterized by high mechanical strength and modulus, and due to
their hollow nanostructure they are widely used for loading and con-
trolled release of functional compounds (Makaremi et al., 2017; Yang
et al., 2016; Huang et al., 2016; Saif and Asif, 2015; Lvov et al., 2016a).
HNTs are used in, e.g., self-healing anticorrosive coatings (Wei et al.,
2015), hydrogen production and storage (Sahiner and Sengel, 2017; Jin
et al., 2017), pharmaceutical excipients (Hanif et al., 2016; Lvov et al.,
2016b; Yendluri et al., 2017), biomedical applications (Liu et al., 2016;
Bonifacio et al., 2017), cosmetics (Saif and Asif, 2015), active food
packaging materials (Shemesh et al., 2016; Tas et al., 2017; Krepker

et al., 2017), water treatment (Yu et al., 2016), and for improvement
the mechanical properties and thermal stability of polymer composites
(Liu et al., 2014). Globally, HNTs annual production is over 50,000
metric tonnes (Lvov et al., 2008), which is similar to that of carbon
fibers (40,000 t/y; Gutiérrez and Bono, 2013), and approximately 10
times higher than the production of carbon nanotubes which is only ca.
4000 t/y (De Volder et al., 2013).

Pulmonary exposure to long and poorly soluble fibers is associated
with a high risk of serious adverse health effects (e.g. Lippmann, 1988).
It has been shown that mesothelioma and pleural plaques are caused by
biodurable fibers thinner than ~0.1 μm and longer than ~5 μm while
cancer and pulmonary fibrosis are caused by fibers thicker than
~0.1 μm and longer than ~20 μm (Lippmann, 1988). This phenomenon
of inhalable, long and biodurable fibers is denoted the fiber paradigm,
and fibers fulfilling the criteria are defined as WHO fibers (Lippmann,
1988, 2014; Harrison et al., 2015). Another important hazard indicator
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for HNTs is their high aspect ratio and large specific surface area. For
mineral fibers with a diameter in the range of 0.15 and 2 μm and a
length above 2 μm, fibrosis correlated with the surface area of the fibers
(Lippmann, 1988, 2014; Stayner et al., 2008, 2013; Hwang et al.,
2014). While airway exposure to short carbon nanotubes, ~0.3 μm in
length, was shown to cause fibrosis and long lasting inflammation
(Pauluhn, 2010; Poulsen et al., 2015, 2016, 2017).

The occupational exposure limits (OELs) for refractory mineral fi-
bers fulfilling the fiber paradigm generally vary from 0.1 to 2 fi-
bers cm−3 (Harrison et al., 2015; Nielsen and Koponen, 2018). For high
aspect ratio nanomaterials (HARN), such as non-entangled carbon na-
notubes, carbon nanofibres, and nanocellulose, with fiber lengths over
ca. 5 μm, a more stringent OEL of 0.01 fibers cm−3 has been proposed
for precautionary reasons (Mihalache et al., 2017). Gebel et al. (2014)
proposed that biodurable HARN that do not meet the fiber paradigm
may be classified as granular biodurable particles (GBPs). GBPs are
classified as low toxicity particles, which may however cause in-
flammation and acute phase response (Moreno-Horn and Gebel, 2014;
Saber et al., 2014), which in turn are risk factors for cardiovascular
disease (Saber et al., 2014).

Stanton et al. (1981) showed that pleural dose to 40mg of two
different types of HNTs in hardened gelatin implanted on to the pleural
surface resulted in formation of pleural sarcomas in 9 of 53 rats (17%)
2 years post-exposure as compared to 3 of 488 sham-treated controls
(0.6%). Kaolin, a platy sheet silicate with similar chemical composition
as HNTs, has been shown to induce cytotoxicity and genotoxicity in
isolated rat alveolar macrophages (Gao et al., 2000). Unmodified HNTs
have shown to induce very low cytotoxicity in the following human cell
types: carcinoma cells, peripheral blood lymphocytes, primary umbi-
lical vein endothelial cells, intestinal cells, and epithelial cells (Ahmed
et al., 2015; Vergaro et al., 2010; Nan et al., 2008; Lai et al., 2013).
However, as HNTs have similar dimensions as short carbon nanotubes
(CNTs), they may potentially cause pulmonary inflammation and acute
phase response following pulmonary exposure as previously reported
for CNTs (Saber et al., 2013, 2014; Poulsen et al., 2015, 2017; Jaurand,
2017).

Here, we studied HNTs release and exposure during a two-step
loading process where HNTs are mixed with essential oil. The product is
used for example in active food packaging materials, which have been
reported to reduce bacterial growth by up to seven orders of magnitude,
thereby increasing the shelf life of perishable foods (Shemesh et al.,
2016; Tas et al., 2017; Krepker et al., 2017). Here we assessed workers
inhalation exposure by measuring air concentrations using diffusion
chargers and by sampling airborne particles for gravimetric and elec-
tron microscopy analysis. Subsequent risk assessment was performed
based on HNTs exposure levels in fiber number, surface area, and mass
concentrations. Finally, we discuss the potential challenges in fiber
counting when the fiber diameter is< 100 nm.

2. Experimental section

2.1. Measurement strategy

Particle concentrations were measured from different locations
named here as fume hood (30 cm above the mixing bowl), near-field at
a height of 1.5m, breathing zone, and incoming ventilation air using
four miniature diffusion size classifiers (DiSCmini, Matter Aerosol AG,
Wohlen, Switzerland) and four respirable particle samplers (Fig. 1). The
DiSCminis were equipped with 0.7 μm pre-separators and ca. 50 cm
Tygon sampling hoses. The DiSCminis readings were compared before
the measurements started by sampling room air aerosol for 240 s within
with 10 cm radius. The DiSCminis showed good agreement between all
four instruments when measuring at the same location (Fig. 2) as has
also been observed in previous studies (Bau et al., 2017). The correla-
tions as compared to average values measured by the DiSCminis were
for N from 0.63 to 0.87, LSDA from 0.69 to 0.90 and Dp,DM from 0.60 to

0.77 (Table S6, Supporting Information).
Respirable particles were collected on a pre-weighted 37mm Teflon

filters with a 0.8 μm pore size (Millipore, Billerica, MA, USA) using a
BGI Model GK2.69 (Qs=4.2 Lmin−1) Triplex cyclones (BGI Inc.,
Waltham, MA, USA; Stacey et al., 2014). Three control blind filters
were used to correct for handling and environmental factors. Filter
weighing was completed in a climate controlled weighing room at 50%
relative humidity and 22 °C after at least 24-hour acclimatization. The
fume hood air flow was measured using a hot wire anemometer (BL-30
AN, Voltcraft, Hirschau, Germany).

2.2. Particle sampling and characterization

The sample was collected at a flow rate of 0.5 Lmin−1 (model NMP
830, KNF Neuberger, Germany) using a Micro Inertial Impactor
(Kandler et al., 2007), consisting of three stages, each equipped with
Nickel TEM grids with a Formvar carbon foil. This sampling technique
has been used successfully in environmental (Lieke et al., 2011; Kandler
et al., 2011; Nguyen et al., 2017), occupational (Jensen et al., 2015;
Kling et al., 2016; Koivisto et al., 2018), and combustion particle stu-
dies (Lieke et al., 2013). The Micro Inertial Impactor samples particles
up to ca. 30 μm in diameter depending on the sample flow's iso-axial
behavior (Kandler et al., 2007). The calculated d50 cut-off diameters by
inertial impaction are 1.3, 0.5, and 0.05 μm for the impaction stages.
The particle collection size ranges by inertial impaction are:

• Stage 1: 1.3 μm < dp < ~30 μm
• Stage 2: 0.5 μm < dp < 1.3 μm
• Stage 3: 0.05 μm < dp < 0.5 μm

Here we took overview images of the samples from each stage
which was used to locate the impaction spots which were analyzed in
further detail at higher magnifications, sufficiently high for resolving
the nano-scale dimensions suspected in the sample.

The analysis was made at the Center for Electron Nanoscopy,
Technical University of Denmark, using a FEI Nova NANO Scanning
Electron Microscope 600, which was used in scanning transmission

Fig. 1. Layout of the laboratory and sampling locations of Incoming Air of
mechanical ventilation air inlet (IA), Near-Field (NF), and Fume Hood (FH).
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electron microscopy mode to enhance the contrast between substrate
and particles. The microscope was operating at an acceleration voltage
of 15 kV, and at high vacuum. Images were acquired mainly at mag-
nifications of 15 k, resulting in resolutions of approximately
6 nm pixel−1. A few images were also acquired at higher magnifications
of up to 40 k, corresponding to resolutions of 2 nm pixel−1 (not shown).

Images were post-processed using python version 2.7 and the open
source Computer Vision package (OpenCV v. 3.1; Bradski, 2000). Par-
ticles were recognized when their intensities were lower than a speci-
fied threshold, and their area larger than a preset minimum. The
minimum area was set to 10 pixels (diameter of approximately
3 pixels), since this was found to be the limit for recognizing particles
based on the signal to noise ratio of the images. All the images had
similar contrast and brightness, which made it possible to segment the
images using a simple global threshold value of 120, meaning that
pixels with intensities below 120 were marked as particles. The image
analysis did not correct for cases with particle co-depositions, as well as
agglomerates and aggregates, since only simple thresholding and con-
tour recognition were used before sizing. The area, equivalent diameter
(calculated from the area), and aspect ratio were determined for each
recognized particle, where aspect ratio was defined as the ratio between
the longest, DBB,L, and shortest, DBB,s, sides of a bounding box (including
rotation).

2.3. Fiber counting

The sample air fiber concentration Cf (m−3) is
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where f (fibers m−2) is the fiber surface density, AC (m2) is the effective
collection area of the filter, V (m3) is the sample volume, Nf (−) is
number of counted fibers, ngf (−) is the number of analyzed graticule
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where dgf (m) is the diameter of the graticule field area. NIOSH esti-
mated inter-laboratory precision for asbestos fibers counted using a

phase-contrast microscope counted from 100 graticule fields (NIOSH,
1994a). This should be applicable to the fiber counting from images
taken by using electron microscope (NIOSH, 1994b). NIOSH defined
the limit of detection as the inter-laboratory variability upper 95%
confidence limit on a measured value is 300% grater (4 times) than the
measured value (Ashley and O'Connor, 2016; NIOSH, 1994a). This re-
quires counting of at least 5.5 fibers (NIOSH, 1994a).

2.4. Alveolar lung deposited surface area (LDSA) and pulmonary
inflammation

Assuming that the HNTs and GBPs induce lung influx of PMN to at a
similar degree, the HNT exposure potency to induce pulmonary in-
flammation can be estimated by comparing the deposited surface area
dose with the NOEL1/100 of 0.11 cm2 g−1 for GBPs (Koivisto et al.,
2016). The NOEL1/100 was based on the relationship between poly-
morphonuclear neutrophilia (PMN) influx in the lungs of rats and mice
after a single intratracheal instillation of GBPs and the particles dry
powder Brunner-Emmett-Teller (BET) surface area dose normalized
with lung weight (cm2 g−1; Schmid and Stoeger, 2016). The deposited
alveolar surface area dose can be calculated by multiplying the LDSA
concentration with the inhaled volume. The inhaled volume was esti-
mated for a 70-kg male having a respiratory minute volume of
25 Lmin−1 (ECHA, 2016). During 8-h exposure this corresponds to an
inhaled volume of 12m3. The deposited alveolar dose was normalized
using 840 g the weight of the lungs from a 70-kg male (Molina and
DiMaio, 2012). The uncertainties of this risk assessment technique are
discussed in detail by Koivisto et al. (2016).

2.5. Work environment and pouring and mixing processes

In the present study, Dragonite HP™ was mixed at a weight ratio 1:1
with carvacrol (C10H14O; product code 101839118, Sigma-Aldrich,
Steinheim, Germany; CAS: 499-75-2). Both the pouring and the sub-
sequent mixing were performed in a fume hood (POTTEAU, 180
W×120 H×70 D, V=1.5m3) located at an industrial research la-
boratory (Fig. 1). Air velocity at the fume hood opening was 0.43m s−1

at an opening height of 10 cm, the smallest opening possible (opening
area 1800 cm2). The laboratory (room height 2.64m) was ventilated by
natural air exchange and local exhaust ventilations. The replacement

Fig. 2. Particle a) N and b) LDSA concentrations and c) average particle diameter during pouring of Dragonite HP™ and Carvacrol into a mixing pot and during
mixing. Averaging time was 10 s. Thick horizontal lines show the PM4 collection times and solid and dashed vertical lines show respectively start and end times of the
I) DiSCmini instrument comparison, II) Pouring process, and III) Mixing process. Figure c) grey lines shows background concentration averaging times BG1 and BG2.
Horizontal lines shows the respirable particle collector sampling periods.
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air was outdoor air entering via open windows and mechanical venti-
lation inlets. The laboratory room ventilation rate was not known.

Dragonite HP™ was first divided into ten aluminum trays covered
with aluminum foil and dried at 120 °C overnight. Each tray contained
ca. 100 g of dried HNTs. From the trays a total of 936 g HNT was poured
from ca. 20 cm height into a 6.7 L stainless steel mixing bowl during
12min. The bowl was attached to a mixer with a K-beater mixing tip
(Titanium Major KMM020, Kenwood, 1 Kenwood Business Park, New
Lane, Havant, UK). After pouring the HNTs, the mixing bowl was
covered a splashguard and then 936 g of carvacrol was added through
an inlet. The mixing power was increased gradually from 0 to 1 in
power scale from 0 to 8 in arbitrary units. The mixing time was 18min
including a 3-minute pause when residual powder on the mixing bowl
sides was scraped. After mixing, the resulting suspension was placed
under vacuum at room temperature for 1 h induce carvacrol to loading
into the HNT lumen. Finally, the mixture was packed and stored in
amber glass containers.

3. Results and discussion

3.1. Dragonite HP™ powder characterization

Halloysite nanotubes (Dragonite HP™, Applied Minerals Inc., New
York, US; CAS: 1332-58-7) is a natural aluminosilicate clay
(Al2Si2O5(OH)4·nH2O; molecular weight 258.16 amu in anhydrous
form) which mainly presents a hollow tubular morphology. According
to the manufacturer, the inner diameter of the tube ranges from 15 to
45 nm and outer diameter from 50 to 70 nm. Length wise, 80 to 98% of
the particles are< 2 μm.

Supporting Information contains details of our Dragonite HP™
powder characterization (Figs. S1–S4 and Tables S1–S4). The bulk
density measured by Mercury porosimetry was 0.73 g cm−3 and ap-
parent density was 2.11 g cm−3 (Fig. S2 and Table S1, Supporting
Information) and average surface area was 42 ± 4m2 g−1 as de-
termined by BET analysis nitrogen adsorption isotherms (Table S2,
Supporting Information). The HNTs powder X-ray diffraction revealed
that the major crystalline phases are kaolinite and halloysite 7A;
whereas quartz is present as a minor phase (N/A wt%; Fig. S3,
Supporting Information). The elemental composition as determined by
inductively coupled plasma atomic emission spectroscopy, X-ray pho-
toelectron spectroscopy, and Fourier-transform infrared spectroscopy
are shown in Tables S3, S4, and Fig. S4, Supporting Information.

3.2. Airborne particle measurements

Particle concentration levels were measured in parallel with
DiSCminis and respirable particles collectors from inside the fume
hood, in the near field, the breathing zone, and at the incoming ven-
tilation air supply (Fig. 1). At all measurement locations, the initial (at
time point 10:10 in Fig. 2) particle number, N (cm−3), and lung de-
posited surface area, LDSA (μm2 cm−3), concentrations were measured
to be ca. 14,000 cm−3 and 38 μm2 cm−3, respectively. After 90min, N
and LDSA values decreased to ca. 3000 cm−3 and 14 μm2 cm−3, re-
spectively (see Fig. 2). In contrast, the mean particle diameter measured
by the DiSCmini, Dp,DM (nm), was initial 30 nm and increased within
90min to ~53 nm, see Fig. 2c. Pouring was performed between
10:36–10:48 and at 10:55 the mixing process started and lasted for
28min (Fig. 2). Two background concentrations were calculated for
both the pouring (BG1) and the mixing (BG2) processes, i.e., average
concentrations measured before and after the process (Fig. 2c).

The pouring process increased the particle number concentrations
in the fume hood from ca. 4800 cm−3 up to 7700 cm−3 for ca. 10 s
(Fig. 2a). On average, the pouring process did not have a significant
effect on the N concentrations within the fume hood (Fig. 2a; Table S5,
Supporting Information). However, the LDSA peak concentrations in-
creased from the BG1 level of 20.9 (± 1.5) μm2 cm−3 to an average
value of 27.3 (± 5.1) μm2 cm−3 (Fig. 2b), and Dp,DM increased from the
BG1 diameter of 62 (± 4) nm to an average of 102 (± 18) nm
(Fig. 2c). These peak concentrations were not observed outside the
fume hood at far-field or the breathing zone (Fig. 2). The mixing step
was not found to significantly increase the concentrations in the fume
hood. There was no significant difference between the process con-
centrations and their respective background concentrations when
averaged over the whole process period (see Table S5, Supporting In-
formation).

The average respirable mass concentrations in the fume hood was
143 μgm−3. Whereas, the average concentration values were below the
detection limits in the near-field (103 μgm−3), breathing zone
(71 μgm−3), and incoming ventilation air (41 μgm−3), respectively.
The respirable mass sampling periods are shown in Fig. 2a.

3.3. Fiber measurements and analysis

A sample was collected for a scanning transmission electron mi-
croscopy (STEM) analysis during pouring of the Dragonite HP™ using a
three stage micro inertial impactor. The sampling time was set to ap-
proximately 1min and sample volume 0.5 L. STEM images were ac-
quired for quantitative size analysis following a straight line going

Fig. 3. Micrograph from the 3rd impactor stage (d50= 50 nm) sampled during pouring of Dragonite HP™ a) before segmentation and b) after segmentation. Circled
particles in a) fulfilled the aspect ratio > 3 and length > 2 μm and were labelled as 4 and 5 (see Fig. 4b).
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through the center of the impaction spot for each impactor stage, to
capture any potential size distributions in the impaction patterns. Fig. 3
shows an example of images acquired from the last stage of the im-
pactor both before and after segmentation. The particles were sized into
200 nm wide bins from 0 to 5000 nm according to bounding box longest
dimension, DBB,L, to illustrate their fibrous nature (Fig. 4a). Distribution
of the deposited particles in different stages were similar and all de-
tected particles were<5 μm long (Fig. 4). Note that the number of
particles does not represent the total particle number count in the air
sample volume.

A total of 1895 particles were analyzed from twenty images and
classified according to their aspect ratio and length (Fig. 4b). Five in-
dividual fibers, with an aspect ratio > 3 and length value > 2 μm,
were identified and numbered 1 to 5 (Fig. 4b). Particle no. 1 was a
single HNT fiber with few small HNT fragments, and particles no. 2 to 5
consisted of multiple HNTs fibers (Fig. 4b). Particles no. 2 and 4 were
fiber aggregates most likely formed by co-deposition (see Fig. 4b
magnifications in the legend). Consequently, none of the analyzed
particles fulfilled the paradigm of a WHO fiber.

In this study, the images were analyzed at a magnification level of
15,000 which corresponds to a pixel size of 6 nm. The image resolution
was 1600× 1381 which result to a graticule field, Agf (m2), of
8.0× 10−11 m2 and the number of graticule fields, ngf (−), was 20. The

particles were collected on three TEM grids where the single grid area
was 7×10−6 m2 and the total effective collection area, Ac (m2), was
21× 10−6 m2. We found one fiber with a characteristic length above
2 μm. Assuming uniformly deposited particles across the collection
grids the concentration of fibers> 2 μm in length would be 27 fi-
bers cm−3 according to the Eq. (1) in the Experimental section. Ac-
cording to the National Institute for Occupational Safety and Health
(NIOSH) inter-laboratory variability (Ashley and O'Connor, 2016;
NIOSH, 1994a, 1994b) there is a 90% probability, due to inter-la-
boratory variability, that other laboratories measures 0.2 to 8 fibers
(−83% to +660% of the mean count) when one laboratory has found 1
fiber using our analytical conditions. Considering this subjective inter-
laboratory uncertainty, the true concentration of> 2 μm fibers could in
our study be in the range from 4.5 to 200 fibers cm−3. However, be-
cause the collection efficiency and distribution of deposited particles in
the sampler applied here are not well known, the uncertainty range is
higher.

Currently, there are no standard nanofiber collection techniques
designed for workplace atmospheres. However, even using a perfect
sampler, the challenging factors to detect a fiber with a thickness below
100 nm are:

• Low fiber density (m−2) on the sample grid potentially as a fraction

Fig. 4. Statistical analysis of the Micro Inertial Impactor samples: a) particle length distribution (raw counts μm−2) and b) particles classified according to their
aspect ratio where dashed line shows the region of particles with aspect ratio > 3 and length > 2 μm which are shown in the legend. In figure b) legend red squares
shows 3× magnification from the particles intersection.
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of abundant other shorter fibers (see Fig. 4a)

• Presence of high background ultrafine particle concentrations in
workplace atmospheres (Viitanen et al., 2017) that becomes visible
in nanofiber detection.

• A small graticule field area due to a small pixel size and image re-
solution.

For an ideal single TEM grid sampler, with a 100% sampling effi-
ciency and uniform particle deposition, the fiber density would be
7.1×107 fibers m−2 (71 fibers mm−2) for a 0.5 L sample for a target
fiber concentration of 1 fibers cm−3. According to Eq. (2), only one
fiber is expected to be found from ca. 180 images, when using the same
graticule field as used in this study. According to NIOSH re-
commendation, at least 5.5 fibers should be counted to reduce the inter-
laboratory upper limit variability to 300% (4 times) than the measured
value. Thus, finding 5.5 fibers would increase the number of images to
ca. 1000. Now, there should be a 90% probability that any laboratory
would find a mean fiber count of 5.5 (range 2 to 22 fibers corre-
sponding to an observed fiber concentration of 0.4 to 4 fibers cm−3).
Ensuring that the fiber concentration is below 1 fibers cm−3, the
counting should be made for a target concentration level of 0.25 fi-
bers cm−3. This would result in 4 times lower fiber density and increase
the required number of images to 4000. If target fiber concentration
would be reduced from 1 fibers cm−3 to 0.01 fibers cm−3, as proposed
for> 5 μm HARN, the required number of images would be 4×105

following the same strategy. Even-though automated electron micro-
scopy and imaging technologies are progressing quickly these years
(e.g. Temmerman et al., 2014), a different analytical strategy must be
established to enforce proposed regulatory exposure limits on the level
of 0.01 fibers cm−3. A particular challenge is the fibers and rods with
diameters in the few nm-range.

3.4. Risk assessment

Despite relatively extensive mining and industrial use of HNTs and
the possibility that a fraction of the HNTs may fulfil the fiber paradigm,
we were not able to find occupational exposure studies considering
occupational exposure to HNTs (Debia et al., 2016; Ding et al., 2017).
In this study, we showed that pouring of ca. 100 g HNTs at rate of
0.5 kgmin−1 releases high amounts of particles (release rate N/A)
leading to airborne particle concentrations of up to 2900 particles cm−3

for ca. 10 s (Fig. 2a). The DiSCmini particle number concentration
measurement is sensitive to impaction of large particles at the diffusion
stage so the reliability of this measurement is challenging to estimate
(Koivisto et al., 2016).

In the fume hood the LDSA concentrations were on average elevated
0.7 μm2 cm−3 from the BG1 level of 20.9 μm2 cm−3 (see Table S5,
Supporting Information). During 8-h exposure this corresponds to a
human equivalent dose of 1× 10−4 cm2 g−1 which is ca. 103 times less
than NOEL1/100 of 0.11 cm2 g−1 for GBPs assigned by Koivisto et al.
(2016). The background LDSA concentration is also ca. half of the
average geometric mean urban background levels of 44.2 μm2 cm−3

(geometric standard deviation 2.2) in European cities (Koivisto et al.,
2016). Moreover, the chemical composition of the HNTs analogous bulk
material is kaolinite for which the OEL varies between 2 (respirable
fraction) and 10 (total dust) mgm−3 in Europe. In our measurements,
we found (within the fume hood) a respirable mass concentration of
background particles and HNTs fibers of 143 μgm−3, which is well
below the lowest OEL in Europe. These analyses represent the potential
exposure if HNTs had been handled without using the fume hood when
the potential for exposure is the highest. The concentrations outside the
fume hood, at near-field and breathing zone, remained at the back-
ground concentration level during pouring.

We did not find any> 5 μm fibers after analyzing 1895 particles.
The longest confirmed single fiber was ca. 2 μm in length (Fig. 4b).
However, due to the small analyzed sample, the concentration levels of

fibers between 2 and 5 μm and>5 μm in length can be estimated only
with a very large uncertainty interval. Twenty images were analyzed
while 4×104 images should have been assessed before any conclusions
can be made in the OEL range of 0.1 to 2 fibers cm−3 and 4×105 times
more for the proposed OEL for> 5 μm HARN (Schulte et al., 2010;
Boulanger et al., 2014; Mihalache et al., 2017). We could not detect any
fibers or fiber-related risks outside the fume hood according to the
DiSCmini and respirable mass concentration measurements. This is in
line with Fonseca et al. (2018) who showed that a fume hood is an
efficient exposure control for nanomaterial powder handling.

On the other hand, there is limited data regarding the pulmonary
toxicity of HNTs exposure. Sub-chronic inhalation studies in rats using
CNTs which were too short to fulfil the fiber paradigm resulted in
sustained inflammation and fibrosis (Pauluhn, 2010; Boulanger et al.,
2014; Ma-Hock et al., 2009) with a lowest-observed-adverse-effect-level
of 100 μgm−3. NIOSH (2013) and researchers from the European Joint
Research Centre have both proposed OELs for carbon nanotubes in the
order of 1 μgm−3 (Mihalache et al., 2017). If HNTs have similar effects
following pulmonary exposure as CNTs with similar dimensions, then
the observed exposure levels of 143 μgm−3, including background
particles and HNTs from the pouring process, would be considered high
as it exceeds the proposed OEL for CNTs (of any length) by>100 fold.
Currently, the HNTs inhalation exposure risk assessment requires more
pulmonary toxicity studies, preferably conducted with direct inhalation
exposure.

4. Conclusions

The longest individual HNTs fiber observed was 2 μm long and there
were no fibers with lengths> 5 μm. By following the NIOSH guidance,
the uncertainties related to fiber count were too high to estimate fiber
concentration levels. To reach occupational exposure limits in the range
of 1 cm−3, the analysis should have been done at least for 4000 images,
which was not reasonably feasible due to limited resources and un-
certainties on the collection efficiency of the applied sampling tech-
nique. An improved sampling and analytical strategy is required to
quantify the potential presence of nanofibers at the currently proposed
0.01 cm−3 for high aspect ratio nanomaterial fibers in the working
environment. The challenge is particularly great for fibers with dia-
meters in the few nm-range. More sophisticated particle sampling and
comprehensive image analysis techniques are needed before regulatory
exposure limits in units of fibers cm−3 are implemented to cover fi-
bers< 100 nm in diameter. The risk assessment based on surface area
and mass concentrations did not show significant exposure risk when
compared to NOEL1/100 level for granular biodurable particles or OEL
level of the analogous bulk material in chemical composition, kaolinite,
respectively.
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