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Abstract 

Evaluation, prioritization and selection of candidate requirements are of tre-
mendous importance and impact for subsequent software development. Effort, 
time as well as quality constraints have to be taken into account. Typically, dif-
ferent stakeholders have conflicting priorities and the requirements of all these 
stakeholders have to be balanced in an appropriate way to ensure maximum 
value of the final set of requirements. Trade-off analysis is needed to proactively 
explore the impact of certain decisions in terms of all the criteria and con-
straints.  

The proposed method called Quantitative WinWin uses an evolutionary ap-
proach to provide support for requirements negotiations. The novelty of the 
presented idea is four-fold. Firstly, it iteratively uses the Analytical Hierarchy 
Process (AHP) for a stepwise analysis with the aim to balance the stakeholders’ 
preferences related to different classes of requirements. Secondly, requirements 
selection is based on predicting and rebalancing its impact on effort, time and 
quality. Both prediction and rebalancing uses the simulation model prototype 
GENSIM. Thirdly, alternative solution sets offered for decision-making are de-
veloped incrementally based on thresholds for the degree of importance of re-
quirements and heuristics to find a best fit to constraints. Finally, trade-off 
analysis is used to determine non-dominated extensions of the maximum value 
that is achievable under resource and quality constraints. As main result, quan-
titative WinWin proposes a small number of possible sets of requirements from 
which the actual decision-maker finally can select the most appropriate solu-
tion. 

 

Keywords: Requirements selection, decision support, trade-off analysis, resource con-
straints, analytical hierarchy Process (AHP), simulation. 
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Background and Motivation 

1 Background and Motivation 

Software development is a very complex, often distributed process with a vari-
ety of process and product attributes, as well as numerous functional and non-
functional objectives and constraints. Typically, requirements are imprecise or 
incomplete at the beginning of the life cycle and are becoming more and more 
complete and precise as development progresses. A further complication is that 
the various stakeholders have different perspectives of and expectations on a 
system, i.e., they assign varying priorities to requirements. Marketing and pro-
ject managers also struggle with a lack of a clear understanding of the relation-
ship between the selected set of requirements and the effort required for its 
implementation. The overall effort that can be spent on the project is limited, 
the final product has to fulfill certain minimum quality constraints, and the time 
to market of the final product is constrained. The challenge is to select the 
‘right’ requirements out of a given superset of candidate requirements so that 
all the different key interests, resource constraints and preferences of the criti-
cal stakeholders are fulfilled and the overall business value of the product is 
maximized.  

The distributed nature of system development has resulted in several ap-
proaches that provide collaboration support. The most-common ones are tele-
phone and video conferencing facilities. Various groupware systems are also in 
use. Boehm et al. [2] have created a prototype for their  Easy WinWin spiral 
model, a tool that assists stakeholders in creating win-win solutions for all par-
ties involved. Furthermore, research is being done in the general area of com-
puter support for decision-making groups involved in the negotiation of re-
quirements over a distance. Damian et al [6] particularly investigate the effect 
of the communication media (audio, video, etc.) on the negotiation outcome. 

Domain-specific support is difficult to provide. The requirements engineering 
community has developed some research tools [7], [12] that provide domain-
specific assistance. However, such tools are not widely used in industry. The 
main reasons for this are the effort required to initially model the domain in 
sufficient detail as well as the effort required for keeping the domain models 
up-to-date. Any changes at higher levels of abstraction would cause major 
changes in the domain models. Considering the rapid changes in today’s do-
mains, this approach appears to become less and less feasible. 

Decision makers need support to describe, evaluate, sort, rank, select or reject 
candidate products, processes or tools. Such decision support would be most 
helpful when decisions have to be made in complex and dynamic environ-
ments. Support here means assistance for structuring the problem, for analyz-
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ing and verifying the obtained structure, as well as help for comparing the re-
sults of different choices using simulation. A description and evaluation of deci-
sions in requirements engineering is proposed by [1]. An overview of software 
engineering decision support is presented in [15]. 

Trade-off analysis aims at making the competing character of the different ob-
jectives and constraints more transparent. It is important to know to what ex-
tent the improvement in one direction (e.g., reduction of effort or duration of 
the project) has an impact on other criteria (e.g., quality or overall business 
value of the final product). More transparency regarding these relationships ob-
viously supports the negotiation for the most appropriate compromise solution 
in the context of a concrete project. However, no other approaches for re-
quirements negotiation have yet considered trade-off analysis in a quantitative 
manner. 

In this paper, a method for trade-off analysis called Quantitative WinWin is 
studied. Compared to the original method introduced in [14], the improved 
version places more emphasis is on the consideration of effort as well as quality 
and time constraints. In addition to that, resource rebalancing and optimization 
heuristics are applied to generate a set of alternative solutions to be analyzed 
by a human decision-maker. Like Boehm’s original WinWin [4], Quantitative 
WinWin uses an iterative approach, with the aim to increase and actively exploit 
knowledge about the requirements in all iterations. However, the difference to 
Boehm’s WinWin groupware-based negotiation support [2] is the inclusion of 
quantitative methods and the emphasis on trade-off relationships in our ap-
proach. Furthermore, the evolutionary prioritization of stakeholder interests us-
ing Analytical Hierarchy Process (AHP) allows adaptation to changing environ-
ments.  

Quantitative WinWin supports determination of ‘best’ requirements by using 
quantitative models in conjunction with an iterative approach that adapts to 
changing sets of requirements and evolving problem parameters. Emphasis is 
on value-based selection of requirements and resolution of conflicts in the 
presence of quality, time, and effort constraints. Even for medium-sized prob-
lems of a few hundred requirements, this is a problem of tremendous complex-
ity. This is especially true in situations in which large variations in stakeholder 
priorities have to be considered in the requirements selection process. As a final 
result, Quantitative WinWin generates a small set of most promising candidate 
solutions from which the decision-maker can select the one which is the best 
match with additional implicit and subjective preferences. Overall, the process 
support provided by Quantitative WinWin is expected to improve transparency, 
effectiveness, and efficiency of decision-making. 

The paper is organized as follows: Section 2 provides definitions and assump-
tions as well as a mathematical description of the problem. Section 3 explains 
the methodological underpinnings used in our approach, namely the incre-
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mental treatment of requirements, the use of AHP to assign priorities to stake-
holders to determine priorities of the different requirements classes, and to 
even allow prioritization within a fixed class of requirements. Section 4 presents 
the simulation model GENSIM that is used in section 5 for describing the overall 
method Quantitative WinWin. In section 6, a case study describes an example 
with three stakeholders and three classes of requirements is described. Finally, a 
summary and conclusions are given in section 7. 
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2 Underlying Assumptions and Problem Statement 

2.1 Stakeholders 

One of the challenges of requirements engineering is that the different stake-
holders of a system usually have conflicting viewpoints and preferences. To re-
flect and model this situation, we introduce different stakeholders. The p 
stakeholders are denoted as S1,S2,…,Sp. Later we will use AHP to elicit both the 
stakeholders’ preferences regarding the different classes of requirements and 
stakeholders preference between the individual requirements contained in the 
same class. As part of our evolutionary approach, these preferences can change 
over time. 

Example stakeholders are novice, advanced or expert users as used in the ex-
ample described in section 6. Other stakeholders can be e.g., managers (having 
a business-driven perspective) or developers (having a more technical perspec-
tive). In any case, different classes of stakeholders will have different objectives 
and ideas for developing, using and handling the final software product. 

2.2 Classes of Requirements 

The evolutionary calculation of most promising subsets of requirements under 
resource constraints and the prioritization of requirements from the perspective 
of different stakeholders is a very complex task. For even medium-sized prob-
lems of hundred requirements, the number of comparisons between require-
ments as the means to determine a ranking becomes prohibitively large. To ad-
dress this problem, we reduce the problem size by introducing classes of r
quirements.  

e-

For the purpose of this paper we assume a set ℜ = r1,…, rn of requirements 
r1,…, rn. The set ℜ is subdivided into q disjoint subclasses ℜ1,ℜ2,…,ℜq (q<n) of 
requirements, e.g., ℜ = ℜ1⊕ℜ2⊕…⊕ℜq The rational for this assumption is that 
requirements can be classified according to their resource needs, their interac-
tion (two requirements interact if and only if the satisfaction of one require-
ment affects the satisfaction of the other [13]) and their purpose. We assume 
that each class only contains requirements of the same type. Example classes 
are requirements related to the user interface, or non-functional requirements 
like reliability or maintainability. Each requirement ri is assumed to belong to 
exactly one class. If there is a requirement that could be assigned to more than 
one class, we further decompose the original set ℜ by adding one more class 
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with requirements of exactly that type. Mapping ψ(i) assigns each requirement 
ri ∈ ℜ to the associated class ℜψ(i).  

Another important aspect is the potential value of requirements. The paradigm 
of value-based software engineering [3] suggests to differentiate the value of 
individual artifacts. In our case, we assign the importance to requirements in a 
hierarchical way. Firstly, each class ℜk of requirements is assigned a value β(ℜk) 
that is the weighted relative priority of all stakeholders involved. Secondly, each 
individual requirement ri is given a relative importance α(ri) within the class ℜψ(i). 
α(ri) is determined again as the weighted relative priority as determined by the 
stakeholders. Some of the given requirements are mandatory and related to the 
core functionality of the system. Others may be optional. We assume that each 
requirement ri has a relative importance α(ri) ∈ (0,1] within class ℜψ(i) defined on 
a ratio scale. α(ri) = 1 means that the requirement is mandatory. An individual 
requirement is considered to be mandatory if is considered to be mandatory by 
at least p/2 of the p stakeholders. 

2.3 Constraints 

The original set of requirements ℜ is a superset containing the requirements of 
all stakeholders involved. Because resources are limited, the challenge is to find 
those subsets of requirements that can be implemented without exceeding a 
given effort bound called EFFORT. In a similar way, we define the bounds 
DURATION and QUALITY as the overall duration and the predicted quality of 
the final product, respectively. Definition of those bounds is derived from pro-
ject planning. In this paper, the quality is defined as the number of defects per 
thousand source lines of code. For this reason, we assume an upper defect 
bound which has to be satisfied.  

We assign to each subset ℜ*⊂ℜ estimated values effort(ℜ*), duration(ℜ*) and 
quality(ℜ*) to predict the actual impact on effort, duration, and quality, respec-
tively. Typically, these estimates are difficult to get and uncertain in their na-
ture. To illustrate the generic solution approach presented in section 4, we as-
sume a simulation model that is able to provide these estimates as a function of 
the number and average complexity of the requirements in ℜ*. 

2.4 Problem Statement 

In order to be able to select requirements subsets that maximize the business 
value in relation to its necessary implementation effort, the importance of the 
different classes of requirements from the perspective of the different stake-
holders has to be determined. The application of AHP results in a normalized 
vector of importance β = (β(ℜ1),β(ℜ2),…,β(ℜq)) of the q classes of requirements. 
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Applying AHP again, we get normalized values α(ri) that express the weighted 
relative importance within a class. The absolute importance χ(ri) of each re-
quirement ri is then the product of the importance of the associated class 
β(ℜψ(i)) with the relative importance α(ri) of requirement ri within class ℜψ(i) i.e., 
χ(ri) = α(ri) ∗ β(ℜψ(i)). With the notation introduced above we are now able to 
describe the problem “Trade-off Analysis for Requirements Selection TARS[ℜ]” 
in a more formal way:  

Trade-off Analysis for Requirements Selection TARS [ℜ] 
Given a set of requirements ℜ, problem TARS [ℜ] consists of two parts A and 
B. In part A, we are looking for value-maximal subsets of requirements that ful-
fill constraints (A1) to (A4). The final solution set Γ is determined from solution 
of parts A and B. Based on the optimal value that is achievable when all con-
straints are fulfilled, part B aims at finding all non-dominated extensions for 
that value. This gives the decision-maker a comprehensive overview of what 
can be achieved in case of relaxation of the various constraints.  

(A) Find subsets of requirements ℜ*⊂ ℜ such that 

(A1)  {rj ∈ℜ: α(rj) = 1} ⊂ ℜ* 

(A2) effort(ℜ*)  ≤ EFFORT, 

(A3) duration(ℜ*)  ≤ DURATION, 

(A4) quality(ℜ*)  ≤ QUALITY, and  

(A5) value(ℜ*) := Σ r∈ ℜ*α(ri) ∗ β(ℜψ(i)) is maximum and 

 

(B) Find subsets of requirements ℜ’⊂ ℜ such that  

(B1) {rj ∈ℜ: α(rj) = 1} ⊂ ℜ’ 

(B2) value(ℜ*) < value(ℜ’), and  

(B3) ℜ’ is a non-dominated extension for value(ℜ*), i.e., there is no ℜ^ with  

(B4)  value(ℜ’) < value(ℜ^),  

(B5) (effort(ℜ’), duration(ℜ’), quality(ℜ’)) ≥ (effort(ℜ^), duration(ℜ^), quality(ℜ^))  

(B6) (effort(ℜ’), duration(ℜ’), quality(ℜ’)) ≠ (effort(ℜ^), duration(ℜ^), quality(ℜ^)) 

 

In the following, we will describe the methodological prerequisites to solve 
TARS[ℜ]. 
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3 A Quantitative Hybrid Approach to Trade-off Analysis for Require-
ments Selection 

The overall method for solving TARS consists of three main components that 
are described in more detail in the subsequent parts of this section: 

• Evolutionary requirements prioritization using Analytic Hierarchy Process 
(AHP) 

• Selection of candidate requirements using stepwise relaxation 

• Trade-off analysis for requirements selection under resource and quality con-
straints  

3.1 Evolutionary Requirements Elicitation Using the Analytic Hierarchy Process (AHP) 

Preferences or relative importance of competing alternatives are often not ex-
plicitly known. However, in order to better select requirements considering 
stakeholder priorities, those vectors of relative importance are needed. AHP [16] 
is a systematic approach to elicit preferences between different attributes. The 
main assumptions behind AHP are that the problem under investigation can be 
structured as an attributive hierarchy and that alternatives can be compared us-
ing preference ratios (for actions) or importance ratios (for criteria) from a nine-
point scale. Commercial tools are available that compute the eigen-values and 
check the degree of consistency between the pair-wise comparisons. For the 
computations of the example in section 6, we used the tool ExpertChoice [18]. 

Our problem TARS satisfies the underlying assumptions for applying AHP: 
Stakeholders perform pair-wise comparisons of attributes assessing their contri-
butions to each of the higher level nodes to which they are linked. To keep the 
number of comparisons reasonable, we decompose the problem into two kinds 
are hierarchies. As both the number of classes and the number of requirements 
per class are assumed to be relatively small, the number of comparisons is ac-
ceptable. This number would become prohibitively large without introducing a 
hierarchy of requirements.  

The first level of the hierarchy asks for the relative importance of the classes of 
requirements from the global perspective to achieve the maximum business 
value of the final software product. In general, there are p nodes in the second 
level that correspond to the p stakeholders. In the same way, the q nodes at 
the third level are associated with the q classes of requirements as assumed. 
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The two preference schemata are combined to rank the relative importance of 
the different classes of requirements for the final business value of the software 
product. 

At the the second level, the relative importance of individual requirements 
within its class is considered. This is done for each class of requirements. In that 
case, the nodes of the third level of the respective AHP graph correspond to all 
individual requirements of that class. Finally, the two preference schemata are 
combined to rank the relative importance of the individual requirements to con-
tribute to the final business value of the software product. 

3.2 Determination of Candidate Requirements Using Stepwise Relaxation 

An evolutionary approach for incremental refinement of requirements is chosen 
to reflect the initial impreciseness and uncertainty of requirements. The motiva-
tion for doing this is two-fold. Firstly, requirements are typically uncertain at the 
beginning and become more and more precise during the software life cycle. 
This is explicitly assumed in the spiral software development model [3], but is 
valid to some extend also for other software development paradigms. Conse-
quently, requirements selection has to become increasingly precise. At the be-
ginning, the focus is on the most important requirements, i.e., those require-
ments rk with largest value χ(rk). This is a “greedy-like” heuristic strategy sug-
gesting the use of the most promising elements first. The assumption is that 
these requirements will most likely belong to the final solution set. Later, condi-
tions are gradually relaxed to include as many requirements with lower degree 
of importance as possible. This is done until one of the constraints (A2) to (A4) 
is violated for the first time. 

Secondly, as another indication of incompleteness and impreciseness of re-
quirements, it may happen that new requirements are added during (spiral) 
software development. This is reflected by the evolutionary approach where 
additional requirements can be included at a later stage of development.  

The idea is to consider a sequence of problems TARS[ℜi] i=1,…,s. Among them, 
only the final one is explicitly solved. The various problems are characterized by 
different sets of requirements ℜi,i=1,…,s. Assume there is a monotonously de-
creasing sequence levelii=1,…,s of levels of minimum importance χ. The set ℜi is 
defined as the set of all mandatory requirements plus all the requirements hav-
ing a level of importance of at least leveli, i.e., ℜi = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ lev-
eli}. This implies that ℜ1 ⊆ ℜ2 ⊆ …⊆ ℜ. The number τ of iterations is defined as 
the first iteration at which at least one of the three constraints (A2) to (A4) is 
violated. In this case, the approach TARS[ℜτ] described in section 3.3 is applied. 
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3.3 Trade-off Analysis for Requirements Selection under Resource and Quality Con-
straints  

We now assume that ℜτ = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ levelτ} is the set of require-
ments determined by iteration τ when some of the additional constraints (A2) 
to (A4) are initially violated. A heuristic approach is applied to solve TARS[ℜτ]. 
The approach uses two basic operations to compute a set of non-dominated 
extensions fulfilling (B1) to (B6). These operations are called REBALANCE and 
MODIFY.  

REBALANCE tries to remove constraint violations by gradually relaxing other cri-
teria, hoping to stay within acceptable limits for all defined constraints. The ra-
tionale for this step is that there is a trade-off between effort, duration and 
quality. Improving one of these criteria will typically deteriorate the others (as-
suming no technology change). 

In general, the elimination of all constraint violations cannot be achieved by 
solely applying REBALANCE. In cases where REBALANCE fails, operation 
MODIFY uses reductions and extensions to systematically the requirements set 
under investigation. Assume we created a set of requirements ℜ* which cannot 
be implemented within the given constraints, even after the application of the 
REBALANCE step. To achieve feasibility again, one has to eliminate some re-
quirement(s) from ℜ*. Applying rule M1 as specified below tries to eliminate 
constraint violations by removing the requirement(s) with the minimum contri-
bution to the overall business value. However, after this elimination, it might be 
possible to add again another requirement, i.e., rule M2 should be applied as 
specified below.  

Rule M1: 

1. Delete requirement rk from the set of requirements ℜ* with χ (rk) = min{χ (rj) 
| rj ∈ℜ* and α(rj)<1}.  

2. In case there is more than one requirement with the same minimal value, 
then take the one rj with the maximal complexity (compl(rj) = max{compl(rj) | 
rj ∈ℜ* and χ (ri) = χ (rk)}). 

Rule M2: 

3. Add requirement rk to the set of requirements ℜ* with compl(rk) = 
min{compl(rj) | rj ∉ℜ*}. 

4. In case there is more than one requirement with the same minimal complexi-
ty, then take the one rj with the maximal value (χ (rj)= max{χ (rj) | rj ∉ℜ* and 
compl(ri) = compl(rk)}). 
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4 Project Estimation Using GENSIM 

Even though inherently difficult, we assume that an estimation method that 
considers effort, duration, and quality can be applied based on a given specifi-
cation of requirements. As discussed in [5], estimation is increasingly based on a 
combined use of expert opinion and simulation. In order to generate estimates 
effort(ℜ), duration(ℜ), and quality(ℜ) for a given set of requirements and a 
fixed average staffing we used the simulation model GENSIM (GENeric SIMula-
tor) [11]. The GENSIM model simulates the software development process from 
the end of the requirement analysis step through to the end of system testing 
(for further details see [11] and [14]). Although the model is only a research 
prototype it can be easily calibrated to product and process measures of a spe-
cific organization in order to capture the behavior of each development cycle in 
Boehm’s spiral model. For producing the effort estimates used in the example 
in section 6 of this paper, GENSIM was calibrated to the development process 
of a fictitious software organization. The GENSIM model has a modular struc-
ture. It consists of the following five interrelated sub-models: 

• Production: This sub-model represents a typical software development cycle 
consisting of the following steps of transitions (cf. Figure 1): set of require-
ments � design documents � code � tested code. Note that the detection of 
defects during testing only causes reworking of the code (and not of the de-
sign documents). 

• Quality: In this sub-model, the defect flow is modeled, i.e.: defect injection 
(into design or code) � defect propagation (from design to code) � defect 
detection (in the code during testing) � defect correction (only in the code). 

• Effort: In this sub-model, the total effort consumption for design develop-
ment, code development, code testing, and defect correction (rework) is cal-
culated. 

• Initial Calculations: In this sub-view, the normal value of the central proc-
ess parameter “productivity” is calculated. The normal productivity varies 
with assumptions about the product development mode (organic, semi-
detached, embedded) and characteristics of the project resources available 
(e.g. developer skill). 

• Productivity, Quality & Manpower Adjustment: In this sub-model, pro-
ject-specific process parameters, like (actual) productivity, defect generation, 
effectiveness of QA activities, etc., are determined based on a) planned tar-
get values for manpower, project duration, product quality, etc., and b) time 
pressure caused by unexpected rework or changes in the set of require-
ments. 
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Figure 1: Schematic representation of the product flow captured by the GENSIM production sub-model. 

The most important input and output parameters and their use in the context 
of predicting effort, quality and duration are listed in Table 1. The input pa-
rameters of the simulation define the project goals (Product_size, 
Planned_completion_time, Goal_field_defect_density) and constraints (Aver-
age_complexity, Planned_manpower, Manpower_skill), as well as the process, 
e.g. the degree to which design and code inspections are applied (Inspec-
tion_intensity_design, Inspection_intensity_code). The output parameters repre-
sent the simulation results, e.g., size of the work and end products (De-
sign_size, Code_size, Product_size), project duration (Project_duration), effort 
consumption (Effort), and product quality (Field_defect_density). For the calcu-
lations conducted in the example presented in section 6, all gray-shaded input 
parameter have been varied as part of the simulation runs.  
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Input Parameter Output Parameter 

Product_size 

[total number of size units] 

Design_size 

[total number of designed and inspected size units] 

Average_complexity 

[1 = low, 3 = medium, 5 = high] 

Code_size 

[total number of implemented and inspected size units] 

Manpower_skill 

[1 = low, 2 = medium, 3 = high] 

Product_size 

[total number of implemented and tested size units] 

Planned_manpower (optional) 

[number of persons] 

Project_duration (project total and per phase) 

[days] 

Planned_completion_time (optional) 

[days] 

Effort (project total and per phase) 

[person days]  

Goal_field_defect_density (optional)  

[defects per implemented size unit] 

Field_defect_density 

[defects per implemented size units after test] 

Inspection_intensity_design 

[fixed percentage of total number of size units] 

 

Inspection_intensity_code 

[fixed percentage of total number of size units] 

 

 
Table 1: Input and output parameters of the GENSIM model. 

The simulation modeling approach used to develop GENSIM has been defined 
in [11] under the name IMMoS (Integrated Measurement, Modeling and Simu-
lation). IMMoS is an enhancement and operationalization of the well-known 
System Dynamics method, originally developed by Forrester in the late 1950s 
[8]. The philosophical position underlying the System Dynamics method is what 
Senge and other researchers call System Thinking [17]. In System Thinking, the 
behavior of a system is considered as primarily being generated by the interac-
tion of all the feedback loops over time. In order to analyze – and eventually 
change – the behavior of observed objects in the real world, it is necessary to 
understand the important cause-effect relations of the factors that influence 
those variables that represent the observed behavior. In System Dynamics, these 
cause-effect relations are called base mechanisms. The union set of all base 
mechanisms is called a causal diagram. In order to be able to run System Dy-
namics simulations the causal diagram has to be converted into a so-called flow 
graph. A flow graph is the pictorial representation of a set of mathematical 
equations. The set of mathematical equations can be separated into two 
groups: level equations and rate equations. The terminology of levels and rates 
is consistent with the flow-structure orientation introduced by Forrester to-
gether with schematic conventions invoking the image of fluid-like processes. 
The schematic conventions of flow graphs are shown in Figure 2. 
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Figure 2: Schematic conventions of flow graphs. 

With the schematic conventions shown in Figure 2, the flow graph representa-
tion of the GENSIM product flow (cf. Figure 1) can be represented as shown in 
Figure 3.  

cum tasks
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designed
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<IMPL
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Figure 3: Flow graph of GENSIM’s production sub-model (extract). 

Even though System Dynamics based simulation modeling has an increasing 
number of applications in the software engineering domain, it is by no means 
suggested to be the new silver bullet technique for problem solving. Instead, it 
is important to clarify the underlying assumptions for System Dynamics model-
ing and simulation. Only if these assumptions are valid, it is recommended to 
use the System Dynamics approach in a particular situation. The basic assump-
tions are: 

• Problems under investigation are dynamic in nature and relate to systems 
with entities and attributes that are interconnected in loops of information 
feedback and circular causality. 

• Sufficient maturity and stability of the software development processes in 
place within the organization, e.g., CMM level 3 or higher [9]. 

• Availability of expertise for identification of base mechanisms and construc-
tion of causal diagrams. 

• Availability of data for model calibration. 
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These assumptions are valid for the requirements engineering process of most 
mature software organizations. Requirements are very volatile and prone to 
numerous changes. If we assume a fairly mature software organization, the 
software development processes are well thought-through and reasonably sta-
ble, and thus hypotheses about base mechanisms should not be too difficult to 
elicit from experienced project managers – as long System Dynamics experts are 
available to conduct interviews and transform their input into causal diagrams. 
Mature organizations are also likely to have a metric collection process in place, 
i.e., there should be sufficient data available to calibrate the simulation models.  
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5 Quantitative WinWin - The Overall Algorithm 

The algorithm called Quantitative WinWin uses iterative and hybrid application 
of the techniques described in section 3 and 4. Quantitative WinWin consists of 
three phases called Initialization (Phase 1), Iteration (Phase 2), and Termination 
(Phase 3). In the following, we describe the three phases in more detail.  

5.1 Phase 1: Initialization 

At the beginning we define our initial set of requirements by only looking at 
mandatory requirements, i.e., ℜ0 = {rj ∈ ℜ: α(rj) = 1}. We check feasibility of ℜ0. 
If one of the constraints (1) to (3) is violated for ℜ0 then we apply REBALANCE 
as described in section 3.3. If no feasibility can be achieved this way, the prob-
lem does not have a feasible solution.  

5.2 Phase 2: Iteration 

During each iteration, six consecutive steps are applied as described below and 
illustrated in Figure 4. The number of iterations is not determined in advance. It 
depends on the degree of change in requirements during the development cy-
cle and the sequence of thresholds defined by the expert.  

Step 1: Definition of the candidate set of requirements.  
At the beginning of each iteration i, the threshold value leveli defines a re-
quirements subset that contains those requirements rj of the original set ℜ that 
have a importance value of at least leveli, i.e., ℜi = {rj ∈ ℜ: α(rj) = 1 or χ(rj) ≥ lev-
eli }. The threshold values are not defined in advance and have to be determined 
by experts. The threshold value will determine the size of the set of require-
ments under investigation. The only assumption is that leveli+1 < leveli for all it-
erations i. Another possible modification of the candidate set of requirements is 
that further requirements can be added to ℜ at later iterations (as can be seen 
in the example in section 6). 
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Step 2: Computation of preferences between involved stakeholders. 
Preferences between involved stakeholders are computed from the perspective 
of the overall business value. AHP is applied for that purpose resulting in a 
normalized vector of weights weight0 = (weight0,1,…, weight0,p) with Σ weight0,j 

= 1. 

Step 3: Computation of preferences between and within requirements 
classes. 
Preferences between requirements classes are computed from the perspective 
of the p individual stakeholders. AHP is applied for that purpose resulting in 
normalized vectors weight_c1,…, weight_cp. Each of them is of dimension q.  
Analogously, preferences between individual requirements of all (fixed) class are 
computed from the perspective of the p individual stakeholders. AHP is applied 
for that purpose resulting in normalized vectors weight_r1,…, weight_rp 

Step 4: Computation of overall preferences between and within re-
quirements classes. 
Computation of overall preferences between requirements classes by consecu-
tive application of the weights computed in step 3 (the vectors weightc1,…, 
weightcp are arranged as the columns of a matrix M) and step 2 (column vector) 
by multiplication of matrix M with vector weight0. The result is a vector of im-
portance β = (β(ℜ1),β(ℜ2),…,β(ℜq)) of the q classes of requirements.  
Analogously, computation of overall preference of individual requirements of all 
(fixed) class by consecutive application of the weights computed in step 3 (the 
vectors weight_r1,…, weight_rp are arranged as the columns of a matrix M) and 
step 2 (column vector) by multiplication of matrix M with vector weight0. The 
result is a vector of importance α = (α(r1), α(r2),…, α(rn)) of the n individual re-
quirements. An individual requirement is considered to be mandatory if is con-
sidered to be mandatory by at least p/2 of the p stakeholders. 

Step 5: Refinement of candidate requirements. 
Subset ℜi = { rj ∈ℜ: α(rj) = 1 or χ(rj)≥ leveli} with χ(ri) = α(ri)∗β(ℜψ(i)) is defined 
where ℜ =  ℜ + ∆ℜi is the original set of requirements eventually extended by 
requirements ∆ℜi added in a later stage. 

Step 6: Feasibility check. 
At each iteration I, an estimation is done to compute effort(ℜi), quality(ℜi), and 
duration(ℜi) for the actual set ℜI of requirements under investigation. The set of 
requirements is feasible if and only if effort(ℜi) ≤ EFFORT, quality(ℜi) ≤ 
QUALITY, duration(ℜi) ≤ DURATION. If the set is not feasible then we go to 
Phase 3. 
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Figure 4:  Principal steps of Quantitative WinWin. 

5.3 Phase 3: Termination 

We now assume that ℜτ = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ levelτ} is the set of require-
ments determined by iteration τ when some of the additional resource con-
straints (A2) to (A4) are initially violated. A heuristic approach called TARS[ℜτ] is 
applied for trade-off analysis. It uses REBALANCE and iteratively applies Rules 
M1 and M2 of MODIFY as described in section 3.3.  

After each modification of the set of requirements it is necessary to check 
whether any of the project constraints are violated. If this is the case, 
REBALANCE will be applied in order to find a parameter setting that fulfils the 
constraints. The heuristic approach is using interaction with the decision-maker 
to finally decide when to stop computing the set Γ of alternative solutions. The 
default termination is that all solutions generated from the application of 
REBALANCE and MODIFY are dominated by existing ones. 
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6 Initial Experience Using the Approach – An Example 

We report initial experiences with the proposed approach by considering the 
example of the development of a software product that has three classes of po-
tential users: novice (S1), advanced (S2), and expert (S3) users. Typically, for a 
product, e.g., a text processing software system, different classes of users con-
sider different classes of requirements as the key features of that product. We 
assume an original set of ten requirements where each requirement belongs to 
one of the three classes of requirements ℜ1, ℜ2, and ℜ3. As the project pro-
gresses, two additional requirements r11 and r12 arise. The three classes corre-
spond to three different categories of requirements: 

• Performance (class ℜ1) 

• Usability (class ℜ2) 

• Security and reliability (class ℜ3) 

We use GENSIM as introduced in section 4 to model and simulate this example. 
Basic information about the example and the results of three iterations are 
summarized in Table 2. Threshold levels for evolutionary selection of require-
ments are level1 = 0.25, level2 = 0.22 and level3 = 0.20. α(rj), β(ℜψ(j)), and χ(rj) 
describe the relative importance of requirement rj within class ℜψ(j), importance 
of class ℜψ(j), and global importance of requirement rj, respectively. The six final 
rows of the table show the total size of the product (in size units), the average 
complexity of the implemented requirements (on a scale between 1 and 5), the 
estimates for effort(ℜi), quality(ℜi), and duration(ℜi) of sets ℜi, and, eventually, 
the business value Σ r∈ℜi χ(r) associated with ℜi. 
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Subset charac-
teristics 

rj  Class  
ℜψ(j) 

α(rj) β(ℜψ(j)) χ(rj) ℜ0 ℜ1 ℜ2 ℜ3 ℜ3' 

 r1  ℜ1 0.6 0.404 0.24   X X X 
 r2  ℜ1 0.9 0.404 0.36  X X X X 
 r3  ℜ1 1.0 0.404 0.40 X X X X X 
 r4  ℜ1 0.7 0.404 0.28  X X X X 
 r5  ℜ2 1.0 0.354 0.35 X X X X X 
 r6  ℜ2 0.6 0.354 0.21    X  
 r7  ℜ2 1.0 0.354 0.35 X X X X X 
 r8  ℜ2 0.5 0.354 0.18     X 
 r9  ℜ3 1.0 0.268 0.27 X X X X X 
 r10  ℜ3 0.3 0.268 0.08      
 r11  ℜ3 0.8 0.268 0.21 n/a n/a  X  
 r12  ℜ3 1.0 0.268 0.27 n/a n/a n/a X X 

level1      n/a 0.25    
level2        0.22   
level3         0.20 n/a 

total size      400 600 700 1000 900 
∅ complexity      3.00 3.00 2.71 2.80 2.33 

effort(ℜi)      2704 4199 4706 7241* 5431 
quality(ℜi)      1.02 1.01 1.01 1.02 1.02 

duration(ℜi)      325 375 402 558* 425 
Σ r∈ ℜi χ(r)      1.37 2.01 2.25 2.95 2.71 
 

Table 2: Basic information about the sequence of iterations and the result of re-balancing. 

The following constraints are assumed in this example: The total effort available 
to implement the final set of requirements is set to EFFORT = 5600 person days. 
The minimal acceptable quality level is set to QUALITY = 1.2 defects per size 
unit. The maximal acceptable duration of the project is set to DURATION = 430. 
The average manpower is limited to maximal 13 developers, and the develop-
ment process as well as the skill levels of the manpower is assumed to be fixed. 
Each requirement is assumed to have a fixed size and specific complexity (low, 
medium or high).  

We assume the product manager has to decide which of the initially given ten 
(later, there will be twelve) requirements will be selected to maximize the over-
all business value. In Phase 1, the set ℜ0 of all mandatory requirements is de-
fined. As the set is feasible in terms of constraints (A2) to (A4), we proceed 
with Phase 2.  

To illustrate the concept of stepwise refinement, we assume three iterations. In 
each iteration, the requirements acceptance threshold is relaxed. In order to 
simplify the example, we assume that the preference in AHP described by the 
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four 3x3-matrices does not change over time. As stated above, Quantitative 
WinWin in general allows changing priorities.  

A 3x3-matrix M0 of preferences between the three types of users in terms of 
the overall goal to maximize the business value is build. Matrices M1, M2, and 

M3 describe the preferences of the three classes of requirements from the per-
spective of stakeholder S1, S2, and S3, respectively. This may look as follows: 



















=

14
1

6
1

413
1

631
0M , 



















=

14
1

5
1

412
1

521
1M , 



















=
126
2

113
6

1
3

11
2M , 

















=
14

12
415
2

1
5

11
3M . 

The AHP analysis gives us vectors of eigen-values. They are denoted by weight0, 
weight1, weight2, and weight3, respectively.  

• weight0 = (0.644, 0.271, 0.085) gives the importance of the three stake-
holders (i.e., novice, advanced, expert) for the final business value from the 
perspective of the product manager (step2). 

• weight_c1 = (0.570, 0.333, 0.097) gives the importance of the three classes 
of requirements from the perspective of the novice user (step3.1). 

• weight_c2 = (0.100, 0.300, 0.600) gives the importance of the three classes 
of requirements from the perspective of the advanced user (step 3.2). 

• weight_c3 = (0.117, 0.683, 0.200) gives the importance of the three classes 
of requirements from the perspective of the expert user (step 3.3). 

The consecutive application of the weights computed in steps 2 and 3 results in 
β = (β(ℜ1),β(ℜ2),β(ℜ3)) which is the vector of importance of the three classes of 
requirements for the overall business value (step 4): 
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According to the individual scorings, the first class of requirements is most im-
portant, and the third class is the least important one. Eventually, these scores 
could be changed as part of the stepwise refinement approach. However, we 
will not consider such changes in this example. For the sake of simplicity, we 
further assume that the vector α = (α(r1), α(r2),…,α(rn)) as shown in Table 2 (de-
termined in steps 3 and 4) is the result of a weighted sum computation of 
stakeholder priorities. 
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Iteration 1:  
The initial requirements acceptance threshold level of importance, level1, is set 
to 0.25. This results in ℜ1 = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ level1} = {r2, r3, r4, r5, r7, r9}. 
The estimates effort(ℜ1) = 4199, quality(ℜ1) = 1.01, and duration(ℜ1) = 375 
satisfy the given bounds EFFORT = 5600, QUALITY = 1.2, and DURATION = 
430, respectively.  

Iteration 2:  
In the second iteration, we have a relaxed the level of importance to level2 = 
0.22. Furthermore, an additional requirement r11 is considered to be included 
into the requirements set. Following the steps of Phase 2, we get our new set 
ℜ2 = {rj ∈ℜ: α(rj) = 1 or χ (rj)≥ level2} = {r1, r2, r3, r4, r5, r7, r9} which still does not 
violate the given constraints (effort(ℜ2) = 4706 < 5600 = EFFORT, quality(ℜ2) = 
1.01 < 1.2 = QUALITY, duration(ℜ2) = 402 < 430 = DURATION).  

Iteration 3:  
In the third iteration, we again add a new requirement r12. In addition to that, 
we further relax the required level of importance of requirements assuming 
level3 = 0.20. This results in ℜ3 = { rj ∈ℜ: α(rj) = 1 or χ (rj)≥ level3} = {r1, r2, r3, r4, 
r5, r6, r7, r9, r11, r12}. In this case, the resulting set of requirements ℜ3

 is estimated 
to violate two constraints, i.e., effort(ℜ3) = 7241 > 5600 = EFFORT and dura-
tion(ℜ3) = 558 > 430 = DURATION. 

Having violated feasibility constraints (A2) to (A4) for the first time, we enter 
Phase 3. The subsequent applications of operations REBALANCE (abbreviated 
by L) and MODIFY (rules A and B) results in an evolution of solutions to build fi-
nal solution set Γ. This is illustrated in Figures 5 and 6. Each box represents ex-
actly one solution generated. In addition to the composition of the new solu-
tion, it gives the relative fulfillment of the three additional constraints related to 
effort (E), quality (Q), and duration (D). Furthermore, the respective business 
value, average complexity, and the number of included requirements are given 
for each of the generated sets.  

A first attempt to resolve the constraint violation caused by ℜ3 is to relax the 
quality parameter (abbreviated by Q) in order to reduce effort (E) and duration 
(D). As can be seen in Figure 5, however, this attempt fails for set ℜ3. Although 
it is possible to reduce the excess of limits set by the constraints (compare box 2 
with box 1 in Figure 5), it is not possible to satisfy all constraints at the same 
time (cf. boxes 2 and 3). 

Since REBALANCE operations on project parameters for set ℜ3 do not yield a 
satisfactory solution, rules M1 and M2 have to be applied as described in sec-
tion 3.3. The application of rules M1 and M2 should stop when the project 
manager does not expect any further improvement. In the example, the deci-
sion to stop was made after all feasible reductions of set ℜ3 by one requirement 
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had been examined. It turns out that the highest business value is achieved 
with set ℜ3' = {r1, r2, r3, r4, r5, r7, r8, r9, r12} (cf. box 9). 

 2) ℜ3  -
 E: 23%
 Q: ok
 D: 23%

 val = 2.95
 compl = 2.8
 #req = 10

M1

M2

 3) ℜ3  -
 E: ok
 Q: 54%
 D: ok

 val = 2.95
 compl = 2.8
 #req = 10

R

 5) ℜ3 \{r6}  -
 E: 2%
 Q: ok
 D: 2%

 val = 2.74
 compl = 2.56
 #req = 9

 6) ℜ3 \{r6}  -
 E: ok
 Q: 8%
 D: ok

 val = 2.74
 compl = 2.56
 #req = 9

R

 7) ℜ3 \{r6, r11}  +
 E: ok
 Q: ok
 D: ok

 val = 2.53
 compl = 2.5
 #req = 8

M1

 1) ℜ3  -
 E: 29%
 Q: ok
 D: 30%

 val = 2.95
 compl = 2.8
 #req = 10

R

 4) ℜ3 \{r6}  -
 E: 7%
 Q: ok
 D: 8%

 val = 2.74
 compl = 2.56
 #req = 9

R

 9) ℜ3 \{r6, r11} ∪{r8}  +
 E: ok
 Q: ok
 D: ok

 val = 2.71
 compl = 2.33
 #req = 9

 8) ℜ3 \{r6, r11} ∪{r8}  -
 E: 2%
 Q: ok
 D: 4%

 val = 2.71
 compl = 2.33
 #req = 9

R

 11) ℜ3\{r6, r11} ∪{r8 , r10}  -
 E: 2%
 Q: ok
 D: 2%

 val = 2.79
 compl = 2.2
 #req = 10

 12) ℜ3\{r6, r11} ∪{r8 , r10}  -
 E: ok
 Q: 8%
 D: ok

 val = 2.79
 compl = 2.2
 #req = 10

 10) ℜ3\{r6, r11} ∪{r8 , r10}  -
 E: 7%
 Q: ok
 D: 8%

 val = 2.79
 compl = 2.2
 #req = 10

Applying M1 yields 
ℜ3 \{r6, r11} ∪{r8) [8] 

M2

 13) ℜ3 \{r6, r1}  +
 E: ok
 Q: ok
 D: ok

 val = 2.5
 compl = 2.75
 #req = 8

Outperformed by 
ℜ3 \{r6, r11} 
Applying M2 yields 
ℜ3 \{r6} [4]

 14) ℜ3 \{r11}  -
 E: 13%
 Q: ok
 D: 13%

 val = 2.74
 compl = 2.78
 #req = 9

 15) ℜ3 \{r1}  -
 E: 19%
 Q: ok
 D: 20%

 val = 2.71
 compl = 3.0
 #req = 9

Outperformed by 
ℜ3 \{r6} [4]
Applying M1 yields 
ℜ3 \{r6, r11} [7]

Outperformed by 
ℜ3 \{r6} [4]
Applying M1 yields 
ℜ3 \{r6, r1} [13]

to be continued
in Figure 3

M1

M1 M1

R R

 

Figure 5: Evolution of generated solutions applying operations REBALANCE (R) and MODIFY (rules M1 and M2). Each 
box represents exactly one solution generated. Each solution is described in terms of its relative fulfillment of 
the three additional constraints related to effort (E), quality (Q), and duration (D), the respective business value 
(val), average complexity (compl), and the number of included requirements (#req).  
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 2) ℜ3  -
 E: 23%
 Q: ok
 D: 23%

 val = 2.95
 compl = 2.8
 #req = 10

M1

M2

 3) ℜ3  -
 E: ok
 Q: 54%
 D: ok

 val = 2.95
 compl = 2.8
 #req = 10

R

 16) ℜ3 \{r4, r6}  -
 E: ok
 Q: ok
 D: 0.2%

 val = 2.46
 compl = 2.25
 #req = 8

M1

 1) ℜ3  -
 E: 29%
 Q: ok
 D: 30%

 val = 2.95
 compl = 2.8
 #req = 10

R

 15) ℜ3 \{r4}  -
 E: 7%
 Q: ok
 D: 8%

 val = 2.67
 compl = 2.56
 #req = 9

 19) ℜ3\{r4, r6} ∪{r8}  +
 E: ok
 Q: ok
 D: ok

 val = 2.64
 compl = 2.11
 #req = 9

 18) ℜ3\{r4, r6} ∪{r8}  -
 E: ok
 Q: ok
 D: 5%

 val = 2.64
 compl = 2.11
 #req = 9

L

 21) ℜ3\{r4, r6} ∪{r8 , r10}  -
 E: 1%
 Q: ok
 D: 4%

 val = 2.72
 compl = 2.0
 #req = 10

 22) ℜ3\{r4, r6} ∪{r8 , r10}  -
 E: ok
 Q: 9%
 D: ok

 val = 2.72
 compl = 2.0
 #req = 10

 20) ℜ3\{r4, r6} ∪{r8 , r10}  -
 E: ok
 Q: ok
 D: 10%

 val = 2.72
 compl = 2.0
 #req = 10

Applying M1 yields 
ℜ3 \{r4, r6} ∪ {r8} [18] 

M2

 23) ℜ3 \{r4, r11}  +
 E: ok
 Q: ok
 D: ok

 val = 2.46
 compl = 2.5
 #req = 8

Applying M2 yields 
ℜ3 \{r6} [4]

 28) ℜ3 \{r2}  -
 E: 19%
 Q: ok
 D: 20%

 val = 2.59
 compl = 3.0
 #req = 9

Outperformed
by ℜ3 \{r6} [4]

continued from
Figure 2

 17) ℜ3 \{r4, r6}  +
 E: ok
 Q: ok
 D: ok

 val = 2.46
 compl = 2.25
 #req = 8

R

 25) ℜ3\{r4, r11} ∪{r8}  +
 E: ok
 Q: ok
 D: ok

 val = 2.64
 compl = 2.33
 #req = 9

 24) ℜ3\{r4, r11} ∪{r8}  -
 E: 2%
 Q: ok
 D: 4%

 val = 2.64
 compl = 2.33
 #req = 9

 26) ℜ3\{r4, r6} ∪{r8 , r10}  -
 E: 12%
 Q: ok
 D: 13%

 val = 2.72
 compl = 2.2
 #req = 10

Applying M1 yields 
ℜ3 \{r4, r11} ∪ {r8} [24] 

 27) ℜ3 \{r4, r1}  +
 E: ok
 Q: ok
 D: ok

 val = 2.43
 compl = 2.75
 #req = 8

M2

M2

R R

R

Applying M2 yields 
ℜ3 \{r4} [15]

M1 M1

Outperformed by 
ℜ3 \{r4, r6} ∪ {r8 , r10}

Outperformed
by ℜ3 \{r6} [4]

 29) ℜ3 \{r2, r6}  +
 E: ok
 Q: ok
 D: ok

 val = 2.38
 compl = 2.75
 #req = 8

M1

M1

 

 
Figure 6:  Continued results of applying operations REBALANCE (R) and MODIFY (rules M1 and M2). 

The solution set Γ with all the solutions satisfying (B1) to (B6) is given in  
Table 3. 

 
Set # Requirements ri Value

( ) 
Fulfillment 

(A2) 
Fulfillment 

(A3) 
Fulfillment 

(A4) 
2 {1,2,3,4,5,6,7,9,11,12} 2.95 -23% yes -23% 
3 {1,2,3,4,5,6,7,9,11,12} 2.95 yes -54% yes 

11 {1,2,3,4,5,7,8,9,10,12} 2.79 -2% yes -2% 
12 {1,2,3,4,5,7,8,9,10,12} 2.79 yes -8% yes 
20 {1,2,3,5,7,8,9,10,11,12} 2.72 yes yes -10% 
21 {1,2,3,5,7,8,9,10,11,12} 2.72 -1% yes -4% 
9 {1,2,3,4,5,7,8,9,12} 2.71 yes yes yes 

 
Table 3: Solution set Γ for TARS[ℜ]. 
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7 Summary and Conclusions 

One of the limitations of Boehm’s Easy WinWin model is that negotiation is 
based on subjective measures. Which alternative will be chosen is a decision to 
be made by the project manager based on more or less accurate estimates. 
What is missing is a sound, quantitative evaluation of alternatives. In this paper, 
we have described a new and promising approach to support decision-making 
in the context of requirements selection. The added value of the Quantitative 
WinWin approach is its ability to offer quantitative analysis as a backbone for 
actual decisions. Application of Quantitative WinWin helps in the selection of 
requirements that meet the key needs of the most important stakeholders. It 
gives the best value achievable when all resource and quality constraints are 
met. In addition to that, it shows how the business values can be improved as 
more resources become available and/or the quality constraint is relaxed. 

The novelty of the presented idea is four-fold. Firstly, requirements selection is 
based on predicting and rebalancing its impact on effort, time and quality. Sec-
ondly, AHP is used iteratively for a stepwise analysis to balance the stake-
holders’ preferences related to the different classes of requirements. Both pre-
diction and rebalancing are based on the modeling and simulation prototype 
GENSIM. Thirdly, the alternative solution sets offered to the decision maker are 
developed incrementally based on thresholds for the degree of importance of 
requirements and heuristics that allow us to find a best fit considering given 
constraints. Finally, trade-off analysis is used to determine non-dominated ex-
tensions of the maximum value that is achievable under resource and quality 
constraints. As main result, quantitative WinWin proposes a small number of al-
ternative sets of requirements from which the actual decision-maker can finally 
select the most appropriate one. 

The approach has been initially validated using a small-scale example for model-
ing and simulation. However, the scalability of the approach still needs to be 
tested using a larger set of requirements. Main risks of the overall approach are 
(i) the availability of a sound and sufficiently detailed model for the estimation 
of total effort, quality, and duration, and (ii) the availability and cooperation of 
stakeholders for eliciting their preference portfolio. The applicability of the 
Quantitative WinWin approach strongly depends on the quality of these two 
contributions. 

Using quantitative measures during the requirements engineering process is in-
herently difficult. This paper is an attempt to assist the developer in making 
trade-off decisions using simulations. In order to achieve this, our research uses 
simplifications of reality. We assume that requirements are independent even 
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though many requirements depend on each other or have an impact on each 
other. Especially non-functional requirements tend to have numerous links to 
functional requirements. Such dependencies between requirements have an in-
fluence on the value and complexity of combinations of requirements. On the 
other hand, the complexity of implementing a large number of requirements is 
likely to be higher than the complexity of individual requirements since issues 
such as feature interaction have to be considered. It can be assumed that the 
value and complexity of individual requirements are not constant but increase 
with the number of selected requirements. This area of requirements depend-
ence will be investigated in future. 
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