

Trade-off Analysis for Requirements Selection

Authors:
Günther Ruhe
Armin Eberlein
Dietmar Pfahl

IESE-Report No. 040.03/E
Version 1.0
May 30, 2003

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
67661 Kaiserslautern

Abstract

Evaluation, prioritization and selection of candidate requirements are of tre-
mendous importance and impact for subsequent software development. Effort,
time as well as quality constraints have to be taken into account. Typically, dif-
ferent stakeholders have conflicting priorities and the requirements of all these
stakeholders have to be balanced in an appropriate way to ensure maximum
value of the final set of requirements. Trade-off analysis is needed to proactively
explore the impact of certain decisions in terms of all the criteria and con-
straints.

The proposed method called Quantitative WinWin uses an evolutionary ap-
proach to provide support for requirements negotiations. The novelty of the
presented idea is four-fold. Firstly, it iteratively uses the Analytical Hierarchy
Process (AHP) for a stepwise analysis with the aim to balance the stakeholders’
preferences related to different classes of requirements. Secondly, requirements
selection is based on predicting and rebalancing its impact on effort, time and
quality. Both prediction and rebalancing uses the simulation model prototype
GENSIM. Thirdly, alternative solution sets offered for decision-making are de-
veloped incrementally based on thresholds for the degree of importance of re-
quirements and heuristics to find a best fit to constraints. Finally, trade-off
analysis is used to determine non-dominated extensions of the maximum value
that is achievable under resource and quality constraints. As main result, quan-
titative WinWin proposes a small number of possible sets of requirements from
which the actual decision-maker finally can select the most appropriate solu-
tion.

Keywords: Requirements selection, decision support, trade-off analysis, resource con-
straints, analytical hierarchy Process (AHP), simulation.

Copyright © Fraunhofer IESE 2003 v

Table of Contents

1 Background and Motivation 1

2 Underlying Assumptions and Problem Statement 4
2.1 Stakeholders 4
2.2 Classes of Requirements 4
2.3 Constraints 5
2.4 Problem Statement 5

3 A Quantitative Hybrid Approach to Trade-off Analysis
for Requirements Selection 7

3.1 Evolutionary Requirements Elicitation Using the Analytic
Hierarchy Process (AHP) 7

3.2 Determination of Candidate Requirements Using Stepwise
Relaxation 8

3.3 Trade-off Analysis for Requirements Selection under
Resource and Quality Constraints 9

4 Project Estimation Using GENSIM 10

5 Quantitative WinWin - The Overall Algorithm 15
5.1 Phase 1: Initialization 15
5.2 Phase 2: Iteration 15
5.3 Phase 3: Termination 17

6 Initial Experience Using the Approach – An Example 18

7. Summary and Conclusions 24

Acknowledgements 26

References 27

Copyright © Fraunhofer IESE 2003 vii

Background and Motivation

1 Background and Motivation

Software development is a very complex, often distributed process with a vari-
ety of process and product attributes, as well as numerous functional and non-
functional objectives and constraints. Typically, requirements are imprecise or
incomplete at the beginning of the life cycle and are becoming more and more
complete and precise as development progresses. A further complication is that
the various stakeholders have different perspectives of and expectations on a
system, i.e., they assign varying priorities to requirements. Marketing and pro-
ject managers also struggle with a lack of a clear understanding of the relation-
ship between the selected set of requirements and the effort required for its
implementation. The overall effort that can be spent on the project is limited,
the final product has to fulfill certain minimum quality constraints, and the time
to market of the final product is constrained. The challenge is to select the
‘right’ requirements out of a given superset of candidate requirements so that
all the different key interests, resource constraints and preferences of the criti-
cal stakeholders are fulfilled and the overall business value of the product is
maximized.

The distributed nature of system development has resulted in several ap-
proaches that provide collaboration support. The most-common ones are tele-
phone and video conferencing facilities. Various groupware systems are also in
use. Boehm et al. [2] have created a prototype for their Easy WinWin spiral
model, a tool that assists stakeholders in creating win-win solutions for all par-
ties involved. Furthermore, research is being done in the general area of com-
puter support for decision-making groups involved in the negotiation of re-
quirements over a distance. Damian et al [6] particularly investigate the effect
of the communication media (audio, video, etc.) on the negotiation outcome.

Domain-specific support is difficult to provide. The requirements engineering
community has developed some research tools [7], [12] that provide domain-
specific assistance. However, such tools are not widely used in industry. The
main reasons for this are the effort required to initially model the domain in
sufficient detail as well as the effort required for keeping the domain models
up-to-date. Any changes at higher levels of abstraction would cause major
changes in the domain models. Considering the rapid changes in today’s do-
mains, this approach appears to become less and less feasible.

Decision makers need support to describe, evaluate, sort, rank, select or reject
candidate products, processes or tools. Such decision support would be most
helpful when decisions have to be made in complex and dynamic environ-
ments. Support here means assistance for structuring the problem, for analyz-

Copyright © Fraunhofer IESE 2003 1

Background and Motivation

ing and verifying the obtained structure, as well as help for comparing the re-
sults of different choices using simulation. A description and evaluation of deci-
sions in requirements engineering is proposed by [1]. An overview of software
engineering decision support is presented in [15].

Trade-off analysis aims at making the competing character of the different ob-
jectives and constraints more transparent. It is important to know to what ex-
tent the improvement in one direction (e.g., reduction of effort or duration of
the project) has an impact on other criteria (e.g., quality or overall business
value of the final product). More transparency regarding these relationships ob-
viously supports the negotiation for the most appropriate compromise solution
in the context of a concrete project. However, no other approaches for re-
quirements negotiation have yet considered trade-off analysis in a quantitative
manner.

In this paper, a method for trade-off analysis called Quantitative WinWin is
studied. Compared to the original method introduced in [14], the improved
version places more emphasis is on the consideration of effort as well as quality
and time constraints. In addition to that, resource rebalancing and optimization
heuristics are applied to generate a set of alternative solutions to be analyzed
by a human decision-maker. Like Boehm’s original WinWin [4], Quantitative
WinWin uses an iterative approach, with the aim to increase and actively exploit
knowledge about the requirements in all iterations. However, the difference to
Boehm’s WinWin groupware-based negotiation support [2] is the inclusion of
quantitative methods and the emphasis on trade-off relationships in our ap-
proach. Furthermore, the evolutionary prioritization of stakeholder interests us-
ing Analytical Hierarchy Process (AHP) allows adaptation to changing environ-
ments.

Quantitative WinWin supports determination of ‘best’ requirements by using
quantitative models in conjunction with an iterative approach that adapts to
changing sets of requirements and evolving problem parameters. Emphasis is
on value-based selection of requirements and resolution of conflicts in the
presence of quality, time, and effort constraints. Even for medium-sized prob-
lems of a few hundred requirements, this is a problem of tremendous complex-
ity. This is especially true in situations in which large variations in stakeholder
priorities have to be considered in the requirements selection process. As a final
result, Quantitative WinWin generates a small set of most promising candidate
solutions from which the decision-maker can select the one which is the best
match with additional implicit and subjective preferences. Overall, the process
support provided by Quantitative WinWin is expected to improve transparency,
effectiveness, and efficiency of decision-making.

The paper is organized as follows: Section 2 provides definitions and assump-
tions as well as a mathematical description of the problem. Section 3 explains
the methodological underpinnings used in our approach, namely the incre-

Copyright © Fraunhofer IESE 2003 2

Background and Motivation

mental treatment of requirements, the use of AHP to assign priorities to stake-
holders to determine priorities of the different requirements classes, and to
even allow prioritization within a fixed class of requirements. Section 4 presents
the simulation model GENSIM that is used in section 5 for describing the overall
method Quantitative WinWin. In section 6, a case study describes an example
with three stakeholders and three classes of requirements is described. Finally, a
summary and conclusions are given in section 7.

Copyright © Fraunhofer IESE 2003 3

Underlying Assumptions and
Problem Statement

2 Underlying Assumptions and Problem Statement

2.1 Stakeholders

One of the challenges of requirements engineering is that the different stake-
holders of a system usually have conflicting viewpoints and preferences. To re-
flect and model this situation, we introduce different stakeholders. The p
stakeholders are denoted as S1,S2,…,Sp. Later we will use AHP to elicit both the
stakeholders’ preferences regarding the different classes of requirements and
stakeholders preference between the individual requirements contained in the
same class. As part of our evolutionary approach, these preferences can change
over time.

Example stakeholders are novice, advanced or expert users as used in the ex-
ample described in section 6. Other stakeholders can be e.g., managers (having
a business-driven perspective) or developers (having a more technical perspec-
tive). In any case, different classes of stakeholders will have different objectives
and ideas for developing, using and handling the final software product.

2.2 Classes of Requirements

The evolutionary calculation of most promising subsets of requirements under
resource constraints and the prioritization of requirements from the perspective
of different stakeholders is a very complex task. For even medium-sized prob-
lems of hundred requirements, the number of comparisons between require-
ments as the means to determine a ranking becomes prohibitively large. To ad-
dress this problem, we reduce the problem size by introducing classes of r
quirements.

e-

For the purpose of this paper we assume a set ℜ = r1,…, rn of requirements
r1,…, rn. The set ℜ is subdivided into q disjoint subclasses ℜ1,ℜ2,…,ℜq (q<n) of
requirements, e.g., ℜ = ℜ1⊕ℜ2⊕…⊕ℜq The rational for this assumption is that
requirements can be classified according to their resource needs, their interac-
tion (two requirements interact if and only if the satisfaction of one require-
ment affects the satisfaction of the other [13]) and their purpose. We assume
that each class only contains requirements of the same type. Example classes
are requirements related to the user interface, or non-functional requirements
like reliability or maintainability. Each requirement ri is assumed to belong to
exactly one class. If there is a requirement that could be assigned to more than
one class, we further decompose the original set ℜ by adding one more class

Copyright © Fraunhofer IESE 2003 4

Underlying Assumptions and
Problem Statement

with requirements of exactly that type. Mapping ψ(i) assigns each requirement
ri ∈ ℜ to the associated class ℜψ(i).

Another important aspect is the potential value of requirements. The paradigm
of value-based software engineering [3] suggests to differentiate the value of
individual artifacts. In our case, we assign the importance to requirements in a
hierarchical way. Firstly, each class ℜk of requirements is assigned a value β(ℜk)
that is the weighted relative priority of all stakeholders involved. Secondly, each
individual requirement ri is given a relative importance α(ri) within the class ℜψ(i).
α(ri) is determined again as the weighted relative priority as determined by the
stakeholders. Some of the given requirements are mandatory and related to the
core functionality of the system. Others may be optional. We assume that each
requirement ri has a relative importance α(ri) ∈ (0,1] within class ℜψ(i) defined on
a ratio scale. α(ri) = 1 means that the requirement is mandatory. An individual
requirement is considered to be mandatory if is considered to be mandatory by
at least p/2 of the p stakeholders.

2.3 Constraints

The original set of requirements ℜ is a superset containing the requirements of
all stakeholders involved. Because resources are limited, the challenge is to find
those subsets of requirements that can be implemented without exceeding a
given effort bound called EFFORT. In a similar way, we define the bounds
DURATION and QUALITY as the overall duration and the predicted quality of
the final product, respectively. Definition of those bounds is derived from pro-
ject planning. In this paper, the quality is defined as the number of defects per
thousand source lines of code. For this reason, we assume an upper defect
bound which has to be satisfied.

We assign to each subset ℜ*⊂ℜ estimated values effort(ℜ*), duration(ℜ*) and
quality(ℜ*) to predict the actual impact on effort, duration, and quality, respec-
tively. Typically, these estimates are difficult to get and uncertain in their na-
ture. To illustrate the generic solution approach presented in section 4, we as-
sume a simulation model that is able to provide these estimates as a function of
the number and average complexity of the requirements in ℜ*.

2.4 Problem Statement

In order to be able to select requirements subsets that maximize the business
value in relation to its necessary implementation effort, the importance of the
different classes of requirements from the perspective of the different stake-
holders has to be determined. The application of AHP results in a normalized
vector of importance β = (β(ℜ1),β(ℜ2),…,β(ℜq)) of the q classes of requirements.

Copyright © Fraunhofer IESE 2003 5

Underlying Assumptions and
Problem Statement

Applying AHP again, we get normalized values α(ri) that express the weighted
relative importance within a class. The absolute importance χ(ri) of each re-
quirement ri is then the product of the importance of the associated class
β(ℜψ(i)) with the relative importance α(ri) of requirement ri within class ℜψ(i) i.e.,
χ(ri) = α(ri) ∗ β(ℜψ(i)). With the notation introduced above we are now able to
describe the problem “Trade-off Analysis for Requirements Selection TARS[ℜ]”
in a more formal way:

Trade-off Analysis for Requirements Selection TARS [ℜ]
Given a set of requirements ℜ, problem TARS [ℜ] consists of two parts A and
B. In part A, we are looking for value-maximal subsets of requirements that ful-
fill constraints (A1) to (A4). The final solution set Γ is determined from solution
of parts A and B. Based on the optimal value that is achievable when all con-
straints are fulfilled, part B aims at finding all non-dominated extensions for
that value. This gives the decision-maker a comprehensive overview of what
can be achieved in case of relaxation of the various constraints.

(A) Find subsets of requirements ℜ*⊂ ℜ such that

(A1) {rj ∈ℜ: α(rj) = 1} ⊂ ℜ*

(A2) effort(ℜ*) ≤ EFFORT,

(A3) duration(ℜ*) ≤ DURATION,

(A4) quality(ℜ*) ≤ QUALITY, and

(A5) value(ℜ*) := Σ r∈ ℜ*α(ri) ∗ β(ℜψ(i)) is maximum and

(B) Find subsets of requirements ℜ’⊂ ℜ such that

(B1) {rj ∈ℜ: α(rj) = 1} ⊂ ℜ’

(B2) value(ℜ*) < value(ℜ’), and

(B3) ℜ’ is a non-dominated extension for value(ℜ*), i.e., there is no ℜ^ with

(B4) value(ℜ’) < value(ℜ^),

(B5) (effort(ℜ’), duration(ℜ’), quality(ℜ’)) ≥ (effort(ℜ^), duration(ℜ^), quality(ℜ^))

(B6) (effort(ℜ’), duration(ℜ’), quality(ℜ’)) ≠ (effort(ℜ^), duration(ℜ^), quality(ℜ^))

In the following, we will describe the methodological prerequisites to solve
TARS[ℜ].

Copyright © Fraunhofer IESE 2003 6

A Quantitative Hybrid Approach
to Trade-off Analysis for
Requirements Selection

3 A Quantitative Hybrid Approach to Trade-off Analysis for Require-
ments Selection

The overall method for solving TARS consists of three main components that
are described in more detail in the subsequent parts of this section:

• Evolutionary requirements prioritization using Analytic Hierarchy Process
(AHP)

• Selection of candidate requirements using stepwise relaxation

• Trade-off analysis for requirements selection under resource and quality con-
straints

3.1 Evolutionary Requirements Elicitation Using the Analytic Hierarchy Process (AHP)

Preferences or relative importance of competing alternatives are often not ex-
plicitly known. However, in order to better select requirements considering
stakeholder priorities, those vectors of relative importance are needed. AHP [16]
is a systematic approach to elicit preferences between different attributes. The
main assumptions behind AHP are that the problem under investigation can be
structured as an attributive hierarchy and that alternatives can be compared us-
ing preference ratios (for actions) or importance ratios (for criteria) from a nine-
point scale. Commercial tools are available that compute the eigen-values and
check the degree of consistency between the pair-wise comparisons. For the
computations of the example in section 6, we used the tool ExpertChoice [18].

Our problem TARS satisfies the underlying assumptions for applying AHP:
Stakeholders perform pair-wise comparisons of attributes assessing their contri-
butions to each of the higher level nodes to which they are linked. To keep the
number of comparisons reasonable, we decompose the problem into two kinds
are hierarchies. As both the number of classes and the number of requirements
per class are assumed to be relatively small, the number of comparisons is ac-
ceptable. This number would become prohibitively large without introducing a
hierarchy of requirements.

The first level of the hierarchy asks for the relative importance of the classes of
requirements from the global perspective to achieve the maximum business
value of the final software product. In general, there are p nodes in the second
level that correspond to the p stakeholders. In the same way, the q nodes at
the third level are associated with the q classes of requirements as assumed.

Copyright © Fraunhofer IESE 2003 7

A Quantitative Hybrid Approach
to Trade-off Analysis for
Requirements Selection

The two preference schemata are combined to rank the relative importance of
the different classes of requirements for the final business value of the software
product.

At the the second level, the relative importance of individual requirements
within its class is considered. This is done for each class of requirements. In that
case, the nodes of the third level of the respective AHP graph correspond to all
individual requirements of that class. Finally, the two preference schemata are
combined to rank the relative importance of the individual requirements to con-
tribute to the final business value of the software product.

3.2 Determination of Candidate Requirements Using Stepwise Relaxation

An evolutionary approach for incremental refinement of requirements is chosen
to reflect the initial impreciseness and uncertainty of requirements. The motiva-
tion for doing this is two-fold. Firstly, requirements are typically uncertain at the
beginning and become more and more precise during the software life cycle.
This is explicitly assumed in the spiral software development model [3], but is
valid to some extend also for other software development paradigms. Conse-
quently, requirements selection has to become increasingly precise. At the be-
ginning, the focus is on the most important requirements, i.e., those require-
ments rk with largest value χ(rk). This is a “greedy-like” heuristic strategy sug-
gesting the use of the most promising elements first. The assumption is that
these requirements will most likely belong to the final solution set. Later, condi-
tions are gradually relaxed to include as many requirements with lower degree
of importance as possible. This is done until one of the constraints (A2) to (A4)
is violated for the first time.

Secondly, as another indication of incompleteness and impreciseness of re-
quirements, it may happen that new requirements are added during (spiral)
software development. This is reflected by the evolutionary approach where
additional requirements can be included at a later stage of development.

The idea is to consider a sequence of problems TARS[ℜi] i=1,…,s. Among them,
only the final one is explicitly solved. The various problems are characterized by
different sets of requirements ℜi,i=1,…,s. Assume there is a monotonously de-
creasing sequence levelii=1,…,s of levels of minimum importance χ. The set ℜi is
defined as the set of all mandatory requirements plus all the requirements hav-
ing a level of importance of at least leveli, i.e., ℜi = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ lev-
eli}. This implies that ℜ1 ⊆ ℜ2 ⊆ …⊆ ℜ. The number τ of iterations is defined as
the first iteration at which at least one of the three constraints (A2) to (A4) is
violated. In this case, the approach TARS[ℜτ] described in section 3.3 is applied.

Copyright © Fraunhofer IESE 2003 8

A Quantitative Hybrid Approach
to Trade-off Analysis for
Requirements Selection

3.3 Trade-off Analysis for Requirements Selection under Resource and Quality Con-
straints

We now assume that ℜτ = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ levelτ} is the set of require-
ments determined by iteration τ when some of the additional constraints (A2)
to (A4) are initially violated. A heuristic approach is applied to solve TARS[ℜτ].
The approach uses two basic operations to compute a set of non-dominated
extensions fulfilling (B1) to (B6). These operations are called REBALANCE and
MODIFY.

REBALANCE tries to remove constraint violations by gradually relaxing other cri-
teria, hoping to stay within acceptable limits for all defined constraints. The ra-
tionale for this step is that there is a trade-off between effort, duration and
quality. Improving one of these criteria will typically deteriorate the others (as-
suming no technology change).

In general, the elimination of all constraint violations cannot be achieved by
solely applying REBALANCE. In cases where REBALANCE fails, operation
MODIFY uses reductions and extensions to systematically the requirements set
under investigation. Assume we created a set of requirements ℜ* which cannot
be implemented within the given constraints, even after the application of the
REBALANCE step. To achieve feasibility again, one has to eliminate some re-
quirement(s) from ℜ*. Applying rule M1 as specified below tries to eliminate
constraint violations by removing the requirement(s) with the minimum contri-
bution to the overall business value. However, after this elimination, it might be
possible to add again another requirement, i.e., rule M2 should be applied as
specified below.

Rule M1:

1. Delete requirement rk from the set of requirements ℜ* with χ (rk) = min{χ (rj)
| rj ∈ℜ* and α(rj)<1}.

2. In case there is more than one requirement with the same minimal value,
then take the one rj with the maximal complexity (compl(rj) = max{compl(rj) |
rj ∈ℜ* and χ (ri) = χ (rk)}).

Rule M2:

3. Add requirement rk to the set of requirements ℜ* with compl(rk) =
min{compl(rj) | rj ∉ℜ*}.

4. In case there is more than one requirement with the same minimal complexi-
ty, then take the one rj with the maximal value (χ (rj)= max{χ (rj) | rj ∉ℜ* and
compl(ri) = compl(rk)}).

Copyright © Fraunhofer IESE 2003 9

Project Estimation Using GENSIM

4 Project Estimation Using GENSIM

Even though inherently difficult, we assume that an estimation method that
considers effort, duration, and quality can be applied based on a given specifi-
cation of requirements. As discussed in [5], estimation is increasingly based on a
combined use of expert opinion and simulation. In order to generate estimates
effort(ℜ), duration(ℜ), and quality(ℜ) for a given set of requirements and a
fixed average staffing we used the simulation model GENSIM (GENeric SIMula-
tor) [11]. The GENSIM model simulates the software development process from
the end of the requirement analysis step through to the end of system testing
(for further details see [11] and [14]). Although the model is only a research
prototype it can be easily calibrated to product and process measures of a spe-
cific organization in order to capture the behavior of each development cycle in
Boehm’s spiral model. For producing the effort estimates used in the example
in section 6 of this paper, GENSIM was calibrated to the development process
of a fictitious software organization. The GENSIM model has a modular struc-
ture. It consists of the following five interrelated sub-models:

• Production: This sub-model represents a typical software development cycle
consisting of the following steps of transitions (cf. Figure 1): set of require-
ments � design documents � code � tested code. Note that the detection of
defects during testing only causes reworking of the code (and not of the de-
sign documents).

• Quality: In this sub-model, the defect flow is modeled, i.e.: defect injection
(into design or code) � defect propagation (from design to code) � defect
detection (in the code during testing) � defect correction (only in the code).

• Effort: In this sub-model, the total effort consumption for design develop-
ment, code development, code testing, and defect correction (rework) is cal-
culated.

• Initial Calculations: In this sub-view, the normal value of the central proc-
ess parameter “productivity” is calculated. The normal productivity varies
with assumptions about the product development mode (organic, semi-
detached, embedded) and characteristics of the project resources available
(e.g. developer skill).

• Productivity, Quality & Manpower Adjustment: In this sub-model, pro-
ject-specific process parameters, like (actual) productivity, defect generation,
effectiveness of QA activities, etc., are determined based on a) planned tar-
get values for manpower, project duration, product quality, etc., and b) time
pressure caused by unexpected rework or changes in the set of require-
ments.

Copyright © Fraunhofer IESE 2003 10

Project Estimation Using GENSIM

Set of
Requirements

Design
Documents

Inspected
Des. Docs

(Re-)
Design

Design
Inspection

Software
Code

Inspected
SW Code

(Re-)
Implementation

Code
Inspection

Tested
SW Code

Software
Test

rework

rework

rework

Set of
Requirements

Design
Documents

Inspected
Des. Docs

(Re-)
Design

Design
Inspection

Software
Code

Inspected
SW Code

(Re-)
Implementation

Code
Inspection

Tested
SW Code

Software
Test

rework

rework

rework

Figure 1: Schematic representation of the product flow captured by the GENSIM production sub-model.

The most important input and output parameters and their use in the context
of predicting effort, quality and duration are listed in Table 1. The input pa-
rameters of the simulation define the project goals (Product_size,
Planned_completion_time, Goal_field_defect_density) and constraints (Aver-
age_complexity, Planned_manpower, Manpower_skill), as well as the process,
e.g. the degree to which design and code inspections are applied (Inspec-
tion_intensity_design, Inspection_intensity_code). The output parameters repre-
sent the simulation results, e.g., size of the work and end products (De-
sign_size, Code_size, Product_size), project duration (Project_duration), effort
consumption (Effort), and product quality (Field_defect_density). For the calcu-
lations conducted in the example presented in section 6, all gray-shaded input
parameter have been varied as part of the simulation runs.

Copyright © Fraunhofer IESE 2003 11

Project Estimation Using GENSIM

Input Parameter Output Parameter

Product_size

[total number of size units]

Design_size

[total number of designed and inspected size units]

Average_complexity

[1 = low, 3 = medium, 5 = high]

Code_size

[total number of implemented and inspected size units]

Manpower_skill

[1 = low, 2 = medium, 3 = high]

Product_size

[total number of implemented and tested size units]

Planned_manpower (optional)

[number of persons]

Project_duration (project total and per phase)

[days]

Planned_completion_time (optional)

[days]

Effort (project total and per phase)

[person days]

Goal_field_defect_density (optional)

[defects per implemented size unit]

Field_defect_density

[defects per implemented size units after test]

Inspection_intensity_design

[fixed percentage of total number of size units]

Inspection_intensity_code

[fixed percentage of total number of size units]

Table 1: Input and output parameters of the GENSIM model.

The simulation modeling approach used to develop GENSIM has been defined
in [11] under the name IMMoS (Integrated Measurement, Modeling and Simu-
lation). IMMoS is an enhancement and operationalization of the well-known
System Dynamics method, originally developed by Forrester in the late 1950s
[8]. The philosophical position underlying the System Dynamics method is what
Senge and other researchers call System Thinking [17]. In System Thinking, the
behavior of a system is considered as primarily being generated by the interac-
tion of all the feedback loops over time. In order to analyze – and eventually
change – the behavior of observed objects in the real world, it is necessary to
understand the important cause-effect relations of the factors that influence
those variables that represent the observed behavior. In System Dynamics, these
cause-effect relations are called base mechanisms. The union set of all base
mechanisms is called a causal diagram. In order to be able to run System Dy-
namics simulations the causal diagram has to be converted into a so-called flow
graph. A flow graph is the pictorial representation of a set of mathematical
equations. The set of mathematical equations can be separated into two
groups: level equations and rate equations. The terminology of levels and rates
is consistent with the flow-structure orientation introduced by Forrester to-
gether with schematic conventions invoking the image of fluid-like processes.
The schematic conventions of flow graphs are shown in Figure 2.

Copyright © Fraunhofer IESE 2003 12

Project Estimation Using GENSIM

level
rate

auxiliary

constant

source or sink outside
the model boundary

information link

flow of quantities

Figure 2: Schematic conventions of flow graphs.

With the schematic conventions shown in Figure 2, the flow graph representa-
tion of the GENSIM product flow (cf. Figure 1) can be represented as shown in
Figure 3.

cum tasks
testedrequirements

cum tasks
designed

tasks
designed

tasks for
IMPL

DES
inspection rate

tasks
implemented

tasks for
TEST

cum tasks
implemented

cum
designed

tasks
inspected

cum
implemented

tasks
inspected

requirements
generation rate

DES rate

DES non
inspection rate

IMPL rate IMPL
inspection rate

IMPL non
inspection rate

TEST rate

<initial job size in
tasks> <DES

manpower rate>

<TEST
manpower rate>

<IMPL
manpower rate>

lit t t

<time unit>
<time unit>

<time unit>

Figure 3: Flow graph of GENSIM’s production sub-model (extract).

Even though System Dynamics based simulation modeling has an increasing
number of applications in the software engineering domain, it is by no means
suggested to be the new silver bullet technique for problem solving. Instead, it
is important to clarify the underlying assumptions for System Dynamics model-
ing and simulation. Only if these assumptions are valid, it is recommended to
use the System Dynamics approach in a particular situation. The basic assump-
tions are:

• Problems under investigation are dynamic in nature and relate to systems
with entities and attributes that are interconnected in loops of information
feedback and circular causality.

• Sufficient maturity and stability of the software development processes in
place within the organization, e.g., CMM level 3 or higher [9].

• Availability of expertise for identification of base mechanisms and construc-
tion of causal diagrams.

• Availability of data for model calibration.

Copyright © Fraunhofer IESE 2003 13

Project Estimation Using GENSIM

These assumptions are valid for the requirements engineering process of most
mature software organizations. Requirements are very volatile and prone to
numerous changes. If we assume a fairly mature software organization, the
software development processes are well thought-through and reasonably sta-
ble, and thus hypotheses about base mechanisms should not be too difficult to
elicit from experienced project managers – as long System Dynamics experts are
available to conduct interviews and transform their input into causal diagrams.
Mature organizations are also likely to have a metric collection process in place,
i.e., there should be sufficient data available to calibrate the simulation models.

Copyright © Fraunhofer IESE 2003 14

Quantitative WinWin - The
Overall Algorithm

5 Quantitative WinWin - The Overall Algorithm

The algorithm called Quantitative WinWin uses iterative and hybrid application
of the techniques described in section 3 and 4. Quantitative WinWin consists of
three phases called Initialization (Phase 1), Iteration (Phase 2), and Termination
(Phase 3). In the following, we describe the three phases in more detail.

5.1 Phase 1: Initialization

At the beginning we define our initial set of requirements by only looking at
mandatory requirements, i.e., ℜ0 = {rj ∈ ℜ: α(rj) = 1}. We check feasibility of ℜ0.
If one of the constraints (1) to (3) is violated for ℜ0 then we apply REBALANCE
as described in section 3.3. If no feasibility can be achieved this way, the prob-
lem does not have a feasible solution.

5.2 Phase 2: Iteration

During each iteration, six consecutive steps are applied as described below and
illustrated in Figure 4. The number of iterations is not determined in advance. It
depends on the degree of change in requirements during the development cy-
cle and the sequence of thresholds defined by the expert.

Step 1: Definition of the candidate set of requirements.
At the beginning of each iteration i, the threshold value leveli defines a re-
quirements subset that contains those requirements rj of the original set ℜ that
have a importance value of at least leveli, i.e., ℜi = {rj ∈ ℜ: α(rj) = 1 or χ(rj) ≥ lev-
eli }. The threshold values are not defined in advance and have to be determined
by experts. The threshold value will determine the size of the set of require-
ments under investigation. The only assumption is that leveli+1 < leveli for all it-
erations i. Another possible modification of the candidate set of requirements is
that further requirements can be added to ℜ at later iterations (as can be seen
in the example in section 6).

Copyright © Fraunhofer IESE 2003 15

Quantitative WinWin - The
Overall Algorithm

Step 2: Computation of preferences between involved stakeholders.
Preferences between involved stakeholders are computed from the perspective
of the overall business value. AHP is applied for that purpose resulting in a
normalized vector of weights weight0 = (weight0,1,…, weight0,p) with Σ weight0,j

= 1.

Step 3: Computation of preferences between and within requirements
classes.
Preferences between requirements classes are computed from the perspective
of the p individual stakeholders. AHP is applied for that purpose resulting in
normalized vectors weight_c1,…, weight_cp. Each of them is of dimension q.
Analogously, preferences between individual requirements of all (fixed) class are
computed from the perspective of the p individual stakeholders. AHP is applied
for that purpose resulting in normalized vectors weight_r1,…, weight_rp

Step 4: Computation of overall preferences between and within re-
quirements classes.
Computation of overall preferences between requirements classes by consecu-
tive application of the weights computed in step 3 (the vectors weightc1,…,
weightcp are arranged as the columns of a matrix M) and step 2 (column vector)
by multiplication of matrix M with vector weight0. The result is a vector of im-
portance β = (β(ℜ1),β(ℜ2),…,β(ℜq)) of the q classes of requirements.
Analogously, computation of overall preference of individual requirements of all
(fixed) class by consecutive application of the weights computed in step 3 (the
vectors weight_r1,…, weight_rp are arranged as the columns of a matrix M) and
step 2 (column vector) by multiplication of matrix M with vector weight0. The
result is a vector of importance α = (α(r1), α(r2),…, α(rn)) of the n individual re-
quirements. An individual requirement is considered to be mandatory if is con-
sidered to be mandatory by at least p/2 of the p stakeholders.

Step 5: Refinement of candidate requirements.
Subset ℜi = { rj ∈ℜ: α(rj) = 1 or χ(rj)≥ leveli} with χ(ri) = α(ri)∗β(ℜψ(i)) is defined
where ℜ = ℜ + ∆ℜi is the original set of requirements eventually extended by
requirements ∆ℜi added in a later stage.

Step 6: Feasibility check.
At each iteration I, an estimation is done to compute effort(ℜi), quality(ℜi), and
duration(ℜi) for the actual set ℜI of requirements under investigation. The set of
requirements is feasible if and only if effort(ℜi) ≤ EFFORT, quality(ℜi) ≤
QUALITY, duration(ℜi) ≤ DURATION. If the set is not feasible then we go to
Phase 3.

Copyright © Fraunhofer IESE 2003 16

Quantitative WinWin - The
Overall Algorithm

 Preferences
between stakeholders

Preferences between and
within classes of requirements

Definition of the
requirements set

Overall
preferences

Refinement of candidate
requirements

Effort estimation &
feasibility check

Preferences
between stakeholders

Preferences between and
within classes of requirements

Definition of the
requirements set

Overall
preferences

Refinement of candidate
requirements

Effort estimation &
feasibility check

Figure 4: Principal steps of Quantitative WinWin.

5.3 Phase 3: Termination

We now assume that ℜτ = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ levelτ} is the set of require-
ments determined by iteration τ when some of the additional resource con-
straints (A2) to (A4) are initially violated. A heuristic approach called TARS[ℜτ] is
applied for trade-off analysis. It uses REBALANCE and iteratively applies Rules
M1 and M2 of MODIFY as described in section 3.3.

After each modification of the set of requirements it is necessary to check
whether any of the project constraints are violated. If this is the case,
REBALANCE will be applied in order to find a parameter setting that fulfils the
constraints. The heuristic approach is using interaction with the decision-maker
to finally decide when to stop computing the set Γ of alternative solutions. The
default termination is that all solutions generated from the application of
REBALANCE and MODIFY are dominated by existing ones.

Copyright © Fraunhofer IESE 2003 17

Initial Experience Using the
Approach – An Example

6 Initial Experience Using the Approach – An Example

We report initial experiences with the proposed approach by considering the
example of the development of a software product that has three classes of po-
tential users: novice (S1), advanced (S2), and expert (S3) users. Typically, for a
product, e.g., a text processing software system, different classes of users con-
sider different classes of requirements as the key features of that product. We
assume an original set of ten requirements where each requirement belongs to
one of the three classes of requirements ℜ1, ℜ2, and ℜ3. As the project pro-
gresses, two additional requirements r11 and r12 arise. The three classes corre-
spond to three different categories of requirements:

• Performance (class ℜ1)

• Usability (class ℜ2)

• Security and reliability (class ℜ3)

We use GENSIM as introduced in section 4 to model and simulate this example.
Basic information about the example and the results of three iterations are
summarized in Table 2. Threshold levels for evolutionary selection of require-
ments are level1 = 0.25, level2 = 0.22 and level3 = 0.20. α(rj), β(ℜψ(j)), and χ(rj)
describe the relative importance of requirement rj within class ℜψ(j), importance
of class ℜψ(j), and global importance of requirement rj, respectively. The six final
rows of the table show the total size of the product (in size units), the average
complexity of the implemented requirements (on a scale between 1 and 5), the
estimates for effort(ℜi), quality(ℜi), and duration(ℜi) of sets ℜi, and, eventually,
the business value Σ r∈ℜi χ(r) associated with ℜi.

Copyright © Fraunhofer IESE 2003 18

Initial Experience Using the
Approach – An Example

Subset charac-
teristics

rj Class
ℜψ(j)

α(rj) β(ℜψ(j)) χ(rj) ℜ0 ℜ1 ℜ2 ℜ3 ℜ3'

 r1 ℜ1 0.6 0.404 0.24 X X X
 r2 ℜ1 0.9 0.404 0.36 X X X X
 r3 ℜ1 1.0 0.404 0.40 X X X X X
 r4 ℜ1 0.7 0.404 0.28 X X X X
 r5 ℜ2 1.0 0.354 0.35 X X X X X
 r6 ℜ2 0.6 0.354 0.21 X
 r7 ℜ2 1.0 0.354 0.35 X X X X X
 r8 ℜ2 0.5 0.354 0.18 X
 r9 ℜ3 1.0 0.268 0.27 X X X X X
 r10 ℜ3 0.3 0.268 0.08
 r11 ℜ3 0.8 0.268 0.21 n/a n/a X
 r12 ℜ3 1.0 0.268 0.27 n/a n/a n/a X X

level1 n/a 0.25
level2 0.22
level3 0.20 n/a

total size 400 600 700 1000 900
∅ complexity 3.00 3.00 2.71 2.80 2.33

effort(ℜi) 2704 4199 4706 7241* 5431
quality(ℜi) 1.02 1.01 1.01 1.02 1.02

duration(ℜi) 325 375 402 558* 425
Σ r∈ ℜi χ(r) 1.37 2.01 2.25 2.95 2.71

Table 2: Basic information about the sequence of iterations and the result of re-balancing.

The following constraints are assumed in this example: The total effort available
to implement the final set of requirements is set to EFFORT = 5600 person days.
The minimal acceptable quality level is set to QUALITY = 1.2 defects per size
unit. The maximal acceptable duration of the project is set to DURATION = 430.
The average manpower is limited to maximal 13 developers, and the develop-
ment process as well as the skill levels of the manpower is assumed to be fixed.
Each requirement is assumed to have a fixed size and specific complexity (low,
medium or high).

We assume the product manager has to decide which of the initially given ten
(later, there will be twelve) requirements will be selected to maximize the over-
all business value. In Phase 1, the set ℜ0 of all mandatory requirements is de-
fined. As the set is feasible in terms of constraints (A2) to (A4), we proceed
with Phase 2.

To illustrate the concept of stepwise refinement, we assume three iterations. In
each iteration, the requirements acceptance threshold is relaxed. In order to
simplify the example, we assume that the preference in AHP described by the

Copyright © Fraunhofer IESE 2003 19

Initial Experience Using the
Approach – An Example

four 3x3-matrices does not change over time. As stated above, Quantitative
WinWin in general allows changing priorities.

A 3x3-matrix M0 of preferences between the three types of users in terms of
the overall goal to maximize the business value is build. Matrices M1, M2, and

M3 describe the preferences of the three classes of requirements from the per-
spective of stakeholder S1, S2, and S3, respectively. This may look as follows:



















=

14
1

6
1

413
1

631
0M ,



















=

14
1

5
1

412
1

521
1M ,



















=
126
2

113
6

1
3

11
2M ,

















=
14

12
415
2

1
5

11
3M .

The AHP analysis gives us vectors of eigen-values. They are denoted by weight0,
weight1, weight2, and weight3, respectively.

• weight0 = (0.644, 0.271, 0.085) gives the importance of the three stake-
holders (i.e., novice, advanced, expert) for the final business value from the
perspective of the product manager (step2).

• weight_c1 = (0.570, 0.333, 0.097) gives the importance of the three classes
of requirements from the perspective of the novice user (step3.1).

• weight_c2 = (0.100, 0.300, 0.600) gives the importance of the three classes
of requirements from the perspective of the advanced user (step 3.2).

• weight_c3 = (0.117, 0.683, 0.200) gives the importance of the three classes
of requirements from the perspective of the expert user (step 3.3).

The consecutive application of the weights computed in steps 2 and 3 results in
β = (β(ℜ1),β(ℜ2),β(ℜ3)) which is the vector of importance of the three classes of
requirements for the overall business value (step 4):

)(
)(
)(

3

2

1

ℜ
ℜ
ℜ

















200.0600.0097.0
683.0300.0333.0
117.0100.0570.0

















085.0
271.0
644.0

)(
)(
)(

3

2

1

S
S
S

=

















268.0
354.0
404.0

))((
))((
))((

3

2

1

ℜ
ℜ
ℜ

β
β
β

According to the individual scorings, the first class of requirements is most im-
portant, and the third class is the least important one. Eventually, these scores
could be changed as part of the stepwise refinement approach. However, we
will not consider such changes in this example. For the sake of simplicity, we
further assume that the vector α = (α(r1), α(r2),…,α(rn)) as shown in Table 2 (de-
termined in steps 3 and 4) is the result of a weighted sum computation of
stakeholder priorities.

Copyright © Fraunhofer IESE 2003 20

Initial Experience Using the
Approach – An Example

Iteration 1:
The initial requirements acceptance threshold level of importance, level1, is set
to 0.25. This results in ℜ1 = {rj ∈ℜ: α(rj) = 1 or χ(rj)≥ level1} = {r2, r3, r4, r5, r7, r9}.
The estimates effort(ℜ1) = 4199, quality(ℜ1) = 1.01, and duration(ℜ1) = 375
satisfy the given bounds EFFORT = 5600, QUALITY = 1.2, and DURATION =
430, respectively.

Iteration 2:
In the second iteration, we have a relaxed the level of importance to level2 =
0.22. Furthermore, an additional requirement r11 is considered to be included
into the requirements set. Following the steps of Phase 2, we get our new set
ℜ2 = {rj ∈ℜ: α(rj) = 1 or χ (rj)≥ level2} = {r1, r2, r3, r4, r5, r7, r9} which still does not
violate the given constraints (effort(ℜ2) = 4706 < 5600 = EFFORT, quality(ℜ2) =
1.01 < 1.2 = QUALITY, duration(ℜ2) = 402 < 430 = DURATION).

Iteration 3:
In the third iteration, we again add a new requirement r12. In addition to that,
we further relax the required level of importance of requirements assuming
level3 = 0.20. This results in ℜ3 = { rj ∈ℜ: α(rj) = 1 or χ (rj)≥ level3} = {r1, r2, r3, r4,
r5, r6, r7, r9, r11, r12}. In this case, the resulting set of requirements ℜ3

 is estimated
to violate two constraints, i.e., effort(ℜ3) = 7241 > 5600 = EFFORT and dura-
tion(ℜ3) = 558 > 430 = DURATION.

Having violated feasibility constraints (A2) to (A4) for the first time, we enter
Phase 3. The subsequent applications of operations REBALANCE (abbreviated
by L) and MODIFY (rules A and B) results in an evolution of solutions to build fi-
nal solution set Γ. This is illustrated in Figures 5 and 6. Each box represents ex-
actly one solution generated. In addition to the composition of the new solu-
tion, it gives the relative fulfillment of the three additional constraints related to
effort (E), quality (Q), and duration (D). Furthermore, the respective business
value, average complexity, and the number of included requirements are given
for each of the generated sets.

A first attempt to resolve the constraint violation caused by ℜ3 is to relax the
quality parameter (abbreviated by Q) in order to reduce effort (E) and duration
(D). As can be seen in Figure 5, however, this attempt fails for set ℜ3. Although
it is possible to reduce the excess of limits set by the constraints (compare box 2
with box 1 in Figure 5), it is not possible to satisfy all constraints at the same
time (cf. boxes 2 and 3).

Since REBALANCE operations on project parameters for set ℜ3 do not yield a
satisfactory solution, rules M1 and M2 have to be applied as described in sec-
tion 3.3. The application of rules M1 and M2 should stop when the project
manager does not expect any further improvement. In the example, the deci-
sion to stop was made after all feasible reductions of set ℜ3 by one requirement

Copyright © Fraunhofer IESE 2003 21

Initial Experience Using the
Approach – An Example

had been examined. It turns out that the highest business value is achieved
with set ℜ3' = {r1, r2, r3, r4, r5, r7, r8, r9, r12} (cf. box 9).

 2) ℜ3 -
 E: 23%
 Q: ok
 D: 23%

 val = 2.95
 compl = 2.8
 #req = 10

M1

M2

 3) ℜ3 -
 E: ok
 Q: 54%
 D: ok

 val = 2.95
 compl = 2.8
 #req = 10

R

 5) ℜ3 \{r6} -
 E: 2%
 Q: ok
 D: 2%

 val = 2.74
 compl = 2.56
 #req = 9

 6) ℜ3 \{r6} -
 E: ok
 Q: 8%
 D: ok

 val = 2.74
 compl = 2.56
 #req = 9

R

 7) ℜ3 \{r6, r11} +
 E: ok
 Q: ok
 D: ok

 val = 2.53
 compl = 2.5
 #req = 8

M1

 1) ℜ3 -
 E: 29%
 Q: ok
 D: 30%

 val = 2.95
 compl = 2.8
 #req = 10

R

 4) ℜ3 \{r6} -
 E: 7%
 Q: ok
 D: 8%

 val = 2.74
 compl = 2.56
 #req = 9

R

 9) ℜ3 \{r6, r11} ∪{r8} +
 E: ok
 Q: ok
 D: ok

 val = 2.71
 compl = 2.33
 #req = 9

 8) ℜ3 \{r6, r11} ∪{r8} -
 E: 2%
 Q: ok
 D: 4%

 val = 2.71
 compl = 2.33
 #req = 9

R

 11) ℜ3\{r6, r11} ∪{r8 , r10} -
 E: 2%
 Q: ok
 D: 2%

 val = 2.79
 compl = 2.2
 #req = 10

 12) ℜ3\{r6, r11} ∪{r8 , r10} -
 E: ok
 Q: 8%
 D: ok

 val = 2.79
 compl = 2.2
 #req = 10

 10) ℜ3\{r6, r11} ∪{r8 , r10} -
 E: 7%
 Q: ok
 D: 8%

 val = 2.79
 compl = 2.2
 #req = 10

Applying M1 yields
ℜ3 \{r6, r11} ∪{r8) [8]

M2

 13) ℜ3 \{r6, r1} +
 E: ok
 Q: ok
 D: ok

 val = 2.5
 compl = 2.75
 #req = 8

Outperformed by
ℜ3 \{r6, r11}
Applying M2 yields
ℜ3 \{r6} [4]

 14) ℜ3 \{r11} -
 E: 13%
 Q: ok
 D: 13%

 val = 2.74
 compl = 2.78
 #req = 9

 15) ℜ3 \{r1} -
 E: 19%
 Q: ok
 D: 20%

 val = 2.71
 compl = 3.0
 #req = 9

Outperformed by
ℜ3 \{r6} [4]
Applying M1 yields
ℜ3 \{r6, r11} [7]

Outperformed by
ℜ3 \{r6} [4]
Applying M1 yields
ℜ3 \{r6, r1} [13]

to be continued
in Figure 3

M1

M1 M1

R R

Figure 5: Evolution of generated solutions applying operations REBALANCE (R) and MODIFY (rules M1 and M2). Each
box represents exactly one solution generated. Each solution is described in terms of its relative fulfillment of
the three additional constraints related to effort (E), quality (Q), and duration (D), the respective business value
(val), average complexity (compl), and the number of included requirements (#req).

Copyright © Fraunhofer IESE 2003 22

Initial Experience Using the
Approach – An Example

 2) ℜ3 -
 E: 23%
 Q: ok
 D: 23%

 val = 2.95
 compl = 2.8
 #req = 10

M1

M2

 3) ℜ3 -
 E: ok
 Q: 54%
 D: ok

 val = 2.95
 compl = 2.8
 #req = 10

R

 16) ℜ3 \{r4, r6} -
 E: ok
 Q: ok
 D: 0.2%

 val = 2.46
 compl = 2.25
 #req = 8

M1

 1) ℜ3 -
 E: 29%
 Q: ok
 D: 30%

 val = 2.95
 compl = 2.8
 #req = 10

R

 15) ℜ3 \{r4} -
 E: 7%
 Q: ok
 D: 8%

 val = 2.67
 compl = 2.56
 #req = 9

 19) ℜ3\{r4, r6} ∪{r8} +
 E: ok
 Q: ok
 D: ok

 val = 2.64
 compl = 2.11
 #req = 9

 18) ℜ3\{r4, r6} ∪{r8} -
 E: ok
 Q: ok
 D: 5%

 val = 2.64
 compl = 2.11
 #req = 9

L

 21) ℜ3\{r4, r6} ∪{r8 , r10} -
 E: 1%
 Q: ok
 D: 4%

 val = 2.72
 compl = 2.0
 #req = 10

 22) ℜ3\{r4, r6} ∪{r8 , r10} -
 E: ok
 Q: 9%
 D: ok

 val = 2.72
 compl = 2.0
 #req = 10

 20) ℜ3\{r4, r6} ∪{r8 , r10} -
 E: ok
 Q: ok
 D: 10%

 val = 2.72
 compl = 2.0
 #req = 10

Applying M1 yields
ℜ3 \{r4, r6} ∪ {r8} [18]

M2

 23) ℜ3 \{r4, r11} +
 E: ok
 Q: ok
 D: ok

 val = 2.46
 compl = 2.5
 #req = 8

Applying M2 yields
ℜ3 \{r6} [4]

 28) ℜ3 \{r2} -
 E: 19%
 Q: ok
 D: 20%

 val = 2.59
 compl = 3.0
 #req = 9

Outperformed
by ℜ3 \{r6} [4]

continued from
Figure 2

 17) ℜ3 \{r4, r6} +
 E: ok
 Q: ok
 D: ok

 val = 2.46
 compl = 2.25
 #req = 8

R

 25) ℜ3\{r4, r11} ∪{r8} +
 E: ok
 Q: ok
 D: ok

 val = 2.64
 compl = 2.33
 #req = 9

 24) ℜ3\{r4, r11} ∪{r8} -
 E: 2%
 Q: ok
 D: 4%

 val = 2.64
 compl = 2.33
 #req = 9

 26) ℜ3\{r4, r6} ∪{r8 , r10} -
 E: 12%
 Q: ok
 D: 13%

 val = 2.72
 compl = 2.2
 #req = 10

Applying M1 yields
ℜ3 \{r4, r11} ∪ {r8} [24]

 27) ℜ3 \{r4, r1} +
 E: ok
 Q: ok
 D: ok

 val = 2.43
 compl = 2.75
 #req = 8

M2

M2

R R

R

Applying M2 yields
ℜ3 \{r4} [15]

M1 M1

Outperformed by
ℜ3 \{r4, r6} ∪ {r8 , r10}

Outperformed
by ℜ3 \{r6} [4]

 29) ℜ3 \{r2, r6} +
 E: ok
 Q: ok
 D: ok

 val = 2.38
 compl = 2.75
 #req = 8

M1

M1

Figure 6: Continued results of applying operations REBALANCE (R) and MODIFY (rules M1 and M2).

The solution set Γ with all the solutions satisfying (B1) to (B6) is given in
Table 3.

Set # Requirements ri Value

()
Fulfillment

(A2)
Fulfillment

(A3)
Fulfillment

(A4)
2 {1,2,3,4,5,6,7,9,11,12} 2.95 -23% yes -23%
3 {1,2,3,4,5,6,7,9,11,12} 2.95 yes -54% yes

11 {1,2,3,4,5,7,8,9,10,12} 2.79 -2% yes -2%
12 {1,2,3,4,5,7,8,9,10,12} 2.79 yes -8% yes
20 {1,2,3,5,7,8,9,10,11,12} 2.72 yes yes -10%
21 {1,2,3,5,7,8,9,10,11,12} 2.72 -1% yes -4%
9 {1,2,3,4,5,7,8,9,12} 2.71 yes yes yes

Table 3: Solution set Γ for TARS[ℜ].

Copyright © Fraunhofer IESE 2003 23

Summary and Conclusions

7 Summary and Conclusions

One of the limitations of Boehm’s Easy WinWin model is that negotiation is
based on subjective measures. Which alternative will be chosen is a decision to
be made by the project manager based on more or less accurate estimates.
What is missing is a sound, quantitative evaluation of alternatives. In this paper,
we have described a new and promising approach to support decision-making
in the context of requirements selection. The added value of the Quantitative
WinWin approach is its ability to offer quantitative analysis as a backbone for
actual decisions. Application of Quantitative WinWin helps in the selection of
requirements that meet the key needs of the most important stakeholders. It
gives the best value achievable when all resource and quality constraints are
met. In addition to that, it shows how the business values can be improved as
more resources become available and/or the quality constraint is relaxed.

The novelty of the presented idea is four-fold. Firstly, requirements selection is
based on predicting and rebalancing its impact on effort, time and quality. Sec-
ondly, AHP is used iteratively for a stepwise analysis to balance the stake-
holders’ preferences related to the different classes of requirements. Both pre-
diction and rebalancing are based on the modeling and simulation prototype
GENSIM. Thirdly, the alternative solution sets offered to the decision maker are
developed incrementally based on thresholds for the degree of importance of
requirements and heuristics that allow us to find a best fit considering given
constraints. Finally, trade-off analysis is used to determine non-dominated ex-
tensions of the maximum value that is achievable under resource and quality
constraints. As main result, quantitative WinWin proposes a small number of al-
ternative sets of requirements from which the actual decision-maker can finally
select the most appropriate one.

The approach has been initially validated using a small-scale example for model-
ing and simulation. However, the scalability of the approach still needs to be
tested using a larger set of requirements. Main risks of the overall approach are
(i) the availability of a sound and sufficiently detailed model for the estimation
of total effort, quality, and duration, and (ii) the availability and cooperation of
stakeholders for eliciting their preference portfolio. The applicability of the
Quantitative WinWin approach strongly depends on the quality of these two
contributions.

Using quantitative measures during the requirements engineering process is in-
herently difficult. This paper is an attempt to assist the developer in making
trade-off decisions using simulations. In order to achieve this, our research uses
simplifications of reality. We assume that requirements are independent even

Copyright © Fraunhofer IESE 2003 24

Summary and Conclusions

though many requirements depend on each other or have an impact on each
other. Especially non-functional requirements tend to have numerous links to
functional requirements. Such dependencies between requirements have an in-
fluence on the value and complexity of combinations of requirements. On the
other hand, the complexity of implementing a large number of requirements is
likely to be higher than the complexity of individual requirements since issues
such as feature interaction have to be considered. It can be assumed that the
value and complexity of individual requirements are not constant but increase
with the number of selected requirements. This area of requirements depend-
ence will be investigated in future.

Copyright © Fraunhofer IESE 2003 25

Acknowledgements

Acknowledgements

The authors would like to thank the Alberta Informatics Circle of Research Ex-
cellence (iCORE) Natural Sciences, the Engineering Research Council of Canada
(NSERC), and the Alberta Software Engineering Research Consortium (ASERC)
for their financial support of this research. Comments of anonymous referees
have contributed to further improve the clarity of the paper. Many thanks also
to An Ngo The for stimulating discussions on former versions of the paper and
to Tatyana Krivobokova for improving the GENSIM model.

Copyright © Fraunhofer IESE 2003 26

References

References

1. A. Aurum and C. Wohlin, Applying Decision Making Frameworks in Re-
quirements Engineering. 8th. International Workshop on Requirements
Engineering: Foundation for Software Quality, REFSQ'02, 9-10 Septem-
ber, Essen, Germany.

2. B. W. Boehm, P. Grünbacher and B. Briggs, Developing Groupware for
Requirements Negotiation: Lessons Learned, IEEE Software, May/June
2001, pp. 46-55.

3. B. W. Boehm, K. Sullivan, Value-based software engineering, Tutorial at
25th International Conference on Software Engineering. Portland 2003.

4. B. W. Boehm, A Spiral Model of Software Development and Enhance-
ment, IEEE Computer, 21 (5), pp. 61-72, 1988.

5. L. C. Briand and I. Wieczorek, Resource Estimation in Software Enginee-
ring, in: Encyclopedia of Software Engineering (J. Marcinicak, Ed.), pp
1160-1196, 2002.

6. D. Damian and A. Eberlein, M. Shaw, B. Gaines, Using different commu-
nication media in requirements negotiation, IEEE Software 17, (3), pp.
28-35, 2000.

7. A. Eberlein, Requirements Acquisition and Specification for Telecommu-
nication Services, PhD Thesis, University of Wales, Swansea, UK, 1997.

8. J. W. Forrester, Industrial Dynamics, Productivity Press, Cambridge, 1961.

9. M. C. Paulk., B. Curtis, M. B. Chrissis and C. V. Weber, Capability Maturi-
ty Model for Software Version 1.1, Software Engineering Institute, Tech-
nical Report CMU/SEI-93-TR24, 1993.

10. D. Pfahl and G. Ruhe, System Dynamics as an Enabling Technology for
Learning in Software Organizations. In: 13th International Conference on
Software Engineering and Knowledge Engineering. SEKE'2001 Skokie:
Knowledge Systems Institute, 2001, S. 355-362.

11. D. Pfahl, An Integrated Approach to Simulation-Based Learning in Sup-
port of Strategic and Project Management in Software Organisation.
Ph.D. thesis, University of Kaiserslautern, Department of Computer Scien-
ce, October 2001.

Copyright © Fraunhofer IESE 2003 27

References

12. H. B. Reubenstein and R. C. Waters, The Requirements Apprentice: Au-
tomated Assistance for Requirements Acquisition, IEEE Transactions on
Software Engineering, 17, (3), pp. 226-240, 1991.

13. W. N. Robinson, S. D. Pawlowski and V. Volkov, Requirements Interaction
Management, Georgia State University, GSU CIS Working Paper 99-7,
August 30, 1999.

14. G. Ruhe, A. Eberlein and Pfahl, Quantitative WinWin – A New Method
for Decision Support in Requirements Negotiation", Proceedings 14th In-
ternational Conference on Software Engineering and Knowledge Engi-
neering (SEKE'2002), July 2002, Ischia, Italy, pp 159-166.

15. G. Ruhe, Software Engineering Decision Support - A New Paradigm for
Learning Software Organizations", appears in: Proceedings of the 4th
Workshop on Learning Software Organizations, Chicago, Springer 2003.

16. T. L. Saaty, The Analytic Hierarchy Process, Wiley, New York, 1980.

17. P. M. Senge, The Fifth Discipline – the Art & Practice of the Learning Or-
ganization, Doubleday, New York, 1990.

18. www.expertchoice.com

Copyright © Fraunhofer IESE 2003 28

Document Information

Title: Trade-off Analysis for Re-
quirements Selection

Date: May 30, 2003
Report: IESE-040.03/E
Status: Final
Distribution: Public

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	�
	Abstract
	Table of Contents
	Background and Motivation
	Underlying Assumptions and Problem Statement
	A Quantitative Hybrid Approach to Trade-off Analysis for Requirements Selection
	Project Estimation Using GENSIM
	Quantitative WinWin - The Overall Algorithm
	Initial Experience Using the Approach – An Exampl
	Summary and Conclusions
	Acknowledgements
	References
	Document Information

