Fraunhofer Einrichtung

Experimentelles
Software Engineering

The Repeatability of Code Defect Classifica-
tions

Authors
Khaled El Emam
[sabella Wieczorek

I[ESE-Report No. 023.98/E
Version 1
May 1998

A publication by Fraunhofer IESE






Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern






The Repeatability of Code Defect Classifications

Khaled El Emam and Isabella Wieczorek
Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6
D-67661 Kaiserslautern
Germany
{elemam , wieczo}@iese.fhg.de

Abstract
Counts of defects found during the various defect detection activities in software
projects and their classification provide a basis for product quality evaluation and
process improvement. However, since defect classifications are subjective, it is
necessary to ensure that they are repeatable (i.e., that the classification is not
dependent on the individual). In this paper we evaluate a commonly used defect
classification scheme that has been applied in IBM’s Orthogonal Defect
Classification work, and in the SEI's Personal Software Process. The evaluation
utilizes the Kappa statistic. We use defect data from code inspections conducted
during a development project. Our results indicate that the classification scheme is in
general repeatable. We further evaluate classes of defects to find out if confusion
between some categories is more common, and suggest a potential improvement to

the scheme.

Keywords: defect classification, software inspections, measurement reliability,

agreement.

1. Introduction

The classification of software defects plays an important role in measurement-based
process and product improvement. This is evidenced in, for example, the
Orthogonal Defect Classification (ODC) work [11][13], whereby Defect Types are
matched with Defect Triggers to identify potential problems during a software
project. The distribution of defects by type can be used to identify product and
process problems [8][12], and can be used as a project planning and monitoring tool
[29]. The relationship between defect types and other variables such as whether a
module was new or modified [4], and the cost of correction [26][6], can provide
insight into development activities. Defect causal analysis methods utilize defect

classes for clustering defects and focusing the causal analysis meeting [10].



Incorporation of defect types is considered to improve the accuracy of capture-
recapture models for defect content estimation [32], and for improving the

applicability of reliability growth models [14].

A basic premise of all of these approaches is that the defect classification is
repeatablel. For example, the semantic classification proposed in ODC is “likely to
be accurate” and is believed to be less error-prone than opinion-based
classifications [13]. However, since the classification of defects is a subjective
exercise, it is plausible that different individuals would classify the same defect in a
different category. If such disagreement in classifications is prevalent, then there is
justifiable doubt in basing improvement decisions and investments on analyses that
utilize defect class information. Furthermore, a commonly suggested data analysis
approach for defect data is a chi-square test to determine if all defect classes are
equally likely (e.g., see [24]) and for investigating the relationship between defect
class and other variables (e.g., see [6]). However, chi-square tests of contingency
tables whereby one of the variables has low reliability (e.g., say one of the variables

is the defect class) are known to produce quite misleading results [17].

There are different ways in which a defect can be classified. For example, a
semantic classification that characterizes the fix [13], by the phase where the defect
Is injected [30], and by characterizing it as an omission, or as a commission [5].
There are a number of different additional classification schemes that have been
suggested in the literature, for example at the SEI [20], and an IEEE Standard for
defect classification that presents a number of different classification schemes [23].
While special care has been taken in defining classification schemes that are
believed to be repeatable, this has not been, to our knowledge, empirically

demonstrated through systematic investigation.

In this paper we report on a study that evaluated the repeatability of a defect
classification scheme using real code inspection data. It is advantageous to use real
inspection data since artificial or seeded defects may be harder/easier to classify
than real defects, hence questioning the applicability of results using non-real

defects. The defect classification scheme that we evaluate is a slight adaptation of

! We use the terms “reliability” and “repeatability” interchangeably in this paper.



the ODC scheme [11][13], which has also been incoporated in the SEI's Personal

Software Process [22]. We use two data sets totalling 605 inspection defects.

Briefly, our results indicate that this classification scheme has sufficiently high
repeatability. Furthermore, the method that we follow can be applied to evaluate the
repeatability of other defect classification schemes using data that is commonly

collected during software inspections.

In the next section we present our research method, including the environment of
study, the defect classification scheme, the data analysis method, and a sensitivity
analysis approach. In Section 3 we present the results and discuss their limitations.
We conclude the paper in Section 4 with a summary and directions for future

research.

2. Research Method
2.1 Environment of Study

The data we use in our study comes from a development project conducted within a
company in Germany. The system consists of approximately 30 KSLOC and has a
peak staff load of 5 persons. The application is a data analysis program that

implements a proprietary data mining technique.

The goal was to perform effective code inspections under tight resource constraints.
Thus, the code inspection process was restricted to two persons. A two-person
inspection was found to be a promising and useful approach by Bisant and Lyle [9].
They report that this approach saves considerable manpower compared to
conventional inspections with larger teams. Furthermore, it was found to be as
effective as conventional, three to five person inspections. Based on this approach
[9], Kusumoto et. al. [25] defined more precisely how the two persons are selected
from a development team. Major achievements were a decrease of inspection effort,

decrease of unreviewed documents, and an increase of completion rate.

All defect data was collected during code inspections. The inspection process
consisted of the following steps: planning, preparation, meeting, correction, and
follow-up. Each step may involve the following roles: moderator, author, and
inspector. One person (A) assumes the moderator and the inspector role. The other

person (B) has the role of the author and the inspector. Bisant and Lyle [9]



recommend to remove the role of the moderator, which is not the case in our

process.

During the planning step, the moderator puts together documents that are handed in
by the author. These are the code document, the test-cases, and the
documentation. The moderator also sets up a date for the meeting, and ensures that
the both inspectors have the same version of the documents. After the planning
step, during the preparation, the inspectors individually check the documents. They
detect and classify defects using a checklist. Each inspector fills out one defect
report form while preparing. This form contains a defect’'s location, description and
classification. After preparation, the two inspectors perform an inspection meeting.
For each defect found during preparation, a decision is made whether it is a “real”
defect or a false positive. A false positive is an issue documented during
preparation, but not considered as a “real” defect in the meeting. Furthermore, the
participants reach an agreement/consensus on the classification of a “real” defect.
Additional defects may also be found during the meeting, but this is not its major
goal. All “real” defects are logged on a meeting form. In contrast to this process,
Kusumoto et. al [25] merge the preparation and meeting step. In this case, both

inspectors jointly check the product using a checklist.

After the meeting, the author corrects the logged defects. During the follow-up, the
moderator checks whether all defects are corrected. Table 1 summarizes our

inspection steps, the roles involved, and the participants in each step.



Steps Roles Person
Planning Moderator A
Preparation Inspector A and B
Meeting Moderator A

Inspector A and

Author B
Correction Author B
Follow-Up Moderator

Author B

Table 1: Steps of the inspection process.

All defects considered for this study were found by two different pairs of inspectors

(total of three different inspectors), giving two different data sets, one for each pair.

2.2 Defect Classification Scheme

The defect classification scheme that was used in this study is based on the original
scheme developed in the Orthogonal Defect Classification work [13][11]. This
scheme has been adopted in the Personal Software Process developed at the SEI
[22]. Some of the defect classes were not included for the project under study
because they were not directly relevant. In particular, the “timing/serialization” defect
type was removed since it was not applicable to this type of application, and the
“algorithm” type was removed since a commercial-off-the-shelf library was used that
implemented most of the algorithms that were required for this application. Both of
these were also removed from the defect classification suggested in [22]. A number
of defect classes were also added. Namely, these were “Data” (also included in
[22]), “Environment”, “Naming Conventions”, and “Understandability” since these
were believed to require specific actions different from the other defect classes. The
final defect classification scheme is presented in Table 2 with a number of illustrative
guestions that ought to be asked about the defect during the preparation step. This

helps finding defects and classifying them.



Defect Type

Description and Examples of Questions

Documentation

Comments, messages

¢ Is the function described adequately at the top of the file ?

e Are variables described when declared ?

» Does the function documentation describe its behavior properly ?

Build/Package

Change management, library, version control
¢ |s there a version number defined for the file ?
* Are the correct versions of functions included in the build ?

Assignment Declaration, duplicate names, scope, limits
e Are variables initialized properly ?
« Are all library variables that capture a characteristic or state of the object
defined ?
» Are all return values that are special cases (e.g., an error return) really
invalid values (i.e., would never occur unless there was an error) ?
Interface Procedure calls and references, I/O, user formats, declarations
« Does the library interface correctly divide the functions into their different
types ?
» Do the functions follow the proper object access rules ?
» Are the declared and expected interface signatures the same ?
Checking Error messages, inadequate checks
» Are all possible error conditions covered ?
» Are appropriate error messages given to the user ?
» Does the function return the <error> value in case of errors ?
» Is there checking or debugging code that is left in the function that shouldn’t
be there ?
« Does the function check for missing data before making a computation ?
» Are all checks for entry conditions of the function correct and complete ?
Data Structure, content, declarations
¢ Are files opened with the right permissions ?
e Are the correct data files accessed ?
¢ Are there any missing variables for the object definition ?
« Are variable definitions of the right size to hold the data ?
Function Logic, pointers, loops, recursion, computation
¢ Are all branches handled correctly ?
e Are pointers declared and used as pointers ?
« Are arithmetic expressions evaluated as specified ?
Memory Memory allocation, leaks

e Are objects instantiated before being used ?
« Do all objects register their memory usage ?

Environment

Design, compile, test, or other support system problems
« Are all test cases running properly?
« Are compile options set properly (e.g., after changing compiler version) ?

Naming
Conventions

Naming of files, functions, and variables

e Do the function and file names follow the naming conventions for the
project ?

» Do the variable names follow the naming conventions for the project ?

Understandability

Hinder understandability

» Are there enough explanations of functionality or design rationale ?
» Are there any misleading variable names?

» Are the comments clear and correctly reflect the code ?

Table 2: Defect classification scheme used in this study.




2.3 Data Analysis
The objective of this section is to discuss different coefficients that can be used for

evaluating agreement in defect classification amongst two inspectors.

Data from a reliability study can be represented in a table such as Table 3 for a
classification scheme with k defect classes. Here we have two inspectors that have
independently classified the defects that they found. Inspectors independently
classify defects during the preparation step of the inspection process. The table

would include the proportion of ratings that fall in each one of the cells.

Inspector A
Class Class> Classy

Inspector B Class; P11 P12 Pk P+
Classz Psq Ps> Pk Po.

| | T | |

1 1 1 1 1

i i | i i
Classk Pi1 Py Pk P+

P+1 P+2 P+k

Table 3: Example k x k table for representing proportions of defect classifications
made by two inspectors.

In this table Pj is the proportion of ratings classified in cell (i,j), Pi+ is the total

proportion for row i, and P+; is the total proportion for column j:

The most straightforward approach to evaluating agreement is to consider the

proportion of ratings upon which the two inspectors agree:

Pozgpii



However, this value includes agreement that could have occurred by chance. For
example, if the two inspectors employed completely different criteria for classifying
defects, then a considerable amount of observed agreement would still be expected

by chance.

There are different ways for evaluating extent of agreement that is expected by
chance. We will consider two alternatives here. The first assumes that chance
agreement is due to the inspectors assigning classes to defects randomly at equal

rates. In such a case chance agreement would be:

1 Eqn 1l
p == g

k
An alternative definition of chance agreement considers that the inspectors’ proclivity

to distribute their classifications in a certain way is a source of disagreement:

k Eqgn 2
Pe:ZPHPH q

The marginal proportions in the above equation are maximum likelihood estimates of
the population proportions under a multinomial sampling model [1]. If each of the
inspectors makes classifications at random according to the marginal proportions,
then the above is chance agreement (derived using the multiplication rule of

probability and assuming independence between the two assessors).

A general form for agreement coefficients? is [33]:

P,-P
Agreement =-2——¢
1-P

e

When there is complete agreement between the two inspectors, Po will take on the
value of 1. The observed agreement that is in excess of chance agreement is given
by Po — Pe. The maximum possible excess over chance agreement is 1 — Pe.
Therefore, this type of agreement coefficient is the ratio of observed excess over

chance agreement to the maximum possible excess over chance agreement.

2 It should be noted that “agreement” is different from “association”. For the ratings from two inspectors to agree, the ratings
must fall in the same defect class. For the ratings from two teams to be associated, it is only necessary to be able to predict
the defect class of one inspector from the defect class of the other inspector. Thus, strong agreement requires strong
association, but strong association can exist without strong agreement.



If there is complete agreement, then the agreement coefficient is 1. If observed
agreement is greater than chance, then the agreement coefficient is greater than
zero. If observed agreement is less than would be expected by chance, then the

agreement coefficient is less than zero.

An agreement coefficient that considers chance agreement as in Eqn 1 is Bennett et
al.’s S coefficient [7]. An agreement coefficient that considers chance agreement as

in Egn 2 is Cohen’s Kappa (k) [15].

A priori, in an inspection context, it seems a reasonable assumption that inspectors
have a prior tendency to classify defects in a certain way, therefore suggesting that
Cohen’s Kappa is a more appropriate coefficient. Furthermore, there is considerable
use in the social and medical sciences of the Kappa coefficient. For instance, Kappa
has been used to evaluate the agreement in identifying mental disorders, such as
depression, neurosis, and schizophrenia [18]. Umesh et al. [31] note that up to April
1988 Kappa had been cited more than 1100 times in social science research. This
number is undoubtedly much larger by now. Furthermore, in medical methodology
texts Kappa has been presented as a measure of agreement in diagnosis reliability
studies [2][3][21].

Extensive use in various disciplines means that guidelines have been developed for
interpreting a particular statistic. In [16] a review of the literature in various
disciplines provides guidelines for interpreting Kappa, as well as interpretation
guidelines for using Kappa in evaluating the reliability of software process
assessments. In general, Kappa values less than 0.4 indicate inadequate
agreement. Values above 0.6 indicate good agreement, and values above 0.75

indicate excellent agreement.

We can also test the null hypothesis that the observed amount of agreement (or
greater) could have occurred by chance (i.e., the inspectors classifying at random
according to their marginal proportions). The standard error of Kappa has been
derived by Fleiss et al. [19] and can be used for hypothesis testing. Since we have
two data sets in our study, all statistical tests are conducted at a Bonferonni adjusted

alpha level (see [28]). The experimentwise alpha level that we used is 0.05.

10



2.4 Sensitivity Analysis

In our study we can only include defects that were found by both inspectors during
preparation. However, not all defects logged during the inspection meeting are found
by both inspectors. Therefore, it can be argued that there is bias in this kind of
analysis because we do not include all defects found during inspections. If there is
bias then the results of a reliability analysis are not applicable to inspections in
general. For example, let's say that both inspectors find the same defects that they
both classify as “Function”, and that “Function” type defects constitute the majority of
defects found by both inspectors. This means that there is high agreement on
classifying “Function” defects. Because Kappa can be considered as a weighted
average of the agreement on each class [17], this will increase overall calculated
Kappa. However, if “Function” defects are a small fraction of all the defects logged
during the meeting then the calculated Kappa would be highly inflated compared to

the value that would be obtained if we used all logged defects.

In general, if the calculated Kappa is inflated and has a low value, this means that
the actual repeatability of defect classifications for inspections is not going to be
good enough, and we can conclude that the classification scheme is not reliable. If
calculated Kappa is deflated and has a high value then it sets a lower bound on the
reliability of defect classification during inspections, and we can conclude that the

defect classification scheme is reliable.

It is therefore prudent to perform a sensitivity analysis to determine whether the
calculated Kappa value is inflated or deflated. We want to find out what would
happen to Kappa if inspector B had classified the defects that were not found by B,
and all the defects that were not actually found by inspector A were classified by A.
We do this through a Monte Carlo simulation [27]. To construct this simulation we

have to define how an inspector would classify defects that s/he did not actually find.

To explain the simulation, we take inspector B as an example. We refer to the
hypothetical data in Table 4 for this discussion. This hypothetical table assumes
that our defect classification scheme has only three classes: “X”, “Y”, and “Z". It

shows each inspector’s classification and the final logged classification.

During the inspection meeting, inspector B is presented with the defects that s/he

did not find, and these are classified by both inspectors as type “X” (defect number

11



1). By looking at the classification of defects that B did find, we can determine the
how B classifies defects that are logged as of type “X”. For example, for the defects
that B found, s/he classifies as “Y” 50% of the defects that are subsequently logged
during the meeting as “X”, and s/he classifies the remaining 50% as “X”. During the
simulation we make B’s classification for the defects that s/he did not find and that
were logged as “X” to be a discrete distribution with probabilities 0.5 and 0.5 for their
“X” and “Y” classifications respectively. This is illustrated in the last column of the
table for defect number 1. This is a worst case assumption because we assume
that the inspector is guessing with these proportions. This is done for all defects that

B did not find (e.qg., defect number 4), with one exception below.

Inspector A | Inspector B | Logged Simulated Distribution for

Inspector B

Discrete((“Y”,0.50),("X”,0.50))
N/A

< < X X
X

Discrete((*Y”,0.33),(“X",0.66))
N/A
N/A
N/A
N/A
N/A
Discrete((*Y”,0.43),(“X",0.57))

© ©® N o o0k~ wDdh PR

X X X < <
N < < X X <X < X X X

H
©

4

Table 4: Hypothetical data collected and simulated distribution for inspector B.

If B never found a defect that was logged during the meeting, for example defects of
type “Z”, then we make a worst case assumption that B will guess according to his or
her overall proclivity. This proclivity is calculated from all defects that B did find. For
example, B classifies 43% of all the defects that s/he finds as “Y” and 57% as “X”,
then we construct a discrete distribution with a 0.43 and 0.57 probability (see defect

number 10).

All simulations we performed used 1000 iterations. By considering the simulated

Kappa distribution we can determine the extent to which Kappa would be affected

12



had both inspectors classified all defects. In particular, we wish to find out the extent

to which the Kappa value would be equal to or fall under the 0.6 threshold.

3. Results
3.1 Description of Data

As noted earlier, we have two data sets. In total, these two data sets represent 605
defects found during inspections (see Table 5). In the first data set only 23% of the
defects are found by both inspectors, and 24% in the second data set. This reflects

the fact that in this environment the inspectors specialize in finding different types of

defects.

Logged Defects Found By Both
Data Set 1 432 99
Data Set 2 173 41

Table 5: Summary of the two data sets.

The distribution of defects for the first data set is illustrated in the histogram of
Figure 1. A number of points can be arrived at from this figure. First, most of the
defects that are logged during the meeting (almost half) are “Documentation” type
defects. This reflects that in this environment documentation standards are not
enforced consistently. Second, that there is a substantial difference in the
distribution of all defects that are logged against those that are found by both

inspectors. Again, this reflects the specialization of the inspectors.

13




No of obs

No of obs

Distribution of Defects by Type

210 b 47.6%
196

182
168
154
140
126
112
08 21.8%
84
70
56
42
28 21.4% H 4% 1 All Defects

14 3.0% 8.7% Lo [I1 Defects Found by Both
I:I 0% m 1.9% 0.2%
0
N

38.8%
7.9%

Figure 1: Distribution of defects for data set 1.

Distribution of Defects by Type

9
70 39.9%

65
60
55
50
45
40
35

30 65.9%

25 13.3%

20 10.4%

. 8.1%
15 6.9% 1.5% E=] All Defects

10 [TT1 Defects Found by Both

Figure 2: Distribution of defects for data set 2.

14




The distribution of defects for the second data set is shown in Figure 2. Again, most
of the defects that are found are “Documentation” type, and the specialization effect

is visible.

3.2 Evaluation of Classification Agreement
The Kappa coefficients for both data sets are shown in Table 6. They are both
above 0.6 indicating good agreement, with the second data set above 0.75

indicating excellent agreement. Both values are statistically significant.

Data Set Kappa Value
Data Set 1 0.66*
Data Set 2 0.82*

Table 6: Kappa values for the two data sets (the asterisk indicates statistical
significance at an experimentwise alpha level of 0.05).

3.3 Results of Sensitivity Analysis

The results of the sensitivity analysis for the first data set are shown in Figure 3,
where the frequency distribution is depicted. For data set 1 there is a slight inflation
of calculated Kappa since most values are greater than the calculated 0.66, and the
mean is 0.80. The cummulative density is shown in Figure 4. As can be seen, the
proportion of times that the values of Kappa are at 0.6 or lower is close to zero. This
indicates that under the worst case assumptions made during the sensitivity

analysis, the extent of agreement will still be good almost all of the time.

15




Sensitivity

0.600

0.480-

0.360

0.240-

0.120

000
0.50 0.60 0.70 0.79 0.89 0.99

Figure 3: Sensitivity of Kappa for data set 1 (mean 0.80). The y-axis is the
frequency from 1000 iterations, and the x-axis is the value of Kappa.

1,000;
0,800
0,600
0,400

0,200+

0
0,50 0,60 0,70 0,80 0,90

Figure 4: Kappa Cumulative Density Function for data set 1. The y-axis represents
the probability of obtaining an x value equal to or smaller than the value on the x-
axis, and the x-axis is Kappa.

The frequency distribution of simulated Kappa for the second data set in Figure 5,
and the cummulative density in Figure 6. For data set 2 there is a slight deflation of
calculated Kappa since most simulated values are slightly lower than the calculated
0.82, and the simulated Kappa distribution has a mean of 0.76. However, it can be
seen that in quite a few cases the value of Kappa does go below 0.75, but very
rarely if ever does it go below 0.6. This is evident in Figure 6 where the proportion of

times the simulated Kappa is at 0.6 or less is almost zero.

16






3.4 Improving the Classification Scheme

To explore further why data set 1 has a lower Kappa value, we looked more closely
at the raw data and found that there tends to be more disagreement between the
“Data” and “Assignment” defect classes, for the second data set (this can be
determined by looking at the cells in the contingency table). In addition, discussions
with developers indicated that from their perspective there was sometimes difficulty
in distinguishing between “Assignment” and “Data” defect classes. To investigate
whether there was confusion amongst these two categories, we combined them and
recalculated the Kappa value. |If there is confusion amongst the categories then
combining them is expected to improve the extent of agreement. The results for this
are shown in Table 7. This indicates that for one data set there is substantial

improvement in the extent of agreement after the combination.

Data Set Kappa Value
Data Set 1 0.73*
Data Set 2 0.82*

Table 7: Kappa values for the two data sets after combining the “Assignment” and
“Data” defect classes (the asterisk indicates statistical significance at an
experimentwise alpha level of 0.05).

Based on this result, it is suggested that the “Data” defect class be either refined
further to clarify its distingushing features from the “Assignment” class, or merged

with the “Assignment” class.

3.5 Limitations

The important limitations of this study are concerned with its generalizability.

Our study was conducted for one type of document, code, for defect classification
scheme, and for one type of defect detection activity, inspections. Therefore, it is
reasonable to make conclusions about the reliability of the defect classification
scheme within this scope. However, it is early to make statements on the reliability of
this defect classification scheme for other types of documents and for other
activities. The nature of the defects found in other documents and using other defect
detection activities can be quite different from code and inspections respectively,

making the classification scheme harder/easier to use.

18




For the inspection defect detection activity, the method that we have presented in
this paper can be applied with data that is normally collected during software
inspections. Therefore, it would be possible to perform reliability evaluation studies

of the defect classification scheme for other document types.

4. Conclusions

The classification of defects found during software development plays an important
role in measurement based process and product improvement. This is evidenced,
for example, in the Orthogonal Defect Classification work and in the Personal
Software Process. Many of the improvement decisions made in this approaches are
based on the premise that defect classification is repetable. However, this
assumption has not been systematically investigated thus far. Furthermore, while
perforimg data analysis using defect class as a variable, it is known that low

reliability of the variables can lead to quite erroneous results.

The objective of this paper was to evaluate the repeatability of a defect classification
scheme in the context of software inspections. The study was performed using real
inspection data and using a defect classification scheme similar to those in common
use. Our results indicate that the defect classification scheme has high reliability by
standards used in the social sciences, medical studies, and in other areas of
software engineering. We further identified an improvement that can be made to the

scheme to increase its reliability.

The method that we have presented can be applied for evaluating other defect
classification schemes in the context of inspections. This method is particularly
advantageous since it requires data that is usually collected during software

inspections anyway.

Further research should also consider evaluating the repeatability of commonly used
defect classification schemes for other defect detection activities, such as the
various types of testing. Such research may converge on a classification scheme
that is empirically demonstrated to be reliable for the whole of the defect detection

life cycle.

19



5.

Acknowledgements

We wish to thank Erik Dick, Steffen Gabel, Julien Fouth, and Igor DeCanck for their

contributions to this study, and for helping to collect and organize the code

inspections data. We also wish to thank Bernd Freimut for reviewing an earlier

version of this paper.

6.

(1]
(2]
(3]
(4]

(5]

(6]

[7]

(8]

E)

(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

References
A. Agresti: Categorical Data Analysis. John Wiley and Sons, 1990.

D. Altman: Practical Statistics for Medical Research. Chapman and Hall, 1991.
P. Armitage and G. Berry: Statistical Methods in Medical Research. Blackwell Science, 1994.

V. Basili and B. Perricone: “Software Errors and Complexity: An Empirical Investigation”. In
Communications of the ACM, 27(1):42-52, January 1984.

V. Basili and H. D. Rombach: “Tailoring the Software Process to Project Goals and
Environments”. In Proceedings of the 9" International Conference on Software Engineering,
pages 345-357, 1987.

V. Basili, S. Condon, K. El Emam, B. Hendrick, and W. Melo: “Characterizing and Modeling
the Cost of Rework in a Library of Reusable Software Components”. In Proceedings of the
19" International Conference on Software Engineering, pages 282-291, 1997.

E. Bennett, R. Alpert, and A. Goldstein: “Communications Through Limited Response
Questioning”. In Public Opinion Quarterly, 18:303-308, 1954.

I. Bhandari, M. Halliday, J. Chaar, R. Chillarege, K. Jones, J. Atkinson, C. Lepori-Costello, P.
Jasper, E. Tarver, C. Lewis, and M. Yonezawa: “In-process Improvement Through Defect
Data Interpretation”. In IBM Systems Journal, vol. 33, no. 1, pp. 182--214, 1994.

D. Bisant and J. Lyle: “A Two-Person Inspection Method to Improve Programming
Productivity”. In IEEE Transactions on Software Engineering, Vol.15, No. 10, Oct. 1989, pp.
1294-1304.

D. Card: “Learning from our Mistakes with Defect Causal Analysis”. In IEEE Software, pages
56-63, January-February 1998.

J. Chaar, M. Halliday, I. Bhandari, and R. Chillarege: “In-Process Evaluation for Software
Inspection and Test”. In IEEE Transactions on Software Engineering, 19(11):1055-1070,
November 1993.

R. Chillarege, W-L Kao, and R. Condit: “Defect Type and its Impact on the Growth Curve”. In
Proceedings of the 13" International Conference on Software Engineering, pages 246-255,
1991.

R. Chillarege, |. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M-Y. Wong:
“Orthogonal Defect Classification — A Concept for In-Process Measurements”. In IEEE
Transactions on Software Engineering, 18(11):943-956, November 1992,

R. Chillarege and S. Biyani: “ldentifying Risk Using ODC Based Growth Models”. In
Proceedings of the Fifth International Symposium on Software Reliability Engineering, pages
282--288, 1994.

J. Cohen: “A Coefficient of Agreement for Nominal Scales”. In Educational and Psychological
Measurement, 20:37-46, 1960.

K. EI Emam: “Benchmarking Kappa for Software Process Assessment Reliability Studies”.
Technical Report ISERN-98-02, International Software Engineering Research Network, 1998.

J. Fleiss: Statistical Methods for Rates and Proportions, John Wiley & Sons, 1981.

20



(18]

(19]

(20]

[21]
(22]
(23]

(24]

(25]

(26]

(27]
(28]
[29]
(30]
(31]
(32]

(33]

J. Fleiss: "Measuring Nominal Scale Agreement Among Many Raters". In Psychological
Bulletin, 76(5):378-382, 1971.

J. Fleiss, J. Cohen, and B. Everitt: “Large Sample Standard Errors of Kappa and Weighted
Kappa”. In Psychological Bulletin, 72(5):323-327, 1969.

W. Florac: Software Quality Measurement: A Framework for Counting Problems and Defects.
Software Engineering Institute, Technical Report CMU/SEI-92-TR-22, 1992.

L. Gordis: Epidemiology. W. B. Saunders, 1996.
W. Humphrey: A Discipline for Software Engineering. Addison-Wesley, 1995.

IEEE Computer Society: IEEE Standard Classification for Software Anomalies, |IEEE Standard
1044-1993, 1993.

IEEE Computer Society: IEEE Guide to Classification for Software Anomalies, IEEE Standard
1044.1-1995, 1995.

S. Kusumoto, A. Chimura, T. Kikuno, K. Matsumoto, and Y. Mohri: “A Promising Approach to
Two-Person Software Review in Educational Environment”. In Journal of Systems and
Software, Vol. 40, No 2, pp. 115-123, 1998.

Y. Mashiko and V. Basili: “Using the GQM Paradigm to Investigate Influential Factors for
Software Process Improvement”. In Journal of Systems and Software, 36:17-32, 1997.

C. Mooney: Monte Carlo Simulation. Sage Publications, 1997.
J. Rice: Mathematical Statistics and Data Analysis. Duxbury Press, 1987.

Software Engineering Laboratory: Software Engineering Laboratory (SEL) Relationships,
Models, and Management Rules. NASA/GSFC Software Engineering Laboratory Technical
Report SEL-91-001, 1991.

Software Engineering Laboratory: Software Measurement Guidebook. NASA/GSFC Software
Engineering Laboratory Technical Report SEL-94-002, 1994,

U. Umesh, R. Peterson, and M. Sauber: “Interjudge Agreement and the Maximum Value of
Kappa”. In Educational and Psychological Measurement, 49:835-850, 1989.

S. Vander Wiel and L. Votta: “Assesing Software Designs Using Capture-Recapture
Methods”. In IEEE Transactions on Software Engineering, vol. 19: 1045--1054, 1993.

R. Zwick: “Another Look at Interrater Agreement”. In Psychological Bulletin, 103(3):374-378,
1988.

21



Document Information

Title: The Repeatability of Code
Defect Classifications

Date: May 1998

Report: I[ESE-023.98/E

Status: Final

Distribution: Public

also published as
ISERN-98-09

Copyright 1998, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.



