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Abstract

In this paper we develop a network location model that combines the character-
istics of ordered median and gradual cover models resulting in the Ordered Gradual
Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP)
was specifically designed to extend the basic cover objective to capture sensitivity with
respect to absolute travel distance. Ordered Median Location problems are a general-
ization of most of the classical locations problems like p-median or p-center problems.
They can be modeled by using so-called ordered median functions. These functions
multiply a weight to the cost of fulfilling the demand of a customer which depends
on the position of that cost relative to the costs of fulfilling the demand of the other
customers. We derive Finite Dominating Sets (FDS) for the one facility case of the
OGCLP. Moreover, we present efficient algorithms for determining the FDS and also
discuss the conditional case where a certain number of facilities are already assumed
to exist and one new facility is to be added. For the multi-facility case we are able to
identify a finite set of potential facility locations a priori, which essentially converts
the network location model into its discrete counterpart. For the multi-facility discrete
OGCLP we discuss several Integer Programming formulations and give computational
results.

Keywords: Gradual Covering, Ordered Median Function, Network Location
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1 Introduction

In this paper we develop a network location model that combines the characteristics of
ordered median and gradual cover models. As discussed below, this provides a “unifying
structure” for the standard location models, and allows us to consider combined objectives
that are sensitive to both relative and absolute customer-to-facility travel distances.

The three “classical” objective functions in location models are the median, specifying
that the total travel distance from customers to facilities be minimized, the center, mini-
mizing the maximum travel distance (i.e., the travel distance for the customer who has to
travel the furthest to get to a facility), and the cover, maximizing the number of customers
covered by the facilities, where customers are considered to be covered if they are within a
certain coverage radius of a facility. Good recent overview of location models on networks
can be found in [4].

Since each of these objectives covers some important aspects of the underlying location
problem, there has also been a considerable interest in combinations of these objectives
(e.g., the “cent-dian” objective, which is a convex combination of the median and center
objectives - see [13] and references therein). An important step in this direction has been
the recent development of the Ordered Median Location Problem (OMP) that provides a
unifying framework for the location models with median and center objectives, as well as
the objectives that combine aspects of the two. (The OMP on networks was first introduced
in [14] and the discrete version in [12]; see [13] for a comprehensive treatment.)

This unifying framework is accomplished as follows. Assuming there are n customers
located at the nodes of the network, for given facility locations the median objective can
be thought of as a two-step process: (1) compute the distance from each customer to the
closest facility, and (2) add up the components of this vector to obtain the total travel
distance. The facility locations are then chosen so as to minimize this total travel distance.
The OMP interjects two additional steps into this process: (1A) “sorting”, where customer
travel distances are sorted from smallest to largest, and (1B) “weighting”where the i-th
smallest customer travel distance is multiplied by the weight λi; the weighted costs are now
added up as in step (2) above. This allows us to represent the standard median objective
(by choosing weights λi = 1 for all i), the center objective (by choosing weights λi = 0 for
the first n − 1 components and λn = 1 for the last component, we obtain the largest travel
distance), and the cent-dian objective (to obtain a convex combination of the median and
center objectives with weight α ∈ (0, 1), set λi = α for all the first n − 1 components and
λn = 1 for the last component). Thus, the median and the center models, as well as their
combinations, are special cases of the OMP. In addition, by using different weight vectors,
many other objectives can be represented (see [13]).

Note however, that one shortcoming of the OMP model is that it can only represent
objectives based on relative travel distances - i.e., the travel distance of one customer relative
to the other customers. In many settings, the absolute travel distances may be more relevant
(e.g., a customer located over 10 kilometers from a supermarket is unlikely to patronize it,
even if she happens to be the closest customer to this store). In fact, retailers typically
define their trading areas in terms of the number of potential customers within a certain
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distance from the store. Unfortunately, it is not possible to capture sensitivity with respect
to absolute travel distances (e.g., assign higher weight to customers within 2 km from a
facility) within the standard OMP framework.

The Gradual Cover Location Problem (GCLP), described in [1], [3], was specifically
designed to extend the basic cover objective to capture sensitivity with respect to absolute
travel distance. This model replaces the fixed coverage radius of the cover objective with
a “coverage decay function” which assigns a coverage weight (a value between 0 and 1)
to each customer based on the customer’s distance from the closest facility. The objective
is to maximize the weighted sum of covered customers. For example, the coverage decay
function may specify two coverage levels l < u with the stipulation that customers that are
further than u from the closest facility are not covered at all (have coverage weight of 0),
customers with travel distance between l and u are partially covered (weight of 1/2) and
customers closer than l from the closest facility are fully covered (weight of 1). Other forms
of the coverage decay function may include linear decay, exponential decay, step function
(representing multiple coverage radii instead of a single one in the cover objective), etc. In
fact, by using a linear cover decay function with lower radius l = 0 and the upper radius
u equal to the maximum distance between any two nodes, we obtain the median objective
(details are provided below). Thus, the gradual cover framework allows us to represent the
median objective, the cover objective and the intermediate objectives with various degrees of
sensitivity with respect to the absolute travel distance. It can be seen as the counterpart of
the OMP where the sorting and weighting steps (1A) and (1B) above are replaced with the
“coverage weight” step (1C): for each customer determine the coverage weight by applying
the coverage decay function to the travel distance to the closest facility, followed by step
(2’): maximize the sum of the coverage weights (instead of minimizing the total weighted
distance as in step (2) above).

However, the gradual cover framework is not capable of representing objectives that
depend on relative distances since it is missing the sorting step (1A). Thus, it cannot capture
the center objective, the cent-dian objective or other objectives related to relative distances
that are easily representable within the OMP framework.

The goal of the current paper is to define and analyze a new model, the Ordered Gradual
Covering Location Problem (OGCLP), that combines the features of the OMP and GCLP
models. This new model is defined by performing step (1) above, followed by steps (1C),
(1A), (1B) and (2’) - i.e., the sorting and weighting steps are inserted into the gradual
cover framework. The resulting model provides a unifying structure with respect to all three
classical location objectives described earlier and is capable of capturing sensitivity with
respect to both, the absolute and relative travel distances. This has practical implications
since certain aspects of the underlying real-life problems - e.g., equity - are best represented
in terms of relative travel distances, while others - e.g., definition of primary and secondary
trading areas - are most naturally captured in terms of the absolute distances. In addition,
OGCLP is of theoretical importance since any results established for this model are directly
applicable to the three standard location objectives. We restrict our attention to network
and discrete versions of OGCLP, leaving the study of planar version to future research.

The plan for the paper is as follows. Necessary notations are introduced and gradual decay
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functions discussed in Section 1.1. The OGCLP is formally defined in Section 1.2. The single-
facility version of the OGCLP is considered in detail in Section 2. In particular, we derive
Finite Dominating Sets (FDS’s) for models with non-negative weights, special classes of non-
negative weights that yield simpler FDS’s (Section 2.1), and general weights (Section 2.2).
Moreover, we present efficient algorithms for determining the FDS. We also discuss the
“conditional case” where a certain number of facilities are already assumed to exist and one
new facility is to be added (Section 2.3). In Section 3, the FDS results are extended to
multi-facility models. These results allow us to discretize the network model by determining
a finite set of potential facility locations a priori, which essentially converts the network
location model into its discrete counterpart. The multi-facility discrete location problem is
addressed in Section 4 where we discuss several Integer Programming formulations for the
OGCLP. The computational experiments analyzing the performance of these formulations
are presented in Section 4.1. Some concluding remarks are presented in Section 5.

1.1 Preliminaries

Let N = (G, ℓ) be a network with underlying undirected graph G = (V, E) and edge length
ℓ. V = {v1, . . . , vn} and E = {e1, . . . , em} denote the set of nodes and edges, respectively,
of the graph. An edge e ∈ E is denoted e = [vi, vj ] with i < j. A point x ∈ G on an
edge e = [vi, vj ] of the network is denoted x = (e, t), 0 ≤ t ≤ 1, where t is the relative
distance of x from node vi. Let wi be the demand associated with node vi ∈ V (which can
be interpreted as the number of customers at node vi), and di(x) = d(vi, x) be the shortest
distance between node vi and x ∈ G.

Assume that we wish to locate p ≥ 1 facilities and that the facilities can be located at
nodes or along the edges of the network. Suppose, for the moment, that the locations have
already been chosen and let S = {x1, . . . , xp} ⊂ G, |S| = p be the location set. Define
di(S) = minx∈S di(x).

Let (li, ui) be a pair of radii associated with node vi ∈ V . Node vi is fully covered (not
covered) if di(S) ≤ li (di(S) > ui). For li < di(S) ≤ ui, node vi is partially covered.

Let fi(t) be a non-increasing function for t ∈ [li, ui] with fi(li) = 1 and fi(ui) = 0. The
function fi is called the coverage decay function.
The demand of node vi that is covered by S is defined as

ci(di(S)) =











wi if di(S) ≤ li

wi fi(di(S)) if li < di(S) ≤ ui

0 if ui < di(S)

We call ci(di(S)) the coverage function. For short we write in the following ci(S) instead of
ci(di(S)).

Remark: Note that ci(S) = max
x∈S

ci(x)
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The Gradual Cover Location Problems (GCLP) is to find

max

{

∑

i∈V

ci(S) | S ⊂ G, |S| = p

}

.

Some examples of GCLP models with different coverage decay functions are provided below:

1. Linear decay function

fi(t) = 1 −
1

α
t, i ∈ V

where α = maxi,j∈V di(j) is a constant. If ui = α and li = 0 for all i ∈ V , we have

∑

i∈V

ci(S) =
∑

i∈V

wifi(di(S)) =
∑

i∈V

wi −
1

α

∑

i∈V

di(S)wi.

Since the first term is a constant and the second term is a (constant multiple of the)
standard p−median objective, the GCLP with this coverage function is equivalent to
the p−median problem.

2. Stepwise decay function

fi(t) = αk
i if t ∈ (rk−1

i , rk
i ], k = 1, . . . , Ki

where 1 > α2
i > . . . > αKi

i = 0 and li = r0
i < r1

i < . . . < rKi

i = ui. For this
type of coverage decay function, the values αk

i are known as coverage levels and rk
i as

coverage radii. Clearly, in case of a single coverage level and a single coverage radius,
the problem becomes equivalent to the standard maximum cover problem.

3. Piecewise linear decay function

fi(t) = βk
i − αk

i · t if t ∈ (rk−1
i , rk

i ], k = 1, . . . , Ki

where β1
i , . . . , β

Ki

i , α1
i , . . . , α

Ki

i > 0 and li = r0
i < r1

i < . . . < rKi

i = ui.

1.2 OGCLP: Formulation and Relationship to the Ordered Me-
dian Problem

Let σ ∈ P(1 . . . n) be a permutation of the index set {1 . . . n} that sorts the values of ci(S)
in non-decreasing order:

cσ(1)(S) ≤ cσ(2)(S) ≤ . . . ≤ cσ(n)(S) (1)

Let λ ∈ IRn be a real-valued vector. λ is called the modeling vector and its entries the
modeling weights.
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The Ordered Gradual Covering Location Problem (OGCLP) is defined as follows:

max{
n

∑

i=1

λi cσ(i)(S)|S ⊂ G; |S| = p}.

For S ⊂ G, |S| = p, we call

g(S) =

n
∑

i=1

λi cσ(i)(S)

the Ordered Gradual Covering Function (OGCF).

Note that if ci(S) = −di(S)wi for all i ∈ N , the above formulation is exactly equivalent to
the OMP on the network G (see [14]). However, this would require that the coverage decay
function be fi(t) = −t, which does not satisfy the requirements of a valid coverage decay
function (recall that fi(t) has to be non-negative, equal to 1 at ui and 0 at li). However, as
the following result shows, with a suitable alteration of the network and the coverage decay
function, the OMP can indeed be represented as a special case of OGCLP.

Let network G′ = (V, E) be identical to G (i.e., have the same nodes, edges and the
distance function), but equipped with a unitary node demand vector w′ = (1, . . . , 1) in-
stead of the original vector w. For i ∈ V , let j(i) = arg maxj∈V di(j) and let i∗ =
arg maxk∈V wkdk(j(k)). Define the coverage decay function

fi(t) = 1 −
wi

α′
t, i ∈ V (2)

where, α′ = wi∗di∗(j(i
∗)). Let ui = α′/wi and li = 0 for all i ∈ V . Intuitively, the original

node weight vector has been incorporated into the coverage decay function. We have the
following result:

Theorem 1.1 For any modeling vector of λ ∈ IRn and any integer number of facilities
p ≥ 1, the OMP on network G is equivalent to the OGCLP on network G′.

Proof
First note that fi(t) defined above is a proper coverage decay function since fi(ui) = 0,
fi(li) = fi(0) = 1 and for any t ∈ [li, ui], fi(t) ≥ 0 must hold since t < ui implies that
twi < α′.

Let S ⊂ G, |S| = p be a location set. For any vi ∈ V , di(S) ≤ di(j(i)) ≤ (1/wi) ∗
maxk∈V wkdk(j(k)) = ui. Thus di(S) ∈ [li, ui] and

ci(S) = 1 −
widi(S)

α′
, i ∈ V.

Therefore for vi, vj ∈ V ,

ci(S) ≤ cj(S) ⇔ widi(S) ≥ wjdj(S). (3)
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Let σ′ be a permutation defined by (1) with respect to the network G′ and σ be the
OMP-defining permutation on the network G (i.e., dσ(1)(S)wσ(1) ≤ . . . ≤ dσ(n)(S)wσ(n)). By
(3), σ′(k) = σ(n − k + 1) must hold for all k ∈ {1, . . . , n}. Define λ′

k := λn−k+1. Thus

n
∑

k=1

λ′
k cσ′(k)(S) =

n
∑

k=1

λn−k+1 cσ(n−k+1)(S)

=

n
∑

k=1

λk cσ(k)(S) =

n
∑

k=1

λk −
1

α′

n
∑

k=1

λkwσ(k)dσ(k)(S).

Since the first term above is constant and the second term is a scalar multiple of the OMP
objective function, maximizing the OGCLP objective is equivalent to minimizing the OMP
objective.

2

The preceding result shows that any problem that can be represented as an OMP (i.e.,
p−median, p−center, cent-dian, etc.) can be solved via the OGCLP, proving that OGCLP
indeed provides the unifying framework for all classical objectives in location models. OG-
CLP with different modeling weight vectors may also be interesting in its own right, as
discussed in the following examples.

Examples of OGCLP’s with different modeling vectors λ

Median: λ = (1, . . . , 1)

In this case we have
n

∑

i=1

λi cσ(i)(S) =
n

∑

i=1

ci(S)

that is, the problem reduces to the standard GCLP. As discussed earlier, both the
median and the maximum cover location problems are special cases of the GCLP.

k-Centra: λk = (0, n−k. . . , 0, 1, 0, . . . , 0)

We have
n

∑

i=1

λi cσ(i)(S) = λn−k+1cσ(n−k+1)(S).

This can be viewed as an extension of the center objective to gradual cover setting. The
center objective calls for maximizing the coverage of the worst-covered customer node,
which can be achieved by setting λn = (1, 0, . . . , 0). However, in a “true” cover setting,
we would normally not expect to be able to extend the coverage to all customer nodes
- thus the coverage level of some nodes would be 0; rendering the modeling vector λn

not very useful.

One of the standard motivations for maximum cover problems is that the coverage
of the worst-covered nodes will be sub-contracted to another service provider. The
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k−centra objective calls for maximizing the coverage of the worst-covered node among
the k nodes receiving the best coverage. Thus, if the intention is to sub-contract the
n−k ≥ 0 worst-covered nodes to another provider, then the objective above maximizes
the coverage for the worst-covered node which will be served from the facility set S.

k-Cover: λ = (0, n−k. . . , 0, 1, k. . ., 1)

In this case we have
n

∑

i=1

λi cσ(i)(S) = max
V ′⊂V

|V ′|=k

∑

i∈V ′

ci(S) .

i.e., we concentrate on providing the best possible coverage to the k best-covered nodes
(again, under the assumption that the n−k worst-covered nodes will be sub-contracted
to another service provider).

k-Centdian-cover: λ = (0, n−k. . . , 0, 1, α, k−1. . ., α), α ∈ (0, 1)

In this case we have

n
∑

i=1

λi cσ(i)(S) = α max
V ′⊂V

|V ′|=k

∑

i∈V ′

ci(S) + (1 − α)cσ(k)(S) .

i.e., a convex combination of the k − cover and the k − centra objectives, allowing us
to put extra weight on the k-th worst-covered customer nodes in the gradual k− cover
setting.

Trimmed-Cover: λ = (0, k1. . ., 0, 1, . . . , 1, 0, k2. . ., 0)

In this case we have
n

∑

i=1

λi cσ(i)(S) =

n−k2
∑

i=k1+1

cσ(i)(S)

which is the so-called (k1, k2)-trimmed mean, leaving aside the k1 best and k2 least
covered nodes. This is an alternative to the k-centra objective which may be useful
when it has been decided that the service of k1 nodes will be subcontracted to another
provider, and k2 best-covered node are excluded from the calculation on the grounds
that they will automatically receive adequate coverage.

Anti-Cover: λ = (−1, . . . ,−1)

In this case we have
n

∑

i=1

λi cσ(i)(S) = −
n

∑

i=1

ci(S)

that is, we minimize the coverage of the clients. The possible applications include the
location of obnoxious facilities, e.g, waste disposals. All clients within a given distance
l of a facility experience the full impact of the obnoxious effect of the facility, the
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clients further than u away experience negligible effect, with the impact of the facility
gradually decreasing between these two radii.

Equity Objective: λ = (1, k. . ., 1, 0, . . . , 0,−1, k. . .,−1)

In this case we have

n
∑

i=1

λi cσ(i)(S) = −(max
V ′⊂V

|V ′|=k

∑

i∈V ′

ci(S) − min
V ′⊂V

|V ′|=k

∑

i∈V ′

ci(S) )

that is, we are trying to minimize the difference in total coverage received by the k
best-covered and k worst-covered clients. This objective may be useful in location of
non-emergency public service facilities, such as schools, where equity considerations
are important.

2 Single Facility

For the ease of understanding we will first discuss the single facility case, i.e., S = {x}. Then

ci(x) =











wi if di(x) ≤ li

wi fi(di(x)) if li < di(x) ≤ ui

0 if ui < di(x)

As already observed, the Ordered Gradual Decay Function

g(x) =

n
∑

i=1

λi cσ(i)(x)

is defined point-wise. Whenever two coverage functions ci and cj intersect, the permutation
of coverage functions changes and therefore the representation of the objective function.

Following ([3]) we define the following sets. For all vi ∈ V , let

Li = {x ∈ G | di(x) = li} and Ui = {x ∈ G | di(x) = ui} .

and

L =
⋃

vi∈V

Li and U =
⋃

vi∈V

Ui .

Note that L and U have O(nm) elements each, as a distance function di(x) can attain the
values li and ui at most twice on each edge.

Next, we will show that if fi is convex and continuous for all vi ∈ V , the intersection
points of coverage functions, together with the node set V and the set L comprise a finite
dominating set (FDS) for the single-facility problem.
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Definition 2.1 Equilibrium and Bottleneck points
Let vi, vj ∈ V , vi 6= vj, and wi ·wj 6= 0. Define

EQ′
ij := {x ∈ G : ci(x) = cj(x) } .

For vi = vj or wi ·wj = 0, we set EQ′
ij := ∅. Let EQij be the boundary of EQ′

ij and let
EQ :=

⋃

i,j, i6=j EQij. The points in EQ are called equilibrium points.

A point x = (e, t) on an edge e = [vi, vj ] ∈ E is called a bottleneck point if there exists some
node vk with wk 6= 0, such that

d(x, vk) = d(x, vi) + d(vi, vk) = d(x, vj) + d(vj , vk) .

Denote by BN the set of bottleneck points on N .

Note that the set of bottleneck points BN has O(nm) elements. The number of equilib-
rium points on an edge e ∈ E depends on the characteristics of the functions fi, as we will
show in the following example.

Example 2.1 1. Assume the coverage decay functions fi(t) are linear for all i ∈ V .

Let vi ∈ V and e ∈ E. If di(x) does not have a bottleneck point on e, then di(x) is
linear on e. Therefore, ci(x) has at most two breakpoints on e (for di(x) = li and
di(x) = ui). If di(x) has a bottleneck point y ∈ e, then di(x) is linear left and right of
y and hence has at most four breakpoints on e. See left hand side picture in Figure 1.
(Note that ci(x) has breakpoints either at di(x) = ui or at y but not both.)

vk vℓ

li

ui

di(x)

ci(x)

l1i u1

i u2

i l2i

ci(x)

cj(x)

l1i l1j u1

j u1

i u2

i
u2

j l2j l2i

Figure 1: Linear decay function.

As the two coverage functions ci(x) and cj(x) are linear between consecutive breakpoints
of ci and cj on e, they intersect in at most six points. (We can ignore situations where
both are constant.) Hence, there are O(n2) equilibria on an edge and thus EQ has
O(mn2) elements.

Consider the undirected network and the lower and upper bounds li and ui depicted in
Figure 2.
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v1 v2

v3 v4

v5

1

2

2

1

2

3

1
3

3

2

1

2

i 1 2 3 4 5

li 4 1 1.75 0.5 1

ui 6 5 2.75 2 1.5

Figure 2: Network and table of upper and lower bounds (see Example 2.1).

Figure 3 shows the distance functions di(x) (left hand side) and the coverage functions
(right hand side) on the edge e = [v4, v5]. The point x = ([v4, v5], 0.33) is an equilibrium
of the coverage functions c3(x) and c5(x), i.e., x = EQ35.

2. Assume the coverage decay functions fi(t) are piecewise linear with Ki breakpoints for
all i ∈ V .

If di(x) is linear (has a breakpoint) on e, ci(x) has at most Ki+1 ( 2(Ki+1) ) breakpoints
on e. Therefore, ci(x) and cj(x) intersect in at most O(Ki + Kj) points. Hence,
|EQ| = O(Kmn2), where K = maxi∈V Ki.

If all fi are continuous, the permutation of the coverage functions can only change at
equilibrium points. This observation leads to the following theorem.

Theorem 2.1 Let N be an undirected network, w, λ ≥ 0, and fi be convex and continuous
for all i ∈ V . Then, V ∪ EQ ∪ L is a finite dominating set.

Before proving this result we will need the following lemma. Observe that if fi is convex,

v4 v5

2

4
d1

d2

d3

d4

d5

v4 v5

1

2

c1

c2

c3
c4

c5

EQ35

Figure 3: Distance and coverage functions on edge [v4, v5] of the network in Figure 2.
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then also

f̄i(t) =

{

fi(t) if li < t ≤ ui

0 if t > ui

is convex for t > li, since f(ui) = 0.

Lemma 2.1 Let fi be convex and continuous for all vi ∈ V , S ⊂ G, and z1, z2 ∈ e, e ∈ E,
be two consecutive elements of V ∪ L on edge e, i.e., [z1, z2] ∩ (V ∪ L) = {z1, z2}. Then,
ci(S ∪ {x}) is convex for x ∈ [z1, z2].

Proof
We have that di(S ∪ {x}) is concave for x ∈ [z1, z2], since di(x) is concave on an edge, di(S)
is constant with respect to x, and di(S ∪ {x}) = min {di(S), di(x)}. Moreover, we have that

ci(S ∪ {x}) = max {ci(S), ci(x)}

with ci(S) being constant with respect to x.
By assumption on z1 and z2, either di(x) ≤ li or di(x) > li for all x ∈ [z1, z2]. In the

former case, ci(x) = wi is constant. In the latter case, ci(x) = wif̄i(di(x)) is a composition
of a concave and a convex non-increasing function and therefore convex. Hence, ci(S ∪ {x})
is convex as a maximum over convex functions.

2

We are now ready to prove Theorem 2.1.

Proof
Augment G by inserting the elements of EQ ∪ L as new nodes. Denote the augmented
graph G′ = (V ′, E ′).

Let e ∈ E ′ be an edge of the augmented graph. As we added the equilibrium points to
the finite dominating set and all coverage decay functions are continuous, the order of the
functions {ci(x)}n

i=1 will not change on the edge. Thus, the objective function reduces to a
weighted sum of the coverage functions

g(x) =
n

∑

i=1

λi cσe(i)(x)

where σe denotes the corresponding permutation of the coverage functions on e. As the
coverage functions are convex (Lemma 2.1) and λ ≥ 0, g(x) is also convex as a weighted
sum of convex functions. Therefore, the objective function attains its maximum at one of
end nodes of e and the result follows.

2

As |L| = O(nm), the size of the finite dominating set is of order O(mn + |EQ|), where
|EQ| depends on the actual representations of the decay functions, see Example 2.1.
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If the decay functions fi are not convex, the above result no longer holds. However, we
can extend it to stepwise as well as continuous piecewise linear decay functions as follows.
Let rk

i , k = 0, . . . , Ki, with li = r0
i < r1

i < . . . < rKi

i = ui denote the breakpoints of the
decay functions fi, see also Section 1.1. Define Ri = {rk

i | k = 0, . . . , Ki}. Each breakpoint
of fi induces one or more breakpoints of the coverage functions ci. Denote by

BPi = {x ∈ G | di(x) = r ∈ Ri}

the set of breakpoints of the coverage functions ci induced by the breakpoints of the decay
functions. Define BP =

⋃

i∈V BPi as the set of all these breakpoints. Note that L, U ⊂ BP .

Theorem 2.2 Let N be an undirected network and w, λ ≥ 0.

1. For continuous piecewise linear decay functions, V ∪ BP ∪ EQ is a finite dominating
set.

2. For stepwise decay functions, V ∪ BP is a finite dominating set.

Proof
We use the same ideas as in the proof of Theorem 2.1.

1. Augment G by inserting the elements of EQ ∪ BP as new nodes. As a result, the
decay functions fi reduce to linear functions on each edge of the augmented graph.
Hence, the coverage functions ci are convex on each edge as a composition of a concave
and a linear non-increasing function.

Moreover, as the order of the functions {ci(x)}n
i=1 will not change on an edge, the

objective function reduces to a weighted sum of convex functions. Therefore, g(x)
attains its maximum at one of the end nodes of the edges of the augmented graph.

2. For stepwise functions, augment G by inserting the elements of BP as new nodes. Then,
the coverage functions ci are constant on the interior of each edge of the augmented
graph. As the order of the functions {ci(x)}n

i=1 will not change on the interior, the
objective function will also be constant. As w, λ ≥ 0, g(x) will always attain its
maximum at least at one of the end nodes of the edges of the augmented graph. See
Figure 4 for an illustration.

Hence, the result follows. 2

Concerning the size of the finite dominating sets, observe that |BPi| = O(mKi) as each
breakpoint r ∈ Ri may induce a breakpoint of a coverage function on each edge. Hence,
|BP | = O(mnK), where K = maxi∈V Ki. Moreover, we have |EQ| = O(mn2K). Thus, the
size of the finite dominating sets is O(mn2K) and O(mnK), respectively.

Unfortunately, it does not appear possible to characterize FDS for the case of general
coverage decay functions and unrestricted modeling vectors λ. However, we will see in the
following sections that FDS can be characterized for many important special cases.
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Efficient Algorithms

After identifying finite dominating sets, we now discuss how to efficiently compute them and,
subsequently, solve the corresponding problems. For the sake of brevity, we restrict ourselves
to stepwise and piecewise linear decay functions.

We start by considering the case of continuous piecewise linear decay functions. To solve
the problem, we have to determine the sets BP and EQ. BP can be computed in O(mnK)
time, as a distance function di consists of at most two linear pieces on an edge, and we can
solve the equations di(x) = rk

i , k = 0, . . . , Ki, in O(Ki) time. Now we turn to EQ. For
i, j ∈ V and k ∈ E we can compute the intersection points of the coverage functions ci and
cj on edge ek in O(Ki +Kj) time, since ci (cj) has at most O(Ki) (O(Kj)) breakpoints on ek.
To determine the set EQ we have to intersect pairwise all coverage functions on all edges,
which requires in total O(mn2K) time.

To find the optimal solution, we straight forwardly evaluate the objective function for
all elements of the finite dominating set. For a point x ∈ G, we can compute the objective
function value g(x) in O(n logn) time. Therefore, the overall complexity for solving the
problem is

O(mnK + mn2K + (n + mnK + mn2K)n log n) = O(mn3 log n K) .

For stepwise decay functions this reduces to O(mn2 log n K).

However, for continuous piecewise linear decay functions we can adapt the efficient al-
gorithm for the single-facility Ordered Median Problem presented in Kalcsics et al. [9] to
obtain a lower complexity algorithm. Observe, that the only breakpoints of the coverage
functions ci(x) occur at elements of BPi or at bottleneck points of the distance functions
di(x).

For an edge e ∈ E, we first compute the set of bottleneck points, equilibria, and elements
of BP on e. Afterward, we sort them in nondecreasing order from one of the end nodes.
Denote the elements of the sorted sequence by {x1, . . . , xQ}. Then, for any x in the interior
of the subedge connecting two consecutive elements xq and xq+1, the sorting of the coverage

b

ci

cj

g

rk
i = rℓ

j rk+1

i

Figure 4: Illustration for stepwise functions.
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functions ci does not change; moreover, the ci are linear on the subedge sq = [xq, xq+1] (as we
included the bottleneck and breakpoints) and hence also the objective function. Therefore,
if we know the objective value at xq and the slope of the objective function on sq, we can
obtain g(xq+1) in constant time. Moreover, we can update the slope of g at each xq also in
constant time (see Kalcsics [8] for more details). Only for the first element, x1, we have to
explicitly evaluate the objective function value g(x1) and the slope of g(x) on s1 in O(n log n)
time. Therefore, the overall complexity of the algorithm is O(mn2K log(nK)), as we have
O(n2K) bottleneck points, equilibria, and elements of BP on an edge.

2.1 Special Cases

For certain modeling vectors λ we can obtain smaller finite dominating sets, as the following
result shows.

Corollary 2.1 Let N be an undirected network, w, λ ≥ 0, and fi be convex for all i ∈ V .
Moreover, let the modeling weights be non-decreasing, i.e., λ1 ≤ . . . ≤ λn. Then, V ∪ L is
a finite dominating set.

Proof
Augment G by inserting the elements of L as new nodes. Denote the augmented graph
G′ = (V ′, E ′). From the definition of L follows that all coverage functions ci(x), i ∈ V , are
convex on each edge of the augmented graph.
For λ1 ≤ . . . ≤ λn, we have

g(x) =
n

∑

i=1

λi cσ(i)(x) = max
π∈P (1...n)

n
∑

i=1

λi cπ(i)(x)

as the permutation σ ∈ P (1 . . . n) that sorts the coverage functions ci in nondecreasing order
for a given x ∈ e′, e′ ∈ E ′, is identical to the permutation π∗ for which the maximum on the
right hand side is obtained (see, e.g., Hardy et al. [7]). As the coverage functions cπ(i)(x) are
convex on each edge of G′, so is the right hand side expression as a maximum of a weighted
sum of convex functions. Therefore, g(x) obtains its maximum at an end node of e′ and the
result follows.

2

For this special case, the size of the finite dominating set reduces to O(mn).
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2.2 Real-valued Modeling Weights: the Case of (Semi-) Obnox-
ious Facilities

First, we consider problems where the modeling weights are strictly non-positive, i.e., λ ≤
0 (alternatively, we could assume the node weights to be non-positive). Intuitively, this
corresponds to the case where customer benefit is maximized when their coverage is as low
as possible - which occurs in case of facilities like garbage dumps or nuclear waste sites,
i.e., facilities one would rather not be covered by. Such facilities are typically referred to as
“obnoxious facilities” in the location literature (see, e.g., Erkut and Neumann [6], Eiselt and
Laporte [5]). Since λ ≤ 0, we have,

max
x∈G

n
∑

i=1

λi cσ(i)(x) = −min
x∈G

n
∑

i=1

|λi| cσ(i)(x).

Observe that if fi is concave, then the function

f̄i(t) =

{

wi if di(S) ≤ li

fi(t) if li < di(S) ≤ ui

is concave for t ≤ ui, since f(li) = wi.

Lemma 2.2 Let fi be concave for all i ∈ V and z1, z2 be two consecutive elements of the set
V ∪BN ∪ U on an edge, i.e., [z1, z2]∩ (V ∪BN ∪ U) = {z1, z2}. Then, ci(x) is concave for
x ∈ [z1, z2].

Proof
As we included the bottleneck points, di(x) is linear for x ∈ [z1, z2]. By assumption on z1

and z2, either di(x) ≤ ui or di(x) > ui for all x ∈ [z1, z2]. In the latter case, ci(x) is constant.
In the former case, ci(x) is a composition of a linear and a concave non-increasing function
and therefore concave.

2

Now we can state a result analogous to Theorem 2.1.

Theorem 2.3 Let N be an undirected network, λ ≤ 0 ≤ w, and fi be concave and continuous
for all i ∈ V . Then, V ∪ BN ∪ EQ ∪ U is a finite dominating set.

Proof
Augment G by inserting the elements of BN ∪ EQ ∪ U as new nodes. Denote the augmented
graph G′ = (V ′, E ′).

Let e ∈ E ′ be an edge of the augmented graph. As we added the equilibrium points to
the finite dominating set and all coverage decay functions are continuous, the order of the
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functions {ci(x)}n
i=1 will not change on the edge. Thus, the objective function reduces to a

weighted sum of the coverage functions

g(x) =

n
∑

i=1

λi cσe(i)(x)

where σe denotes the corresponding permutation of the coverage functions on e. As the
coverage functions cσe(i) are concave (Lemma 2.2) and λ ≤ 0, g(x) is convex as a negatively
weighted sum of concave functions. Therefore, the objective function attains its maximum
at one of the end nodes of an edge and the result follows.

2

As |U |, |BN | = O(nm), the size of the finite dominating set is of order O(nm + |EQ|),
where |EQ| depends on the actual representations of the decay functions.

Now we turn to the problem with semi-obnoxious facilities where we allow the modeling
weights to be real-valued. Unfortunately, the result of Theorem 2.3 does not carry over
to this case. The problem is that for a mixture of negative and positive λi, the functions
λi cσe(i)(x) we are summing up for the objective function are convex for negative lambdas
and concave for λi > 0. Hence, their sum will not necessarily be concave or convex.

However, we can extend Theorem 2.2 for stepwise and continuous piecewise linear decay
functions to real-valued node and modeling weights. But before, we need the following
definition. For two adjacent elements x, y of the set V ∪ BP on an edge, we denote by
mp(x, y) the midpoint between the two elements and by MP the set of all midpoints between
adjacent elements.

Theorem 2.4 Let N be an undirected network and w, λ ∈ IRn.

1. For continuous piecewise linear decay functions, V ∪ BN ∪ BP ∪ EQ is a finite
dominating set.

2. For stepwise decay functions, V ∪ BP ∪ MP is a finite dominating set.

Proof
The proof is similar to the one of Theorem 2.2.

1. By inserting the bottleneck points in addition to the elements of EQ∪BP , the distance
functions are linear on each edge of the augmented graph. Hence, also the coverage
functions are linear on each edge as a composition of two linear functions di and fi.
Therefore, g(x) again attains its maximum at one of the end nodes of the edges of the
augmented graph.
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2. As for the nonnegative case, the objective function is constant in the interior of an
edge. However, now a point in the interior can have a strictly larger objective value
then one of the end nodes. See Figure 4 for an illustration; if we want to minimize
coverage, the interior of the right most segment of the objective function would yield
the minimum. Therefore, we also have to check an interior point, for example the
midpoint, for optimality.

Hence, the result follows. 2

The size of the finite dominating sets is again O(mn2K) and O(mnK), respectively,
as |BN | = O(mn) and |MP | = O(mnK). Moreover, also the complexity for solving the
problems is the same as in the nonnegative case.

2.3 The Conditional Location Case

Assume that there are already some facilities in operation. Denote C ∈ G the set of points
where these facilities are sited. The task is then to optimally locate an additional facility on
the network.

Define the conditional distance function dc
i(x)

dc
i(x) = di(C ∪ {x}) .

The functions dc
i are piecewise linear and concave with at most two breakpoints. Therefore,

the results for the unconditional problem with nonnegative modeling vectors carry over to
the conditional location case.

Now consider the conditional obnoxious case, i.e., λ ≤ 0. For the obnoxious unconditional
problem we had to add the bottleneck points to the FDS in order to have the distance func-
tions being linear between consecutive elements of the FDS. Now, the conditional distance
functions have breakpoints at bottleneck points or at points where

di(x) = di(C) .

Formally, these points are defined as follows.

Definition 2.2 Conditional extreme points
Let vi ∈ V and e ∈ E. A point x ∈ G is called conditional extreme point of node vi,
if di(x) = di(C). CEPi denotes the set of all conditional extreme points of node vi and
CEP =

⋃n

i=1 CEPi the set of all conditional extreme points of nodes.

Note that CEP has O(nm) elements. Now we can prove analogous results to the uncon-
ditional obnoxious problem.
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Lemma 2.3 Let fi be concave for all i ∈ V and z1, z2 be two consecutive elements of the set
V ∪BN ∪CEP ∪U on an edge, i.e., [z1, z2]∩ (V ∪BN ∪CEP ∪U) = {z1, z2}. Then, ci(x)
is concave for x ∈ [z1, z2].

Theorem 2.5 Let N be an undirected network, λ ≤ 0 ≤ w, and fi be concave and continuous
for all i ∈ V . Then, V ∪ BN ∪ CEP ∪ EQ ∪ U is a finite dominating set.

Theorem 2.6 Let N be an undirected network, w, λ ∈ IRn, and fi be continuous piecewise
linear (stepwise) functions. Then, V ∪ BN ∪ CEP ∪ EQ ∪ BP (V ∪ CEP ∪ BP ∪ MP )
is a finite dominating set.

The finite dominating sets and the algorithms have the same size and complexity, respec-
tively, as the ones for the unconditional problem.

3 Multi Facility

Let now |S| = p > 1 and w, λ ≥ 0. First, we note that this problem is NP-hard (since it
reduces to the gradual covering decay problem of Berman et al. [3] for λ = (1, . . . , 1)).

Before turning to the general problem, we first discuss a special case. Namely, the
problem with non-decreasing modeling weights, i.e., λ1 ≤ . . . ≤ λn. Here, we can prove a
result analogous to the one in Berman et al. [3].

Theorem 3.1 Let N be an undirected network, w, λ ≥ 0, and fi be convex for all i ∈ V .
Moreover, let the modeling weights be non-decreasing, i.e., λ1 ≤ . . . ≤ λn. Then, V ∪ L is
a finite dominating set.

Proof
Augment G by inserting the elements of L as new nodes. Denote the augmented graph
G′ = (V ′, E ′). From Lemma 2.1 we know that ci(S ∪ {x}), S ⊂ G, is convex for x ∈ e′,
e′ ∈ E ′, i.e., on each edge of the augmented graph G′. Moreover, for λ1 ≤ . . . ≤ λn, we have

g(S ∪ {x}) =
n

∑

i=1

λi cσ(i)(S ∪ {x}) = max
π∈P (1...n)

n
∑

i=1

λi cπ(i)(S ∪ {x})

as the permutation σ ∈ P (1 . . . n) that sorts the coverage functions ci in nondecreasing order
for a given x ∈ e′ is identical to the permutation π∗ for which the maximum on the right
hand side is obtained (see, e.g., Hardy et al. [7]). As the coverage functions cπ(i)(S ∪ {x})
are convex on each edge of the augmented graph, so is the right hand side expression as a
maximum of a weighted sum of convex functions.
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Figure 5: The tree network used in Example 3.1.

Suppose S∗ is an optimal set of locations, and there exists s∗ ∈ S∗ \{V ∪L}. Let s∗ ∈ e∗,
e∗ ∈ E ′. Replacing s∗ by one of the end nodes of e∗ will not decrease the objective function
value. Thus, the result follows.

2

Now, we turn to the general case. Unfortunately, the finite dominating set for the single
facility problem, V ∪ L ∪ EQ, is no longer valid for p > 1, as the following counter example
shows.

Example 3.1 Consider the tree network in Figure 5 with ℓi = 0, i ∈ {1, . . . , 4, 6}, ℓ5 = 1,
and ui = 3, i = 1, 4, 6, u2 = 6, u3 = 5, u5 = 7. Let p = 2 and λ = (1, 0.2, . . . , 0.2). Figure 6
shows the coverage functions on the edges [v1, v2] and [v4, v6].

We will show that V ∪ L ∪ EQ is no longer a finite dominating set for the multifacility
problem. If we restrict X2 to be a subset of V ∪ L ∪ EQ, the optimal solution is given by

S =
{

EQ13 =
(

[v1, v2],
1
2

)

, EQ46 =
(

[v4, v6],
1
2

)}

,

with objective value g(S) = 0.883̄. However, if we drop this restriction we obtain a slightly
better solution, namely

S∗ =
{

x∗ =
(

[v1, v2],
2
3

)

, EQ46 =
(

[v4, v6],
1
2

)}

,

with an optimal objective function value of 0.886̄. Note that x∗ is neither a node, element of
the set L, or equilibrium point.

Fortunately, for special classes of modeling vectors we can identify finite dominating sets.
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Figure 6: Coverage functions on [v1, v2] and [v4, v6] of the graph in Figure 5.

3.1 A Finite Dominating Set for a Special Classes of Modeling
Vectors

For the ordered median location problem, for modeling vectors λ with

λ1 = . . . = λb < λb+1 = . . . = λn, b ∈ {1, . . . , n − 1}

Kalcsics et al. [10] prove a finite dominating set. This result was later extended by Kalcsics [8]
to modeling vectors λ with

λ1 ≥ . . . ≥ λb , λb+1 ≥ . . . ≥ λn and λb < λb+1 . (4)

As the only requirement for the proofs was that the distance functions are concave and
continuous, we can prove an analogous result for the gradual covering problem with convex
and continuous coverage functions. Here, however, with modeling vectors λ of the form

λ1 ≤ . . . ≤ λb , λb+1 ≤ . . . ≤ λn and λb > λb+1 . (5)

We denote by Λb the set of all modeling vectors that fulfill (5). Note that the modeling
vectors λ for the median, k-Cent-cover, k-cover, and trimmed-cover problem belong to Λb.

In Theorem 3.1 we could observe that the problem is easy to solve if all modeling weights
are non-decreasing. The modeling vectors λ ∈ Λb have a similar representation. The only
difference is, that there exist two consecutive modeling weights λb and λb+1 where this
property does not hold. The approach to identify a finite dominating set (FDS) is to consider
situations where the order of the coverage functions changes at the positions b and b + 1,
i.e., where cσ(b)(S) = cσ(b+1)(S). Analyzing what happens in these situations will lead to the
desired FDS.

From now on, we assume that N = (G, ℓ) is an undirected network, p ≥ 2, w, λ ≥ 0, and
λ ∈ Λb. Moreover, let fi be continuous and convex for all i ∈ V . The following discretization
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result is equivalent to the one for the p−facility Ordered Median Problem (pOMP) with
lambda vectors fulfilling (4), see Kalcsics et al. [10]. The only difference is, that the set V
has to be replaced by V ∪L. We briefly describe the analogy. The Ordered Gradual Covering
Location Problem

max
S⊂G

|S|=p

n
∑

i=1

λi cσ(i)(S)

can be equivalently formulated as

min
S⊂G
|S|=p

n
∑

i=1

λ̃i c̃σ(i)(S) ,

where λ̃i := λn−i+1 and c̃i(S) := −ci(S). If λ ∈ Λb, then λ̃ fulfills (4). As the function
ci(S ∪ {x}) is continuous and convex between consecutive elements of V ∪ L on an edge,
c̃i(S ∪ {x}) will continuous and concave.

Now, the p−facility Ordered Median Problem is defined as

min
S⊂G
|S|=p

n
∑

i=1

λ̃i d
w
σ(i)(S) ,

where dw
i (S) = widi(S) and λ̃ fulfills (4). For proving the results for the pOMP, [10] only

depend on the fact that the functions dw
i (S ∪{x}) are continuous and concave. Therefore, if

we restrict ourselves to subedges between consecutive elements of V ∪ L on an edge, we can
simply replace dw

i (S) by c̃i(S) and use the same techniques as in [10] to prove the results.

Before we present the discretization result, we need the following two definitions.

Definition 3.1 Ranges
Let S ⊂ G. Define the set of ranges (canonical set of distances) by

R := { r ∈ IR | ∃x ∈ EQij : ci(x) = r = cj(x) or

∃ vi ∈ V, x ∈ V ∪ L : r = ci(x) } ,

and the set of ranges with respect to S by

R(S) := { r ∈ R | ∃x ∈ EQij ∩ S : ci(x) = r = cj(x) or

∃ vi ∈ V, ∃x ∈ (V ∪ L) ∩ S : r = ci(x) } .

The ranges correspond to coverage function values of equilibria or node to node distances.

Definition 3.2 Extreme points
Let r ∈ IR. A point x ∈ G is called r-extreme point, if there exists a node vi ∈ V with
r = ci(x). By

EP (r) = {x ∈ G
∣

∣ ∃ i ∈ {1, . . . , n} : r = ci(x)}
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Figure 7: The path graph used in Example 3.2.

we denote the set of all r-extreme points on the network and by EP (Q) =
⋃

r∈Q EP (r) the
set of r-extreme points with respect to a set Q ⊂ IR of values.

Now, we can state the FDS.

Theorem 3.2 There always exists an optimal solution S ⊂ EP (R) such that S ∩ (V ∪ L ∪
EQ) 6= ∅ and S ⊂ EP (R(S)).

That is, there always exists an optimal solution S∗ which contains a node, an element of
L, or an equilibrium, and all other solution points are extreme points with respect to the
nodes, the elements of L, and the equilibria of S∗. (Observe that each node, element of L,
or equilibrium is an extreme point with respect to itself.)

Unfortunately, this result does not hold for arbitrary modeling vectors, as the following
counterexample shows.

Example 3.2 Consider the path graph in Figure 7 with ℓi = 0, i = 1, . . . , 5, ui = 10,
i = 1, 2, 4, 5, and u3 = 7. Let p = 2 and λ = (0, 1, 0, 1, 1). Figure 8 shows the coverage
functions on the edges [v1, v2] and [v3, v4]. As in an optimal solution nodes v1 and v2 will
always be covered by a solution point on [v1, v2] and the other nodes to a point on [v3, v4] or
[v4, v5], the respective coverage functions are omitted. For this example, X2 = (x1, x2) with
x1 = ([v1, v2], 0.3) and x2 = ([v3, v4], 0.7) is an optimal solution. Note that neither solution
point is a node, element of the set L, equilibrium or extreme point.

4 Solving the Discrete Multi-Facility OGCP

In this section we discuss exact solution approaches for discrete multi-facility OGCP, i.e.,
we assume that the set of potential locations for the new facilities is discrete. In view of
the results in the previous section, a Finite Dominating Set can, under some conditions, be
identified a priori in network location problems, which allows us to treat them as discrete
location problems; alternatively, a discrete problem may arise in its own right in cases where
potential facility locations have been pre-selected.

Without any loss of generality we assume that V is the set of potential facility sites (since
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Figure 8: Coverage functions on [v1, v2] and [v3, v4] of the graph in Figure 7.

any non-nodal sites can be added to the set of nodes). The following formulation directly
extends the standard UFLP formulation (e.g. see Berman and Krass [2]) and is similar to
formulation (OMP1) presented in Nickel and Puerto [13].

Let us define the following quantity and set:

cij =







wi if di(j) ≤ li
wifi(di(j)) if li ≤ di(j) ≤ ui for i, j ∈ V
0 if di(j) ≥ ui

Qij = {l ∈ {1, . . . , n}|cil ≥ cij}.

The decision variables and the integer programming formulation can now be stated as follows:

yj =

{

1 if a new facility is established at vj ∈ V
0 else

xijk =















1 if node vi is covered by a facility at vj

and the corresponding coverage level
is at position k in the sorted vector

0 else

for i, j, k = 1, . . . , n.

max

n
∑

k=1

n
∑

i=1

n
∑

j=1

λk cijxijk

s.t.

n
∑

j=1

yj = p (6)
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xijk ≤ yj ∀i, j, k = 1, . . . , n (7)

n
∑

j=1

n
∑

k=1

xijk = 1 ∀i = 1, . . . , n (8)

n
∑

i=1

n
∑

j=1

xijk = 1 ∀k = 1, . . . , n (9)

n
∑

i=1

n
∑

j=1

cijxijk ≤
n

∑

i=1

n
∑

j=1

cij xij(k+1) ∀k = 1, . . . , n − 1 (10)

n
∑

k=1

∑

l∈Qij

xilk ≥ yj ∀i, j = 1, . . . , n (11)

yj, xijk ∈ {0, 1} ∀i, j, k = 1, . . . , n

Constraints (6) ensure that p facilities are located. Constraints (7) guarantees that node
vi can only be covered from vj if a facility has been established there. Constraints (8) and (9)
make sure that node vi is covered at exactly once (recall that cij = 0 is possible) and, that
one coverage value has to be assigned to each position. Constraints (10) ensure that the
coverage levels of the nodes are sorted in non-decreasing order for the objective function.
Finally, constraints (11) guarantee that any node vi is covered at its maximal level. The
latter constraints are only required in case of negative modeling vectors λ - otherwise they
will hold automatically due to the objective function.

This IP formulation requires n3+n decision variables and n3+n2+3n constraints and thus
the dimensionality grows very quickly with n. We now present an alternative IP formulation
that takes advantage of the structure of the coverage functions and can yield significantly
more compact and solvable formulations.

This formulation is based on the one in Berman and Krass [2] as well as Marin, Nickel,
Puerto and Velten [11]. The main idea is that in order to compute the contribution of
customer node vi ∈ V to the objective function, it is not necessary to know where the
customer is covered from - we only need to know the coverage level the customer receives.
For example, in the traditional coverage context, node vi is either covered or not, and thus the
coverage function can only take on two values: wi or 0. In the gradual coverage framework,
the number of possible values of the coverage function can be larger (theoretically, as large as
n - if every possible facility location results in a different coverage), but may also be small in
many applications. The formulation below exploits this feature by focusing on the coverage
level received by each customer node.

Recall the definition of cij. For each vi ∈ V the distinct coverage values in the set

{cij | vj ∈ V } are sorted as c
(0)
i < . . . < c

(Gi)
i . We will call these values the coverage levels of

node vi. Note that the number of coverage levels Gi ≤ n. We also define the following sets
and decision variables (the meaning of decision variables yj is the same as in the previous
formulation) :
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Ji(r) = {vj ∈ V |cij = c
(r)
i } for vi ∈ V and r ∈ {0, . . . , Gi}—the set of nodes from which vi

can be covered at level r.

x
(r)
ik = 1 if the node with kth smallest coverage level in the solution receives coverage level

c
(r)
i ; x

(r)
ik = 0 otherwise. Here k ∈ {1, . . . , n}, r ∈ {1, . . . , Gi}.

The “improved IP” formulation is:

max

n
∑

k=1

n
∑

i=1

Gi
∑

r=1

λk c
(r)
i x

(r)
ik

s.t

n
∑

j=1

yj = p (12)

x
(r)
ik ≤

∑

j∈Ji(r)

yj, for i, k = 1, . . . , n, r = 1, . . . , Gi (13)

n
∑

i=1

Gi
∑

r=1

x
(r)
ik ≤ 1, for k = 1, . . . , n (14)

n
∑

k=1

Gi
∑

r=1

x
(r)
ik ≤ 1, for i = 1, . . . , n (15)

n
∑

i=1

Gi
∑

r=1

c
(r)
i x

(r)
ik ≤

n
∑

i=1

Gi
∑

r=1

c
(r)
i x

(r)
i(k+1), for k = 1, . . . , n − 1 (16)

p

n
∑

k=1

Gi
∑

r=ρ

c
(r)
i x

(r)
ik ≥

∑

j∈Ji(ρ)

yj, for i = 1, . . . , n, ρ = 1, . . . , Gi (17)

x
(r)
ik , yj ∈ {0, 1}

The objective function multiplies the k − th smallest coverage level by the appropriate
component of the modeling vector λ. Note that index k refers to the position of the node-
coverage level combination in the ordered list used in the objective function. Constraint
(12) require that p facilities be located, and constraints (13) ensure that node vi can receive
coverage level r only if one or more facilities are open in the set Ji(r). Constraints (14)
state there is at most one node-coverage level combination assigned to each position k. Note
that we do not have decision variables corresponding to node-coverage level combinations
receiving coverage zero, since zero coverage does not contribute to the objective function
(such combinations would have index r = 0, but we always keep r ≥ 1). Thus, some
positions k may not be assigned to any node-coverage level combination if the number of
positive combinations is less than n. That is why constraints (14) are inequalities. Similarly,
constraints (15) require that each node i must be assigned to at most one coverage level
and one position. Constraints (16) are sorting constraints, ensuring that the node-coverage
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level combination assigned to position k does not have higher coverage than the combination
assigned to position k + 1. These constraints are not necessary when the components of the
modeling vector are non-decreasing, since they will be automatically enforced by the objective
function. Finally, constraints (17) specify that each node be assigned to the highest possible
coverage level; these constraints are not necessary when the components of the modeling
vector λ are non-negative.

The improved IP formulation has n + n
∑n

i=1 Gi ≤ n + n3 decision variables; when the
number of distinct coverage levels is n for each node vi ∈ V it is equivalent to the previous
formulation. However, as noted earlier, Gi may be much smaller than n for many applica-
tions: e.g., Gi = 1 for the standard cover model and Gi = s − 1 when the coverage decay
function fi(t) is a s−level step function. In these cases, the improved IP formulation is sig-
nificantly more compact than the original one. Moreover, as proved in [2] for the GCLP case,
the LP relaxation for the improved formulation is just as tight as for the original formulation,
thus using the improved formulation cannot hurt in terms of the problem solvability. The
improved IP formulation is illustrated in the following example.

Example 4.1 Consider a triangle network with link lengths l(1, 2) = 2, l(1, 3) = 2, l(2, 3) =
1. The coverage decay function is a simple cover with radius 1 (i.e., only node 1 is covered
from 1, while nodes 2 and 3 are covered from either 2 or 3). The node weights are w1 = 5,
w2 = 2, w1 = 1, one facility is to be located, and λ = {1, 1, 0}, indicating that we wish to
maximize the total coverage of two worst-covered nodes .

Here the coverage values are same as node weights, thus, c
(0)
1 = c

(0)
2 = c

(0)
3 = 0, c

(1)
1 = 5,

c
(1)
2 = 2, and c3

(1) = 1. It follows that G1 = G2 = G3 = 1 and J1(1) = {1} and J2(1) =

J3(1) = {2, 3}.

The objective function is: max 5(x
(1)
11 + x

(1)
12 ) + 2(x

(1)
21 + x

(1)
22 ) + (x

(1)
31 + x

(1)
32 ) (the values

corresponding to k = 3 are skipped since λ3 = 0).
Constraint (12) is y1 + y2 + y3 = 1.
The coverage constraints (13) are:

x
(1)
1k ≤ y1; k = 1, 2, 3

x
(1)
ik ≤ y2 + y3 for i = 2, 3 and k = 1, 2, 3

Constraints (14) are:

x
(1)
1k + x

(1)
2k + x

(1)
3k ≤ 1, for k = 1, 2, 3

Similarly, constraints (15) are:

x
(1)
i1 + x

(1)
i2 + x

(1)
i3 ≤ 1, for i = 1, 2, 3

Finally, the sorting constraint (16) are:

5x
(1)
11 + 2x

(1)
21 + x

(1)
31 ≤ 5x

(1)
12 + 2x

(1)
22 + x

(1)
32

5x
(1)
12 + 2x

(1)
22 + x

(1)
32 ≤ 5x

(1)
13 + 2x

(1)
23 + x

(1)
33 .
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Constraints (17) are not required since the modeling vector is non-negative. The solution
can be obtained by inspection.

First suppose y1 = 1, y2 = y3 = 0. Constraints (13) imply that x
(1)
ik = 0 for i = 2, 3

and k = 1, 2, 3. Constraints (16), together with (14, 15) imply that x
(1)
13 = 1, x

(1)
12 = 0,

and x
(1)
11 = 0, leading to the objective function value of 0. Note that no node-coverage level

combination is assigned to positions 1 and 2 in this case, signifying that the corresponding
coverage levels equal to 0.

On the other hand, if y2 = 1, y1 = y3 = 0 then x
(1)
1k = 0 for k = 1, 2, 3. Checking the

last constraint we see that the only feasible solution is x
(1)
23 = 1, x

(1)
32 = 1, with all other

components of x
(1)
ik equal to 0. This solution corresponds to the objective function value of 1.

The case of y3 = 1, y1 = y2 = 0 leads to the same solution, which must be optimal. Thus,
the optimal solution is to locate a facility either at nodes 2 or 3, obtaining the objective
function value of 1.

4.1 Computational Results

To test the solvability of the improved IP formulation we conducted a series of computational
experiments. Random networks were generated with n = 5, 10, 15 and 20, nodes. A step-
function coverage decay function was used with 5 coverage levels; the corresponding coverage
radii were set to 20%, 40%, 60%, 80%, and 100% of the average shortest distance between
any two nodes on the network. The number of facilities p to be located was set to p = 1, 3, 5.
Five types of modeling vectors λ were used, as described below:

Type 1: λ = (1, . . . , 1, 0, . . . , 0)

Type 2: λ = (0, . . . , 0, 1, . . . , 1)

Type 3: Components of λ are ascending random numbers in [0, 1]

Type 4: λ = (1, . . . , 1,−1, . . . ,−1)

Type 5; Components of λ were randomly generated in [0, 1].

In total, 300 problem instances were generated. The instances were solved using CPLEX
solver on a Pentium 4 desktop with 3.2 Ghz CPU and 1MB of RAM. The time limit for
each instance was set to 2 hrs of CPU time. The same formulation was used for all instances
- i.e., constraints (16) and (17) were not dropped even when the structure of the λ vector
indicated that these constraints were not necessary (this was done to facilitate comparisons
across different problem instances). The overall results are presented on Tables 1 and 2
below. Table 1 summarizes the results for all λ types, while Table 2 contains results for
Type 2 λ vectors only.

Overall, the OGCLP appears to be quite difficult to solve except for small instances.
As expected, the number of variables and constraints grows rapidly with n - the problem
with 20 nodes results in an IP with nearly 2000 variables and constraints. The majority of
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N p Time (sec) Opt. Gap % Optimal # Variables # Constraints

5 1 0.05 57% 100% 70 93
3 0.04 48% 100% 70 93
5 0.01 46% 100% 70 93

5 Total 0.03 51% 100% 70 93

10 1 0.24 71% 100% 360 415
3 5.03 43% 100% 360 415
5 4.87 38% 100% 360 415

10 Total 3.38 50% 100% 360 415

15 1 41.01 46% 100% 915 1005
3 2,444.98 25% 76% 915 1005
5 3,173.87 11% 64% 915 1005

15 Total 1,886.62 30% 80% 915 1005

20 1 2,537.44 62% 76% 1800 1929
3 5,482.61 16% 28% 1800 1929
5 5,201.48 8% 32% 1800 1929

20 Total 4,407.18 40% 45% 1800 1929

Grand Total 1,574.30 44% 81%

Table 1: Computational results for the Improved IP for OGCLP for all modeling vector
types.

20-node problems with more than 1 facility could not be solved within 2 hours of CPU time.
Moreover, the optimality gap (relative difference between IP solution and the LP relaxation)
is large in most cases, indicating that the formulation is not tight.

The IP difficulty appears to be largely due to the sorting and largest-level constraints
(16-17). Recall that when the components of λ are non-negative and non-decreasing, these
constraints can be removed from the formulation; Type 2 λ vectors satisfy this requirement.
The resulting formulation is then quite close to the GCLP formulation in [2], which is
known to be very integer-friendly - with LP relaxation often having an integer solution or
IP achieving integrality after just a few iterations of the solver. Table 2 shows that these
properties appear to translate to the OGCLP case as well. Even though constraints (16-
17) were retained in the formulation, they are redundant (for the IP). It can be seen that
optimality gaps are much smaller than for the general case, all instances with less than 20
nodes were solved in a few seconds, and the solution failures for 20-node instances with p = 3
and 5 were mostly due to memory issues (i.e., problem size) rather than to the tightness of
the formulation. Similar improvements were observed for Type 3 λ vectors and, to a lesser
extent for Type 4 vectors - in the latter case, only constraints (16) can be removed. On the
other hand, the worst results were observed for decreasing λ vectors of Type 1 - the lack of
tightness of the formulation appears to be particularly severe in this case.

In summary, our results indicate that IP-based approach to general OGCLP instances
can only deal with relatively small problem instances; as noted in [13], the sorting constraints
appear to cause particular problems for integer programming approaches in OMP-type mod-
els. The situation is better when the components of the modeling vector are non-decreasing
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N p Time (sec) Opt. Gap % Optimal # Variables # Constraints

5 1 0.01 29% 100% 70 93
3 0.02 11% 100% 70 93
5 0.01 16% 100% 70 93

5 Total 0.01 19% 100% 70 93

10 1 0.03 43% 100% 360 415
3 0.97 16% 100% 360 415
5 0.39 15% 100% 360 415

10 Total 0.46 25% 100% 360 415

15 1 1.38 9% 100% 915 1005
3 6.26 5% 100% 915 1005
5 2.72 4% 100% 915 1005

15 Total 3.45 6% 100% 915 1005

20 1 6.42 33% 100% 1800 1929
3 4,423.51 14% 40% 1800 1929
5 3,757.57 9% 60% 1800 1929

20 Total 2,729.16 22% 67% 1800 1929

Grand Total 683.27 17% 92% 786.25 860.5

Table 2: Computational results for the Improved IP for OGCLP for Type 2 types only.

and non-negative, however the large dimensionality of the formulation is a concern in that
case as well. On one hand, this lack of solvability is hardly surprising - after all, as shown
earlier, OGCLP is a very general model including most standard location models as special
cases; no easily-exploitable special structure is present for this case. On the other hand,
further work on exact and approximate solution techniques for OGCLP is clearly in order,
as the potential payoff (having a general method for most types of location problems) is
large.

5 Summary

In this paper we formulated a new network location model - Ordered Gradual Cover Location
Problem - which generalizes location problems with median, center and cover objectives, as
well as their extensions, such as Ordered Median and Gradual Cover. Finite Dominating
Set results were obtained for many types of modeling vectors for the 1-facility case; more
restrictive results were derived for the multi-facility case. We also investigated exact solutions
of discrete version of OGCLP via Integer Programming.

Clearly, much work remains to be done, particularly in the area of efficient solutions
techniques. Sorting constraints needed to capture the effects of modeling vectors lead to
formulations that are large and not very tight. Constraint programming approaches (which
may have an easier time of representing such constraints) may be particularly effective here.
Heuristic algorithms should be investigated in future work as well - after all, such algorithms
are quite effective for gradual cover problems. Of course, having an effective algorithm (either
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exact or approximate) for such a general problem would be extremely useful.

References

[1] O. Berman and D. Krass. Generalized maximum cover location problem. Computers &
Operations Research, 29:563–581, 2002.

[2] O. Berman and D. Krass. An improved ip formulation for the uncapacitated facility
location problem: Capitalizing on objective function structure. Annals of Operations
Research, 136:21–34, 2005.

[3] O. Berman, Z. Drezner, and D. Krass. The gradual covering decay location problem on
a network. European Journal of Operational Research, 151:474–480, 2003.

[4] D. M. S. D. Current, J. Discrete network location models. In Z. Drezner and
H. Hamacher, editors, Facility Loaction: Applications and Theory, pages 81–118.
Springer, 2002.

[5] H. Eiselt and G. Laporte. Objectives in location problems. In Z. Drezner, editor, Facility
Loaction: A Survey of Applications and Methods, pages 151–180. Springer, 1995.

[6] E. Erkut and S. Neuman. Analytical models for locating undesirable facilities. European
Journal of Operational Research, 40:275–291, 1989.
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