
Grid Workflow Workshop 2011 GWW 2011

A Workflow Management Platform for Media Analysis in
BPEL-based Grid Environments
Benjamin Ihle 1, Sebastian Kirch 1, Ernst Juhnke 2, Tim Dörnemann 2,
Dominik Seiler 2, Bernd Freisleben 2

1Fraunhofer IAIS, NetMedia, Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
2Dept. of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 3,
D-35032 Marburg, Germany

ABSTRACT
Motivation: In many media applications, there is a need to index
very large amounts of audiovisual content in a minimum of time. Due
to their scalability, Grid infrastructures are well suited for processing
a large number of media files. Within the BMBF1-funded research
project MediaGrid2, a distributed media analysis platform is currently
being developed. It enables its users to analyze and index large
quantities of multimedia data within a short amount of time. Grid
services as distributed processing units and BPEL4Grid [10] as a
scientific BPEL3-based workflow system are the foundations of the
platform. To reduce the interface complexity and make the platform
user-friendly, additional components have been added. This paper
describes the architecture of the media analysis platform and the
components involved.
Results: An architecture offering a generic job interface in
combination with an extensible BPEL repository is presented. The
complexity of the system is hidden from the user and shifted to the
platform provider. Thereby, the barrier to use the system as an end
user is lowered to a minimum.
Availability: Parts of the components that are combined to form the
media analysis platform already exist (for instance, the generic job
interface and the BPEL engine). Further enhancements such as the
BPEL Repository, the BPEL Adapter Repository and the Mapping
and Invocation Component will be integrated into the platform and
will be made available in 2011.
Contact: benjamin.ihle@iais.fraunhofer.de

1 INTRODUCTION
The MediaGrid research project deals with distributed media
analysis in Grid environments. The aim of the project is to build a
Grid infrastructure that provides distributed services (encapsulating
adequate algorithms) for analyzing audio and video content.

In MediaGrid, media analysis is conducted based on several
processing steps (implemented as distributed Grid services) that
are orchestrated using workflow technology. The services can be
arranged differently in terms of their order of processing. To
manage various sequences of distributed Grid services, MediaGrid

1 Bundesministerium für Bildung und Forschung (German Federal Ministry
of Education and Research)
2 http://www.mediagrid-community.de
3 Business Process Execution Language

uses the Business Process Execution Language (BPEL) – the de
facto standard for business process modeling in today’s enterprises.
Moreover, BPEL is already widely used for the implementation and
execution of workflows in scientific applications [1, 7].

This paper presents a system architecture for performing media
analysis via a BPEL-based service platform in Grid environments.
As a key feature, it shifts the complexity of a workflow system
for distributed job processing from the customer to the platform
provider. At the same time, the entire functionality provided by the
Grid service remains available for the customer to the full extent.
This is achieved by offering a generic interface that simplifies the
usage of distributed services and significantly lowers the barrier
to entry for the user to integrate the provided services in his or
her own workflow. The paper gives an overview of the software
components that are part of the workflow management system for
service-oriented and distributed media applications.

This paper is organized as follows. Section 2 provides a general
overview of the involved components and briefly describes their
interaction. In Section 3, the BPEL4Grid engine used to execute
Grid-enabled workflows is presented. Section 4 describes the
components responsible for workflow management, while Section
5 depicts the user interface for job submission and monitoring.
Projects related to the work presented in this paper are described
in Section 6. Finally, Section 7 concludes the paper and outlines
areas for future research.

2 ARCHITECTURAL OVERVIEW
In this section, the architecture of the system is described from
a bird’s-eye view to illustrate the interplay of the different
components. The architecture includes several components, as
depicted in Figure 1. The system’s foundation is a service-oriented
architecture based on Web and Grid services orchestrated using
BPEL workflows. Since BPEL has a number of drawbacks with
respect to WSRF-based Grid services, the Grid-enabled workflow
modeling tool Domain-Adaptable, Visual BPEL4WS Orchestrator
(DAVO) [5] and the BPEL4Grid Engine [10] are used to model and
execute Grid-specific workflows.

The BPEL4Grid Engine only provides a workflow’s interface
description (WSDL document), but no additional metadata like
information on parameters. This data is required to fulfill the
main goal of this work: ease the invocation of the deployed
workflows. Therefore, we introduce an additional component for

Copyright c© 2011 for the individual papers by the papers’ authors. Copying permitted only for private and academic purposes. 1



Generic Grid Workflow Management Platform

Services Layer

Platform Layer

Customer Layer

BPEL

Repository

 BPEL Adapter

Repository

Job Service

BPEL Engine

Customer

Generic Job

Description

WS

BPEL

WS 1

BPEL Mapping and Invocation 

Component

...

Grid

Service

2

Grid

Service 

1

BPEL Workflow

ProviderDeveloper

Job

Queue

Asynchronous

Job Submission

Synchronous

Job Processing

Synchronous

Job Processing

WS

...
BPEL

WS 2

Control Flow

Data Flow

Legend

Job Type → BPEL URI

BPEL Adapter

Jobs

Jobs

BPEL URI

BPEL Adapter

Job Type / Parameters

BPEL WS URL

WS Stubs

WS Stubs

Generation

BPEL 

Workflows

Fig. 1. Architecture overview of the proposed system

workflow registration: the BPEL Repository. Besides providing
documentation on available workflows, it is also responsible for
creating and storing Web Service stubs used to invoke the deployed
workflows.

To invoke a workflow using a stub, an adapter object has to be
provided that is capable of mapping the parameters submitted by
the user to the generated stub. The BPEL Adapter Repository holds
such an adapter for every available workflow.

The actual mapping and workflow invocation is performed by the
BPEL Mapping and Invocation Component (BMIC). Every request
to start the processing of a workflow is internally managed as a
separate job object that contains information on the workflow to be
invoked and its parameters. These job objects are organized in a
Job Queue. When a new job is selected for processing from the Job
Queue, the BMIC assembles all data objects necessary to invoke the
workflow. Finally, it triggers the processing of the workflow.

Despite the variety of available workflows, there is only a single
Web Service interface through which workflows can be started,
managed and monitored: the Job Service. The Job Service interface
defines a data type for submitting a Generic Job Description. It
contains all the information needed to invoke a BPEL workflow such
as the Job Type and Parameters. Users can query the Job Service
for available workflows, choose a workflow they want to utilize
and compose a Generic Job Description before it is submitted.
Furthermore, the Job Service provides operations for monitoring a
job’s execution status and manage the execution lifecycle, i.e. to
pause, resume or abort a running job.

3 GRID BPEL ENGINE
BPEL4WS has emerged from the earlier proposed XLANG4 and
Web Service Flow Language (WSFL)5. It enables the construction
of complex web services composed of other web services that act as
the basic activities in the process model of the newly constructed
service. Access to the process is exposed by a execution engine
through a web service interface, allowing those processes to be
accessed by web service clients or to act as basic activities in
other processes. BPEL features several basic activities to interact
with the services being arranged in the workflow. These activities
cover service interaction, data manipulation and the manipulation
of the control flow. Structured activities, ranging from a sequential
ordering of activities up to building directed acyclic graphs,
allow the composition of complex operations. Furthermore, BPEL
includes the features of scoping activities and specifying fault
handlers and compensation handlers for scopes.

To communicate with stateless and stateful services that are built
on top of the Web Services Resource Framework (WSRF)6, an
extended version of a BPEL engine [4] is used that facilitates
the seamless integration of Grid applications in multimedia
applications and vice versa. This extension maps the factory
pattern of Grid/WSRF services into easy-to-use activities on the
the BPEL side. Thus, the life-cycle management of a Grid service
is reflected by the activities GridCreateResourceInvoke (GCRI),
GridDestroyResourceInvoke (GDRI) while the invocation of a Grid
service is performed by a GridInvoke (GI).

4 http://msdn.microsoft.com/en-us/library/aa577463(v=bts.70).aspx
5 http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
6 http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

2



Generic Grid Workflow Management Platform

The implementation of our extensions to the BPEL standard is
based on the BPEL engine developed by Active Endpoints7, because
the engine is quite robust and the source code is publicly available.
Of special interest for our work are the Process Creation and
Management and the Process component itself. The most important
extension is the construct of PartnerLinkSets that encapsulates the
handling of WSRF resources. A SOAP handler component has been
developed that automatically inserts the Resource Key and other
information needed to identify the resources into the SOAP Header
of service calls. It is plugged into Apache Axis using the standard
mechanism. Besides implementing classes for handling and storing
properties of GI, GCRI and GDRI, the management GUI (web
based) has been extended to reflect our changes to BPEL.

The GCRI activity identifies the corresponding partner link set
before determining the resource link from it and constructing an
invoke object. The created invoke object is added to the execution
queue of the engine. As soon as the invoke is dequeued, any
resource link information contained in that invoke is identified
and the concrete endpoint is set in the Axis call. As soon as the
response arrives, it is parsed and the resource key as well as the
endpoint address are stored as a resource in the resource link.
This information is handled by the partner link set data structure.
When GI is called, it performs a lookup for the partner link set
and identifies the resource link corresponding to it. The engine’s
natural strategy to resolve a partner link is to look them up by their
names. To use this mechanism, we decided to introduce unique
identifiers for resources that are stored in the invoke object. Hence,
the engine can resolve the resource link during the creation of an
Axis call object. Subsequently, the correct endpoint information is
saved within the call and the information about the resource key is
put into the message context. GDRI is used when a WSRF resource
is not required anymore and therefore its lifetime should end. It
constructs an invoke object in the same way GI does (but with the
intention of destroying the resource).

Another obstacle BPEL workflows have to face are security
constraints: BPEL has a number of drawbacks with respect to
the more complex world of WSRF-based Grid computing. The
BPEL security concept is not equipped to deal with complex
multi-protocol Grid environments and does not integrate with the
Grid Security Infrastructure (GSI). While BPEL is mainly focused
on anonymous HTTPS-based TLS security or manual role-based
authentication encoded in SOAP headers, Grid computing has a
mandatory user-centric security approach using X.509 certificates
that far exceeds the scope and capability of the BPEL security
model. The Grid extensions mentioned above also feature the
integration of GSI into the Grid service invocation that can also
manage the lifetime of proxy certificates [6].

Due to the fact that BPEL is an XML-based web service
composition language, the definition of a workflow is quite
laborious and time-consuming without tool support. As a
consequence, several research and commercial activities concentrate
on the design and development of graphical BPEL workflow editors
focusing on a clear visualization and syntactically correct mapping
of the graphical representation to BPEL4WS code. Thus, existing
BPEL workflow editors are only suitable for web service experts
who are familiar with the details of web services and BPEL4WS.

7 http://www.activevos.com/

Non web service experts are normally overburdened by these
editors.

The Domain-Adaptable, Visual BPEL4WS Orchestrator (DAVO)
[5] is suitable for non web service experts. DAVO is a domain-
adaptable, graphical BPEL workflow editor. The key benefits that
distinguish DAVO from other graphical BPEL workflow editors
are the adaptable data model and user interface which permit
customization to specific domain needs. This increases usability for
non web service experts.

The architecture of DAVO is based on a model-driven approach
and follows the model-view-controller (MVC) design pattern [8].
Every element of the process is presented to the user through a
view component with a corresponding controller, allowing editing
operations. By visually adding elements to a workflow, changing
properties and so on, the controller object corresponding to the
action performed makes changes to the internal data model. Vice
versa, changes to the internal data model trigger controller objects
to update the visualization.

The mapping from the internal data model to executable BPEL
code is performed by a code generation component. It generates at
least three files from the internal model: a bpel file that contains the
logic of the workflow, a WSDL file with the workflows interface
description and a (non-standardized) deployment descriptor that
contains runtime information such as service endpoints.

4 BPEL REPOSITORY AND WORKFLOW
MANAGEMENT

4.1 BPEL Repository
When BPEL processes are deployed to a BPEL engine, interfaces
are needed to handle workflow discovery and execution. The
BPEL4Grid engine, which in turn is based on ActiveBPEL8, is used
in the MediaGrid project; it provides such a simple web service
interface that can be used to discover available workflows, monitor
their execution and manage the lifecycle of running processes.
However, this simple interface lacks the possibility to obtain
additional information to a process such as process semantics or a
documentation of the process parameters. Furthermore, there is no
single interface through which workflows that are hosted in remote
BPEL engines can be discovered. What is needed is a centralized
workflow repository capable of providing information about locally
and remotely deployed processes to manage and discover available
workflows at a single location.

Due to these requirements, a separate workflow registry
component is used: the BPEL Repository (BR). Acting as a registry
for BPEL processes, the BR stores information about all available
processes. Similar to the management interface of the BPEL4Grid
engine, processes can be added, altered or removed via its own
management web service interface. It can also be used for process
deployment, such that additional documentation about the process
and its parameters can be provided along with the deployment.

Besides the workflows that run in the local BPEL engine, external
workflow providers can use the interface to offer remotely hosted
BPEL workflows to the user. All they need to provide is a WSDL
interface description of the process. Additionally, they can add

8 http://www.activevos.com/open-source.php

3



Generic Grid Workflow Management Platform

documentation about the process and its parameters that can be
presented to the user when he or she intends to use the workflow.

Based on the WSDL interface description of a BPEL process,
the BR is able to automatically generate web service stubs for the
corresponding interface. These stubs are administered by the BR
and are used by the BPEL Mapping and Invocation Component
described in Subsection 4.3 to invoke the BPEL process.

4.2 BPEL Adapter Repository and Mapping
Information

The BPEL Adapter Repository (BAR) stores the necessary objects
for mapping the Job Type of a Generic Job Description to a specific
BPEL process. For every Job Type, there exists a corresponding
BPEL process that can be invoked by its BPEL WS9 and that is
accessible via the BPEL WS URL. As shown in Figure 1, the BAR
returns an URI that specifies the location of the corresponding
BPEL WS URL within the BR. To perform the mapping between
the parameters specified by the Generic Job Description and the
input variables of a certain BPEL WS, the repository additionally
contains a BPEL Adapter (BA) for each BPEL WS, which contains
all required mapping information. Thus, for every Job Type specified
by the customer, the BAR provides an URI and a BA. Thereby, the
repository only stores the mapping information but does not do any
mapping at all. The mapping is actually done by the BPEL Mapping
and Invocation Component that is described in Section 4.3.

The information about how to map a Generic Job Description
to a specific BPEL WS including its input parameters has to be
created manually. Since the mapping information can neither be
extracted automatically from a Generic Job Description nor from a
BPEL WS, it has to be implemented by a developer who knows both
workflow descriptions and is aware of how the parameters have to
be assigned to each other. Figure 1 shows the role of the developer.
He or she is responsible for implementing the mapping of Job Types
to their corresponding BPEL URIs and BAs. To lower the barrier to
entry for the customer, this relatively expensive and time consuming
task is concealed from him or her. Thus, the effort to integrate
the functionality of the platform in the customer’s environment is
reduced to a minimum.

4.3 BPEL Mapping and Invocation Component
The BPEL Mapping and Invocation Component (BMIC) performs
the mapping between the data of the Generic Job Description
provided by the customer and the associated BPEL WS. Moreover,
it invokes the corresponding process. To know how to map the
parameters to the input variables of the specific BPEL WS, a retrieval
of various data objects is necessary beforehand. Thereby, the user’s
input data in the form of a Generic Job Description and the WSDL
URL of the corresponding BPEL WS as well as an appropriate BA
are used. These objects are retrieved from internal repositories. The
entire process of data mapping is described in more detail below.
Figure 2 presents a graphical overview of the mapping process
showing its single steps in numerical order.

A new job processing is triggered by the customer by providing
a new Generic Job Description. It comprises a Job Type that
corresponds to a certain workflow type and a number of parameters
describing necessary input values. First (1), the BMIC needs to

9 Web Service

know which specific BPEL process belongs to the Job Type provided
by the customer. Therefore, it puts a request to the BAR specifying
the Job Type that the user has chosen. The BAR matches the
provided Job Type to an URI pointing to the location of the BPEL
WS to call (2) and returns this URI along with the corresponding
BA (3). To assemble a web service client to invoke functions of the
destined BPEL WS, a request is put to the BR providing the URI
of the mapped BPEL workflow (4). The BR does the matching for
the provided URI (5) and returns the BPEL WS URL that points
to the assigned BPEL WS (6). Apart from the BPEL WS URL, the
BR provides WS Stubs generated from the WSDL description of the
BPEL WS URL. Now that all necessary information is available to
create an user-specific request to the corresponding BPEL WS, the
actual mapping process takes place (7). The parameters originally
provided by the customer through the Generic Job Description are
mapped to the input variables of the WS Stubs of the assigned BPEL
WS. The result of the mapping process is a parametrized web service
client. It is used to invoke the BPEL WS that has been identified for
the user-chosen Job Type. Finally, the corresponding BPEL WS is
invoked (8) and the processing of the workflow steps begins.

5 GENERIC JOB INTERFACE
BPEL processes mostly represent a chain of sequential and parallel
processing steps and are invoked using web service interfaces.
Each process provides such an interface specifying the operations
available and the parameters needed to invoke the operation10. Since
BPEL processes can differ significantly depending on the task they
perform, the corresponding web service interfaces can also differ. A
user would have to implement a specific client for every new process
he or she may want to use. A drawback of this approach is that
a growing number of different processes increases the complexity
and the effort to integrate them into an application.

The main goal of the Job Service interface is to bypass this
shortcoming of a service-oriented architecture by providing a
single, generic web service interface for workflow invocation. This
interface acts as a façade to hide the workflow invocation logic
from the user by transferring the complexity towards the platform
provider. Instead of choosing a workflow and generating stubs to
invoke this workflow, the user composes a Generic Job Description
which is interpreted by the Job Service as shown in Figure 1. The
job description contains a specific Job Type and the Parameters
necessary for its execution. An extraction of the XML schema code
representing the job description is shown in Listing 1.

Every Job Type uniquely maps to a corresponding BPEL WS
able to perform the desired task. By using the mapping component
described in Subsection 4.3, the parameters provided are matched
to the corresponding BPEL parameters. Since stub classes are
created automatically by the BPEL Repository, applications using
the platform only have to implement a single web service interface.

The Job Service interface cannot only be used for job submission.
It also provides all the information necessary to compose a job
description. Applications can query the Job Service for available
Job Types and present them to the user. The customer can easily
choose a Job Type from a number of already existing Job Types

10 For simplification, we assume that a workflow has only one operation.
“Invoking a workflow” means invoking this single operation.

4



Generic Grid Workflow Management Platform

BPEL

Repository
 BPEL Adapter

Repository
BPEL Engine

BPEL Mapping

and Invocation 

Component

5

BPEL URI

↓

BPEL WS URL

WS Stubs

2

Job Type

↓

BPEL URI

1

Job Type
4

BPEL URI

6

BPEL WS 

URL

WS Stubs8

BPEL WS

Invocation

7

Job Type / 

Parameters

↓

BPEL WS Client3

BPEL URI

BPEL Adapter

Generic Job

Description

Fig. 2. Detailed view on the single steps of a mapping process

and has to provide required parameters. After a job description
has been composed, it is passed to the Job Service that in turn
starts the workflow processing. The Job Service responds with a
unique job ID which can be used to manage and monitor the job
execution process. Besides the ability to add new jobs, the Job
Service interface provides operations to query a job’s state and to
abort, suspend or resume a running job using the job ID.

<complexType name=” j o b D e s c r i p t i o n ”>
<s e q u e n c e>

<e l e m e n t name=” jobType ” t y p e =” t n s : j o b T y p e ” />
<e l e m e n t name=” t i t l e ” t y p e =” s t r i n g ” />

</ s e q u e n c e>
</ complexType>

<complexType name=” jobType ”>
<s e q u e n c e>

<e l e m e n t name=” comment ” t y p e =” s t r i n g ” />
<e l e m e n t name=” p a r a m e t e r s ” t y p e =” t n s : j o b P a r a m e t e r ”

minOccurs=” 0 ” maxOccurs=” unbounded ” />
<e l e m e n t name=” t y p e ” t y p e =” s t r i n g ” />

</ s e q u e n c e>
</ complexType>

<complexType name=” j o b P a r a m e t e r ”>
<s e q u e n c e>

<e l e m e n t name=” comment ” t y p e =” s t r i n g ” />
<e l e m e n t name=”name” t y p e =” s t r i n g ” />
<e l e m e n t name=” t y p e ” t y p e =”QName” />
<e l e m e n t name=” v a l u e ” t y p e =” b a s e 6 4 B i n a r y ” />

</ s e q u e n c e>
</ complexType>

Listing 1. XML schema code representing the Job Description

After the Job Service has received a job description, a new job
is created and added to the Job Queue from where it is further
processed. Hence, the Job Service decouples the asynchronous
submission of jobs from the synchronous job execution. Jobs can
be submitted independently of job execution. With the job ID, users
can determine a job’s state and manage its execution lifecycle. Since
the BPEL Engine is in control of process execution, operations like

suspend, resume or abort are forwarded to the engine’s management
interface.

More complex information, e.g. about the implementation of
certain BPEL processes, remains hidden from the user. Thus, the
effort to integrate the functionality of the platform in a user’s own
environment is reduced to a minimum.

6 RELATED WORK
The CASSANDRA framework [11] is a distributed multimedia
content analysis system that is based on a service-oriented
architecture and aims to facilitate the composition of applications
from distributed components on a network of cooperating devices
(like PC or consumer electronics equipment). The individual
analysis components are encapsulated into functional units, called
Service Units. All units on one particular device are managed by
a local component repository that is synchronized by a master
repository. Service composition is initiated by a special coordination
component. Each Service Unit has a control and a data streaming
interface. The control interface is based on UPnP, while the
streaming interface is based on TCP/IP. This framework does
not use web services to build a SOA, neither for the service
definition nor for workflow composition; it uses UPnP. Since
service composition is performed by a special component, the
above mentioned coordination component is just used to set up the
workflow. In general, this framework is similar to our streaming
approach, but does not leverage the expressiveness of BPEL. The
use of UPnP may be useful for controlling consumer electronics,
but is critical in terms of security and will probably not find a broad
adoption by network administrators.

Blower et al. [3] have developed a system for creating a new
service type called Styx Grid Service (SGS). The system wraps
command-line programs and allows them to be run over the Internet.
It is based on a Java implementation of the file-sharing protocol Styx
and allows data streaming from service to service over transport

5



Generic Grid Workflow Management Platform

protocols like TCP/IP or UDP. A SGS can be used in a web service
or WSRF environment. An orchestration into workflows is also
possible through simple shell scripts or graphical workflow system
like the Taverna workbench11. In contrast to SGS, our architecture
is based on the de-facto standard for business workflows, namely
BPEL, and can thus be integrated into business processes. The
granularity of the SGS is very coarse, since a SGS can only wrap
whole executables. Our approach works on the web or Grid service
level, i.e., on methods or functions.

With a large scale content analysis engine, Gibbon et al. [9] have
built a distributed system to assist content-based video retrieval and
related applications. The system consists of multiple specialized
servers with a centralized database. Video data is ingested through
acquisition servers and delegated to certain processing servers.
The system relies on the MPEG-7 standard to store and distribute
metadata. It makes use of web services to expose processing
operations, but the task of data transport is delegated to a subsystem.
Thus, the data transfer is performed outside of the web service
scope. Furthermore, the system does not rely on standardized
workflow systems.

An architecture and an API to support a distributed data flow
model in conjunction with a centralized control flow is presented
by Barker et al. [2]. To provide a non-centralized data flow from
one service to another service, the authors make use of proxies that
are responsible for data management and service invocation. The
proxies are placed near by the service that they should administrate.
A service invocation has to be passed over a proxy, the produced
data is saved through the proxy and a reference to this data is
delegated back to the calling centralized workflow engine. This
solution is just focused on (stateless) web services and does not
directly support WSRF-based services that are often more suited
for multimedia content analysis tasks. Although this approach leads
to a distributed data flow with reduced data movement, it also
introduces an additional indirection stage for service calls. Since
the proxies should be placed on the same web server or domain and
the reference system needs to store the service results on local disk,
a resource competition between service and proxies may occur.

7 CONCLUSION
In this paper, we have presented an architecture for a generic
Grid workflow management platform applied to media analysis.
By specifying a single Job Service interface, the barrier to entry
for using the workflows is lowered to a minimum without losing
any functionality. No matter how many different workflows the
customer likes to process, just one interface has to be implemented.

The complexity of workflow processing is transferred from the
customer to the platform provider. Acting as a façade for workflow
processing, the Job Service aggregates all functions needed to
invoke, manage and monitor workflows. Furthermore, external
workflows can be added to the BPEL Repository to support the
integration of workflows operated by third party providers.

The presented solution is currently under development and is
estimated to be available as a prototype in 2011. Areas for
future work are: a) completing the implementation, b) using the

11 http://taverna.sourceforge.net/

architecture for various analysis applications, and c) evaluating the
performance and scalability of the proposed approach.

REFERENCES
[1]A. Akram, D. Meredith, and R. Allan. Evaluation of BPEL to Scientific

Workflows. In Proc. of the Sixth IEEE Int. Symposium on Cluster Computing
and the Grid, pages 269–274. IEEE, 2006.

[2]A. Barker, J. B. Weissman, and J. van Hemert. Orchestrating Data-Centric
Workflows. In CCGRID, pages 210–217, 2008.

[3]J. D. Blower, A. B. Harrison, and K. Haines. Styx Grid Services: Lightweight,
Easy-to-Use Middleware for Scientific Workflows. In International Conference
on Computational Science (3), pages 996–1003, 2006.

[4]T. Dörnemann, T. Friese, S. Herdt, E. Juhnke, and B. Freisleben. Grid Workflow
Modelling Using Grid-Specific BPEL Extensions. In Proceedings of German e-
Science Conference (GES), 2007.

[5]T. Dörnemann, M. Mathes, R. Schwarzkopf, E. Juhnke, and B. Freisleben. DAVO:
A Domain-Adaptable, Visual BPEL4WS Orchestrator. In Proceedings of the
23rd IEEE International Conference on Advanced Information Networking and
Applications (AINA), pages 121–128. IEEE Computer Society Press, 2009.

[6]T. Dörnemann, M. Smith, and B. Freisleben. Composition and Execution of
Secure Workflows in WSRF-Grids. In Proceedings of the 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid), pages 122–129. IEEE
Computer Society Press, 2008.

[7]W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. Price. Grid Service
Orchestration using the Business Process Execution Language. In Journal of Grid
Computing, volume 3, pages 283–304. Springer, 2005.

[8]E. Gamma, R. Helm, and R. E. Johnson. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9]D. Gibbon and Z. Liu. Large scale content analysis engine. In Proc. of the First
ACM workshop on Large-scale multimedia retrieval and mining, pages 97–104.
ACM, 2009.

[10]E. Juhnke, T. Dörnemann, R. Schwarzkopf, and B. Freisleben. Security, Fault
Tolerance and Modeling of Grid Workflows in BPEL4Grid. In Proceedings of
Software Engineering 2010, Grid Workflow Workshop (GWW-10), pages 193–200.
, 2010.

[11]J. Nesvadba, P. Fonseca, A. Sinitsyn, F. de Lange, M. Thijssen, P. van Kaam,
H. Liu, R. van Leeuwen, J. Lukkien, A. Korostelev, J. Ypma, B. Kroon, H. Celik,
A. Hanjalic, U. Naci, J. Benois-Pineau, P. de With, and J. Han. Real-Time and
Distributed AV Content Analysis System for Consumer Electronics Networks. In
Proc. of International Conference on Multimedia and Expo, pages 1549–1552.
IEEE Computer Society, 2005.

6


