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ABSTRACT
This contribution presents a fusion method for spectral series with the main purpose of obtaining 3D
information. The image series to be fused are combined stereo and spectral series gained with a camera
array. Therefore, in order to register them, features that are invariant with respect to the varying
gray values in the spectral images are extracted. The proposed approach is region based and uses
characteristics like size, position and shape for registration. The regions are identified using the watershed
transformation. The fusion problem is modeled using energy functionals that are to be optimized. They
take into consideration the size, position, shape and correlation of the regions. Using the implemented
algorithm, several scenes have been reconstructed. The experimental results show that the proposed
method delivers reliable and accurate dense depth maps of combined stereo and spectral series.
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1. INTRODUCTION
In many practical cases of automated visual inspection, cer-

Figure 1. The camera array in combination
with an industrial robot.

tain scene properties can only be obtained by acquisition
and fusion of multiple images. For example, authentic spec-
tral information can be obtained by fusing spectral series,
or panoramic images by fusion of image series acquired with
different camera positions. Considering the low price of sen-
sors and the increasing computational capacity for image
processing, the idea of using camera arrays instead of a sin-
gle camera for image acquisition in such cases is straightfor-
ward. To evaluate the potential of camera arrays, a system
consisting of nine cameras of the same type, arranged in form
of a 3 × 3 matrix has been built, Figure 1. The cameras have
been provided with interference filters that uniformly sam-
ple the visible and near infrared (NIR) spectrum (400 – 850 nm). The geometrical arrangement of the
filters in the matrix has no basic scientific importance. However, the probability that the properties of
the objects (such as texture, shape) are captured through two filters of neighboring wavelength is high.
Therefore, the geometrical configuration of the filters is such that filters with neighboring transmission
range are placed side by side, see Figure 6.
The acquired image series are combined stereo and spectral series; the stereo property is given by the
different camera positions in the array. The scope of the project is a 3D reconstruction of the scene with
additional spectral information for each point. The present contribution describes the first step: the 3D
reconstruction.
Most algorithms for estimating dense depth maps are based on evaluating similar structures in the images,
such as gray values or texture. The challenge of the problem in this case consists in the fact that such
structures cannot be found reliably in the gained image series. The spectral filters cause objects to
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appear differently in each image. They take different gray values or the object structure might disappear,
especially when printed texture is present. Therefore, for identifying correspondences, features invariant
with respect to texture and gray values are needed. Such features may be based on homogeneous regions,
i. e. a region that has a uniform gray value.
Further on, a region based approach to fuse combined stereo and spectral series is presented. The nota-
tions and the preprocessing steps are introduced in Section 2. For the image segmentation, the watershed
transformation has been applied under consideration of some additional constraints, see Section 3.1. Cor-
respondences in the segmented images are searched based on the size, shape and position of the regions,
see Section 3.2. The problem is modeled with the help of energy functionals. The registered image series
are fused successively in pairs, such that all images contribute to the final result. The fusion takes place
on two levels: on the first one, images are fused to obtain disparity maps and on the second one, prelimi-
nary depth maps are fused to a final result, see Section 3.4. The result is a depth map that combines the
information brought by all images in the series. Finally, an example is presented to illustrate the steps
of the algorithm from the acquisition to the reconstruction of the scene, see Section 4.
1.1 Previous Work
Fusion of spectral series is present in the literature mostly in the domain of satellite image processing
with the purpose of identifying certain regions, e. g. green areas or minerals.1 The 3D reconstruction
takes place under different constraints and therefore the algorithms cannot be applied in the case of close
scenes, such as the present case.
Region based image processing is used mainly in three domains: medicine, surveillance and industrial
optical inspection for 3D reconstruction of scenes with lack of structure. The purpose in medicine is to fuse
images acquired with different sensors for a detailed identification of tissues. For a 3D reconstruction,
measurement techniques delivering 3D data like CT (computer tomography) are employed.2 In the
surveillance domain, the purpose is to find and follow the same objects through an image sequence.3 In
both cases (medicine and surveillance), one region of the first image is searched in the other images of
the series.
In the present case, which belongs to the third domain, a complete registration of the images in the
series is required. For this scope (registration of spectral series), only a few algorithms are present in the
literature. They can be found under two keywords: region based and segment based registration, both
used equivalently. Modalities for finding the regions are multiple and the basic algorithms are found in
the standard literature.4

For the registration of stereo pairs, two techniques are encountered. The first one is to segment the first
image into regions. In each of the regions, features (texture, edges) are defined, which are then searched
in the entire second image for identifying the corresponding region.5–7 The obtained correspondences are
either labeled with their disparity6 or a modeled 3D plane is fitted to them.5, 7

The second technique is to segment both images and then to find correspondences between the obtained
regions. In this case, there are two types of algorithms. The first type uses only one segmentation, e. g.
based on color as an initial guess for estimating depth, which can then be optimized by means of an
energy functional between the first warped image and the second.8 The second type fuses segmentations
obtained using different features, e. g. by means of color and pixel based disparity estimation,9 or by
employing the same feature at different granularity levels.10 Neighborhood and father-child relations can
be incorporated by means of dynamic trees.11

It is to mention that the algorithms in the literature use regions as elements to be registered in order to
obtain improved results for scenes without structure or to identify certain objects or patterns in different
images. In the present contribution, the spectral component of the image series takes care that regions
are homogeneous elements that define parts of objects. Therefore, the identified regions can be used for a
complete registration of the images. This contribution proposes an innovative approach for fusing stereo
and spectral image series to obtain depth information.
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2. PREPROCESSING
Prior to the actual fusion of the combined image series, the calibration of the camera system is mandatory
for estimating depth. In addition, a preprocessing step consisting of rectifying pairs of images in the series
is helpful for the image registration and the subsequent fusion.
In general, the images are considered as functions: Bi : R2 → R, with the gray value Bi(u, v) of the
pixel p = (u, v)T in the i-th image of the series; u and v are the image coordinates. The image function
is also used in a general form with a region R as a variable, e. g. B(R) is the image signal for an entire
region. Pi is the set of pixels in the i-th image. Generally, the index indicates which image of the series
is referred (e. g. pi is a pixel in the i-th image).

2.1 Calibration
First, a weak calibration (i. e. estimating the fundamental matrices) is required for the rectification of the
images in the series and second, the projection matrices are required for estimating depth. The estimation
of both matrices is done by using several recordings of a planar chessboard employed as calibration object.
The fundamental matrix for an image pair can be determined by using the eight-point-algorithm,12, 13 but
also directly by using the projection matrices:13 F ji = [ej ]×P jP

+
i with the epipole e and the projection

matrix P . [e]× is the skew-symmetric matrix of e (see e. g. [13]) and P + is the pseudo-inverse of P .
The projection matrices are obtained using a standard calibration algorithm, which has been employed for
all camera pairs.14 Once the camera projection matrices are known, it is straightforward to reconstruct
depth from point correspondences. This triangulation problem is equivalent to solving a system of linear
equations.13

2.2 Image Rectification
As a first preprocessing step, the images are recti-
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Figure 2. Image formation: pi and pj are projections of
the same 3D point M and are therefore corresponding
pixels. Mathematically, their relation can be described
with the help of the fundamental matrix F ji. C repre-
sents the camera optical center and e is the epipole.

fied by means of epipolar geometry. For any given
pixel pi ∈ Pi, its corresponding pixel pj ∈ Pj

must lie on a certain epipolar line within the im-
age Bj , see Figure 2. This can be described math-
ematically by the fundamental matrix F ji: for a
pair of corresponding pixels pi ↔ pj , the following
equation in homogeneous coordinates is satisfied:
pT

j F jipi = 0. The epipolar line corresponding to
pi in the j-th image is given by F jipi. The fun-
damental matrices are estimated as described in
Section 2.1.
For describing corresponding pixels, the standard
disparity notion for stereo image pairs is used.
This defines disparity as a translation of the pixel
position. If two pixels correspond (pi ↔ pj), then for two horizontally rectified images (see Figure 3(a)),
the relation between them can be formulated as pi = (ui, vi)T ↔ (ui + α, vi)T = (uj , vj)T = pj . For two
vertically rectified images (see Figure 3(b)), the relation is pi = (ui, vi)T ↔ (ui, vi +γ)T = (uj, vj)T = pj .
α and γ are the translations in horizontal and vertical direction, respectively. The notion of disparity
and with it the rectification in both directions are required due to the matrix form of the camera array,
since the images from cameras situated side by side and from those situated on top of each other must
be fused.
Image rectification in the present case means projecting the images on a common plane parallel to the line
between the optical centers of the cameras, also called the plane at infinity. For that, two homographies
are computed with the help of the fundamental matrices between the two images. The resulted rectified
images contain a minimum of distortion.12, 13
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Figure 3. Horizontally (a) and vertically (b) rectified images.

3. IMAGE FUSION AND 3D RECONSTRUCTION
The fusion of the combined image series to estimate depth uses a region based approach. It consists of
three steps: first, homogeneous regions are defined. Second, corresponding regions in different images are
identified, and third, disparities of the regions are evaluated in order to estimate a depth map.

3.1 Image Segmentation
A good segmentation satisfies three requirements:4 first, the segmentation should be disjoint and cover
the entire image, i. e. it should be a partition of the image; second, within each region, a given homogeneity
criterion should be satisfied, and third, the homogeneity criterion should not be satisfied in between the
regions.
For image segmentation in the present case, the watershed transformation has been chosen. It segments
the images according to the requirements mentioned above: the segmentation is implicitly disjoint and
complete, the homogeneity criterion, which requires a uniform gray value, is only satisfied within the
regions. As input, the watershed transformation requires gradient images. Any gradient operator which
weights the edges and lines according to the steepness of their gradient, e. g. the Sobel operator,4 can be
used.
In order to avoid oversegmentation, the images have been smoothed using an anisotropic filter, which
preserves edges in the images without loss of sharpness.15 The parameters of the watershed transformation
are adapted such that the number and the size of the identified regions in each image generally correspond.
Two problems can intervene: the regions may be so small that their large number leads locally to
false correspondences (e.g. caused by noise), and a structure identified as a region in one image may
appear segmented in a large number of regions in another image. Such cases make the estimation of
correspondences hard and should therefore be avoided. For that purpose, a postprocessing step merges
too small regions.
An example of segmented images of the series in Figure 6 is presented in Figure 7. The gray values are
used as labels and have no significance regarding the correspondences between regions in different images.

3.2 Image Registration
The registration of two images Br (reference image) and Bt (template image) can be defined as the search
for a geometrical transformation ϕrt : R2 → R2, such that the dissimilarity between the reference image
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and the transformed template image is as small as possible. The dissimilarity is measured by a distance
function d: d(Br, Bt ◦ ϕ) → min.
Image registration can be formulated as the optimization of an energy functional:

E(ϕrt) = D(ϕrt) + βS(ϕrt) = d(Br, Bt ◦ ϕrt) + βS(ϕrt) → min . (1)

The purpose is to find a function ϕrt such that the energy functional is minimized. The first term in
Equation (1) is the data term, which ensures the consistency of the result with the measured data, i. e.
the distance function of corresponding features should be small. The rest of the terms, here cumulated
in S, define additional constraints, e. g. smoothness; β is a weight. The reader is referred to [16] for a
theory of image registration techniques. For practical examples of fusing image series acquired with a
camera array by means of energy functionals, see [17–20].
For the region based registration, Equation (1) is adapted such that the features compared are regions:

E(ϕ) = D(ϕ) =
∑

(Br,Bt)

∑

R

dR(Br(R), (Bt ◦ ϕrt)(R)) → min . (2)

The function dR(., .) measures the correspondence between regions in two images. In order to assess
all image pairs, ϕ is the set of all geometrical transformations between the chosen image pairs (Br, Bt):
ϕ = {ϕ12, ϕ23, . . .}. By summing over all pairs (Br, Bt), the entire image series is regarded. In this step,
only neighboring image pairs are used, see Section 3.4. Since the compared regions are homogeneous (see
Section 3.1), the smoothness term S(ϕ) can be omitted without loss of information.
The similarity of the regions is compared using a multidimensional vector m(.) of invariant features like
size, position and shape:

E(ϕ) = D(ϕ) =
∑

(Br,Bt)

∑

R

dm(m(Br(R)), m((Bt ◦ ϕrt)(R))) → min . (3)

In order to evaluate all invariant features within m(.), which cannot be compared by using the same
metric, the remaining data term D(ϕ) in the energy functional E(ϕ) is split into three components with
the respective weights β ≥ 0:

E(ϕ) = D(ϕ) = βsDs(ϕ) + βpDp(ϕ) + βcDc(ϕ) → min . (4)

The first component Ds(ϕ) takes care that the two regions have similar sizes A(.):

Ds(ϕ) =
∑

(Br,Bt)

∑

(Rr,Rt)

ds(Rr, ϕrt(Rt)) =
∑

(Br,Bt)

∑

(Rr,Rt)

|A(Rr) − A(ϕrt(Rt))| . (5)

The second term Dp(ϕ) evaluates the size o(Rr, Rt) of the overlapping area of regions in comparison to
their position on the epipolar lines:

Dp(ϕ) =
∑

(Br,Bt)

∑

(Rr,Rt)

dp(Rr, ϕrt(Rt)) , dp(Rr, ϕrt(Rt)) ∝ f(Rr, ϕrt(Rt))
o(Rr, ϕrt(Rt))

. (6)

Here, the function f(., .) measures the geometrical distance between two regions with respect to the
epipolar lines.
The third term Dc(ϕ) evaluates the correlation between two regions, which implies the similarity of their
shape:

Dc(ϕ) =
∑

(Br,Bt)

∑

(Rr,Rt)

dc(Rr, ϕrt(Rt)) = −
∑

(Br,Bt)

∑

(Rr,Rt)

max
τ

{Br(Rr) · (Bt ◦ ϕrt)(Rt − τ)} . (7)

Finding a minimal solution for the energy functional defined in Equation (3) means obtaining an optimal
estimation for the set of geometrical transformations ϕ.
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Figure 4. Fusion sequence of the image series: (a) Choice of the image pairs for the first fusion level. (b) First
fusion level: computation of disparity and depth maps by fusing horizontally neighboring images. (c,d) Second
fusion level: computation of depth maps by fusing vertically neighboring depth maps obtained from the first
fusion level (b). (e) Final result of the fusion process.

3.3 Implementation
For finding an optimal solution for the energy functional in Equation (3), a sequential region matching
approach is proposed. The first step is to build a matrix of region pairs that are highly probable to
match. This is done by comparing the size, the position and the correlation of the regions:

E(Rr, Rt) = min
ϕrt

{βsds(Rr, ϕrt(Rt)) + βpdp(Rr, ϕrt(Rt)) + βcdc(Rr, ϕrt(Rt))} . (8)

The result is recorded in the matrix for each candidate pair.
The second step is to find the optimal global match of two images. This implies that each region in the
first image should have exactly one corresponding region in the second image and vice versa, i. e. exactly
one entry in each row and in each column should be considered for the global solution. This is done by
selecting the entries leading to the minimum sum of energy components E(Rr, Rt) under the constraint
given above. To ensure an efficient solution, the implemented algorithm considers for each region in the
first image only the best two matches in the second image.

3.4 Depth Estimation
The image fusion takes place on two abstraction levels both belonging to the level of features.21 The
chosen fusion algorithm ensure that the information contained in the images is exhaustively processed
and comprised in the result.

At first level, disparity maps are computed. This is done in each

Figure 5. Experimental scene: robot
holding a green log of wood (acquired
with an RGB camera).

row of the camera array for each two neighboring images, Fig-
ure 4(a). Since the disparities for image pairs are not directly
comparable (unlike the generalized disparity notion in [17–20]),
the immediate fusion of two disparity maps on the abstraction
level of disparities is not possible. In order to obtain a uniform
measure, which enables the further fusion process, depth maps
are computed from the disparity maps.
The fusion of depth maps takes place at a second level in two
different steps: first, horizontally neighboring depth maps are
fused (Figure 4(b)) and then, vertically neighboring ones (Fig-
ure 4(c,d)). The middle image of the series (camera 5) has been
chosen as final perspective due to the fact that it highly probably
sees most of the scene (as a consequence of its location in the
array). The order of the image pairs to be fused has been chosen
such that a minimum of fusion operations have to be made and

nevertheless, the information gathered is completely comprised in the final result.
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Figure 6. Image series acquired with the camera array. In the upper right corner of each image, the peak wavelength
of the spectral filter is tagged.

4. RESULTS
The developed algorithm has been tested on different scenes. An exemplary scene contains a model robot
holding a green log of wood, Figure 5. From this scene, an image series has been acquired, Figure 6.
The region segmentation result is presented in Figure 7. The result of the first fusion step is depicted in
Figure 8. Figure 9 presents the estimated depth map (left) and the reconstruction result (right).
The image series has been acquired under directional day light illumination. Therefore, certain structures
(e. g. on the robot, in the middle of the image) are amplified or reduced in each image depending on the
perspective of the camera and the shadows thrown. Since the watershed transformation assesses the
steepness of the gradient, the contrast influences the segmentation result. In such cases, it can happen
that parts of the objects in the scene are interpreted as belonging to the background (the green log
of wood in Figure 7 third row, third column). Another example is the structure of the robot that is
interpreted as one single region in certain images (Figure 6 first row, third column) and as many regions
in others (Figure 6 third row, third column).
In consequence, not all regions are identified with the same shape and size in each image. Therefore,
certain regions cannot be identified as corresponding, which leads to incomplete depth maps with missing
details after the first fusion step (white holes in the depth maps provoked by the lack of depth values for
that regions), see the intermediate results in Figure 8.
Nevertheless, the fusion of all depth maps results in a dense and correct depth map, see Figure 9. The
pieces of information dispersed through the intermediate depth maps are gathered in the final result.

5. CONCLUSIONS
The present contribution proposes a method for fusing combined stereo and spectral series in order to
estimate depth. The main problem is that the objects of the scene are imaged with different gray values
due to the application of spectral filters. Therefore, regions have been chosen as invariant element for
image registration. Based on their characteristics (size, position and shape), a registration of image pairs
of the series is accomplished. First, the registered images are fused in pairs to obtain disparity maps,
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Figure 7. Identified regions in each image of the series in Figure 6. The gray values are used as labels for
distinguishing neighboring regions in an image and have no significance regarding a possible correspondence.

Figure 8. Depth maps corresponding to intermediate fusion results according to the scheme in Figure 4(b). Dark
gray indicates regions near to the camera, while light gray indicates regions farther away.
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Figure 9. Left: Depth map according to the final fusion result. Right: 2 1/2D reconstruction of the scene in
Figure 5. Dark gray indicates regions near to the camera, while light gray indicates regions further away.

which are then used to compute depth maps. Due to the spectral properties of the scene and thrown
shadows in the scene, regions may be identified differently in the images, causing false correspondences.
This effect can be observed in the intermediate results, which contain gaps. Nevertheless, by considering
all images of the series, a complete dense depth map is obtained.
Future work will take the project a step further and fuse more depth maps obtained from different viewing
angles. A second step is to add the fused spectral information to the reconstruction. The main advantage
of such a system is the recovery of both depth and detailed spectral information by just one acquisition
of a combined image series. A few examples of practical applications of the final product are material
classification or color visual inspection.
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19. I. Gheţa, C. Frese, W. Krüger, G. Saur, N. Heinze, M. Heizmann, and J. Beyerer, “Depth estimation
from flight image series using multi-view along-track stereo,” Optical 3D Measurement Techniques,
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