
Classification with Sums of Separable Functions

Jochen Garcke

Matheon and Technische Universität Berlin
Institut für Mathematik, MA 3-3

Straße des 17. Juni 136, 10623 Berlin, Germany
garcke@math.tu-berlin.de

Abstract. We present a novel approach for classification using a discre-
tised function representation which is independent of the data locations.
We construct the classifier as a sum of separable functions, extending the
paradigm of separated representations. Such a representation can also be
viewed as a low rank tensor product approximation. The central learning
algorithm is linear in both the number of data points and the number of
variables, and thus is suitable for large data sets in high dimensions. We
show that our method achieves competitive results on several benchmark
data sets which gives evidence for the utility of these representations.

1 Introduction

We consider the basic binary classification problem, where one starts from a set
of labelled data,

D =
{
(xj ; yj)

}N

j=1
=

{
(xj

1, · · · , xj
d; yj)

}N

j=1
, (1)

with yi ∈ {−1, 1} labelling the two classes and x a d-dimensional feature vector.
There exist numerous algorithms for classification (see e.g. [1, 2]). Function based
methods for classifying data construct a function g(x) such that the sign of
g(xj) matches yj for the given data, and the sign of g(x) correctly predicts y for
other x. Since the data may contain errors, or may simply not provide enough
information, one cannot expect to completely satisfy this goal, so one tries to
minimise the classification error rates.

An approach using nonlinear functions in high dimensions typically has to
address the curse of dimensionality, where the complexity of the function repre-
sentation, which is the number of unknowns, typically grows exponentially with
the dimensions. For example, support vector machines are based on a data cen-
tred function representation using kernels. One of the reasons for the success
of this approach is that here the dimensionality turns up in the complexity of
the kernel computation but not in the complexity of the function representation
which essentially only depends on the number of data. One can view other ap-
proaches and how they address the curse of dimensionality in a similar fashion,
e.g. for neural networks the dimension turns up in the perceptron.

In the last years numerical approaches using function representations based
on a sparse tensor product approach were successfully used in high dimensions [3,
4]. These approaches are based, in an abstract fashion, on the approximation by
a sum of separable functions,

g(x) =
r∑

l=1

sl

d∏

i=1

gl
i(xi) , (2)

also known as low rank tensor decomposition or sparse tensor product approx-
imation. The number of terms r is called the (separation) rank. Note that the
coefficients sl are solely for later (computational) convenience, so that one can
scale the individual functions to ‖gl

i‖ = 1 in some suitable function norm, e.g. the
maximum norm. Since the sl depend on the gl

i they are not explicitly learned,
but are derived values. If one applies a log to such a function with r = 1 the
resulting approach is well known in the statistical literature as additive models.

Many methods are based on this formulation but differ in how they use it.
Sparse grid methods are based on a multi-scale tensor product basis where the
gl

i are combined from a set of orthogonal functions. Here basis functions of small
importance, justified by decay estimates exploiting hierarchical properties, are
omitted [4]. In the statistics literature, representations of the form (2) appear
under the names “parallel factorisation” or “canonical decomposition”, see [5]
for a review and further references. They are used primarily to analyse data on
a grid, typically in d = 3. Since the goal is to interpret data, constraints on
gl

i, such as positivity when one is interested in probabilities, are often imposed.
Similarly, since they only describe data on a grid, a general function is not built.

Following [6] we use sums of separable functions of the form (2) but without
constraints such as orthogonality or positivity on the gl

i. The resulting nonlinear
approximation method is called a separated representation [3]. The functions
gl

i may be constrained to a subspace, but are not restricted to come from a
particular basis set. This extra freedom allows one to find good approximations
with surprisingly small r, and reveals a much richer structure than one would
believe beforehand. Although there are at present no useful theorems on the size
r needed for a general class of functions, there are examples where removing
constraints produces expansions that are exponentially more efficient than one
would expect a priori, i.e. r = d instead of 2d or r = log d instead of d. These
example are discussed in detail in [3], we will sketch a few here as illustrations.

First, as a simple example, note that in the separated representation one can
have a two-term representation

d∏

i=1

φi(xi) +
d∏

i=1

(φi(xi) + φi+d(xi)) (3)

where {φj}2d
j=1 form an orthonormal set. To represent the same function as (3)

while requiring all factors to come from a master orthogonal set would force one
to multiply out the second term and thus obtain a representation with 2d terms.
Thus a function that would have r = 2d in an orthogonal basis may be reduced

to r = 2. Second, consider the additive model
∑d

i=1 φi(xi), and note that it is
equal to

lim
h→0

1
2h

(
d∏

i=1

(1 + hφi(xi))−
d∏

i=1

(1− hφi(xi))

)
. (4)

Thus we can approximate a function that naively would have r = d using only
r = 2 by choosing h small enough for a given approximation error ε. This formula
provides an example of converting addition to multiplication; it is connected to
exponentiation, since one could use exp(±hφi(xi)) instead of 1±hφi(xi). Third,
note that Gaussians are separable, since

exp(−c‖x− z‖2) =
d∏

i=1

exp(−c(xi − zi)2) . (5)

By expanding a radial function in Gaussians, one can obtain a separated repre-
sentation for it.

In a data mining context one can view such a representation as a sum of
different influences. Consider a case where several effects are responsible for the
overall distinction into two classes. Each rank in (2) now plays the role of one
such effect. This is a somewhat simplified view, as only products are considered
as summands in our approach and the interaction between different attributes
will not be just of product nature. On the other hand our algorithm optimises the
non-linear separated formulation in all ranks at the same time and has therefore
interaction between the different “effects”. In the end the goal is not to compute
summands describing effects, but to achieve the best compressed representation.
As mentioned above, addition can be converted to multiplication (4) and additive
representations of certain effects can therefore be represented more efficiently.
Also note again, that for r = 1 (2) falls back to an additive model. Overall, there
is some underlying structure present in machine learning applications which our
approach exploits at least implicitly.

The representation (2) provides a rich class of functions from which to con-
struct approximations, while also allowing algorithms that scale linearly in both
N and d. It is especially appropriate for the case where the dimension d is large,
but the underlying function that generated the data is fairly “simple”. One can
of course construct functions where the representation (2) would fail, in the sense
that r must be very large. It appears, however, that such bad functions do not
appear naturally. In some sense such bad functions are excluded by the very
nature of the problem we consider. For example, consider a “complicated” func-
tion, whose discretisation would require a grid with M points in each direction
and, thus, N = Md samples. Since Md is impossibly large for even moderate
values of M and d, we must assume N ¿ Md and, therefore, the data cannot
describe such a function to begin with.

In [6] it was shown that such representations are effective as regression func-
tions. The goals of this paper are to present algorithms to construct classifiers
of the form (2), and to give numerical evidence that such representations are

worth using as classifiers as well, which from a function point of view possess
quite different properties than regression functions.

To adapt the method to the classification problem we replace the least-
squares error by other more suited loss functions. We use log-likelihood esti-
mation, which in the sense of probability estimation is more appropriate and
statistically sound for classification than a least squares approach [1, 2], and the
hinge loss used for support vector machines in a smooth variant introduced in [7].

These loss functions make a different solution strategy necessary. Instead of
an alternating least squares procedure, which at its core involves the solution
of a linear equation system “living” in one dimension xi, we now have a non-
quadratic function to minimise using non-linear minimisation algorithms. We
investigate both an alternating minimising procedure and a global minimisation
which optimises in all dimensions simultaneously. For both we need to formulate
a suitable regularised problem. This is necessary to avoid overfitting, but also
for numerical stabilisation. We extend the approach from [6] and also investigate
the use of ‖∇g(x)‖2 as a simple regularisation term to enforce smoothness.

In the following Section 2 we describe the regularised minimisation problem
while Section 3 contains the employed algorithms. After presenting numerical
results in Section 4 we conclude with an outlook.

2 Definition of the Problem

2.1 Loss Function

The representation of a function by sums of separable functions was studied
recently for regression [6]. We now adapt this approach for loss functions pre-
ferred in classification problems, the overall aim is to minimise the expected
classification error on test data. First is the negative log likelihood [1, 2]

1
N

N∑

j=1

LLL(yj , g(xj)) =
1
N

N∑

j=1

log
(
1 + exp

(−yjg(xj)
))

. (6)

Note that we use the encoding yi ∈ {−1, 1} for the classes instead of the encoding
yi ∈ {0, 1} often employed in the log likelihood approach.

As an alternative we also adapt the hinge loss used for support vector ma-
chines. Since this function is not differentiable at yg(x) = 1 one would need a
general descent method. Instead we use a smooth approximation to it proposed
by [7], which is inspired by the Huber loss,

LHH(y, t) =





0 if yt > 1 + h
(1+h−yt)2

4h if |1− yt| ≤ h
1− yt if yt < 1− h

(7)

where h is a parameter to be chosen, typically between 0.01 and 0.5; for h = 0
one obtains the hinge loss. Therefore one minimises in this case

1
N

N∑

j=1

LHH(yj , g(xj)). (8)

Note that we are not actually minimising the hinge loss, but from a machine
learning point of view there is, besides tractability, no reason to prefer the hinge
loss over a smoothed version [7]. In other words, if one does not gain algorithmic
advantages using the hinge loss, like for support vector machines in the dual
optimisation, one can use a huberised version and expect comparable results.

In the following we describe our approach for the negative log likelihood (LL)
loss function (6), but one can replace it at every step with the huberised hinge
(HH) loss function (8).

2.2 Basis in One Dimension

Up to now we have not specified the representation for the one-dimensional
functions gl

i. For the above, and most of the following description, it is enough
to assume that we are given a function space of (finite) dimension Ml in which
to search for gl

i. For example, one could choose polynomials of some degree,
splines, or piecewise linear functions. This space may be different for each term l
in the sum, each attribute i, and in general also for each (l, i) pair. We next
choose some basis {φl

k}Ml

k=1 for this function space, but we emphasise that the
main results are independent of the particular choice. The function gl

i will be
represented by the vector of its Ml coefficients cl

i(k) in its expansion into {φl
k}:

gl
i(xi) =

Ml∑

k

cl
i(k)φl

k(xi). (9)

In our numerical experiments in Section 4 we use a multi-scale basis of tent
functions on the interval [0, 1], as was used e.g. in [6, 8]. On level 0 this consists
of the functions 1 and x. On level 1 we additionally include the tent function of
support 1 centred at 1/2, i.e. the line segments from (0, 0) to (1/2, 1) and then
to (1, 0). Level 2 adds two tent functions of width 1/2, centred at 1/4 and 3/4,
etc. This function space consists of piecewise linear functions.

We will solve for the values of cl
i(k) for all i, l and k, so those are the free

parameters with respect to which we minimise the error.

2.3 Avoiding Over-Fitting

There are two ways in which over-fitting can occur here. The first is when r
is too large. Since r is the main complexity parameter, it is natural to take a
parametric approach and choose r very low. As with all parametric methods,
various more-or-less justified tests, or simple cross-validation, can be used to
choose the appropriate r.

The second way over-fitting can occur is when there is over-fitting in the
one-dimensional functions gl

i. There are two natural ways to avoid over-fitting
within this framework. One is again to use a parametric approach, and choose
M small. Note that the discrete function space and the choice of its resolution
can also be viewed in the context of regularisation by projection [9, 10].

The other way is to use a nonparametric approach and incorporate regulari-
sation to encourage smoothness, as we describe next. We will use two different
strategies for regularisation, one in regard to the full function g, and one in
regard to the one-dimensional factors gl

i. Furthermore, regularisation is usually
also beneficial for the stability of the employed numerical solution strategy.

Global Regularisation One possibility is to add a weighted regularisation
term to the loss function (6) or (8) which results in a new functional for the
minimisation

1
N

N∑

j=1

L(yj , g(xj)) + λ‖S(g(x))‖2. (10)

The particular choice of S depends on the chosen discrete function space, or,
viewed in the kernel context, the particular choice of S corresponds, under certain
conditions, to a reproducing Kernel Hilbert space (RKHS) and therefore defines
a function space (which is then discretised). The regularisation parameter λ has
to be chosen suitably as usual. Since we employ multi-scale linear functions as our
basis for g(x) we can only use first derivatives in S. Therefore we use ‖∇g(x)‖2
as a simple regularisation term. Although this does not define a RKHS, it was
shown to be a reasonable choice in [11, 12].

Regularisation of One Factor We will see in section 3.1 that for the alternat-
ing minimisation procedure the problem collapses to one-dimensional subprob-
lems in coordinate direction xi. Here one can use the global regularisation term
from the last section. But one can also encourage smoothness of the function
g(x) just in regard to direction xi and assume here for the minimisation that
the other components have no influence on the smoothness of the function. Fur-
thermore one enforces regularisation separately for each summand gl

i(xi) in (2)
and not combined. Note that we present the resulting form of regularisation in
the following to completely formulate the problem setup. That this choice of the
regularisation term has in particular numerical advantages will be clearer after
the study of section 3.1, where the alternating minimisation procedure for the
one-dimensional problems is explained.

The one-dimensional function gl
i(xi) from (2) is using the basis functions φl

k –
we assume the same basis in all dimensions here – and will be represented by Ml

coefficients cl
i(k) according to (9). One now chooses a list of penalty weights γl

k

and adds to the one dimension problem (13)

λ
∑

l

s2
l

∑

k

γl
k|cl

i(k)|2 . (11)

This approach was taken in [6] with a particular choice of weights. We use a
slight modification and choose the weights for one gl

i(x) by ‖S(gl
i(x))‖2. Due to

the orthogonality of the basis we have
∫

φl
k

′(x)φl
k̃

′(x)dx = δkk̃C(k), where the
constant C(k) depends on the size of the support of φl

k. Due to the choice of

‖S(φk(x))‖2 basis functions with small support will be penalised stronger than
those with large support. This will penalise large local variance much stronger
than a change of the function over larger intervals.

Let us remark, that in the least-squares case the minimisation problem can
be ill-posed [13], but if each coefficient is penalised by some value larger than zero
the problem becomes well-posed; see [3] for discussion on controlling condition
number in this way. We conjecture that the situation is similar when minimising
log likelihood or the huberised hinge loss.

2.4 Sums of Separable Functions in the Learning Theory Context

This approach fits into the framework of Sobolev spaces, these were studied in
the learning theory context for example in [14]. This then gives us an infinite
function space, with bounds on its properties for learning, in which a discrete
approximation takes place, in our case by the use of sums of separable functions.

Such an approximation of an element from a function space by a linear com-
bination of functions from a given dictionary is much less studied in learning
theory. From the perspective of approximation theory in [15] bounds for conver-
gence rates for the problem of approximating a given function f from a Hilbert
space H by means of greedy algorithms are given and applied to the statistical
learning theory context.

In regard to approximation properties of our approach, some results are given
in [3] which show how other approaches can be formulated in the form of (2),
and how with increasing number of ranks r and increasing resolution M one can
approximate a function from a Sobolev space of certain smoothness arbitrarily
close. But the convergence order for these somewhat related approaches grows
exponentially in d.

To give theoretical results for our approach a characterisation of functions
with low separation rank (or tensors with a low rank decomposition) is needed,
but currently there is no characterisation of this kind. The examples above and
in [3] as well as the successful use of the related “parallel factorisation” or “canon-
ical decomposition” in statistics show that there are surprising mechanisms that
allow low separation rank. At this stage the lack of a complete theory should
not prevent a study of sums of separable functions for learning.

3 Minimisation Procedures

There are many algorithms for solving least-squares problems using representa-
tions like (2) described in the literature, see [5, 16] for surveys. It is a non-trivial
problem and there is active research to improve convergence and reduce the
dependence on the starting guess.

These algorithms can be classified in three main groups: alternating algo-
rithms, which update only a subset of the unknowns at each step; derivative-
based methods, seeking an update for all the parameters simultaneously by suc-
cessive approximations; and direct (non-iterative) methods. The latter cannot
be applied in our setting.

3.1 Alternating Minimisation Procedure

For the least squares error this approach is well-known as alternating least-
squares (als). The idea of partitioning the space of unknowns and solving the
optimisation alternatingly in these partitions is known under several other names
like coordinate descent and goes back at least to [17]. In the following we will
call it alternating minimisation procedure (amp).

Collapse to One-Dimensional Subproblems We now assume that an initial
guess g of the form (2) is given, with some choice of representation for gl

i. We fix
the components in all directions but one, and so collapse to an one-dimensional
problem. For simplicity we describe the case for direction i = 1, and so fix gl

i for
i > 1. We define the (fixed) partial products from the remaining directions by

pl
j = sl

d∏

i=2

gl
i(x

j
i) , l = 1, . . . , r, j = 1, . . . , N . (12)

The loss (6) then reduces to

1
N

N∑

j=1

log

(
1 + exp

(
−yj

r∑

l=1

pl
jg

l
1(x

j
1)

))
. (13)

To minimise (13) we must solve a one-dimensional non-linear problem in-
volving r one-dimensional functions gl

1, each described by Ml coefficients. As a
minimiser one has the choice under several algorithms. We did experiments with
the quasi-Newton method BFGS, a non-linear CG-method, and a trust-region
method (see e.g. [18]). One could numerically estimate the needed derivatives
(and hessian for the trust-region method) of the loss function. But e.g. the deriva-
tive for the log-likelihood with respect to cl

1(k) can be given explicitly as

1
N

N∑

j=1

−yjslφ
l
k(xj

1)
exp

(
−yj

∑r
l=1 pl

jg
l
1(x

j
1)

)

1 + exp
(
−yj

∑r
l=1 pl

jg
l
1(x

j
1)

) , (14)

and the derivative of the regularisation terms is straightforward.
The minimisation finishes once a suitable stopping criteria for the employed

non-linear solver is fulfilled, e.g. the objective function does decrease smaller
than a given threshold. Since we have an outer iteration the stopping criteria for
the one-dimensional minimisation can be coarser than typically used. We then
re-normalise gl

1 and incorporate the norm into sl, this is not strictly necessary,
we need not normalise at all; we do so only to prevent over/under-flows.

Before we describe the full algorithm including the iteration over the di-
mensions we now consider the computational cost bounds; exemplary for the
BFGS-method. Here we assume Ml = M for all l and that the cost to evaluate
φl

k is O(1), which is the case for our choice of basis functions. Therefore the

cost to evaluate a single gl
i at a single point is O(M). The computation count

for one iteration of BFGS is O(r2M2) plus the costs for the evaluation of the
loss function and the gradient for the iteration update and in particular the line
search [18]. Given the pl

j , it costs O(rMN) to compute the loss function (13).
To evaluate (14) we compute the fraction

exp
(
−yj

∑r
l=1 pl

jg
l
1(x

j
1)

)

1 + exp
(
−yj

∑r
l=1 pl

jg
l
1(x

j
1)

) (15)

once for each j, again in O(rMN). Using that (now fixed) value we compute the
derivative with respect to a single cl

1(k) in O(N). Since we have rM different
cl
1(k), the total complexity for the computation of the derivatives for the loss

part is O(rMN).
The two regularisation alternatives have different costs. To compute the

global regularisation for the regularised loss (10) one needs O(r2M2) opera-
tions. The prime of the regularisation needs O(r2M) each time, it simplifies for
the employed multi-scale linear basis. The contribution of the other dimensions
to the regularisation term in (10) can be computed once at the beginning of the
minimisation and needs O(d2r2M2) If we denote the number of BFGS iterations
by S and take it all together the cost to minimise the one-dimensional problem
with the global regularisation is

O((r2M2 + rMN)S + d2r2M2). (16)

The simpler regularisation term (11) only needs O(rM) operations for the
evaluation of the regularised loss function and its prime. Which gives a total cost
of

O((r2M2 + rMN)S). (17)

Alternating Improvement If we can solve the one-dimensional subproblems,
then we can iteratively solve such problems to reduce the loss (6). The alternating
strategy [3, 5, 16] is to loop through the directions i = 1, . . . , d. One then repeats
this alternating process and monitors the change in the loss (6), or the regularised
loss (10), to detect convergence. It is certainly possible to hit local minima. Even
when we approach the true minima, we have no reason to expect any better than
linear convergence.

To account for the computational cost to set up these problems we assume
that the number of amp iterations is K. The cost to compute all pl

j for a single i

is then O(rdMN). It would appear that we have cost O(rd2MNK) in the outer
loop through the d directions. However, when we switch from, say, i = 1 to
i = 2, we can simply update pl

j by multiplying it by gl
1(x

j
1)/gl

2(x
j
2), at cost

O(rMN). The total cost for the update in the amp formulation (without the
cost for solving the one-dimensional subproblems) is thus

O(drMNK) . (18)

If we incorporate this algorithm into the overall method and account for the
total cost we get

O(K(dr2M2 + drMN)S). (19)

for the local regularisation from Section 2.3. The cost is linear in both d and N ,
and so the method is feasible for large data sets in high dimensions.

Using the global regularisation from Section 2.3 we observe a complexity of

O(K[(dr2M2 + drMN)S + d3r2M2]). (20)

Again linear in N , but in parts cubic in d, although the inner non-linear solver
is linear in d. Nevertheless, the complexity still suggests the method for large
data sets in high dimensions.

The computational complexity for a non-linear CG-method or the trust-
region method in regard to N and d are similar. Only the evaluation of the
regularised loss functions, their prime and hessian (for the trust-region method)
depends on these and there we have a linear scaling in N and d for the regular-
isation (11) and linear in N and cubic in d for the regularisation (10).

The number of iterations needed in the non-linear solvers is the remaining
important computational aspect. These will depend implicitly on the complexity
of the function and therefore on the number of data. At this point we have not
investigated the non-linear solvers in detail but use well tested and publically
available implementations. Line-search procedures adopted to the problem and
suitable pre-conditioners for the non-linear CG approach are needed for a fully
efficient scheme. But for now we focus on the investigation of the accuracy and
representation power of our approach for classification problems. Therefore it is
enough to solve the non-linear problems to a sufficient degree in reasonable time.

Also note that we expect that after a few steps of the alternating procedure
we will have good starting values for the non-linear minimisation.

3.2 Global Minimisation Procedure

Alternating algorithms are in particular attractive for the least square loss be-
cause at their inner core a linear equation system needs to be solved. We here
use other loss functions and therefore have to use a non-linear minimisation pro-
cedure anyway, therefore one can consider treating the full problem (10) directly,
as it is also often used for least squares minimisation [5, 16]. In the following we
will call it global minimisation procedure (gmp).

The amount of data and the dimensionality now have a different influence
on the computational complexity. Again we focus on the BFGS-algorithm. The
number of unknowns of our representation is drM , therefore the cost for one
BFGS-iteration is of the order O(d2r2M2) plus the cost for evaluating the reg-
ularised loss function (10) and its prime. It costs O(drMN) to evaluate the loss
function and O(d2r2M2) for the regularisation term. The same holds for one
partial derivative of which there are drM . In total we have for the complexity
of the algorithm

O((d2r2M2N + d2r3M3)S), (21)

where S is the number of BFGS-iterations.
Although the global minimisation procedure has the larger order of compu-

tational complexity it can be competitive if the number of iterations S is small.
But for this often special care has to taken in the line search procedure. Fur-
thermore, implementing such an algorithm is often more cumbersome, especially
in regard to the needed derivative. As we will see in the numerical results us-
ing standard implementations of non-linear solver does not achieve the wanted
accuracy. Here further investigation of the procedures and their adaptation to
the particular loss function and problem setup are necessary, but out of scope
of this paper.

4 Numerical Results

In this section we give numerical results for several benchmark problems. Our
goal is to demonstrate that the representation (2) is powerful enough to build
good classifiers.

We compare against data used in the benchmark study [19], where the classi-
fication methods support vector machines with RBF-kernel (svm), classification
trees, linear discriminant analysis, quadratic discriminant analysis, neural net-
works, generalised linear models (glm), multinomial logit models, nearest neigh-
bours (nn), learning vector quantisation (lvq), flexible discriminant analysis,
mixture discriminant analysis, bagging, double bagging (dbagg), random forests
(rForst), and multiple additive regression trees were compared empirically1.

As in [19], we measure the classification performance using the prediction
error. Ten-fold cross-validation was performed ten-times; we report the means
and medians of the test set error rates of all 100 runs, whereas the standard
deviation and inter-quartile range are computed with regard to the ten-fold
results. For comparison we give the best result from the benchmark study and
note the rank of our approach in comparison to the other methods used.

The separation rank r, the discretisation level of the multi-scale basis (which
correlates with the basis size M) and the size of the regularisation parameter
were selected similar to [19]: we split the training data 2:1, train on the first two
thirds and evaluate on the last third to select good parameters. With these we
learn on all training data and evaluate on the as-yet-unseen test data. Note that
depending on the problem we used up to level 4 of the multi-scale basis and rank
r = 7, although often r ≤ 4 was sufficient.

It was observed that the test error is relatively unaffected by the value of h
in the huberised hinge loss, as long as it is not too large when it resembles more
the L2 loss [7]. In our experiments we observed this behaviour as well and use a
fixed h = 0.05.

Pre-processing of the data consists of omitting missing values, like in [19],
and scaling all data to [0, 1]d. We concentrate in this paper on data sets with
metric attributes. Therefore we use the five synthetic data sets and five real ones,

1 The data is available from (http://www.ci.tuwien.ac.at/∼meyer/benchdata/).

Table 1. Results on low dimensional synthetic data sets for both loss functions and
(A)lternating and (G)lobabl minimisation procedures. We give the mean (with stan-
dard deviation) and median (with inter-quartile range).

circle spirals
LL - A LL - G HH - A HH - G LL - A LL - G HH - A HH - G

mean 2.22 2.66 2.45 3.65 mean 0.25 0.53 1.03 2.79
(0.46) (0.39) (0.47) (0.47) (0.10) (0.28) (0.22) (0.57)

median 1.95 2.35 2.30 3.45 median 0.20 0.20 0.75 2.30
(0.61) (0.60) (0.80) (0.49) (0.16) (0.44) (0.29) (0.93)

including one with some categorical variables which were transformed into binary
attributes. For binary attributes i we only use a linear function, i.e. Mi = 2.

4.1 Alternating and Global Minimisation

First we remark on the empirical behaviour of the two different minimisation
procedures. We consider the circle in a square (circle) and the two noisy spirals
(spirals) data sets from [19], both are two dimensional. One might expect
that in this low dimensional case there would not be too much difference in
the behaviour of the two minimisation procedures. But already here the global
optimisation procedure does not cope with the problem and produces worse
results. This does not depend on the employed non-linear solver.

To be more precise. Using the same minimisation procedure in a standard
implementation using standard line search procedures the alternating minimisa-
tion procedure achieves better results than the global minimisation procedure.
This observations does not depend on the non-linear solver nor which public
implementation was used. We expect that with a detailed investigation of the
minimisation problem and an adaption of the line search procedure the global
minimisation will perform better. There is active research in this regard in the
least-squares context [5, 16, 20].

In any case, not only does the alternating minimisation procedure show the
better order of computational complexity, it also achieves better correctness rates
as we can see in Table 1.

Somewhat promising are further results using a few iterations of the alter-
nating procedure to compute a good starting point for the global minimiser. For
the spiral data set we achieve in this way a median of 0.1 (0.075) and mean of
0.22 (0.13) using the log-likelihood as a loss function. Although the huberised
hinge loss does not benefit from such an approach for this data set; nor do we
observe such an improvement for the circle data set.

For higher dimensional data sets the global minimisation performs, as one
would expect after these results, even worse. We therefore abstain form giving
detailed results for the global minimisation procedure in the following.

We also use the two dimensional spiral data set to illustrate the approach.
In Figure 1 we show the components gl

i(xi) of the solution for one instance of

i = 1 i = 2

Fig. 1. Classifier with r = 4 using the multi-scale basis with level five produced using
the negative log likelihood error on one instance of the spiral data set. Left: The
function of the form (2) with r = 4 using the multi-scale basis with level five. Each
subplot shows a gl

i(xi). The magnitude sl has been distributed. Right: Value of the
classifier over the two-dimensional domain.

the data set and the resulting classifier. One might not expect that with just the
sum of four product functions such a complicated classifier can be obtained.

4.2 Results on Benchmark Data

We give the results of our experiments in Table 2 for the synthetic data sets and
Table 3 for the real ones. Our current code is a somewhat experimental python
implementation, whose purpose is to produce the approximation results that are
the main point of this paper. For one run on a data set the computational time
varied between a few seconds and a few hundred seconds, depending on the data
set, the rank, the degree and the regularisation parameter. In python, loops with
numerical computations are known to be inefficient and the algorithm consists
of a fair amount of loops over the data or the basis functions. We expect that
a proper implementation would decrease the runtime significantly. Therefore we
abstain for now from giving more detailed numbers for the computational times,
but will followup once a scaleable implementation is available.

Overall the log likelihood estimation performs somewhat better than the
huberised hinge loss, the latter might benefit from the h in its definition (7)
chosen depending on the data. The run time difference between these two loss
functions in our experiments did not appear to be significant.

The simple local regularisation method performs slightly better than the
global regularisation. For the twonorm, bupa liver and credit data set it results
in smaller misclassification rates, while for the spirals and threenorm data set the

Table 2. Results on synthetic data from the study [19]. We give the mean (with stan-
dard deviation) and median (with inter-quartile range) for the best results from [19],
our approach, and our rank in comparison to all 17 approaches used. We use log likeli-
hood estimation (LL), the huberised hinge loss (HH) and both forms of regularisation.

LL-Reg. (11) HH-Reg. (11) LL-Reg. (10) HH-Reg. (10)
data set best other SumSep rank SumSep rank SumSep rank SumSep rank

mean 2.66 svm 2.26 1 2.39 1 2.22 1 2.45 1
circle (0.44) (0.44) (0.46) (0.47)

median 2.50 svm 2.00 1 2.10 1 1.95 1 2.30 1
(0.49) (0.41) (0.62) (0.61) (0.80)

mean 0.17 nn 1.04 3 1.19 3 0.25 2 1.03 3
spirals (0.18) (0.22) (0.10) (0.22)

median 0.10 nn 0.90 3 1.10 3 0.20 2 0.75 3
(0.07) (0.22) (0.31) (0.16) (0.29)

mean 2.82 svm 3.61 5 4.08 5 12.04 17 6.37 12
twonorm (0.34) (0.34) (7.85) (1.34)

median 2.70 svm 3.40 5 3.85 5 5.50 10 5.90 11
(0.20) (0.40) (0.54) (8.93) (0.59)

mean 14.17 lvq 18.94 9 19.21 9 14.45 2 15.62 2
threenorm (0.98) (0.60) (0.40) (0.69)

median 13.70 lvq 18.95 8 19.10 9 14.40 2 15.40 2
(0.77) (0.98) (0.50) (0.79) (1.22)

mean 3.58 svm 5.44 2 5.92 2 4.85 2 5.43 2
ringnorm (0.58) (2.64) (0.31) (0.32)

median 2.90 svm 4.80 2 4.90 2 4.70 2 5.30 2
(0.70) (0.75) (0.61) (0.33) (0.31)

global regularisation method is better. In particular for some of the real data the
minimisation procedure had problems to converge for the global regularisation;
again, better adapted non-linear solution strategies might improve the results.
The good performance of the simpler local regularisation is an indication that the
limitation to a discrete function representation has a large effect in the avoidance
of overfitting, known as regularisation by projection in other fields [9, 10].

In comparison to the 17 other methods our approach achieves very compet-
itive results, here we look at the median as is done in [19]. For all data sets at
least one variant of our approach is in the top five and for eight of the data sets
we are in the top three. For six data sets, the majority, at least one version of
our procedure achieved better results than a support vector machine, which was
the best method in the referenced study [19].

5 Outlook

We described a new classification algorithm using sums of separable functions to
represent the classifier. Numerical evidence shows that typical data sets can be
efficiently described by this approach, which is the main message of this paper.

Table 3. Results on real data from the study [19]. We give the mean (with standard
deviation) and median (with inter-quartile range) for the best results from [19], our
approach, and our rank in comparison to all 17 approaches used. We use log likelihood
estimation (LL), the huberised hinge loss (HH) and both forms of regularisation.

LL-Reg. (11) HH-Reg. (11) LL-Reg. (10) HH-Reg. (10)
data set best other SumSep rank SumSep rank SumSep rank SumSep rank

mean 2.28 rForst 3.30 5 3.21 4 3.33 5 3.66 6
cancer (0.24) (0.26) (0.22) (0.49)

median 1.49 rForst 2.94 4 2.92 3 2.92 3 2.94 4
(0.16) (0.25) (0.33) (0.34) (0.71)

mean 27.04 rForst 26.63 1 26.58 1 31.74 8 30.66 7
liver (1.48) (0.98) (1.50) (1.86)

median 27.02 rForst 25.71 1 25.71 1 30.56 6 30.56 6
(2.15) (2.52) (1.48) (2.80) (3.24)

mean 22.65 dbagg 23.70 9 24.73 10 27.11 11 26.43 11
credit (0.67) (0.87) (1.40) (1.10)

median 22.77 5 appr. 22.77 1 24.25 10 26.87 13 26.73 12
(0.20) (0.57) (0.87) (2.40) (0.72)

mean 5.93 svm 8.01 4 9.03 6 16.11 15 11.49 8
ionosphere (0.84) (0.63) (1.67) (2.23)

median 5.71 2 appr. 8.57 4 8.57 4 8.57 4 8.57 4
(0.70) (1.35) (0.95) (3.21) (4.32)

mean 22.37 2 appr. 23.37 5 23.35 5 23.08 5 24.10 9
diabetis (0.59) (0.52) (0.71) (0.73)

median 22.08 4 appr. 22.08 1 23.23 5 22.72 5 23.38 6
(0.26) (0.65) (0.80) (0.94) (0.41)

There are several extensions and generalisations possible. Foremost, instead
of the standard and publically available non-linear minimisation algorithms a
method more specifically tuned to the problem could be used, e.g. similar to [20,
21]. Second, the approach can easily be extended for categorical attributes xj .
One can use a basis of vectors rather than functions, and index their coordinates
by the categories of such an attribute. Third, if one formulates the loss (13)
using something besides negative log likelihood or the hinge loss used in support
vector machines one obtains a similar nonlinear optimisation problem which can
be treated analogously. Fourth, note that in [6] it was shown how to extend the
regression algorithm to vector-valued regression functions. By letting the vector
represent the probabilities of the data point being in the different classes, one
obtains a multi-class classifier that produces probabilities rather than a decision
on the class. Suitable multi-class loss functions for support vector machines or
penalised likelihood estimation can be found in [22]. Finally, one can use different
one-dimensional spaces for different attributes and for different l. For example,
if one assumes an almost normal distribution underlying the data, one might
use a suitable Gaussian for the l = 0 term, but another basis for other l to
approximate necessary adjustments.

Acknowledgements The author cordially thanks Martin Mohlenkamp (Ohio
University) for helpful discussions and suggestions.

References

1. Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)
2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.

Springer (2001)
3. Beylkin, G., Mohlenkamp, M.J.: Algorithms for numerical analysis in high dimen-

sions. SIAM J. Sci. Comput. 26(6) (July 2005) 2133–2159
4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13 (2004) 147–269
5. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review

51(3) (September 2009) 455–500
6. Beylkin, G., Garcke, J., Mohlenkamp, M.J.: Multivariate regression and machine

learning with sums of separable functions. SIAM Journal on Scientific Computing
31(3) (2009) 1840–1857

7. Chapelle, O.: Training a support vector machine in the primal. Neural Computa-
tion 19(5) (2007) 1155–1178

8. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Computing
67(3) (2001) 225–253

9. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer
(1996)

10. Natterer, F.: Regularisierung schlecht gestellter Probleme durch Projektionsver-
fahren. Numer. Math. 28 (1977) 329–341

11. Garcke, J.: Regression with the optimised combination technique. In Cohen, W.,
Moore, A., eds.: Proceedings of the 23rd ICML ’06, New York, NY, USA, ACM
Press (2006) 321–328

12. Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties
and the sparse grid combination technique. Computing 84(1-2) (April 2009) 1–25

13. de Silva, V., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM J. Matrix Anal. Appl. 30(3) (2008) 1084–1127

14. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of
the AMS 39(1) (2001) 1–49

15. Barron, A.R., Cohen, A., Dahmen, W., Devore, R.A.: Approximation and learning
by greedy algorithms. Ann. Stat. 36(1) (2008) 64–94

16. Tomasi, G., Bro, R.: A comparison of algorithms for fitting the parafac model.
Computational Statistics and Data Analysis 50(7) (2006) 1700 – 1734

17. Yates, F.: The analysis of replicated experiments when the field results are incom-
plete. Emp. J. Exp. Agric. 1 (1933) 129–142

18. Nocedal, J., Wright, S.J.: Numerical optimization. 2nd ed. Springer (2006)
19. Meyer, D., Leisch, F., Hornik, K.: The support vector machine under test. Neuro-

computing 55 (2003) 169–186
20. Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren

in hohen Dimensionen. PhD thesis, Universität Leipzig (2008)
21. Espig, M., Hackbusch, W., Rohwedder, T., Schneider, R.: Variational calculus

with sums of elementary tensors of fixed rank. Numerische Mathematik (2010,
submitted) Preprint 52/2009, MPI for Mathematics in the Sciences.

22. Wahba, G.: Soft and hard classification by reproducing kernel Hilbert space meth-
ods. Proc. Natl. Acad. Sci. USA 99(26) (2002) 16524–16530

